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Preface

heu-ris-tic [adjective]
1. serving to indicate or point out; stimulating interesaas
means of furthering investigation.

2. encouraging a person to learn, discover, understand, or
solve problems on his or her own, as by experimenting,
evaluating possible answers or solutions, or by trial and
error: a heuristic teaching method.

[Source: Dictionary.com]

Introduction

This book is an outgrowth of classes given at the Univer
of California, Santa Barbara, mainly for students who h&o
tle mathematical background. Many of the students indit
they never understood what mathematics was all about (loe
what they learned in algebra and geometry). Was there
more mathematics to be discovered or created? How coul



actually discover or create new mathematics?

In order to give these students some sort of answers to
guestions, we designed a course in which the students
actually participate in the discovery of mathematics. Tlas<s
was not presented in the usual lecture fashion. And it did
deal with topics that the students had seen before. Ord
algebra, geometry, and arithmetic played minor roles intr
of the problems we addressed. Whatever algebra and geo
that did appear was relatively easy and straightforward.

Our objective was to give the students an appreciatio
mathematics, rather than to provide tools they would nee
some field that required mathematics. In that sense, thee
was like a course in music appreciation or art apprecia
Such courses don't attempt to train students to becomegpéa
composers, or artists. Instead, they attempt to give tliests
a sense of the subject.

Why do so many intelligent people have so little sens
the field of mathematics? A partial explanation involves
difficulty in communicating mathematics to the general jmt
Without special training in astronomy, medicine, or otraes-
tific areas, a person can still get a sense of what goes onse
areas just by reading newspapers. But this is much more
cult in mathematics. This may be so because much of mo
mathematics involves very technical language that is diffi
to express in ordinary English. Even professional mathien
cians often have difficulty communicating their work to at!
professional mathematicians who work in different areas.



This isn't surprising when one realizes how many ar
and sub areas there are in mathematitathematical Review
(MR) is a journal that provides short reviews of mathemét
papers that appear in over 2000 journals from around thedw
The subject classification used by MR has over 50 subjec
eas, each of which has several subareas. Each of theseas
has many sub-sub areas. A research mathematician might
expert in several of the sub-sub areas, be conversant inadc
areas, and know very little about the other areas.

Objectives

Our objective is to impart some of the flavor of mathemat
We do this in several ways. First, by actively participating
the discovery process, a reader will get a sense of how m,
maticians discover new mathematics.

A problem arises. Discovery often begins with some
perimentation to help give a sense of what is involved in
problem. After a while one might have enough understan
of the problem to be able to make a plausible conjecture,tw
one then tries to prove. The attempt to prove the conjectune
have several different outcomes. Sometimes the proof wi
Other times it doesn’t work, but in trying to prove it one les
much more about the problem and identifies some stumt
blocks.

Sometimes these stumbling blocks seem insurmoun
and one tries to prove they actuallye insurmountable—th



conjecture is false. That may create its own stumbling 8o
All the time one learns more and more about the problem.
nally one either proves the conjecture or disproves it. {F
ply gives up!).

We shall see all of this unfolding in the several chapter
the book. Our discovery process will be similar to that c
research mathematician’s, though our problems will be rr
less technical.

The first part of each chapter deals with a problem we v
to consider. We then go into the discovery mode and evegt
obtain some answers. After this we turn to other aspec
mathematics related to the material of the chapter. Whaei
history of the problem? Who solved it? What are some rel
problems? How can other areas of mathematics be brouc
bear on the problem? Do computers have any role in sol
the problems raised? What about conjectures that seemec
true, but were eventually proven false? Or remain unsolvel

We have tried to find some balance between discovery
instruction. This is not always possible: it is impossitbe
resist the many occasions when some idea leads natura
another wonderful idea. The reader will not discover the-c
nection, even with prodding, so we drop our heuristic apginc
and explain the new ideas. This is probably in the natur
things. When we look back on everything we have leart
certainly it is all a combination of stuff we figured out forret
selves and other stuff that we learned from others. It is
combination of the two that makes learning rewarding and



ductive. It is likely the stress on just the instruction piuat
explains the many people in this world who claim to dislike
fear mathematics.

Prerequisites

The main prerequisite for getting much from this book is
riosity and a willingness to attempt the problems we pres
These problems usually set things up for the next stage i
discovery process. This is different from most text booksere
the problems at the end of a section are intended to firn
readers’ knowledge of the material just presented.

Almost all problems have answers supplied at the en
the chapter. The word WsweRfollowing a problem indicate:
that an answer is supplied. For readers using a PDF fil
a computer or laptop screen, that word is hyperlinked to
answer. Readers working on a paperback version will hay
scan the end of the chapter to find the appropriate answer.

When the book is read in a self-study manner, rather |
in a classroom setting with an instructor to set the paceet
may be a temptation to move ahead quickly, to get to the
of the process to learn the result. (Did the butler commit
crime?). We urge that one resist the temptation. The stac
who got the most out of the class were the ones who pa
pated actively in the discovery process. This included oyl
the problems as they arose. They said that understandi
process was of more value to them than learning the answ



In order to understand the material in most of the chap
one needs a bit of algebra (just enough to be able to mangp
some simple algebraic expressions, though such manipnoe
play only a very minor role), a bit of geometry, and a lit
arithmetic.

One topic that is not usually covered in a first course ir
gebra ismathematical inductionThis tool appears in sever
places. Readers not familiar with mathematical inductian
reasonably work through a chapter that has an induction ¢
ment until that argument is needed. At that point, one can
sult the Appendix where induction is discussed and indnc
proofs are given that are relevant to various problems we
cuss. Induction does not take part in the discovery procés
is used only to verify that certain statements are true.

Rigor versus intuition

Professional mathematicians must be rigorous in their w
This involves giving careful definitions, even of appargffia-
miliar objects. This often involves a great deal of “teclathi
machinery.” A mathematician needs to know such thingsxa
actlywhat a “curve” is, what it means to “go around a curve
that the inside is to the left,” how to mathematically desel
the number of “holes” in a pretzel and the meaning of area

It should be understood, however, that this is not the ¢
ation when a mathematician first starts thinking of a prob
and working out a solution. Things are rather vague anc



tuitive in the early stages. The polish and rigor appear Ih
force only in the final drafts.

Since this book is not intended for mathematicians, \
would require formal definitions and proofs, we can relas#
requirements considerably. Everything we say in an infor
way can be said in a mathematically rigorous way, but tha
not our purpose. Our purpose is to provide some of the fl
of mathematics and introduce the reader to topics that <
students were surprised to find involved mathematics.
we can take for granted that readers intuitively understamd
cepts such as curves, inside, left, holes, and area. We avi
casionally describe a concept with which the reader may &
familiar, but our overall style is primarily a leisurely,formal
one.
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To the Instructor

One might notice that, on occasion, one or more problems
low after only a short discussion. This occurs when we
lieve this short discussion already presents an oppoytfmrit
the reader to get a sense of how we might continue. Whe
taught the class, we often found it convenient to make a s
amount of progress on each of two chapters in one class
sion. How this worked in practice varied with what happel
in class discussion. Sometimes the material we list as
lems actually became part of the class discussion, ratlaer
as problems to be discussed at the next class session. ke
best to be flexible and see where the discussion took us i
termining whether we should solve some of the problem
lecture form, or leave them as problems to be discussed i
next class meeting.

In a typical one-quarter term we would have covered f
chapters in a leisurely fashion, at least through the disgoof



the solution to the main problems of the chapter. We also \
able to cover some of the material at the end of the chag
Available time, class interests, and level of difficultyat@le to
the students’ backgrounds determined what we covered.

We provide answers to most of the problems, in partic
to those that point the way to further progress. We leave a
unanswered. Some of these we used as quizzes or hom
to be collected.



“Perhaps | can best describe my experience of do-
ing mathematics in terms of a journey through a
dark unexplored mansion. You enter the first room
of the mansion and it's completely dark. You stum-
ble around bumping into the furniture, but grad-
ually you learn where each piece of furniture is.
Finally, after six months or so, you find the light
switch, you turn it on, and suddenly it's all illu-
minated. You can see exactly where you were.
Then you move into the next room and spend an-
other six months in the dark. So each of these
breakthroughs, while sometimes they're momen-
tary, sometimes over a period of a day or two, they
are the culmination of—and couldn’t exist without—
the many months of stumbling around in the dark
that preceed them.”

“l used to come up to my study, and start trying to
find patterns. | tried doing calculations which ex-
plain some little piece of mathematics. | tried to fit
it in with some previous broad conceptual under-
standing of some part of mathematics that would
clarify the particular problem | was thinking about.
Sometimes that would involve going and looking it
up in a book to see how it’'s done there. Sometimes
it was a question of modifying things a bit, doing



a little extra calculation. And sometimes | realized
that nothing that had ever been done before was
any use at all. Then | just had to find something
completely new; it's a mystery where that comes
from. | carried this problem around in my head
basically the whole time. | would wake up with
it first thing in the morning, | would be thinking
about it all day, and | would be thinking about it
when | went to sleep. Without distraction, | would
have the same thing going round and round in my
mind. The only way | could relax was when | was
with my children. Young children simply aren’tin-
terested in Fermat. They just want to hear a story
and they’re not going to let you do anything else.”

— Andrew Wiles

In an interview for PBS TV pro-

gram Nova on the occasion of
his solving Fermat’s Last Theo-
rem.




Chapter 1
Tilings

Itis easy to imagine a rectangle tiled with squares. Thelfam
checkerboard in Figuré.lis a tiling of a square by sixty-fou
smaller squares.

Figure 1.1: Checkerboard.

A little more artistically, the tiling in Figurel.2 shows a



rectangle that has been tiled into a number of smaller sqt
arranged in an attractive design.

Figure 1.2: Greek mosaic made with square tiles.

In both these cases all the squares are of equal size.
is familiar in the pattern we see for checkerboards or foryn
ceramic tilings of kitchen floors. But what if the squares
not all of the same size?

Figure 1.3: Tiling a rectangle with squares

Figurel.3has tiles of unequal size but many of them ar
the same size. What if we insist thad two of the squares ca
be of the same sizé\ few moments of thought shows that tt
problem is much, much harder.



How does one begin to discover such constructions?
haps after trying to find one you will give up in frustrationda
suspect that no such tiling can exist.

We don’t recognize this as a problem that we can attac
any of the standard methods of arithmetic, algebra or gagtr
This is a situation that often arises in creative matheraatide
are faced with a problem but are at a loss about what toc
bring to bear on the problem. What to do? Faced with this 1
of problem, the creative mathematician would probably e
by trying to get &eelfor the problem by experimenting with
few examples.

1.1 Squaring the rectangle

The problem of tiling a rectangle with unequal sized squi
has been described by some as the problersgofring the
rectangle We do not know in advance on starting to look
such a problem whether there is a solution, and if there
solution how we should go about finding one.

Perhaps we should begin by seeing whether we can pi
gether a few squares (no two of the same size) in such a
that they combine to form a rectangle. (At this stage, itsadt
like working a jig-saw puzzle.)

Let’s start with a small number of squares. A momel
reflection reveals that it is impossible to achieve our éeks
result with only two or three squares. With four squaresiet



are quite a few ways in which the squares can be comb
Figurel.4shows two possibilities that you might have tried

Figure 1.4: Tiling a rectangle with four squares?

Problem 1 Experiment with four, five, and six squares. T
is, try to combine the squares in such a way that the resul
figure is a rectangle. Remember thrad two squares can be tt
same size Answer O

1.1.1 Continue experimenting

Did you find a tiling of a rectangle by four, five, or six squar
all of different sizes? If so, check again. Are two of the ggs:
the same size? You do not need a ruler to check this. Si
put in the numbers which you think represent the lengthse
sides of the squares and see if everything adds up right.
example, we might think that the configurations in Figliré
are possible after all. Maybe our drawing program does



quite get the job done, but the configuration there is pos:
with the right choice of dimensions.

The chances are that you did not arrive at a solution tc
problem. It must also have become clear that as the nu
of squares we use in our experimenting increases, the nu
of essentially different configurations we can put togethel
creases rapidly. Even with six squares, the number of con
rations we can try is very large—and it gets much worse if
tried to use seven or eight tiles.

How should we proceed? Our experimenting has not br
us a solution to the problem. But that does not mean it w
waste of time. We may have learned something.

1.1.2 Focus on the smallest square

For example, we may have noticed that many of our atter
led to a certain difficulty. Perhaps we can find a way to o
come this difficulty. Or, perhaps it is impossible to overey
thereby making the problem one with no solution. What is
difficulty? Consider again, for a moment, the configurati
that you tried out while working on Problefh For each of
these look to see where you placed the smallest square.
In each case there appeared a small space neighborir
smallest tile. Perhaps you noticed a similar state of affiir
some of your attempts with four, five or six tiles. If we we
able to complete these attempts by adding more tiles, t
small spaces could accommodate only tiles which are s



Figure 1.5: Where is the smallest square?

enough to fit into the space. And this would create even sm
spaces, to be filled with even smaller tiles. We can certe
continue to add smaller and smaller tiles, but at some po@
process must stop if we are to arrive at a solution to our p
lem. At this point it may look hopeless. Perhaps we can
what we have learned to prove that there is no solution tc
problem that uses only four, five or six squares.

1.1.3 Where is the smallest square

Let us focus on the difficulty we encountered. If thésea
solution, there must be a smallest squéreind that smalles
squareS must fit into the picture somewhere. Where? Ma
we can show that there is no place for it to fit.

This is what our experimenting showed — whenever
smallest square was in one of our trials, there was a s
neighboring it which could accommodate only still smaligua
(This might not have been true of all our trials, but it prolya



was true of most of those trials that offered any hope of ¢
cess.) Where could the smallest square fit? Could it be
corner as in Figuré.6?

Figure 1.6: Where is the smallest square? (In a corner-

Is the smallest square in a corner? A moment’s reflectior
shows it can’t be. SincBis the smallest square, its neighb
must be larger as in Figute?.

Figure 1.7: The smallest square has a larger neighbor

But that creates exactly the kind of space we've been |
ing about. Only squares smaller th&nould fit into that space



Is the smallest square on a side? Similarly, we see tha§
cannot be on one of the sides of the rectangle as Fitjg
illustrates.

|

Figure 1.8: The smallest square has two larger neighbol

It's two neighbors on that side must be larger than S; ¢
again a small space is created. So, if there is a solutionet
problem at all, the smallest square must lie somewhereer
the rectangle, i.e., its sides cannot touch the border afette
angle.

Problem 2 Do you think it is possible to find a tiling usir
exactly four squares of unequal size? |

Problem 3 Do you think it is possible to find a tiling usir
exactly five or six squares of unequal size? |

1.1.4 What are the neighbors of the smallest sqt

Did you find a tiling with five or six squares? If so, you'd bet
check that it really works. Did you find a proof that there is
solution? If so, you’d better make sure you really have a pr



Let's analyze a bit more. Suppose there is a solution&
is the smallest square. We kn@&wmust be inside the rectangl
What possibilities are there for the relationship betwBamd

its neighbors?

Figure 1.9: Possible Neighbor of the smallest square? (N

A possible case? A neighbor ofS might extend beyon& on
both sidesas Figurel . illustrates. This, we see is not possil
because two other neighbors (the ones below and aBadne
the diagram) would then create a small space.

Another possible case? The smallest squar® may have g
side bordering on two neighbors as Figar&Oillustrates. This
is impossible for the same reason.

The only possible case! Each neighbor of the smallest squz
Shas a side which fully contains one sideS)fout extends or
one side ofSonly. Figurel.1lillustrates this. Is this possible



Figure 1.10: Two possible neighbors of smallest square?)(

At least no small space has been created. This is the only
we cannot rule out immediately.

Figure 1.11: Four possible neighbors of smallest squ
(Maybe.)



What does a solution look like? We now know that if there
is a solution, the only possible placement of the smallashss
Sis thatSbe somewhere inside the rectangle and be surrou
by its neighbors in a windmill fashion. We have not deterrdil
that a solution exists. But we have learned something a
what a solution must look like (if there is a solution at all).
This leaves us with two options: we could continue to
to show there is no solution. How might we try? Perhaps
can still show that there is no place to @it Or maybe the
second smallest square creates a problem. Our alternstioe
switch gears again and try to show there is a solution. If
take this positive option, we are far better off than we wer
the beginning. We need try only such constructions whiclet
the smallest square surrounded by its neighbors in a withc
fashion. Let’s try that for awhile and see what it leads to.

Problem 4 Experiment with four, five, and six squares tryi
to combine the squares in such a way that the resulting fi
is a rectangle. (Same as Probleimbut use newly learned ir
formation.)

Answer O

1.1.5 Isthere afive square tiling?

It is clear that we need not try to find a solution with fc
squares. One thing we've already learned is that a soluific
one exists) requires at least five squares, narfSelyd its four



neighbors. Let's try a solution with five squares. Such a-s
tion must involveS surrounded by its neighbors in a windm
fashion. Figurel.12illustrates an attempt at this. In the figu
A, B, C andD are squares surrounding a central squ&are

Figure 1.12: We try for a five square tiling.

Careful measurements of the sides of the squares ir
configuration will reveal that they are not exactly squa(Asd
we want them exactly squares.) But that may mean no r
than that we weren’t careful with our drawing. And, after; «
no one can draw a perfect square! One would hardly discar
idea of a circle just because no one can draw a perfect circ

If we think the diagram above represents a solution,
should try to find numbers representing the sides of the sgt
so that all the requirements of our problem are satisfied.

An algebraic method To check that a proposed solution
correct or to prove that a proposed solution is impossibke
can use some simple algebra. Suppose the diagram repe:



a solution. Denote the length of the side by s and the
length of the side oA by the lettera. The labeling is shown il
Figurel.13

Figure 1.13:a, b, ¢, d, ands are the lengths of the sides of tl
“squares.”

Then,B has side lengtb+ a (why?) soC has side length
S+ (s+a)=2s+a
andD has side length
S+ (2s+a) =3s+a.

But, looking atA, S, andD, we see thak =d+s. Thus
a=4s+a, that is,s= 0. This shows that our configuratic
is impossible. The squa®reduces to a point, and the oth
four squares are all of the same size.

The only other possible five-square configuration using



windmill idea would look similar to this and would check ¢
negatively too. To this point, then, we have proved that
impossible to solve our problem with five or fewer squares.

1.1.6 Isthere a six, seven, or nine square tiling’

In the problems below determine whether the suggested
figurations can work. Don't go by the accuracy of the drawi
Just because some of the tiles don't look like squares db
mean that one can't distort the picture some, keeping eb
in its same relationship to its neighbors, and making altitee
squares. In some cases you may need to use the algebrai
nigue of this section.

Problem 5 Does this configuration in Figure. 140f six “squar
work?

Figure 1.14: A tiling with six squares?

Answer O



Problem 6 Does the configuration of seven “squares” in Fi
ure 1.15work?

Figure 1.15: A tiling with seven squares? With nine squar

Answer O

Problem 7 Does the configuration of nine “squares” in Fig
ure 1.15work?
Answer O

Problem 8 Experiment some more. Construct diagrams |
those in Problen®, Problem6 and Probleny. Answer [

1.2 A solution?

While working on Problen8 you may have succeeded in arri
ing at a diagram such as the one that appears in Figlite We



don’t have to sketch it accurately; the figure suggests @&m
possible configuration that might look like this. As usuat;

our method, the smallest square is labeled @sd its neighbo
asa. The rest of the side lengths would then be determine

the figure shows.

4a+4s

5a-s

a+s
3a+2s

2a+s

4a

Figure 1.16: Will this nine square tiling work?

Can this configuration be made into a solution? Tha
can values ok anda be found so that all the rectangles :
squares? Since the left and right sides of the rectangle
have the same length, we calculate

7a+6s=9a—s

7s=2a.



If, for example. we taka= 7 ands= 2 we would have §= 2a
and we would arrive at the following diagram in Figukel7,
the tiny square having side 2.

Elements: 2,5, 7, 9, 16, 25, 28, 33,

Figure 1.17: A tiling with nine squares!

Thus, we see there is a solution to the nine square pro
after all. And, to be sure, the diagram that we and you use
this solution would not have had tiles tHabked like square:
(unlike the final neat graphics here) but the algebra verifiat
we can create a tiling meeting all our conditions.

Problem 9 Here is the algebraic method of this section as
scribed by William T. Tutte (1917-2002), one of the foundé|
this theory:

“The construction of perfect rectangles proved to be qusye
The method used was as follows. First we sketch a rectangle
cut up into rectangles, as in [Figurdag. We then think of



the diagram a bad drawing of a squared rectangle, the small
rectangles being really squares, and we work out by elementa
algebra what the relative sizes of the squares must be on this
assumption. Thus in [Figutel8 we have denoted the sides of
two adjacent small squares kyndy and then that the side of
the square next on the left s+ 2y, and so on. Proceeding in
this way we get the formulae ... for the sides of the 11 small
squares. These formulae make the squares fit togetheryexactl
.... This gives the perfect rectangle ...the one first found b
[Arthur] Stone."——W. T. Tutte12].

Carry out all the arithmetic needed to construct Figiré g
the initial sketch for Stone’s tiling. Then do the necessédgg-
bra to find the sides of the eleven squares.

Figure 1.18: Initial sketch for Arthur Stone’s eleven-sipu
tiling.

Answer O



1.2.1 Bouwkamp codes

Our solution of the rectangle in Figurke17 tiled with nine
squares is something we might want to keep a record of
communicate to others. If we send someone a picture the!
easily check that we have it all right and can see exactly \
our solution is. Suppose we communicate only the size o
smaller squares:

2,5,7,9, 16, 25, 28, 33, 36.

A little more helpful would be to indicate also the size of
large rectangle, in this case

61 x 69.

In theory that should be enough for someone who likes fien
puzzles, but these numbers alone don't tell the story in any
equate way. The picture does, but that is an inefficient we
communicate our ideas.

The Dutch mathematician Christoffel Jacob Bouwkamp
2003) devised a simple code thatis much used nowadays.
lem 10asks you to devise your own code, but the answer (fc
at the end of the chapter) gives the Bouwkamp code and a
description of how it works.

Problem 10 There are 21 square tiles in Figutel9 How
could you send a text message to a friend (no pictures allp
that would allow him to reconstruct this tiling?



35 27

50

19

17 ‘11
-2 6

29 25 18

42
33 37

Figure 1.19: Can you reconstruct this figure from the nuntb
Answer D

Problem 11 Give the Bouwkamp code for Figutel?.
Answer O

Problem 12 Here are the Bouwkamp codes for the only ni
order squared rectangles. Construct the one that is not én
text already.

Order 9, 33 by 32: (18,15)(7,8
Order 9, 69 by 61: (36,33)(5,2
Answer O

1.2.2 Summary

Let us reflect on where we have been so far in this chapter
started with an interesting (but puzzling) geometric peofol



It was unlike the usual high-school geometry problems in
none of the usual techniques of geometry could be broug
bear on the problem.

At first, the problem wasn’t one for which we had any id¢
at all for a solution. So we played around with it in the ho
of learning something. What we learned by experimen
enoughwas that there was a difficulty caused by the smales
adjoining the smallest square in most of our attempts. Me
that was the key to the problem. Perhaps there was no so|t
and perhaps we could prove that by showing there’s no
for the smallest square.

We succeeded in eliminating certain placements for thel
est square, seeing that such placements always createdlE
spacethat needed an even smaller square. But one such
ment did not seem to lead to any problem. We returned tc
drawing boards, armed with our new information. Eventu
we were able to use a bit of algebra together with what
learned to arrive at a solution.

So we've solved our problem. Now what? A creative me
ematician might ask a lot of questions suggested by this-f
lem. Which rectangles can one tile with squares? Are tl
any squares that can be tiled with unequal squares? What
tilings are possible or impossible?

For additional examples of tilings, see Stefj.[ In that
reference one can find a leisurely development of a numb
guestions related to tiling. In particular, a surprisingyvia
which tiling and electrical theory are related is develotierte



and leads to the theorem that if a rectangle can be tiled
squares in any manner whatsoever, then it can also be tile
squares all of the same size.

We will continue with some related material for those re
ers who want to purse these ideas further. For mathemadi
no problem ever stops cleanly: there are always some |
guestions to address, more ideas that our investigatiaresis)

1.3 Tiling by cubes

What about tilings with other types of figures? One can
analogous questions in higher dimensions. Is it possibii# t
a rectangular box with cubes no two of which are the same
(as suggested in Figure2Q? This is the three dimension
version of the problem we just solved. At first glance it appe
to be much more difficult. But, perhaps some of the insig
we picked up from the two-dimensional case can be of us
us in this three dimensional version.

-
/

Figure 1.20: Tiling a box with cubes.




Problem 13 Determine whether or not it is possible to fill
three-dimensional rectangular box with cubes, no two ot
are the same size. Answer O

1.4 Tilings by equilateral triangles

Figurel.21shows a tiling of an equilateral triangle with oth
equilateral triangles, but notice that there are severplichar
tions of same sized triangles in the figure.

Figure 1.21: Equilateral triangle tiling.

Similar ideas to those developed so far in the chaptel
useful in showing that it is impossible to tile an equilatéra
angle with other equilateral triangles no two of which are
same size. Proble asks you to do this.



1.4.1 (Tutte, 1948)If an equilateral triangle is tiled with
other equilateral triangles then there must be two of thelken:
triangles of the same size.

This was first proved by W. T. Tutte in 1948 (see iteli][
in our bibliography). An accessible account of this probl
appears as the chapter

W. T. Tutte,Dissections into equilateral trianglegpp.
127-139)

in the book by David Klarner that is referenc] in our bib-
liography. A 1981 article by Edwin Buchman in the Americ
Math. Monthly (see 15]) shows, using Tutte’s methods, th
there is no convex figure at all that could be tiled by equikdt
triangles unless at least two of those triangles are the sa@e

For further discussion of these topics see the book of S
man Stein §] that appears in our bibliography.

Problem 14 Show that it is not possible to tile an equilatel
triangle with smaller equilateral triangles, no two of whiare
the same size. Answer [

1.5 Supplementary material

We conclude our chapter with some supplementary mat
that the reader may find of interest in connection with thdop
lem of squaring the rectangle.



1.5.1 Squaring the square

We have succeeded in tiling some rectangles with unequate
but none of our rectangles was a square itself. Is it possib
assemble some collection of unequal squares istuare

The description of the problem aguaring the squarerig-
inates with one of the four Cambridge University studentsel;
Brooks, Smith, and Stone who attacked the problem in 193
was intended humorously since it seems to allude to the far
problem ofsquaring the circlavhich means something total
different and was well-known to be impossible.

Tutte in his autobiographicalmeméalescribes Arthur H. !
(1916-2000) as the one of the four who proposed the prob
He had found an old puzzle in a book of Victorian puzzles w
ten by Henry Dudeney, an English puzzler and writer of re
ational mathematics.

1Graph Theory As | Have Known, by W. T. Tutte (item L3] in our bibli-
ography).



Figure 1.22: Tutte and Stone.

See Figurel.23for Dudeney’s statement of his proble
The “solution” of the problem in the book is given by Duder
in Figurel.24where the inlaid strip of gold is the black rectz
gle in the middle. The problem is callé@dy Isabel's Casket
(In Victorian England a casket was not necessarily just for-
taining corpses, but could be “a small box or chest, often
and beautiful, used to hold jewels, letters or other valesit
[as defined in the World Book Dictionary].)

Stone realized that the problem was tougher than Dud
had thought, for, if this figure were indeed thaiquesolu-
tion of the problem, that could only mean that none of
squares in the figure could be divided into smaller une
squares. They learned that the great Russian mathema
Nikolai Nikolaievich Lusin (1883-1950) had conjectureatt|
no square could be squared. Thus the four of them decide
they could make their reputation by solving this Lusin Canj



A —Lody Tmbels Cudbel

D¢ Hagh's joucy bsswoman and wand, Lady balied de
Finarnifph, waa known (e asd wide aa ~ |esbel b Fai
Amonge b treasares wan @ casket, s 1op of which waa pedfedly
l'rll]'rillhqn |t e mlaxl wath ni:r-ﬂ vl -‘Ilﬂ.l'hll.‘
kel dww anedew borg by w quarter ol sn meh widie,

Whes yoamig men sticd bor the hand of Laly lsaled, S High
|lw-:|.hn-n_lh Hvi-ul‘u-wmuh" him the dimerasms

o dhe o of the bew b thie Bacte sbome o thal ihere was &
rectangulet sinp of gobl, e wehes b Jomck o aml the fom o e
werfre wun mascdly bl with pleo of “Muﬂrinhq“l
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Figure 1.23: Lady Isabel’'s Casket (from a 1902 English b
of puzzles).



Figure 1.24: The “solution” to Lady Isabel's Casket.

ture: no square can be subdivided into a collection of squz
no two of the same size.

In fact they not only succeeded in squaring the square
in finding deep connections to the problem with graph the
and electrical networks.

The smallest squared-square Did you notice that Figuré.19
is a squared-square? Probléfasked for the Bouwkamp coc
for this tiling by twenty-one unequal squares. This is tivedst
order example of squaring the square.



Observe that every squasewhether the length of its side
is an integer, a rational number or even an irrational nugr
can be tiled with squares of unequal size. Just shrink otcst
the square in Figuré.19to the size ofS. This gives a tiling of
S

A final word. The problem that began this chapter was
determine whether it igver possible to tile a rectangle wit
squares of unequal sizes. We answered this question il
affirmative. The question remaimgichrectangles can be tile
in this manner. The answer to this question is given foll@n
the answer to Problero.

1.5.2 Additional problems

For those readers who did not get enough problems to wol
here are some more. We also have added some more Bouv
codes problems as they appear to be popular entertaint
(much like Suduko problems). Note that with these codes
can design jig-saw puzzles consisting of unequal squarev
must be assembled to form a large rectangle. The Bouwk
codes themselves then are quick descriptions of how to as
ble the pieces to solve the puzzle.

Problem 15 Here are the Bouwkamp codes for all of the te
order squared rectangles. Sketch the tiling figures for aay
of these as you find entertaining.



105 by 104:
111 by 98
115 by 94:
130 by 79:
57 by 55:
65 by 47:

-

order squared rectangles. If this still amuses you, skedthes

Problem 16 Here are the Bouwkamp codes for all of the ele
more figures.
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177 by 176:

185 by 151:

185 by 168:
185 by 183:
187 by 166:
191 by 162:
191 by 177:
194 by 159:
194 by 183:
195 by 191:
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199 by 178:
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209 by 144:
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209 by 168:

209 by 177:
97 by 96:
98 by 86:
98 by 95:
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Problem 17 If a rectangle is tiled by squares, all of differe
sizes, the second smallest square cannot touch the bortler
rectangle. Prove this statement. O

Problem 18 Suppose we are given a rectangle of dimensi
ax b. Canthis rectangle be subdivided into equal sized sqG
Answer O

Problem 19 Suppose we are given a rectangle of dimensi
ax b. Under what circumstances can you be sure that this |
anglecannotbe subdivided into a finite number of (not nec
sarily equal) squares?

Answer O

1.6 Answers to problems

Problem 1, page 4

Figurel.25shows some possibilities with four unequal squze
that you might have tried. These two are unsuccessful.



Figure 1.25: More experiments with four squares.

Problem 4, page 11

A four square configuration can’t have a windmill and so
can pass over the possibility of a four square arrangemen.
first try at the five square configuration (using the windnaiéia
around the smallest square) might look like that in Figliga
Does this, indeed, represent a possible solufiae get the di-
mensions rigi? Our drawing program won’t produce accur
squares but the layout looks promising.

Before reading on in the text, try to see if you can find
mensions that would make this configuration work. Label
side lengths of the squares and see if there are humber
work. If you can show that there cannot be such numbers
you will have succeeded in showing that this particularayea
ment does not work.



Figure 1.26: We try for a five square tiling.

Problem 5, page 14

In the figure of Problend, we see that two of the tiles ha
a common side. If they are to be squares, they must be
same size, violating a condition of our problem. Thus we
not need to do the algebra. A tiling that looks like this d
not solve our primary problem: find a tiling with all squards
different sizes

Problem 6, page 15

In the figure for Problen®, we see a plausible configuratic
None of the squares (if indeed they could be squares) i
same size as any of the others. We need to find exact nur
that would make this work.

If the diagram could be a solution, we can spot which of
squares could be the smallest. Denote the side of that s



by s and denote the side of its right-hand neighborabyWe
then compute the (sizes of) the sides of the remaining sgt
arriving at the diagram in Figure.27.

Figure 1.27: Lengths in terms of sides of 2 adjacent square
Figurel.15

Since the top and bottom of a rectangle are of equal ler
3s+2a=5a—3s

so that 2= a. Thus two of the rectangles would have to h:
sides equal to 8 Again this violates our primary objective
find a tiling with all squares oflifferent sizes Did you notice
that other requirements are violated?

Problem 7, page 15

Again we see no immediate objection to this configuratior
might work. Let's do our algebraic computations. There



several ways to do this. Here’s one in Figur@8 that gives
us the sizes of some of the squares. We now compute th:
darkest square in the figure has side

(a—3s)—a—s=—4s.

This is again impossible, now because we have produced &
ative number for the length of a side.

Figure 1.28: Some square lengths labeled for Figui&

Remark Note that our arguments never involved a staten
such as “this tile is much too thin to be a square.” Even if
had been correct with such a statement, this would not rule
similar configuration in which all the tiles were squarescls
a configuration could possibly have been achieved by pr
vertical and horizontal stretchings of the entire confitjora
But our arguments in all three of the problems in this sec



showed that something was inherently wrong with the w
some of the tiles related to their neighbors. One couldrétsh
the configurations and render all the tiles squares of @iffe
sizes.

Problem 8, page 15

0.K. We are now ready to take another crack at finding a s
tion. We have a simple and easy to apply algebraic metho
checking our proposed solution. We know in advance whe
place the smallest square.

If our attempts fail, perhaps we can discover some u
solvable difficulty inherent in the problem. If we can pro
that there is such an inherent unresolvable difficulty, then
will have proved the problem has no solution. Many proble
posed in mathematics have no solution and we might be eq
proud of showing that the problem is impossible as finding
answer.

But first, experiment some more.

Keep in mind that there must be more than five sque
the smallest must be surrounded by its neighbors in a wirkc
fashion, and the requirements of the problem must be met.
ply our algebraic method for obtaining the sizes of the safe
the tiles (if they are to represent a solution) and see whait
leads to. Instead of proceeding almost blindly, try to mpdif
agrams you have already studied, such as those in thisse
See what went wrong with these attempts and try to overc



the difficulty (or try to find some irreconcilable difficulty)

Problem 9, page 18

The dimensions of Stone’s tiling are shown in Figlir29 Just
do the elementary algebra using the same method that we
and you should be able to discover all of the dimensions.

may wish to compare the length of the side of the rectang
the upper right hand corner with the lengths of the sides®
two rectangles below it to obtain 6= 9x.



Elements: 9, 16, 21, 25, 34, 41, 43,57, 77, 7¢

Figure 1.29: Realization of Arthur Stone’s eleven-squitiret

Problem 10, page 19

A reasonable start at communicating the configuration in
urel.19is to start at the upper left corner and report the adja
squares at the top from left to right:

50, 35, 27.



Then what to report next? You might decide to spiral aro
the outside of the square in a clockwise direction. But |
would likely end up in trouble. The Bouwkamp method is j
to keep reporting left to right all the new squares you se
each level. There are ten levels in the picture (count them)
so you need a report at each of these levels. The level is de
by the top of the squares, starting with the very top leveloht
we decided to report by the numbers [50, 35, 27].

In the Bouwkamp code, brackets are used to group adje
squares with flush tops, and then the groups are sequer
placed in the highest (and leftmost) possible slots. Fardii
ample of the 21-square illustrated in the problem the code

[50,35,27), [8,19], [15,17,11], [6,24), [29,25,9,2], (7,18, [16], [42,

Problem 11, page 20
(36,33, [5,28], [25,9,2], [7], [16].



Problem 12, page 20

33

18 15

a1

14
10 9

Figure 1.30: A 33 by 32 rectangle tiled with nine square:

In Figure1.30is a picture that corresponds to the Bouwka
code

Order 9, 33 by 32 (18, 15)(7,8)(14,4)(10,1)(9).

Problem 13, page 23

Itis a bit more difficult to experiment with the three-dimensal
setting than it was with the two-dimensional setting. The
mark before the problem suggests that “some of the insi
we picked up from the two dimensional case can be of us
us in this three dimensional version.” The key in two dim
sions was the use of the smallest square argument. Try thi



Use the smallest cube argument!

Don't read the rest of the answer without trying again.
may wish to glance at Figure31

Our proof is an indirect one. We assume that there is
a construction and find that there is a contradiction.

Suppose a rectangular box were filled with cubes no tw
which were of the same size. Consider only those cubes w
lie on the bottom of the box. The bottom faces of these cl
tile the floor of the box by squares, no two of the same <
The smallest of these tiles must be surrounded by four ¢
tiles in a windmill fashion. LeK; be the smallest of the cub
lying on the floor of the box. From what we just said, we :
thatK is surrounded by four larger cubes which forroaver
aroundK; as suggested in Figufie31

Figure 1.31: A tower of cubes aroukd.



Now consider those cubes whose bottoms lie on the top
of Ky. Their bottom faces tile the top face kf. As before, we
conclude that the smallest of theke is surrounded by fou
larger cubes which form a tower around it.

Continuing in this manner we see there can be no er
this process. No matter how many of these cubeKs, Ks,
...we have obtained, there must still be smaller ones lyim
top of the smallest obtained to that point.

Thus, we have proved this:

1.6.1 (No cubing the box)lt is impossible to fill a rectangu
lar box with cubes, all of different sizes.

Our techniques in the tiling problem of studying the lo
tion of the smallest square was useful to us in two ways: ¥ir
it gave us information about the structure of tilings of eect
gles by squares of different sizes—the smallest square Ine
surrounded in a certain way by its neighbors; secondly.dt -
gested an approach to solving the analogous problem in-
dimensional space.

Problem 14, page 24

The smallest cube argument that succeeded for Prohile
suggests that amallest triangle argumentan be develope
for this problem, and indeed very similar ideas will work &e
Our proof is again an indirect one. We assume that the
such a construction and find that there is a contradiction.



Assume that we have a tiling by smaller equilateral tri
gles, all of different sizes. Start by looking for the smsil
triangleSthat touches the bottom of the triangle. Argue the
must look like Figurel.32

v

Figure 1.32Sis the smallest triangle at the bottom of the tilir

Then look for the smallest trianglE that touches the to|
of the triangleS. Argue that it must look like Figur&.33 This
argument keeps going indefinitely and so we shall soon rut
of triangles, just as in our solution to Probldr@we ran out of
cubes.



Figure 1.33:T is the smallest triangle that touch&s

Problem 18, page 31

To begin the problem check that, wharmandb are integers
then the rectangle can be easily subdivided ati@qual sizec
squares, all of side length 1.

Suppose or b is not an integer and/b can be expresse
as a fractiorm/n, wherem andn are positive integers. The
a=cmandb = cnfor some numbet. Thus take small square
of side lengthc and there are certainiyin such squares fittin
inside the rectangle.

If a/bis not a fraction (i.e., it is an irrational number) th
there would be no choice of side lengtifor the small square
to work out. In modern language two real numbarand b
arecommensurabli a/bis a rational number (i.e., a fractior



Thus the answer to the problem is that we must recuaedb
to be commensurable.

Problem 19, page 31

We just saw in Problemi8 that a rectangl&® cannot be tilec
with equal squares unless the sides of the rectangle are
mensurable. It is also true for any tiling by a collection
squares that this same condition must be met. A proof tt
rectangle can be so tiled if and onlydafandb are commensu
rable is given in

R. L. Brooks, C. A. B. Smith, A. H. Stone and
W.T. Tutte, The dissection of rectangles into squares,
Duke Math. J. (1940) 7 (1): 312-340.

Probably the first proof of the theorem treatectangle can be
squared if and only if its sides are commensurablby Max
Dehn,

Max Dehn, Uber Zerlegung von Rechtecken in Recht
Mathematische Annalen, Volume 57, September
19083.

though it might be rather more inaccessible to most of oud-
ers.



Chapter 2

Pick’s Rule

Look at the polygon in Figur@.1. How long do you think it
would take you to calculate the area? One of us got it ir
seconds. No computers, no fancy calculations, no adva
math, just truly simple arithmetic. How is this possible?

The projects in this chapter have as their centerpiece \
published in 1899 by Georg A. Pick (1859-1942). His th
rem supplies a remarkable and simple solution to a proble
areas. Set up a square grid with the dots equally space
inch apart and draw a polygon by connecting some of the
with straight lines. What is the area of the region inside
polygon?

You will likely imagine counting up the number of one-in



Figure 2.1: What is the area of the region inside the polyg

squares inside and then making some estimate for the p
squares near the outside. Pick’s Rule says that the areaec
computedexactlyandquickly: look at the dots!

As is always the case in this book, it is tHescoverythat
is our main goal. Many mathematics students will learn
theorem in the traditional way: the theorem is presenteee
computations are checked, and the short inductive proagis
sented in class. We take our time to try to find out how Pi
formula might have been discovered, why it works, and ho
come up with a method of proof.

2.1 Polygons

In Figure2.1we have constructed a square grid and plact
polygon on that grid in such a way that each vertex is a
point. The main problem we address in this chapter is the



determining the area inside such a polygon. We need toyl
our language a bit, although the reader will certainly ha
good intuitive idea already as to what all this means.

Familiar objects such as triangles, rectangles, and qu
laterals are examples. Since we work always on a square
the line segments that form the edges of these objects mns
two dots in the grid.

2.1.1 Onthe grid

We can use graph paper or even just a crude sketch to vist
the grid. Formally a mathematician would prefer to call
grid alattice and insist that it can be described by points in
plane with integer coordinates

But we shall simply call ithe grid It will often be useful,
however, to describe points that are on the grid by spedf
the coordinates.

Problem 20 A point(m,n) on the grid is said to be visible fror
the origin (0,0) if the line segment joiningm,n) and (0, 0)
contains no other grid point. Experiment with various clesi

Lt is usual for mathematicians to describe the integers
""747 737 723 717 Os 1*, 2«, 3, 47

by the symbolZ (the choice of letter Z here is for Zahlen, which is Gernr
for “numbers”). Then the preferred notation for the grid sisting of all pairs
(m,n) wherem andn are integers (positive, negative, or zero) wouldZe



of points that are or are not visible from the origin. What c
you conclude? Answer O

2.1.2 Polygons

It is obvious what we must mean by a triangle with its verti
on the grid. Is it also obvious what we must mean by a poly
with its vertices on the grid? We certainly mean that theee
n points

Vi, Vo, Vs, ..., Vq

on the grid and there arestraight line segments
ViVa, VoV3, VaVy, ..., VaVL (N> 3)

joining these pairs of vertices that make up the edges o
polygon. Figure?.2illustrates. Need we say more?

Problem 21 Consider some examples of polygons and n
a determination as to whether the statement above adegu
describes a general polygon on the grid. Answer O

2.1.3 Inside and outside

A polygonP in the plane divides the plane into two regio
an inside and an outside. Points insidePofan be joined by
a curve that stays inside, while points outside can be joine
a curve that stays outside. If you travel in a straight lirgarft



Ve

Figure 2.2: A polygon on the grid.

a point inside to a point outside then you will have crossec
polygon. All these facts may seem quite obvious, but a pr®
not easy.

Nor is it as obvious as simple pictures appear to sugt
Imagine a polygon with thousands of vertices shaped muet
a maze or labyrinth. Take a point somewhere deep in the 1
and try to decide whether you are inside or outside of the-f
gon. We might be convinced that there is an inside and the
an outside but it need not be obvious which is which.

For these reasons we merely state this as a formal ass
tion for our theory:



2.1.1 Every polygon P in the plane divides the plane into t
regions, theinside of P and theoutsideof P. Any two points
inside (outside) of P can be joined by a curve lying inside
side) P. But if a line segment has one endpointinside P an
other outside P, then this line segment must intersect P.

It is common to call the inside polygonal regionto refer
to the polygon itself as theoundaryof the polygonal region
and to refer to points inside but not on the boundariyngeior
points For simplicity, we often refer simply to thiasideof the

polygon.

Problem 22 If you are given the coordinates for the vertices
a polygon specified in order and the coordinates of some |
that is not on the polygon, how might you determine whe
your point is inside or outside the polygon? Answer O

2.1.4 Splitting a polygon

A polygon can be splitinto two smaller polygons if there i
a line segmenL joining two of the vertices that is inside tt
polygon and does not intersect any edge of the polygon
cept at the two vertices which it joins). FiguPe3 illustrates
one particular case. The large polygon with eight vertices
been split into two polygonsl andN. The polygorM has five
vertices and the polygaoN also has five vertices.

This splitting property is fundamental to our ability to pe
things about polygons. If every polygon can be split into ken;



Figure 2.3: Finding a line segmelnthat splits the polygon.

polygons we can prove things about small polygons and
that fact to determine properties that would hold for lasy-
gons.

Problem 23 Figure 2.3 shows one choice of line segmen
that splits the polygon. How many other choices of a line ¢
ment would do the split of the large polygon?

Answer O

Problem 24 Experiment with different choices of polygons
determine which can be split and which cannot. Make a
jecture.

Answer O

Problem 25 Prove that, for every polygon with four or mo
vertices, there is a pair of vertices that can be chosen sithies
line segment joining them is inside the polygon, thus smijt
the original polygon into two smaller polygons. Answer O



Problem 26 In Figure 2.3the large polygon has eight vertice
It splits into two polygons M and N each of which has five \
tices. Each of the smaller polygons has fewer vertices tha
original eight. Is this true in general? Answer O

2.1.5 Area of a polygonal region

A polygonal region (the inside of a polygon) hasaara This

is rather more straightforward than the statement aboidés:
and outsides. If you can accept the elementary geometry
you have learned (the area of a rectangle is given by lerg
width, the area of a triangle is given by 1R basex height)
then polygonal area is simple to conceive. Break the poly
up into small triangles (as in Figu4for example); then th
area would be simply the sum of the area of the triangles.

ure2.4is considered &iangulationof Figure2.1.

Figure 2.4: A triangulation of the polygon in Figuzel

There are more sophisticated theories of area but we ¢



need them for our process of discovery here. It is reallye
clear in any particular example how to triangulate and toeee
how to find the area. Better is to show that any polygon ca
triangulated.

Problem 27 Figure 2.4 illustrates a triangulation of the poly
gon P. Can you find a different triangulation?
Answer D

Problem 28 Using the splitting argument of Sectiari.4show
that every polygon can be triangulated by joining appropei
pairs of vertices. Answer O

2.1.6 Area of atriangle

Let begin with an elementary geometry problem. We ask
the area of a triangle with its three vertices at the pa(@16),
(s,t), and(a,b) on the grid. Figure.5illustrates one possibl
position for such a triangle. This problem will not necegga
help solve our main problem (finding a simple method for
polygons) but it will be an essential first step in thinkingpab
that problem.

What method to use? The first formula for the area of a tr
angle that all of us learned is the familiar

1/2 x basex height



0,0

Figure 2.5: Triangle with one vertex at the origin.

With that formula can we easily find the area of all trianglas
the grid? Yes and no. Yes, we can do this. No, sometime
wouldn’t want to do it this way.

We can find (although not without some work) the len
of any side of a triangle since the corners are at grid poBus.
finding the height would not be so obvious unless one of
sides is horizontal or vertical.

Is there a formula for the area of a triangle knowing just
lengths of the three sides. Should we pursue this?

Seem reasonable? Given a triangle on the grid we cat
the Pythagorean theorem to compute all the sides of the t
gle. Once you know the sides of a triangle you know exa
what the triangle is and you should be able to determine
area.

Heron's formula Search around a bit (e.g., on Wikiped
and you will likely find Heron’s formula. If a triangl@ has



side lengths, b, andc then

AreaT) = \/s(s—a)(s—b)(s—c)

where
a+b+c

2
is called the semiperimeter @f (since it is exactly half of the
triangle’s perimeter). Wikipedia lists three equivalerayw of
writing Heron'’s formula:

AreaT) = %\/(a2+b2+02)2— 2(a%+ b4+ c4)

AreaT) = \/ 2(a2b? + a2c? + b2c?) — (a*+ b*+¢?)

and

Area(T) = %\/(aer—C)(a— b+c)(—a+b+c)(a+b+c).

While all this is true and we could compute areas this wa
doesn’tappear likely to give us any insight. Well, these pan
tations will work, but after a long series of tedious caltiolas
we will not be any closer to seeing how to find easier ways

So, in short, not a bad idea really, just one that doesn’tg
useful to our problem. This problem should encourage yo
find a different way of computing the area of triangles on
grid.



Decomposition method to compute triangle areas A better
and easier method for our problem is to decompose a la
easier triangle that contains this triangle. Then, sinegthces
must add up to the area of the big triangle (which we can e:
find) we can figure out the area of our triangle by subtractic

©b (sb (ab

. S’ . . . 0 . . . .
©9 ..(.t):'T:::.:::::
ool iiiIIIIII

Figure 2.6: Decomposition for the triangle in Figwé&

In Figure 2.6 we show a larger triangle containifgthat
has vertices a{0,0), (0,b), and(a,b). This triangle has base
and heighb and so areab/2. The figure shows the situatic
for the point(s,t) lying above the line joining the origin ar
(a,b) andt < b. There are other cases. Probl2fasks you to
verify that the formula we obtain is valid in all cases.

In the figure we see, in addition Toitself, two triangles anc
arectangle. The dimensions of the rectanglesémgb —t. The
base and height of the triangle below the rectanglesaredt;
the dimensions of the triangle to the right of the rectangée
b—t by a—s. Thus this decomposition of the large trian



must give

ab st (a—s)(b—t)
? —AI’EE‘(T)‘FS(b—t)—FE‘i‘f.

The rest is now algebra, but fairly simple if a bit longer tt
you might prefer. We see that

AreaT) — %{ab— 2(s(b—1) — st— (a—s)(b—1)}

Tidy this up and find that

AreaT) = at; bS.

You should be able to verify that, in the cases we dic
consider for the location of the pois,t), we obtain the sam
formula, or the formula with the sign reversed, that is

bs— at
5

AreaT) =

The simplest way to report our findings is to give the f

mula
at—bs

2
which is valid in all cases. (This is Problerf.)

This is likely more algebra that most of our readers wc
care to see. Nothing here was all that difficult however. T

AreqT) =




formulais not simple enough to be a candidate for our “sirhj
area calculation formula.

Problem 29 Figure 2.6 shows how to compute the area o
triangle T that has vertices 4D, 0), (s,t), and(a,b) but only
in the special case shown for whi¢ht) lies above the line
joining (0,0) and(a, b) with t < b. Draw pictures that illustrate
the remaining positions possible for the po(sft) and show
that in each of these cases the formula

at—bs

AreaT) = 5

is valid. 0

Problem 30 (Area experiment) Try computing a number ¢
areas of polygons with vertices on the grids, record your
sults and make some observations.

Answer O

Problem 31 Show that the area of every triangle on the gric
an integer multiple o/ 2. Answer O

Problem 32 Use Problem31 to show that the area of eve
polygon on the grid is an integer multiple f2.  Answer O



2.2 Some methods of calculating areas

Before attacking our area problem let us take a short digne:
to consider some possible methods of computing areas.
long do you think it would take to calculate the area inside
polygonP of Figure2.7 that started this chapter by any of t
methods we have so far discussed?

Figure 2.7: The polygoR and its triangulation

The method we have already suggested for doing the ¢
putation would require us to break &dnto the three triangle
displayed in Figure2.4, compute the area of each, and tf
add up the three areas. But you would notice that none o
three triangles has a horizontal or vertical side. It woalkkt
some calculating to determine the areas of these triangles
methods of Sectiof.1.6would certainly work for each of thes
three triangles and so, in a reasonable amount of time, wd ¢
indeed compute the area of the polygon.

This is not impressive, however, and takes far longer t
the 41 seconds that we claimed in our introduction. We sh
consider some other approaches.



2.2.1 An ancient Greek method

Let’s look at another method that dates back to the anc
Greeks. They devised a metHofbr approximating the are
of any shaped region.

Figure 2.8: Too big and too small approximations

Figure2.8shows the polygon with some grid squares hi
lighted. If we count the grid squares that lie entirely iresi)
and add up their areas, we have an approximation to the
insideP. This approximation is too small, because we have
counted the contributions of the squares that lie only aliyti
insideP.

We could also obtain an approximation to the area th:
too large by including the full areas of those squares tlea
partially inside and partially outsid® The exact area is som

2The ancient Greeks would not have used this method for fingdiegs of
polygons. It would be used for circles and other figures thatdn’t be broken
into triangles.



where between these two approximations. If we do this for
polygon in Figure2.7, we find the two approximations are n
that close to each other. This is so because there are so
grid squares, each of area 1, that are only partially infid
the difference between counting them and not counting tise
relatively large.

The method of exhaustion The two approximations will im:
prove if we used smaller grid squares. They would impr
again if we used even smaller grid squares.

Suppose each grid square were subdivided into 4 sm
squares and the process were repeated. Do you see th
excess of counting the partial squares is reduced, whilafh
proximation obtained by not counting them is increased.
more advanced course one could show that by using sn
and smaller squares, one can obtain the exact area usir
theory of limits. The approximations that are too small éase
towards the area, while the approximations that are too i
crease towards the actual area.

How long do you think it would take to find the
area ofP using this method?

This method is sometimes called tinethod of exhaustiomhick
refers to the fact that the area is exhausted by each ste
though, as you can well imagine, it might be the person d«
the computations that is exhausted.



One wouldn't actually have to compusgdl those approx
imating areas. A person well-versed with the limit proc
could obtain formulas for the approximating areas at an-e
trary stage of the subdividing process and could then catie!
the limit. Still—not a quick process, probably slower thaf- ¢
culating the area by our first method.

2.2.2 Grid point credit—a new fast method?

Now for our purposes, the sizes of our squares are fixed —
all have area 1. To get an exact area we would have to calc
the exact areas of the parts of the partial squares thatdiddl
P.

Is there a connection between the number of grid points
the number of grid squares inside a grid polygon? Perhap
can find a way of assigning “grid point credit” to grid poir
that mimics the approximations we discussed. Since we
have the option of reducing the size of grid squares, we
a formula that gives an exact area, not one that requires :
sort of limit. Perhaps we can do this by giving credit to psi
depending on their location inside the polygon. Let's sewesif
can formulate a method of assigning full or partial credgtiol
points.

If we were dealing with the whole plane, rather than w
the inside of a polygon, we would note that every grid pc
is a corner point of four squares, and every grid square
four grid points as corners. Thus one could count grid scu



by counting grid points. Of course, we are not dealing v
the whole plane, we are dealing with a polygon. But it d
suggest a start.

Assigning credit When a grid pointp is “well inside” the
polygon, all four squares that hapeas a corner are inside
Let's try giving full credit of 1 to such points.

What about other points? When only a certain part of
four squares that have the point as a corner lies irRjaee try
giving that point proportional credit.

Figure 2.9: Polygo® with 5 special points and their associa
squares

Notice there are several grid points, such as the gpian
an edge ofP, many grid points likep “well inside” P, points
like w that are inside® but near an edge, vertices likeand
points likeu that are outside dP but near an edge.

In this simple figure, we see that only half of the aree
the four squares that hageas a corner lies inside. Let’s try



half credit forg. You can check that the same is true of
grid points that are on an edge Bf except the vertices whel
a similar picture would suggest credit different from 1/2.

We have already determined that the pqiteserves credi
equal to 1 because the four squares associatedpdighinside
P.

At w the 4 associated squares appear to be more thar
filled with points of P, sow should get more than 1/2 cred
The vertexv should receive more than 1/2 credit. Even poi
like u that are outside but ned deserve some credit. Tt
exact amount of credit each of these grid points deserve®l
be calculated.

We can do this type of calculation for all grid points insi
on, or nealP, add up all the credits and get the exact areR.c

Is this useful or practical? This would be useful if thert
were a way of assigning credit to grid points in a simple w
based only on their location. Points well insigdike p would
get full credit, and all other points whose associated sg
contain points insid® (like g, w, v andu) would get credit be
tween 0 and 1, based on the percentage of the area of the
associated squares that lies indtle

Will adding up all these credits give us the exact area?
it will.

Is this practical? Is it easy? Would all grid points on
edge of a polygon (except vertices) deserve credit exaf?ly
Look at Figure2.1Q



Figure 2.10: A “skinny” triangle.

Here the poinp is located on the boundary of the trianc
T at (9,9). Our earlier example suggested that such a bour
point should receive credit 1/2. But less than half of thea
of the four squares having the poimtas a corner lies insidE.
So this pointp doesn’t deserve half credit after all: it desel
less. We'd have to do a calculation to determine the creit
point deserves, even though it lies on an edgé.ofhat would
defeat our purpose of finding a simple and quick metho
obtaining the area.

We see that just knowing the location of a point gives
immediate clue as to the proper credit, unless the point ik
inside the polygon, or well outside it. A possibly messy aoal
lation would be necessary to determine its proper credit.

How long do you think it would take to find the
area ofP using this method?



The answer is “Way too long.” The process would invo
so much calculation that for practical purposes it is useles

Some other kind of credit? What now? We can give up th
idea of assigning grid points credit. Or, we can keep that,i
but use what we have learned from our earlier experimen
find a way that does lead to a simple, practical method of
culating the area.

This sort of situation often occurs in mathematical disc
ery. A plausible approach looks promising at first, but d
not achieve the desired outcome. Instead of giving up, th
searcher retains part of that approach, but makes use ¢dre
experimentation and earlier results to find a similar methad
has the desired outcome. In this case, it involves discoge
the correct simple and quick way to assign credit to grid {oi

2.3 Pick credit

The grid point credit idea based on area works certainlys

entirely general since it offers a method to compute the
of any figure. The figure need not be a polygon nor nee
have any points on the grid itself for this to work. The mett
assigns a value between 0 and 1 for every grid point bu
nature of the point offers no help in guessing at the cred
it must be computed in each case. The only exception is
points well-inside the polygon clearly get a grid point dted



1 and points well-outside get a zero credit.

Because the method is so general we do not expectit t
fer much insight into the current problem. Nor is this mett
easy or fast. We want a fast and easy method for comp
polygonal areas and we want a method that explains tran
ently why the areas are invariably multiples ¢f2l(as we saw
in Problem32).

We will still use the idea of assigning a value to each ¢
point but, encouraged by our earlier experiments and ohs
tions, we will assign only values of 0,/2, or 1. We will not
attempt to assign values that imitate the grid point crealit
ues. Points with a small grid point credit might well requ
us to assign 1 or /2 and points with a large area assignm
might well require us to assign 0 oy 2.

We can call thisPick creditwith the understanding that
will be in almost no way related to the grid point credit mett
we have just proposed. As we have seen in working with
point credit, the credit each point gets simply must be ¢
puted: there is no way of looking at a point and deciding
some feature of the point justifies more or less credit.

For the Pick count we want to do no computations, altho
we are willing to look for any features of the point that mig
require different credits. We cannot decide whether a pten
servescredit (in the same way that the area credit comp
tions did). We must simply experiment with different possi
assignments until we find the one that works.



2.3.1 Experimentation and trial-and-error

In order to get some familiarity with our problem let us co
pute some areas for a variety of polygonal regions congd.
on grids. These problems are essential training for our
and help reveal the true nature of the problem we are tryir
solve. One goal we have, in addition just to familiarizatidth
area problems, is that of finding the appropriate Pick crtédit
might work for our area problem.

A good starting point is to investigate the area of primit
triangles. A triangle on the grid must have all three vegion
the grid. If it contains no other grid points then it is callac
primitive triangle

V.

Figure 2.11: Some primitive triangles.

Problem 33 (Primitive triangles) What can you report abot
the area of primitive triangles? Answer O



Problem 34 Find a number of triangles that have vertices

the grid and contain only one other grid point, which is on

edges of the triangle. What did you observe for the areas?
Answer O

Problem 35 Find a number of triangles that have vertices

the grid and contain only one other grid point, which is ires

the edges of the triangle. What did you observe for the are
Answer O

Problem 36 In Figure 2.12we see a collection of four poly
gons each of which has 4 boundary points and 6 interior poi
Compute the areas and comment.

Figure 2.12: Polygons with 4 boundary points and 6 inte
points

Answer O



Problem 37 Show that it is possible to construct a polygon
the grid that has as its area any one of the numbers

1 3 5 7
- -, 2,= . 4,....
27 1) 2) 72)37 27 b
Answer O

Problem 38 What numbers can appear as the area of a sqt
on the grid? Experiment with various possibilities and tt
explain the pattern you see. Answer O

Problem 39 Look at Figure2.13 Compute the area of th
rectangle R and the triangle T. Try assigning a Pick credi
1to every point that is inside P and a Pick credit®fo every
point that is not. Points on the boundary or outside get O itre
Consider how the area of interest compares with the totdi®
credits. Try some other simple figures as well. Answer O

R. ... .71

Figure 2.13: Compute areas.



Problem 40 Repeat the preceding exercise but this time try
signing credit ofl to every point that is inside or on P. Poin
outside get zero credit. Answer O

Problem 41 Can you see a way to improve the approximat
in Problem40 by giving less credit for the grid points that |
on the polygon (i.e., on the edges of the rectangle R or o
triangle T)? Answer O

Problem 42 Repeat Problem1 with a few more examples u
ing rectangles and triangles with corners on the grid. (lsi
plifies the computation if you choose rectangles with haizb
and vertical sides and triangles with one vertical side ane
horizontal side.) Answer O

2.3.2 Rectangles and triangles

Our exploration in Problem39-42 has suggested a first es
mate of the form

[# of grid points onP]

AreaP) ~ [# of grid points insideP] + >

using our idea of full credit for the inside points and haiédit
for the boundary points. We cannot say that the aresisal
so we are using here the symbelto suggest that this is a
approximation or a crude first estimate.

If we usel to denote the count for the interior grid poir
andB for the count of the boundary grid points therPack



count
2
2

gets close to the areas that we have considered so far.

Example 2.3.1 Here is another computation that suggests
half-credit is exactly right for the assignment of creditthe
boundary grid points. The rectangle in Figiré3can be split
into two triangles as shown in Figugel4

Figure 2.14: Split the rectangle into two triangles.

There is one interior pointinside the rectangle that be
a boundary point for the two triangles. In the estimate fer
rectangle that interior point gets full credit. For the tigdes it
has become a boundary point, and so gives only half-cre
each of the triangles. This is appropriate since the areaaf
of the triangles is exactly half the area of the rectangle.

The rectangle has 3 interior grid points, 12 grid points



the boundary, and area 8. Each triangle has 1 interior p
8 points on the boundary, and area 4. So, as we found il
problems, the formula above gives a first estimate of 9 for
area of the rectangle and 5 for each of the rectangles. In
cases this is 1 more than the correct values. |

Problem 43 Determine an exact formula for the area of re
angles with vertical and horizontal sides and with vertices
the grid work. Compare with the actual area. ~ Answer O

Problem 44 Determine an exact formula for the area of t

angles with one vertical side and one horizontal side anti

vertices on the grid work. Compare with the actual area.
Answer D

2.3.3 Additivity

One of the key properties of areaadditivity. If two triangles,
two rectangles, or any two polygons that have no commol
terior points are added together the resulting figure hasem
that is equal to the sum of its parts. Certainly then, Pickis
mula, if it is a correct way to compute area, must be addi
too in some way.

Let us introduce some notation that will help our thinkil
For any polygonP we simply count the points in or on tf
polygon, assigning credit of 1 for points inside an Ifor



points on the polygon. Call thBick’s countand write it as

Pick(P) = I + 2.

The valuel simply counts interior points anl counts bound
ary points. We are nearly convinced, at this stage, that$?
count does give a value that is 1 more than the area. IS F
count additive?

SupposeM andN are polygons with a common sidebut
no other points inside or on the boundaries in common. T
M andN can be added to give a larger polygon with a lar
area as in Figurg.15 Call it P. The larger polygon has all th
edges ofM andN except forL which is now inside the larg
polygonP.

Figure 2.15: Adding together two polygonal regions.



Now we wish to show that we can determine RRkfrom
Pick(M) + Pick(N).
Then we want to use this fact to advantage in our computat
Problem 45 We know that
AreaP) = Area(M) + AreaN).
ComparePick(P) andPick(M) + Pick(N). In fact, show that
Pick(M) 4 Pick(N) = Pick(P) + 1.
Answer O

Problem 46 Write a simpler and more elegant solution of Pr
lem44 using the notation of this section.
Answer O

Problem 47 Suppose that a polygon P has been split into tf
smaller polygons B P, and B by adding two lines joining
vertices. Show that

Pick(Py) + Pick(P,) 4 Pick(Ps) = Pick(P) + 2.



2.4 Pick’s formula

We have established the formula

AreaP) = Pick(P)—1=1+ g -1

for certain rectangles and for certain triangles. Any poly:
which we can break up into parts comprised of such rectar
and such triangles can then be handled by the additivity-o
eas and the additive formula for the Pick count using mett
we have already illustrated. If you think of some more com
cated polygons, you might find that they can be broken up
triangles, but not necessarily triangles with one horiabsitle
and one vertical side.

Let's first experiment with a particular example of a trias
that does not meet those requirements.

Example 2.4.1 Let's try our formula on the triangle in Fic
ure2.16 The base of this triangle has length 10 and its altit
is 8. Thus its area is 40.

Our conjectured formula uses 33 interior pointsand 16 &
ary points, giving an answer of

33+16/2—1=40
for the area, which is the same answer. <

The formula works but we have not seen why since



Figure 2.16: A triangle with a horizontal base.

merely did a computation. We might try to check that this 1
mula would work for all triangles with a horizontal base §tl
is Problem48). Then we could try a more ambitious proble
and determine that all triangles have the same property il
Problem49). Problem48is just a warm-up to the full case at
is not needed. Probled® can be proved just by knowing th
this formula is correct for rectangles and for trianglegwhioth
a horizontal and a vertical side.

Problem 48 Show that the area of any triangle T with vertic
on the grid and with a horizontal base is given by the formt

AreqT) = Pick(T) — 1.
Answer O

Problem 49 Show that the area of any triangle T (in any o



entation) with vertices on the grid is given by the formula
AreaT) = Pick(T) — 1.

Answer O

2.4.1 Triangles solved

The figures that we saw in the answer for Probké®ndupli-
cated here as Figur2z17 are the most complicated ones tl
can arise if one wishes to follow the method suggested.

Figure 2.17: Triangles in general position.

key idea is that triangles in any odd orientation can be aeal
by looking at rectangles and triangles in a simpler origoita
It is the additivity properties of areas and of Pick countst
provides the easy solution.

Let us revisit Problerd9 and provide a clear and leisure
proof. We need to analyze the situation depicted in the +i
hand picture in Figur@.17. Here we have labeled the fir



triangle asTp: this is the triangle in a strange orientation f
which we do not yet know that the Pick rule will work.

The remaining triangle¥;, T, andTs are all in a familiar
orientation and we can use Pick’s rule on each of them.
gether they fit into a rectanglR for which, again, we know
Pick’s rule works.

The additivity of areas requires that

AreaR) = Area(Tp) + AreaTy) + AredTz) + Ared(Ts).

The additivity rule for the Pick count we have seen in the |
vious section:

Pick(R) + 3 = Pick(Tp) + Pick(T1) + Pick(T2) + Pick(Ts).

The extra 3, we remember, comes from the fact that three
of vertices are recounted when we do the sum.

Now we just have to put this together to obtain the form
we want, namely that

AreaTp) = Pick(Tp) — 1.
Problem 50 Do the algebra to check that
AredTg) = Pick(To) — 1.

Answer O

Problem 51 Consider once again the polygon P in Figurel



What would Pick’s formula give for the area of the P? Tri

gulate the polygon, use Pick’s formula for each triangled

up the areas, and compare with the area that you just foun
Answer O

2.4.2 Proving Pick’s formula in general

We have so far verified that the formula works for triangle:
any orientation. We should be ready now for the final stag
the argument which uses the triangle case to start off arcin
tion proof that solves the general case.

The key stage in your induction proof will have to use |
splitting argumenthat we saw in Sectioh.1.4 Use mathemat
ical induction on the number of sides Bfand, at the critica
moment in your proof, use the splitting argument to reduc
complicated polygon to two simpler ones.

Problem 52 Prove that the formula
Area(P) = Pick(P) —1

works for every polygon P having vertices on the grid.
Answer O

3See the Appendix for an explanation of mathematical indndfiyou are
not yet sufficiently familiar with that form of proof.



2.5 Summary

We have obtained a quick, easy, accurate formula for cakc
ing the area inside any polygon having vertices on the grid

Try this formula on the polygon in Figur2. 18 where we
have made the task of spotting the appropriate grid poimtes
what easier. How long did it take? Did you improve the rec
of 41 seconds?

Figure 2.18: Polygoir with border and interior points higt
lighted.

Let’s review our method of discovery. In Section2.1.6we
revisited some formulas for the area of a triangle that wehin
have learned in elementary geometry. These formulas dal
the area of a triangle, but would often involve some unplega
computations. (We were seeking something quick and e
We were able to use such formulas to prove that every poly
with vertices on the grid has an area that is an integral plal
of 1/2. (Problen82)

We proceeded in Sectigh2to discuss some other metho



for computing areas of polygons. None of these met oul
quirement of quickness and ease of computation. One of 1
suggested a notion of giving “credit” to grid points inside,
or near the polygon. To calculate an area by this method w
often involve a huge amount of messy calculation, so it
an impractical method. But it did suggest a method of giv
credit to grid points. Our experiences in solving the prois
of Section2.3.1suggested that only 0, 1/2 and 1 should be ¢
sidered as possible credits.

So we did some more experimentation, in Secfidhbasec
on our observations. We did some calculations for relati
simple polygons, and arrived at a formula that actually g
the area for a variety of cases — in particular for rectangheks
triangles that have at least two sides that are vertical aF |
zontal. By now it became natural to suspect that the forn
we obtained would actually apply to all polygons with vest
on the grid. But we had some more checking to do — we he
yet checked more complicated polygons, even triangles &
sides are not vertical or horizontal.

In Section2.4 we put it all together. First, we establish
the result for all triangles with vertices on the grid, radjass
of their orientation. Then we used mathematical inductm!
verify the formula for all polygons with vertices on the gr
We had accomplished our goal.

The role of induction By the time we came to the actu
proof by induction, we were (almost) convinced that the



mula is correct. The discovery part was complete. We
induction only for verification purposes. It was not part lod
discovery process.

This will be true of every use of mathematical induction
this book. By the time we get to the induction step, we
almost convinced that the result we obtained is correct.
induction step removes all doubts.

Other methods There are many other approaches to pro\
Pick’s formula. Some of the material in Sectiah$.3 2.6.5

2.6.7, and2.6.8discuss other approaches that shed some :
tional light on the subject. In a later chapter in Volume 2
will use some graph theory and a theorem of Euler to re
Pick’s theorem.



2.6 Supplementary material
2.6.1 A bit of historical background

A bit more historical detail on Pick himself
is given in the article by M. Ram Murty and
Nithum Thain ([L7] in our bibliography) from
which the following quote is taken:

“Pick was born into a Jewish family in Vienna on
August 10, 1859. He received his Ph.D. from the
University of Vienna under the supervision of Leo 8%
Koenigsberger in 1880. He spent most of his work _.-"'""..,
ing life at the University of Prague, where his col-
leagues and students praised his excellence at both
research and teaching. In 1910, Albert Einstein ap-
plied to become a professor of theoretical physiqsigure 2.19:
at the University of Prague. Pick found himself Olbick

the appointments committee and was the driving force inrge&in-
stein accepted. For the brief period that Einstein was agurahe
and Pick were the closest friends. They were both talentathists
and frequently played together. In 1929, Pick retired angeddack
to his hometown of Vienna. Nine years later, Austria was aeddy
Germany. In an attempt to escape the Nazi regime, Pick ieduim
Prague. However, on July 13, 1942, he was captured and tded]
to the Theresienstadt concentration camp. He passed aemgyttiir-
teen days later, at the age of 82.

Pick’s formula first came to popular attention in

1969 (seventy years after Pick published it) in

Steinhaus’s booMathematical Snapshats




Pick’s theorem was originally published in 1899 in Gern
(see [/] in our bibliography). Recent proofs and extension:
Pick’s theorem can be found in several American Math. Mo
articles by W. W. FunkenbuscHl][ Dale Varberg 14], and
Branko Grinbaum and G. C. Shepha#]. [

2.6.2 Can't be useful though

Is Pick’s theorem of any use? Not likely, you might say. H
is a remark though that might change your mind:

“Some years ago, the Northwest Mathematics Confer-
ence was held in Eugene, Oregon. To add a bit of lo-
cal flavor, a forester was included on the program, and
those who attended his session were introduced to a va-
riety of nice examples which illustrated the important
role that mathematics plays in the forest industry. One of
his problems was concerned with the calculation of the
area inside a polygonal region drawn to scale from field
data obtained for a stand of timber by a timber cruiser.
The standard method is to overlay a scale drawing with
a transparency on which a square dot pattern is printed.
Except for a factor dependent on the relative sizes of the
drawing and the square grid, the area inside the poly-
gon is computed by counting all of the dots fully inside
the polygon, and then adding half of the number of dots
which fall on the bounding edges of the polygon.

Although the speaker was not aware that he was essen-
tially using Pick’s formula, | was delighted to see that



one of my favorite mathematical results was not only
beautiful, but even useful.”

The quote is due to Duane W. Detemple and is cited in
article by Branko Griinbaum and G.C. Sheph&id [

2.6.3 Primitive triangulations

Primitive triangles play a key role in our investigation$1€be
are the triangles that contain no other grid points thanrt
three vertices. We saw that each primitive triangle had |
1/2 and Pick’s formula confirms this.

A primitive triangulationof a polygon on the grid is a tri
angulation with the requirement that each triangle thaeapg
must be primitive. Figur@.20illustrates a polygon that cor
tains two interior grid points leading to a primitive triaugtion
containing eight primitive triangles.

How would one go about constructing such a triangulati
Must one always exist? What other features are there?

The splitting game To study these questions let us introdt
a simplesplitting gamehat can be played on polygons. Matt
maticians frequently introduce games to assist in the aisadf
certain problems. We will return to the investigation of ges
in other chapters.

Two players agree to start with a polygon on the grid ¢
each taking turns, to split it into smaller subpolygons oa
grid. Player A starts with the original polygon and splitsib



Figure 2.20: A primitive triangulation of a polygon.

two (by adding one or two line segments according to rt
given below). Player B now faces two polygons. She chot
one of them and splits it into two (by following the same rile
Player A now faces three polygons. He chooses one of t
and splits it into two. Player B now faces four polygons. ¢
chooses one of them and splits it into two.

And so on. The game stops when none of the polyc
that one sees can be split further. The last person to mo
declared the winner.

Therules The rule for each move is that the player is requi
to choose a polygon in the figure that has arisen in the ple
the game and that has not, as yet, been split. The player
splits that polygon in one of these two ways:



ype 1 The player selects two grid points on the boundarye
polygon. The line segment joining them is construc
provided it is entirely inside the polygon, thus splittil
the polygon into two smaller polygons.

ype 2 The player selects two grid points on the boundar
the polygon and also a grid point in the interior. T
two line segments joining the interior grid point to t
two boundary points are constructed provided they
entirely inside the polygon.

Note that each play of the game splits the original poly
into more and more pieces. More precisely, after the firster
the original polygon has been split into two polygons, affer
second move there will be three polygons, and afterkthe
move there will be&k+ 1 polygons. At some point we must rt
out of grid points that can be joined and the game termin
with a winner declared.

Problem 53 Play the splitting game using the polygon in F
ure 2.21as the starting polygon. What can you report?
Answer O

Problem 54 Play the splitting game a few times with sol
simple choices of polygons. What can you reporfhswer 0

Problem 55 Prove that any play of the splitting game alwe
ends with a primitive triangulation of the starting polygon
Answer D



Figure 2.21: A starting position for the game.

Problem 56 Use Pick’s formula to compute the area of
primitive triangles. Answer O

Problem 57 Suppose that the starting polygon has B grid pc
on the boundary and | grid points in its interior. Using Pisl
theorem, determine how many triangles there are in the
position of the game and how many moves of the splitting ¢
there must be. Answer O

Problem 58 Suppose that the starting polygon has B grid pc
on the boundary and | grid points in its interior. Which play
wins the game? Answer O

2.6.4 Reformulating Pick’s theorem

We can reformulate Pick’s theorem in terms of primitiverri
gulations using what we have discovered by playing thig-s



ting game.

We saw that primitive triangulations must exist. We s
that there was always the same number of triangles in any |
itive triangulation. We observed that we could count the f
ber of triangles by the formula

2l+B-2

Pick’s theorem provided the area of2for every primitive tri-
angle. All these facts add up to Pick’s theorem and, hac
known them, the area formula+ B/2 — 1 would have followec
immediately. Consequently the following statement is eat
lent to Pick’s area formula and is a better way of thinkingutt
it and a better way of stating it.

2.6.1 (Pick’'s Theorem) A primitive triangulation of any
polygon P on the grid exists, and moreover

1. The area of any primitive triangle /2.

2. The number of triangles in any primitive triangulation
P is exactly
21+B-2

where | is the number of grid points inside P and B is the n
ber of grid points on P.

Some people on first learning Pick’s area formula ask
an explanation of why such a simple formula works. They



that it does work, they understand the proof, but it somel
eludes them intuitively. But if you ask them instead to ekpl
why the primitive triangulation formula

20+B-2

would work, they see that rather quickly. Of course count
a triangulation ofP depends on grid points in and ¢h Of
course interior points count twice as much as boundary g
in constructing a primitive triangulation.

Oddly enough then, thinking too much about areas m:
a simple formula more mysterious. Stop thinking about \
areas can be explained by grid points and realize that P
formula is actually a simple method for counting the triaas
in a triangulation. The area formula is merely a consequi
of the counting rule for primitive triangulations.

2.6.5 Gaming the proof of Pick’s theorem

We used our knowledge of Pick’s theorem to analyze ¢
pletely the splitting game. Not surprisingly, we can use
splitting game itself to analyze completely Pick’s theorem

We know that any splitting game will always result in
primitive triangulation of any starting polygon. We wish
establish that the number of triangles that appear at thet
the game is always given by the formula

20+B-2



wherel is the number of grid points insideandB is the num-
ber of grid points orP.
Let us take that formula as a definition of what we mear
the count
CountP)=21+B-2

for any polygonP. Note immediately that iff is a primitive
triangle then

Counf{T)=2x0+3-2=1

We play the game on a polygéhsplitting it by a Type 1 ot
2 move into two polygonM andN. Simply verify that

CountP) = Count{M) 4 Coun{N).

This is just a simple counting argument looking at the ¢
along the splitting line. (Do this as Problesf).

That means that if we play the game one more step by s
ting M into two subpolygon$/; and M, the same thing hag
pens:

Coun{M) = Coun{M3) + Coun{My)

and so
CountP) = CountMy) 4+ CountMz) 4+ CountN).

So, if we play the game to its conclusidhis split inton prim-
itive trianglesTy, T, ...T, in exactlyn— 1 plays of the game



Consequently
Coun{P) = Coun{T1) +Coun{Tz)+---+CountTy) = 1+ 1+-

That completes the proof that CodR} always gives exactly
the correct number of triangles in the primitive triangidatof
P.

Problem 59 We play the game on a polygon P splitting it b
Type 1 or 2 move into two polygons M and N. Verify that

CountP) = Coun{M) 4 Coun{N).
Answer O

Problem 60 Wait a minute! We promised to prove Pick’s the
rem using the game. We still want to show that for a primi
triangle T,

AreaT)=1/2.

Can you find a way? [Hint: triangulation works here too.]
Answer O

Problem 61 This proof is simpler, perhaps, than the first prc
we gave of Pick's theorem. Why didn’t we start with it inst2:
Answer O



2.6.6 Polygons with holes

We now allow our polygons to have a few holes. Again we
for the area of a polygon constructed on the grid but alloveir
hole or perhaps several holes. The problem itself is not s

Figure 2.22: What is the area of the polygon with a hole’

if we can compute the area of the holes since then the ans\
found by subtracting the area of the holes from the area o
polygon.

In Figure2.22the holeH is a rectangle with area 2; sint
H is also on the grid this is easy enough to compute. Inde
the holes are always polygons with vertices on the grid we
use Pick’s Rule many times to compute all the areas and
subtract out the holes.

But let us find a more elegant solution. If we use Pic
Rule multiple times we may end up counting many of the ¢
points several times. There must be a simple generalizafi



the Pick formula
AreaP) =1+B/2-1

that will accommodate a few holes. Now countingve would
ignore points inside the holes. And countiBgwe would have
to include any boundary points that are on the edge of thesh

Polygons with one polygonal hole

Figure2.23shows a rectangle with a hole created by remo
ing a rectangléd from the inside oP. All of the vertices ofR
andH are on the grid. Her® is a 5x 12 rectangle an#ll is

...............

...............

Figure 2.23: Rectangle with one rectangular hold.

a 2 x 4 rectangle. Thus the area between them is-83= 52
units. Our objective is to use our counting method direail
calculate the area between the polygBremdH.



Problem 62 Experiment with the polygons in Figuge23and
others, if necessary, to conjecture a formula for the area
tween two polygons. As always the polygons under consic
tion are to have their vertices on the grid.

Answer D

Problem 63 Our previous method was (i) counting interior p
at full value of 1, (ii) counting points on the boundary of
polygon at half value ofl/2, and finally, (iii) subtractingl.
What goes wrong if we try the same argument for the fig
with a hole? Answer O

Problem 64 (An algebraic argument) Let us do the entire ca
culation algebraically. Take P as the outer polygon, H as
hole polygon, and G as the region defined as P take awa
We know from Pick’s Rule that

AreaP) =1(P)+B(P)/2—1

where by BP) we mean the number of boundary grid poil
on P, and by (P) we mean the number of interior grid poir
inside P. Similarly

AreaH)=I(H)+B(H)/2—-1

where by BH) we mean the number of boundary grid poil
on H, and by (H) we mean the number of interior grid poir
inside H.



Find the correct formula for the subtracted arésea(P) —
Area(H) in terms of [G) and BG). Answer O

Polygons withn holes

The algebraic argument we gave is quite general, it appbe:
only to any polygorP with vertices on the grid and any oth
such hole polygoi inside P, but also applies (with obviou
minor changes) wheR hasn such polygonal holes inside |
To complete the theory, then try to guess at the final forn
and to verify it using the techniques seen so far.

Problem 65 Determine a formula for the area that remains |
side a polygon with n polygonal holes.
Answer O

2.6.7 Animproved Pick count

Our Pick-count policy was to assign a count value of 1
grid points inside the polygon and a count value of 1/2 fod
points on the polygon itself. This was certainly successifute
it gave us the formula

AreaP) = Pick(P) — 1

which works, as we now have proved, for all possible polyg
with vertices at grid points.



There is another rather compelling and elegant way tc
the count. This makes for a neater proof. This is not a ne
different proof, we should point out. But it is a rather tidgaw
of expressing the same ideas.

The idea behind it is that the additive formula for the P
count,

Pick(P) + 1 = Pick(Py) + Pick(P,)

for the situation when the polygdhis split into two polygons
P, andP, with a common edge is not quite as “additive” as
would prefer: it has this extra 1 that must be included. °
additional 1 comes from the two vertices that get assigng«
in both the counts. That destroys the additivity, but onlyab
little bit. To get true additivity we will use the idea thatges
are naturally additive.

Angle of visibility We do a different Pick count. For eax
point in or on a polygorP we decide what is itangle of vis-
ibility. This is the perspective from which standing at a pe
we see into the inside of the polygon. For points interioPt
we see a full 360 degrees. For points on an edge but no
vertex we see only one side of the edge, so the angle of
bility is 180 degrees. Finally for points at a vertex the angjfi
visibility would be the interior angle and it could be anytyi
between 0 degrees and 360 degrees. We would have to me
it in each case.



Modified Pick’s count Our modified Pick’s counis to take
each grid point into consideration, compute its angle of
ibility, and divide by 360 to get the contribution. Points |
side get 360/360=1. Points on the edge but not at a verte
180/360=1/2. And, finally, points at the vertex g¢860 where
a is the degree measure of the angle. The new Pick cour
will write as
Pick' (P).

Add up the count for the vertices At first sight this seem:
terribly complicated. How would we be prepared to meas
all of the vertex angles? We would never be able to perf
this count. But that is not so.

Take a triangle for example. Except for the three vert|
the countis (as usual) to use 1 for inside points and 1/2 fge¢
points. The three vertices taken together then contribute

at+b+c
360

While we may have trouble measuring each of angldsand
¢, we know from elementary geometry that the angles in
triangle add up to 180 degrees. So we see that the conttib
at the vertices is

a+b+c_1_80 }

360 360 2



The old way of counting would have given ug2k-1/2+1/2
which is 1 larger than this. Thus for any triangle

Pick"(T) = Pick(T) — 1= Area(T).

In general for a polygon with vertices it might appear ths
we would have to compute the angles at each of the vertic
get the contribution

a+a+-+an
360 '

But the angles inside any polygon withvertices add up tc
180(n — 2) degrees. This is because any such polygon ca
triangulated in the way we described earlier in the chapier.
example, a quadrilateral can be decomposed into two tiéar
by introducing a diagonal. Each of the triangles contribli®0
degrees, so the quadrilateral has a total efIB0 degrees a
the sum of its interior angles at the vertices.
Thus we see that the contribution at the vertices of a p
gon withn vertices is
ata+---+a, 180n—-2) n

360 360 _E_l'

Compare the old count to the new count The old way of
counting would have given us 1/2 for each of theertices for
a total ofn/2 which is again 1 bigger. Thus we see that for :



polygonP
Pick*(P) = Pick(P) — 1= AreaP).

This also explains the mysteriousl that needed to occur i
Pick’s formula.

Additivity  The ordinary Pick count using Pi@R) is not quite
additive. Every use of the additive rule required a bookkeg|
for the addition 1 in the formula

Pick(P) + 1 = Pick(Py) + Pick(P,).

That made our computations a bit messier and gave us a gli
non-intuitive formula

AreaP) = Pick(P) — 1.

Now that we have a better way of counting grid points
have a precisely additive formula

Pick*(P) = Pick*(Py) + Pick' (P2)
and an intuitive area formula
AreaP) = Pick'(P).

That supplies a different way of writing our proof for Pick
formula that is rather simpler in some of the details. Seé&P



lem67.
Problem 66 Prove the additive formula
Pick*(P) = Pick*(Py) + Pick' (P2)

for the modified Pick count for the situation when the poly
P is split into two polygons{Pand B with a common edge.
Answer O

Problem 67 Reformulate the proof of Pick’s formula using n
the modified Pick count to show that

AreaP) = Pick (P).
Answer O

Problem 68 Determine a formula for the area that remains |
side a polygon with n polygonal holes using the modified |
count idea. Answer O

Problem 69 Does the formula you found in Proble®8 help
clarify the formula we have found in Proble®® for the area
inside polygons with holes? Does it explain why that forrr
needed us to count the number of holes (i.e., why the for
had an n that appeared)? Answer O



2.6.8 Random grids

Instead of a square grid let us start off with a large coltactf
points arranged in any fashion, as for example in Figugat
where the grid points have been chosen at random.

Figure 2.24: Random lattice.

In Figure2.25we have constructed a triangle with vertic
at grid points of this random lattice. There are three boon
grid points (the three vertices) and two interior grid psijrib
our usual notatio = 3 andl = 2. We do not ask for an are
computation, but we do ask (as before) whether there mus
ist a primitive triangulation? We ask too how many triang
would appear in a primitive triangulation of a polygon onst
grid?

Try a few examples until you come to some realizat
about these problems. The situation is not merely simils
the problem of polygons on square grids: it is identical. &<
tion 2.6.3we proved that iP is a polygon on a square grid the
must exist a primitive triangulation. In Secti@r6.5we proved



Figure 2.25: Triangle on a random lattice.

that, if P hasl interior grid points andB boundary grid points
then the number of primitive triangles that appear is alveys
actly 2 + B — 2. Certainly the same formula works here for
particular case of the triangle in Figuze2s

Figure 2.26: Primitive triangulation of the triangle in Fi
ure2.25

An examination of our proofs in those sections shows
at no part of the argument did we use any features of a sc
grid: the points could have been arranged in any fashion ¢
and the proofs would be unchanged. Hence the result i



changed: there must always be a primitive triangulation
any such triangulation contains exactly2B — 2 primitive tri-
angles. The grid points can assume any pattern at all.

When we were concerned about areas then the fact th:
grid was square and the points neatly arranged matterect
deal. When we turn just to counting the pieces of a primi
triangulation the geometry no longer matters. The answaest |
depend only on the number of boundary points and the nur
of interior points.

Figure 2.27: Sketch a primitive triangulation of the polypgo

Problem 70 Sketch a primitive triangulation of the polygon
Figure 2.27that is on a random grid. How many triangles &
there in any primitive triangulation? Answer O



2.6.9 Additional problems

We conclude with some additional problems that are relate
the material of this chapter.

Problem 71 Use Pick’s Rule to prove that it is impossible
construct an equilateral triangle with its vertices on tha&slin
a square grid. Answer 0

Problem 72 (Stomachion)Find the areas of the polygons:
Figure 2.28by using Pick’s Theorem or a simpler method.

Figure 2.28: Archimedes’s puzzle, called the Stomachio

Answer O

Problem 73 AReeve tetrahedrds a polyhedron in three-dim
space with vertices at0,0,0), (1,0,0), (0,1,0) and (1,1,n)
where n is a positive integer. Explain how the Reeve tetr:
dron shows that any attempt to prove a simple version of
theorem in three dimensions must fail.

Answer O



Problem 74 (Bézout identity) Two positive integers are sai
to be relatively prime if they have no factor in common. Gi
two relatively prime positive integers a and b, show thatet
exist positive or negative integers ¢ and d such that

ac+bd=1
Answer O

Problem 75 Let T be a triangle with vertices 40,0), (1,0)
and (m,n), with m and n positive integers and>n1. Must
there be a grid poin{a,b) in or on T other than one of th
three vertices of T? Answer O

2.7 Answers to problems

Problem 20, page 48

Figure2.29illustrates a number of points in the first quadr
that are (and are not visible) from the origin. Cleaflyl) is
visible from the origin, but none of these points

(2,2), (3,3), (4,4), (5,5),...

(marked with an X in the figure) are visible precisely beca
(1,1) is in the way Similarly (4,5) is visible from the origin



but none of these points
(8,10), (12,15), (16,20), (20,25),...

are visible.

Figure 2.29: First quadrant unobstructed view fr@0).

The key observation here is the notionasfmmon factar
You can prove (if you care to) that a poifm,n) on the grid is
visible from the origin if and only ifnandn have no commor
factors. (For exampléB,10) is not visible because both 8 ai
10 are divisible by 2. Similarly12,15) is not visible becaus
both 12 and 15 are divisible by 3. B(#,5) is visible since nc
number larger than 1 divides both 4 and 5.)

In particular we see that some elementary number thec
entering into the picture quite naturally. That suggests tihis
investigation is perhaps not as frivolous and elementapnas



might have thought. In Problei we will see an applicatiol
of Pick’s theorem to number theory.

Problem 21, page 49

If you take the three points

(0,0), (1,1),(2,2)

Vl; V27 V3

then you will see the trouble we get into. We could avoid 1
with triangles by insisting that the three points choseneas
tices cannot lie on the same line.

Another example is taking

(070)7 (2a0>a (1a 1)a (71, 1)

Vl; VZ; V3; V4-

Certainly there is a square with these vertices but we w
have to specify a different order since the line segmé&kt
and the line segmentV, cross each other. We don't intel
these to be the edges.

Yet again, an example taking

(0,0), (2,2), (2,0), (1,0,), (2,2), (0,0)



Vi, V2, V3, Vg, Vs, Vs

shows that we should have been more careful about speci
that the vertices are all different and the edges don’t coo:s
overlap.

A reasonable first guess at a definition would have to
clude all the elements in the following statement:

2.7.1 A polygon can be described by its vertices and ec
that must obey these rules:

1. There are n distinct points

Vl;VZ;V37 e aVn~

2. There are n straight line segments
VlVZ; V2V3;V3V47 oo 7VnVl

called edges. Two distinct edges intersect only if t
have a common vertex, and they intersect only at
common vertex.

Even that is not quite enough for a proper mathematical
inition, but will suffice for our studies. The reader mighkez
this as a working definition that can be used in the solutior
the problems.



Problem 22, page 51

First consult your list to identify a vertex that occurs atcrp
(x,y) for whichy is as large as possible. Then walk, withc
touching an edge, up to a vertex. Go around the polygon il
der consulting your list of vertices for directions, stayitlose
to the border, but without actually touching an edge or vel
Eventually you will arrive near a vertex you have identified
having the largestvalue. Which side of that point are you o

This could be written up as a computer algorithm to test
point to find out whether it is inside or outside. Certainlyail
finite number of steps (depending on how many edges we
follow) we can determine whether we are trapped inside @
to travel to much higher places.

Problem 23, page 52

There are five choices of splitting lines in addition to theel
segmentL. Notice that there are many other ways of joini
pairs of vertices, but some ways produce line segments tt:
entirely outside the polygon or cross another edge. The
splitting choices are illustrated in Figu®er.



Figure 2.30: The six line segments that split the polygor

Problem 24, page 52

Certainly you would have discovered quickly that no trian
can be split this way. But in every other case that you cor
ered there would have been at least one linat splits the
polygon.

Thus it appears to be the case that every polygon with
or more vertices can be split by some line segment that |
two vertices without passing through any other points or
edge of the polygon. That is the conjecture.



Problem 25, page 52

This may not be as obvious as it first appears, since we |
consider all possible cases. It is easy to draw a few fig
where many choices of possible vertices would not be alloy
It is clear in any particular example which two vertices car
used, but our argument must work for all cases.

We assume that we have a polygon witlvertices where
n > 3 and we try to determine why a line segment must €
that joins two vertices and is inside the polygon (withotitiing
another edge).

Go around the polygon’s vertices in order until you fi
three consecutive verticés B andC such that the anglé ABC
in the interior of the polygon is less than 180 degrees. (\
would this be possible?)

The proof is now not too hard to sketch. Suppose first
the triangleABC has no other vertices of the polygon inside
on it. If so simply joinA andC.

The line segmenAC cannot be an edge of the polygc
We know thatAB andBC are edges. IAC were also an edge
then there are no further vertices other than the threecest
A, B, andC. Since we have assumed that there are more th
vertices this is not possible. (Statemérit.lon pagelllhas
a formal description of a polygon that we can use to make
argument precise.) Consequently this line segni€hsplits
the polygon.

There may, however, be other vertices of the polygol



the triangle. Suppose that there is exactly one vextex the
triangle. Then, whileAC cannot be used to split the polygc
the line segmenBX; can. Again we are done. Suppose t
there are exactly two vertice§ andX; in the triangle. Ther
one or both of the two line segmerBs\ or BX; can be used
To be safe choose the point closesBto

Suppose that there are exactly three vertigs<;, andXs
in the triangle. Then one or more of the three line segm
BX1 or BX; or BX3 can be used. Draw some figures show
possible situations to see how this works. Note that thetf
closest tdB is not necessarily the correct one to choose.

The general argument is a bit different. Suppose there
exactlyn verticesXy, X, ... X inside the triangléABC. Select
a pointA’ on the lineAC that is sufficiently close té so that
the triangleA'BC contains none of the points;, X, ... X,.
Now move along the line to the first poiAt where the triangle
A'BC does contain one at least of these points. From an
these choose the verte that is closest t&. ThenBX; can
be used to split the polygon since it can cross no edge o

polygon.

Problem 26, page 53

If M hasm vertices,N hasn vertices and the large polygc
(before it was split) hap vertices then a simple count sho
that

m+n=p+2



since the two endpoints df got counted twice. But you ca
also observe that
m> 3 andn > 3.

Combining these facts shows finally that
m=p+2-n<p+2-3=p-1

and
Nn=p+2-m<p+2-3=p-1

So the two polygon#! andN must have fewer vertices the
the original polygon.

This fact will be a key to our induction proof later on.
every polygon (other than a triangle) can be split into siysp
gons with fewer vertices, then we have a strategy for pro
statements about polygons. Start with triangles (theicasg).
Assume some property for polygons with 3, 4, ..., aner-
tices. Use these facts to prove your statement about pody
with n+ 1 vertices. Take advantage of the splitting prope
the big polygon witm+ 1 vertices splits into two smaller poly
gons with fewer vertices.

Problem 27, page 54

Perhaps you answered that this was the only triangulatisn
sible. If so you didn’t look closely enough. There is one m
triangulation ofP that uses additional edges joining a pair



vertices as Figurg.7illustrates.

Figure 2.31: Another triangulation &,

But, in fact, any decomposition d® into smaller trian-
gles would also be considered a triangulation and can be
to compute areas. The most interesting triangulations tior
study of polygons on a grid might require us to use grid po
for vertices of the triangles. There are many such triartgria
possible forP.

More generally still, we could ignore the grid points ¢
tirely and allow any decomposition into smaller triangl@sice
again, there are many such triangulations possiblBfordeed
there are infinitely many.



Problem 28, page 54

To start the problem try finding out why a polygon (of a
shape) with four vertices can always be triangulated. T
work on the polygon with five vertices but use the splitting
gument to ensure that this polygon can be split into sm:
polygons, each of which is easy to handle.

A complete inductive proof for the general case is ti
fairly straightforward. Leth be the number of vertices of
polygonP. If n= 3 then the polygon is already triangulated
n =4 simply join an appropriate pair of opposite vertices ar
will be triangulated. Iin = 5 use the splitting argument (whic
we have now proved in Probled®) to splitP into smaller poly-
gons. Those small polygons have 3 or 4 vertices and we alr
know how to triangulate them. Andsoon....

Well “and so on” is not proper mathematical style. E
this argument is easy to convert into a proper one by using
mathematical induction. You may need to review the mate
in the appendix before writing this up.

Problem 30, page 59

It is good practice in starting a topic in mathematics to &x|
iment on your own with the ideas and try out some examy
All too often in a mathematics course the student is cop
down extensive notes about definitions and theorems wel
fore he is able to conceptualize what is happening.



In this case you will certainly have computed polygons v
some or all of these areas:
1 3.5 7

Ev 1; Ea 275; 37 Ev 4;
But you will not have found any other area values. We cena
expected fractions, but why such simple fractions? All a

appear to be given by some formula

N

2

whereN is an integer. This, if it is true, is certainly a remal
able feature of such figures. Few of us would have had
expectation that this was going to happen.

Our best guess is that, for polygons on square grids, s
thing is being counted and each thing counted has bee
signed a value that is a multiple of2. The natural thing w
might consider counting is grid points. But what values dtic
we assign to each grid point?

Problem 31, page 59

As we have already determined, a trian@levith vertices at
(0,0), (s,t), and(a,b) must have area given by

at—bs
2




The numerator is an integer so the area is clearly a multip
1/2.

Now, by drawing some pictures, try to find an argum
that allows you to conclude that all triangles anywhere @n
grid can be compared to a triangle like this. We must be |
to claim that every triangle on the grid is congruent to oni\
a vertex af0,0) and of this type. Then, since we have de
mined that this triangle has area an integer multiple/@; then
every triangle on the grid has this property.

Problem 32, page 59

In Problem28 we saw that all polygons on the grid can
triangulated by triangles on the grid. Each such triangkedre
area that is a multiple of /2. The polygon itself, being a sul
of such numbers, also has an area that is a multiplg/®f 1

Problem 33, page 69

You should be able to compute easily the area of any tria
that has one side that is horizontal or one side that is &t
In that case the formula

1/2 x basex height

immediately supplies the answer. For primitive triangleths
type you will observe that both base and height are 1 so tlze
is immediately ¥2.



If the triangle has no side that is horizontal or verticakt!
the formula
1/2 x basex height

while still valid, does not offer the easiest way to calcaltte
area. For these triangles the methods of Secidn6should
be used. For example compute the area of the primitive tiéa
with vertices a{0,0), (2,1) and(3,2). Try a few others.

You should have found that all of them that you cons
ered have area exactly 1/2. Again the number 1/2 emerge
seems (perhaps) to be related to the fact that all of theseef
have exactly three points on the grid. Also, we know thatye
triangle on the grid has an area that is some multiple /&
since primitive triangles are somehow “small” we shouldiret
surprised if all have area exactly2, the smallest area possit
for a triangle on the grid.

Problem 34, page 69

You should have found that all of them have area exactl
We can compare with primitive triangles in a couple of wa
Problem33 shows that primitive triangles must have ar¢a.1

The extra grid point on the edge of these triangles app
to contribute an extra credit of/2. Or, perhaps, we could ol
serve that the extra grid point allows us to split the triarigto
two primitive triangles each of which has are&@1Both view-
points are useful to us.



Problem 35, page 70

You should have found that all of them have area exactly
The single grid point in the interior of the triangle can bie ¢
to the three vertices, dividing the original triangle intode
primitive triangles. Since each of these has area 1/2 atup
to Problem33, the total area is 3/2.

Problem 36, page 70

You should have found that all of them have area exactly 8.
likely a mystery to you, however, whether these two numbe
and 6 adequately explain an area of 7. (Is there some for
for which, if you input 4 and 6, the result will be 77?)

Does this mean that all such polygons (with 4 bounc
points and 6 interior points) must have area 7? Our choic
polygons was driven mostly by a desire to find figures wh
area could be computed without much difficulty. It is not cl
at this stage whether much weirder figures would or would
have this property.

But, if this is so, then it appears (quite surprisingly) to
the case that the area inside a polygon with vertices on ite
depends only on knowing how many grid points there are
the polygon itself and how many grid points there are ins
the polygon.



Problem 37, page 71

In Problem30 you likely constructed a few of these. Just
scribe a procedure that would construct one example for |
of these. Start perhaps with a triangle with vertice$0a0),
(0,1), and(1,0). Just keep adding simple primitive triang|
until you see a way to write up your recipe.

Problem 38, page 71

Your experiments should have produced squares with thes
eas:

1,2, 4,5,9, 10, 13, 16, 17, 20, 25, 26, 29, 36, 37, 40, 45, 52

If you didn’t find many of these keep looking before you try
spot the pattern or try to explain the pattern.

Certainly, for any integek, the squares with verticgs,0),
(0,k), (k,0) and (k,k) is on the grid and has ardd&. This
explains all of these numbers:

1,4, 9, 16, 25, 36, 49, 64, 81, 100,....

What about the other numbers in the list we found above?
But the square with vertice®,0), (1,1), (—1,1) and(2,0)
also works and has area 2 since each side lengifRis That
explains the number 2. More generally, for any choice of p
(a,b), there is a square with one vertex(@t0) and the line



joining (0,0) to (a,b) as one of its sides. The side length is
Va2 112

by the Pythagorean theorem and so the area is
a®+ b2,

Consequently any number that is itself a square or is a
of two squares must be the area of a square on the grid.
statement describes the list of possibilities that we saw.

Problem 39, page 71

The area of the rectangR is 8. The number of grid point
inside the rectangle is 3. Thus counting grid points insgl
a considerable underestimate in this case. Perhaps, hgv
with much larger rectangles this might be a useful first egtiar

Similarly, the area of the triangl€ is 4. The number o
grid points insideT is 1. Again simply counting grid point
inside gives too low an estimate.

You may wish to try some other examples and see if
same kind of conclusion is reached. A simple counting of
points inside produces estimates that are poor for theae
tively small polygons.



Problem 40, page 71

Once again the area of the rectan§lés 8. The number o
grid points insideP is 3 to which we are instructed to add t
number of grid points on the rectangle itself. There are Th:
points and adding these gives+3 = 15, considerably large
than 8.

The area of the triangl€ is 4. The number of grid point
insideT is 1 and the number of grid points on the triangle
8. The addition is % 8 = 9, rather more than the area of t
triangle.

It appears that, in order to reduce the total Pick credi
that it is closer to the actual areas we need to give lesstdoe
some of the points.

Problem 41, page 72

The grid points orR andT are neither inside the polygon n
outside. We can try giving them less credit than 1. Our cho
are 0 and 12.

Let’s try 1/2 for all of them which would be a reasonal
first guess. FoRwe find 12 such points (counting the corne
of R). Giving each such point half credit we obtain

3+6=9

whereas the area & is 8. This is rather closer but is just
overestimate by 1.



Similarly, for the triangleT there are 8 grid points on tf
triangle. If we give them half-credit, we obtain

14+4=5.

The area of the triangle is 4 and so, once again, we have f
an overestimate by exactly 1.

Try some other figures to see if this is what will alwe
happen. Should we change the credit (reduce some of
points to zero credit) or should we try to figure out why
extra 1 arises?

Problem 42, page 72

Your examples should show results similar to those we fo
in Problem41. Trying for an estimate

[# of grid points onP]
2

Area(P) = [# of grid points insideP] +

using our idea of full credit 1 for the inside points and hs
credit 1/2 for the boundary points, in each case we founc
overestimate by one unit. Did you?



Problem 43, page 74
We have already seen that the formula

Area(P) = [# of grid points insideP] + [# of grid [:;omts o]

works in a few simple cases. Let us check that it must alw
work for rectangles with vertical and horizontal sides aritthv
vertices on the grid work.

If the rectangler has dimensions1andn the actual area i
the productmn We can count directly that

[# of grid points insideR] = (m—1)(n—1).
and
[# of grid points onR] = 2(m+n).

(Check these.)
Thus our calculation using this formula would result in

2(m-+n)

—1=mn
2

(m—n)(n—1)+

Since this is the correct area of the rectangle, the fornmau
valid at least in this special case.



Problem 44, page 74
We have already seen that the formula

[# of grid points onP]

Area(P) = [# of grid points insideP] + 5

works for all rectangles and, in a few simple cases, for st
triangles. Let us show that it worksH =T is a triangle with
one vertical side and one horizontal side and with vertiae:
the grid work.

If the horizontal and vertical sides have lengttandn, the
area of the triangle ismn/2. Adjoining another triangl@’ as
we did in Figure2.14we arrive at a rectangl® whose ares
is mn that is split into the two triangle$ and T’. The two
triangles are identical (one is a reflection of the other) sm
they have the same areas and the same number of grid |
inside and on the boundary.

Let p be the number of grid points on the diagonal of
rectangle, excluding the two vertices. (There may be nc
We easily compute (using Figuel4as a guide)

[# of grid points insidel] + [# of grid points insidel'] + p

= [# of grid points insideR]

and

[# of grid points onT] + [# of grid points onT’]



= [# of grid points onR] + 2+ 2p.

This last identity is because the two vertices on the diakpmes
counted twice, once foF and once foll’ as also are any of th
otherp grid points on the diagonal. Thus we can check u
simple algebra that

2% {[# of grid points insider] + [# of grid points onl] 1}

2

[# of grid points onR]
2

This last identity is clear since we already know that our

mula works to compute the area of any rectangle, and Re

has areann

Thus we have verified that the formula does produce
actly mn/2, which is the correct area for the triangle This
handles triangles, but only (so far) those oriented in a kr
way with a horizontal side and a vertical side.

The algebra is not difficult but it does not transparer
show what is going on. In Sectidh3.3we explore this in &
way that will help considerably in seeing the argument an
generalizing it to more complicated regions.

= [# of grid points insideR] + —1=mn

Problem 45, page 76

The count is quite easy to do. Except for points on the Lin
every point in the count for Pi¢l) is handled correctly in th



sum. The points oh, however, all get counted twice. The tv
vertices at the ends &f get a count of 12+1/2 in the count
for Pick(P) but they get Y2+ 1/2+1/2+ 1/2 for the count
Pick(M) 4 Pick(N). So thatis 1 too much.

What about the remaining grid points, if any, b They
are also counted twice. But this takes care of itself. In
count for PicKM) + Pick(N) any such point gets a count
1/2+1/2. But that is exactly what it receives in the count
Pick(P) since it is now an interior point and receives credit
1. In short then, without much trouble, we see that

Pick(M) + Pick(N) = Pick(P) + 1

where the extra 1 is explained simply by the fact the endpc
of the edgd. got counted twice.

Problem 46, page 76
We want to prove that
Area(T) =Pick(T) —1

for any triangle with horizontal and vertical sides. As wd ih
our previous solution we introdudé the mirrorimage off so
thatT andT’ together form a rectangi® Then

Pick(T) = Pick(T’),



Pick(T) + Pick(T’) = Pick(R) + 1,
and
2AredT) = AreaR)
We are allowed to use the fact that A(Ba= Pick(R) — 1 that
we proved earlier. So
AreaR) PickR)—1 2PickT)-1-1
2 2 N 2

Area(T) = = Pick

which is the formula we wanted.

Problem 48, page 78

This is just a warm-up to the general case discussed in F
lem 49. It is worth trying to handle this one using the ide
developed so far since some thinking on this problem help:
derstand better what is needed for the harder problem.

For example, if the triangle is obtuse angled like the triar
T in Figure2.32then add a right-angled triangke so thatT
andP together make another right-angled trian@leé/e know
already that

Area(P) = Pick(P) —1

and

Area Q) = Pick(Q) — 1



but we want to show that
Area(T) =Pick(T) —1

is also valid. Simply use Pi¢l ) + Pick(P) = Pick(Q) + 1 and
AreaT) + Area(P) = Areq Q).

Figure 2.32: Obtuse-angled triandlewith a horizontal base

If the triangle is acute-angled like the triandlein Fig-
ure2.33then it can be split into two right-angled triangles &
handled in a similar way.

Figure 2.33: Acute-angled trianglewith a horizontal base.



Problem 49, page 79

Let R be the smallest rectangle with horizontal and vert
sides that contain¥. ThenR is comprised ofT and some
other polygons for which we have already established thie
formula. Figure2.34illustrates how the triangl&@ plus some
other simpler triangles, and possibly a rectangle, mighkten
up the whole of the rectangle.

Figure 2.34: Triangles whose base is neither horizontavenr
tical.

Note the similarity between Figur2.34 and Figure2.6.
Apply reasoning similar to that used in Problé@@to deter-
mine whether the formula s valid for an arbitrary triangléis
suggestion should enable you to solve the problem. There
detailed discussion, in any case, in Secttof. 1



Problem 50, page 80

The algebra s quite simple, just a lot of adding and sulitrgc
Here is what we know:

AreaR) = AredTp) + Area(T1) + AredT,) + Area(Ts),
Pick(R) + 3 = Pick(Tp) + Pick(T1) + Pick(T2) + Pick(Ts),
AreaR) = Pick(R) — 1,

AreaT;) = Pick(T1) — 1,

AredaTy) = Pick(Tz) — 1,

and
AreqT3) = Pick(Ts) — 1.

Thus
Areq(Tp) = Area(R) — {Area(T1) + AredTz2) + Area(Ts) }

= Pick(R) — 1 — {Pick(T1) + Pick(T2) + Pick(Ts) — 3}
= {Pick(R) — Pick(Ty) — Pick(T2) — Pick(Tz)} + 2.
But

Pick(R) + 3 = Pick(Tp) + Pick(T1) + Pick(T2) + Pick(Ts),



which is the same as
Pick(R) — Pick(T1) — Pick(T,) — Pick(T3) = Pick(Tp) — 3.
Finally then
AreaTo) = {Pick(To) — 3} + 2 = Pick(Tp) — 1.

The proof is complete.

Problem 51, page 80

Figure2.35(which is just a repeat of Figur21in the text) in-
dicates rather well which grid points to use. As you can
there are six points on the boundary (in addition to the five
tices) that must be included in our accounting. For the s«
half of the problem, triangulate into just three conventean-
gles and check the areas of each by counting according t
Pick formula that we have now verified for triangles.



Figure 2.35: What is the area insig@

Problem 52, page 81

Let us set up an argument using mathematical induction.
each integek > 3 let P(k) be the statement that for every po
gon with k or fewer sides the formula works. We already kr
P(3) is valid (the formula is valid for all triangles)

Now suppose the formula is valid for all polygons witf
or fewer sides. (This is the induction hypothesis.) Pdte any
polygon withn+ 1 sides. We must show the formula is va
for P.

At this point we need the splitting argument. The essel
ingredient in all inductive proofs is to discover some way
use the information in the induction hypothesis (in thissdde
area formula for smaller polygons) to prove the next stepér
induction proof (the area formula for the larger polygon).



Figure 2.36: Finding the line segmdnt

As in Figure2.36we use the splitting argument to find
line segment. whose vertices are endpoints®fand the res
of L is insideP. In the figure the line segmehthas separatdel
into two polygondvl andN. Because we have addegthe total
number of sides foM andN combined is nown+ 2, but eact
of the polygons separately has fewer timan 1 sides. Thus, b
the induction hypothesis, the formula is valid for each &
polygonsM andN.

Thus we know that

Area(P) = AreaM) + Area(N),

while
Area M) = Pick(M) —1

and
AreaN) = Pick(N) — 1.



By our additivity formula for the Pick count,
Pick(P) + 1 = Pick(M) + Pick(N).
Simply putting these together gives us
Area(P) = Area(M) + Area(N) = Pick(M) — 1+ Pick(N) — 1

= Pick(P) + 1— 2= Pick(P) — 1.

This verifies that the Pick formula works for our polyger
with n+1 sides. This completes all the induction steps an
the formula must be true for polygons of any number of sid

Problem 53, page 89

Figure 2.37 shows a possible ending position for this gar
There are no further moves possible.

Figure 2.37: A final position in this game.



One thing that is evident from this particular play of t
game is that the final position is a primitive triangulation
the original polygon. Would all plays of the game result il
primitive triangulation?

In playing this game there were exactly 8 moves and ¢
was the second player who made the last move and wol
game. Would all plays of this game have the same result ot
the second player particularly skillful (or lucky)?

Problem 54, page 89

Choose a polygon that is not too large and play a few g
(alone or with a friend). You will certainly observe that t
game ends with a primitive triangulation of the original ypo
gon. You may also have observed that, if you lost the ge
each time you repeated the game (with the same starting
tion) you also lost, no matter what new strategy you tried.

Did you observe anything else? You could have, if \
thought of it, also have counted the number of moves and e
the number of triangles in the final figure. But perhaps
didn’t notice anything about this count beyond the fact that
number of moves and the number of triangles are closel
lated and these numbers didn’t change when you replaye
game on this polygon.



Problem 55, page 89

The game ends after a certain number of moves. Call this
bern. Thus, aften moves, the polygon has been split imte 1
subpolygons.

Are they all triangles?

Let us suppose not, i.e., that there is a subpolygon in thé
position with 4 or more vertices. According to the splittiag
gument of Sectiork.1.4there must be a line segment joini
two of these vertices for which the line segment is entiraly
side the subpolygon. But that would allow a Type 1 move tc
made and so the game is not over after all.

Since they are all triangles we can ask

“Are they all primitive triangles?”

Supposq is a triangle in the final position. Dodshave a grid
point on the boundary other than the three vertices? If if
then clearly a Type 1 move could have been made by joil
that point to an opposite vertex. Do&shave an interior gric
point? If it did, then clearly a Type 2 move could have b
made by joining that point to two of the vertices. This shc
that each triangle in the final triangulation must be priveiti

Problem 56, page 89

Recall that a triangle with vertices on the grid is said to biep
itive if the only grid points on or in the triangle are the téi



vertices themselves. What is the area of a primitive triafgl

Not surprisingly the answer is/2. We know that all poly-
gons on the grid have an area that is a multiple (#.1These
are the smallest such polygons. We have also experiment
a few instances with primitive triangles (e.g., in Probl&B)
and in each case we found an area (2.1

The Pick formula supplies this immediatelyTfis a prim-
itive triangle, then there are no interior grid points<0) and
there are only the three boundary grid poirs= 3). Conse-
quently

AreaT)=1+B/2—1=0+3/2—-1=1/2.

as we would have suspected.

Problem 57, page 90

Consider the final position. Aften moves the polygon ha
been split intn+ 1 subpolygons, each of which we now knc
(because of Problesb) is a primitive triangle.

Each primitive triangle has ared2 (by Pick’s rule) and sc
the area of the original polygddmust be

n+1

Area(P) = 5

since there ar@+ 1 primitive triangles. Pick’s theorem say



on the other hand, that
AreaP)=1+B/2—1.
Comparing these two expressions we see that

ntl 21+B-2
2~ 2

which shows that the number of primitive triangles in theffi
configuration is
n+1=21+B-2.

This number is always the same even though there may
great many different ways of ending up with a primitive tri
gulation.

The number of moves in the game is then always giver

n=21+B-3.

Problem 58, page 90

In Problem57 we determined that, no matter what strategy
ther player elects to try, the number of moves in the gan
always given by

n=21+B-3.



The first player wins if this is odd. The second player win
this is even.

Looking again at that number it is evident that the f
player wins simply ifB is even and the second player wins
B is odd. The number of interior pointsis irrelevant to the
guestion of who wins (although the game is much longeisf
big).

So the game is rigged. The player in the know just offer
go second in a game if she spots tBas odd.

Problem 59, page 94

Let us play the game on the polyg®rsplitting it by a Type 1
move into two polygon®! andN. For a Type 1 move ther
is a lineL joining two grid points on the boundary &f that
becomes a new edge fdbt andN. We consider both sides
the equation

Coun{P) = CountM) + Coun{N)

that we wish to prove. Draw a picture or else what follow:
just words that may not convey what is happening.
Now
Coun{P) =2 +B-2,

COUI’](M) =2lm +Bv —2,



and
CountN) =2Iy+Bp—2

We use a simple counting argument looking at the grid al
the splitting lineL. The count works out perfectly for poin
that are not on the splitting line. Every point in tBecount
appears in the counts f&, or By; every point in thd count
appears in the counts fay or Iy.

For the grid points that are on the splitting line the two
endpoints ol are counted twice, once for f&, and once fot
Bn. The extra—2 accounts for that. Any interior grid poin
onL that appeared in the count fofwhere they count double
now appear in the counts f@, andBy (where they count a
1). That takes care of them too.

There remains only to do the same for a Type 2 move.
really the same argument applies without any changes.

Problem 60, page 94

There are a number of ways to do this. One cute way is tc
the primitive triangulation result itself to do this. Theealis
that we already know primitive triangles have area at leA8t
(See Problen8l) A clever triangulation will show that the
cannot possibly have area more thai21

Take any rectangl® on the grid with horizontal and ve|
tical sides. We suppose the rectangle has dimengions.
Thus

AreaR) = pg.



We can easily count interior points and boundary points
such a rectangle.

We triangulate the rectangle so as to find a primitive tri
gulation ofR. But we know how many primitive triangles the
must be folR: we just need to compute that

B=2p+2q

while
l=(p-1)(q—-1).

So if nis the number of primitive triangles our formula giv
us

n=CountR) =21 +B—-2=2(p—1)(q—1)+2p+2q—2=2p(

All of our triangles have area at least2Lso if any one of then
has area more thary2 the area of the rectangle would be b
ger thanpgwhich is impossible. Thus each has ar¢a.1

Every primitive triangle can appear somewhere inside <
a rectangle and be used in a primitive triangulation, soahi:
gument applies to any and all primitive triangles.

Problem 61, page 94

Well many mathematicians would. But there is a huge inteii
leap from a problem about area to a problem about prim
triangulations. We began early on to sense a connectior



finally came to a full realization only later on.

We could have simply announced the connection and
pursued this line of argument. Plenty of mathematics teo#tbc
and lectures do this kind of thing all the time. The proofs
fast, slick, and the student’s intuition is left behind tdata
up later. For a book on Mathematical Discovery we can t
our time and try to convey some idea of how new mathem:
might be discovered in the first place.

Problem 62, page 96

In Figure2.23we can measure the rectangles directly and
thatP is a 5x 12 rectangle an#l is a 2 x 4 rectangle. Thu
the area of the regio® betweerP andH must be

AredG) = Area(P) — Area(H) = 60— 8= 52

[We could have used, instead, our old method of coun
interior points at full value of 1 and points on the polygor
half value of /2. ForP we count 44 interior points and 2
points onP. Thus our standard formula gives

AreaP) = 44+ 34/2 — 1= 444 17— 1=60

as expected. Fdi we have 3 interior points and 12 points
H so
AreaH) =3+12/2-1=3+6-1=8



which is again correct.]

Let's see what we get if we try to use our formula for |
area of the regiofs betweerP andH. Here, once agairG; has
interior points and points on the boundary; all the pointt
are on the boundary ¢ must be considered on the bound
of G.

We note that the grid points of the interior of G consists
those inside P except the 15 that lie inside or on H. There&l
such points sd = 29. The boundary of the region in questi
consists of the polygorRandH. There are

B=34412=46

grid points on this boundary. Trying our usual computation
G, we obtain
AregG) =1+B/2—-1=

29+ 46/2—1=>51?

This is actually quite encouraging since our formula gava
result that igoo smallby only one unit.

Try some other choices fé? andH. Both should be poly
gons with vertices at grid point$] should be insidd®, and
G is the region formed from subtractitt) and its inside from
the inside ofP. Rectangles (as we used) make for the simp
computations. Try triangles and a few others.



Problem 63, page 97

Let’s argue as we have several times previously. The griatp
insideP are of three types: those that are inskdlethose that
are onH, and those that are not insittenor onH. Our com-
putation for the area insid® gave zero credit for the first typ
of point, half credit to the second type of point, and fulldite
to the third type of point. It also gave half credit for thedy
points onP.

Thus the total credit given t@ is provided by the area fol
mula

AreaG) =1+B/2

whereas Pick’s formula (for polygomgthoutholes) would be
l+B/2—1

instead, resulting in too low a number for the area.

Problem 64, page 97
Simple algebra gives
Area(P) —AreaH) =1(P)—I(H)+[B(P) —B(H)]/2. (2.1)

Now figure out what (G) andB(G) must be. Directly we cal
see that (G) includes the points counted fo(P) excluding



those counted ih(H) as well as those counted B{H ). Thus
[(G)=1(P)—1(H)—B(H).

Similarly we can see tha&(G) includes all of the point:
counted forB(P) plus those counted iB(H). Thus

B(G) = B(P) + B(H).
Put this altogether using elementary algebra and find tt
Area(G) =AreaP) —AreaH) =1(P) —1(H)+[B(P)—B(H)]/:
= [I(P) = I(H) — B(H)] + [B(P) + B(H)] /2= 1 (G) + B(G) /2.
So finally the new formula for the regida (i.e., P with a hole

H)is
Area(G) =1(G) +B(G)/2

which is exactly Pick’s formula without the extral. This is
what we have already observed for specific examples e»
that now we have an algebraic proof of this fact.

We can think of this using the phrase “without the ex
—1" or we could write our new one-hole formula as

AreaG) = (I (G)+ @ - 1) +1

which might be more helpful since it asks us to add 1 to Pi
formula.



Problem 65, page 98

The formula for the are® that remains inside a polygon wi
exactlyn polygonal holes is

Area(G) = <I (G)+ @ - 1) +n.

Note thatn = 0 (i.e., no holes) is exactly the case for Pic
Rule and so our new formula is a generalization of Pick’s-0
inal formula.

The proof can be argued via counting, as we have ¢
often, or algebraically as in our last proof. HeBEG) is the
count we obtain for all points lying on P as well as on any
then polygons that create the holes. (We assume no two o
polygons have points in common).

We leave the details to the reader, but for those who
interested, we provide a calculation for the case of two $i¢
Suppose is a polygon with holes created by two smaller pc
gonsQ andR as in Figure2.38



Figure 2.38: Polygon with two holes.

We show thatl (G) +B(G)/2 is one less thar\(G). We
have

1(G) =1(P) - 1(Q +B(Q ~I(R) -~ B(R)

and
B(G) =B(P)+B(Q)+B(R).

Thus
1(G)+B(G)/2=

1(P)—1(Q)—1(R)—B(Q)—B(R)+[B(P) +B(Q) + B(R)] /2=
I(P)—1(Q)—I(R)+B(P)/2—[B(Q) +B(R)] /2=
I(P)+B(P)/2—[1(Q-B(Q)]/2—[I(R) +B(R)]/2=
Area(P) +1— [AreaQ) + 1] — [AreaR) + 1] = A(G) — 1.



Thus the correct formula for the area®fis
AreaG) =[I(G)+B(G)/2—1]+2

as was to be shown.

For those of our readers rather braver here is the proc
the general case. Itis exactly the same but just needs sdmae
attention to notation so that the task of addingrugifferent
elements is not so messy.

Instead of labeling the smaller polygons@sR, ... let us
call themPy, P, ..., P, and let us call the big polygoR.
Write A = A(R), B. = B(R), andl; = I(R). Then, for eact
i=0,1,2,...,nwe know that Pick’s Rule provides

AP)=1i+Bj2-1

and so, ifG is the figurePy with all the holes removed, then

~ AR~ 3 AR) -

n
SUIPE I
I=

But it is easy to check that

n

1(G)=lo= 3 (1+8)



and |
B(G)=Bo+  Bi.
2,%

Put these together to obtain the final formula
AG) =[I(G)+B(G)/2—1]+n

as was to be shown.

Problem 66, page 103

This is almost obvious. For the points on the common e
the angle of visibility forP; and the angle of visibility foP,
add together to give the angle of visibility f&. For every
other point there is no problem since they can appear on
the count forP; or else in the count foP,.

Problem 67, page 103

Start with triangles exactly as before and show that
AreaT) = Pick'(T)

for every triangle. This takes a few steps as we have alr
seen in Sectiod.4.1

Then, since the new Pick count is strictly additive (no
tra 1 to be added), any figure that can be split into trian



allows the same formula for the area. But any polygon ca
triangulated.

Problem 68, page 103

For each point in or on a polygom with a number of hole:
Hi, Ha, ...Hx we decide what is itangle of visibility This is
the perspective from which standing at a point we see intc
inside of the region. For points interior to the region we

a full 360 degrees. For points on an outer edgé difut not
at a vertex we see only one side of the edge, so the anc
visibility is 180 degrees. The same is true for points on ayee
of a hole, but not a vertex of the hole.

For points at an outer vertex of the region the angle of
ibility would be the interior angle and it could be anything!
tween O degrees and 360 degrees. Finally for points or
boundary of the region that are vertex points of one of thed
we do the same thing. One side of the angle looks into the |
the other side looks into the region of concern.

As before ourmodified Pick’s counis to take each pos
sible grid point into consideration, compute its angle of-\
ibility, divide by 360 to get the contribution. Points insi
get 360/360=1. Points on the edge but not at a vertex
180/360=1/2. And, finally, points at the vertex g¢860 where
ais the degree measure of the angle. The new Pick cour
will write as

Pick (P).



Now, usingG to denote the region defined by removing
holes from inside oP, simply verify that

Pick* (G) + Pick’ (Hy) + PicK* (Hp) - -+ Pick* (Hy) = Pick (P).

This is far easier than it appears. The only points that
counted twice in the sum on the left side of the equation
points on the boundary @ that are also on a particular ho
Hi. In computing Pick(H;) that point gets a count af/360
where thea is the angle interior tdd;. In computing Pick(G)
that same point gets a count [@60— a]/360. The sumis :
which the correct value for this point since, consideredPi
itself it is an interior point.

The rest of the proof is obvious and requires only that
use

Areda G) = Area(P) — Area(H;) — AreaHp) — - - - — Area(Hy) = |

This uses the fact that we know this formula for all polygc
without holes.

Problem 69, page 103

Problem68 presented an easier and more intuitive proof
formula for the area of a polygonal regi@with n holes. We
need to relate it to the other formula.

UseG to denote the region defined by removing a num
of holesHs, Hy, ...Hp from inside ofP, and use PickG) to



represent the count that uses the angle of visibility.
Use PicKG) to represent the simpler count

Pick(G) = | + B/2

wherein the number of boundary poirsof G must include
points on the boundary ¢t as well as on the boundary of ol
of the holes. The numbedr, as usual, counts the number
interior points (here these are points insRlbut not in one of
the holes).

Now simply show that

Pick"(G) = Pick(G) — 1+ n.

That explains Pick’s formula and illustrates where thap-
pears.

To verify this equation we need only focus on the verti
of one of the hole#;. Every other point is counted the sar
whether it appears in the count for Pi¢&) or the count for
Pick(G).

If there areh vertices on that holkl; then we recall that th
interior angles (interior to the hold;) would have a sum

a+azx+---+ap=180h-2).
since the angles inside any polygon wiitvertices add up tc

180(h — 2) degrees.
But in the computation for PicKG) the same angles at tt



vertices appear but are complementary, i.e., the correkpg
angles are

(360—ay), (360— ay),..., (360 an).

Thus we can compute the contributions of the vertices of
holeH; to the count for Pick(G) to be

(360—ay) + (360—ap) + - - + (360— &)
360

~ 360h—[a;+ap+---+a, 36Ch—180h—2)
N 360 N 360
The count for the computation of Pi@R) using these sam

vertices is simplyh/2, which is one smaller. But that is or
smallerfor each hole This verifies

—h/2+1.

Pick’(G) = Pick(G) —1+n

and explains the appearance of the

Problem 70, page 106

The formula 2 + B — 2 provides, as always, the number
primitive triangles. Figure€.39shows a number of differer
primitive triangulations, all of which must have eight sigt
angles inside.



Figure 2.39: Several primitive triangulations of the paiyng

Problem 71, page 107

If you started off by considering an equilateral trianglehaa
horizontal or vertical base then you should have quickly
missed that possibility (even without Pick’s theorem).

Now let there be an equilateral triangle with side lengt
and with all three vertices in the grid. Thafis an integer (ust
the Pythagorean theorem). What is the area of the triangl¢’
Pick’s Rule says that all polygons with vertices in the grdd



an area that ia/2 for some integen. Find the contradictich

Problem 72, page 107

Figure2.40shows the areas labeled. Most of the areas are
ier to compute using familiar formulas. You might, howev
have preferred Pick’s formula for two of them.

/4 21 \6/\6\9\
e

Figure 2.40: Archimedes’s puzzle, called the Stomachio

4You may need to be reminded thdB is irrational



Problem 73, page 107

Each vertex lies on a the points of the grid while no other (
points lie on the surface or in the interior of the tetrahed
J. E. Reeve (see iten8][in our bibliography) used this tetre
hedron as a counterexample to show that there is no si
version of Pick’s theorem in higher dimensions. This is

cause these tetrahedra have the same number of interic
boundary points for any value aof but different volumes. Thu
there is no possibility of a formula for the volume of a tega
dron (or a polyhedron) that simply uses interior and bouy
grid points. There are still interesting problems to adslréest
Pick’s theorem itself does not generalize to higher dinars
as one might have hoped. Reeve’s paper discusses man)
related problems but it is intended for a serious matherala
audience and is not an easy read.

Problem 74, page 108

In number theory, Bézout's identity or Bézout’s lemma, ndr
after Etienne Bézoudtstates that i andb are positive integer
with greatest common divisqg, then there exist integersand

SWikipedia informs us: “Etienne Bézout (1730-1783) provieid fdentity
for polynomials. However, this statement for integers caridund already in
the work of French mathematician Claude Gaspard Bachet deilte(1581—
1638)."



y (called Bézout numbers or Bézout coefficients) such that
ax+by=p.

Evidently we are being asked to prove only the cpse 1.
After you have succeeded, do try to use the same meth
prove the more general identity

This is not difficult to prove, if you have some knowledge
number theory and divisibility. Pick’s theorem allows afelif
ent proof that relies on geometry rather than number prigse

Let a and b be relatively prime integers. In the grid, dt
the lineL from the origin through the poirfg, b). Note that the
line segment betwee(D,0) and(a,b) does not pass throug
any other point on the grid.

If it did, say a different pointx,y), then

y/x=b/a= slope of the lind..

Take the pointx,y) as the grid point on the line and closest
the origin. We know thafy = bx can be written as a produ
of primes

ay= bx= p1pz2ps. .. Pk-

Then, sincea andb have no common prime factorg,must
contain all the prime factors dfwhich is impossible sinckis
supposed to be larger.

Now, keeping in parallel t&., move the lineL slowly up-
wards until it hits another lattice point of integer cooraties.



Thus we can choosE to be the closest parallel line to L th
intersects a lattice point. Let (s, t) be the point the latpoint
on L’ that is closest to the origin. Consider the triangjlele-
fined by (0, 0), (a, b) and (s, t). This triangle has no inte
points and its only boundary points lie at its vertices, fat i
had others then L would have hit them before it got to (s
which is a contradiction to how we defined (s, t). Therefoye
Pick’'s Theorem,

AreqT) = %

But we have already seen in Probl@m .6how to compute the
area of such a triangle algebraically:

AreaT) = at— bs.
2
This means that
} _at—bs
2 2

Thereforeat — bs= 1. Substitutingc =t andd = —swe get
ac+bd=1,

which is what we required.



Problem 75, page 108

Yes, there must be at least one such point. One might try to
this point or show that it exists using elementary algebus,
this would get a bit messy. Much easier is to use Pick’s foen
for triangles.

The triangleT has base 1 and height from elementary
geometry we know the area®fis exactlyn/2. Sincen > 1, the
area ofT must be at least 1. Using Pick’s formula for triang
we see that if there were no grid points besides the vertioe
orinT, the area would be only/2.

We recall from Sectior.3.1that we call such triangle
primitive and a feature of our theory is that all primitive- t
angles have areg/2. In short therT, having area 1 or large
is not primitive: therefore there must be a grid pdiatb) in or
onT other than one of the three verticesTaf



Chapter 3
Nim

Most of us have at one time or another played games in w
we faced a single opponent: chess, checkers, monopoly,
nese checkers, backgammon, various card games and th
Some of these games involehance For example, the out
come of a game of monopoly depends in part on the roll of
and on cards drawn from a stack. Most card games depe
part on which cards one draws or is dealt.

Other such games do not depend on chance: the pl
move alternately and each player has completely free clodi
move subject only to the rules of the game. No move is dict
by the outcome of such things as rolling dice, selecting d
or spinning a dial.



In many of the games we play there are different rules
the two players (which may mean only that they use diffel
pieces). For example in chess one side plays the white p
and one side plays the black pieces. Games in which both
play by precisely the same rules are said tanbgartial.

In many games there isnperfect information for most
card games the players do not know what cards the oppon
holding.

In the type of games (called perfect information, impayt
combinatorial games) that we shall study there are two pé
alternating moves, who see the entire positions and folle
same rules. The game ends after a finite number of moves.
such game idim.

Figure 3.1: A game of Nim.

Set out matchsticks as in Figusel. There are two player:
Each player, in turn, removes one or more matchsticks f
one of the four columns. The player removing the last ma
stick wins. You can play Nim with any number of columns &
any number of matchsticks in each column.



3.1 Care for a game of tic-tac-toe?

Figure 3.2: Care for a game?

Probably not. But why not? Perhaps it is because of
well-known fact.

3.1.1 (Tic-tac-toe) Player | in a game of tic-tac-toe has
strategy that will lead in every case to either a win or a dra

But, in fact, that cannot be the real reason why you, a
adult, are no longer willing to play this game. The game
checkers is identical in this respect: the first player in mng
of checkers has a strategy that will lead in every case tee
a win or a draw. Moreover, the second player has a strg
that will in every case force a draw. Thus two completely :
perfectly informed players would play every checkers ge
through to a draw. Every time. Just like tic-tac-toe.

The difference, however, is that no one you meet knows
strategy for checkers even though we can prove that onese
Every schoolchild beyond a certain age knows the strateg



tic-tac-toe. Consequently tic-tac-toe retains no intef@sus
while checkers remains challenging and intriguing.

Prove that a strategy exists How does one go about provir
that a strategy exists without actually finding one? We s
think about this problem in the context of tic-tac-toe. Undie
nately that game is so familiar to us that it interferes witin
reasoning. We adjust the rules of tic-tac-toe. The gameipl:
new rules tic-tac-toés exactly the same as before: the play
alternate placing X's and O’s in the squares stopping whie
squares are filled or when there is a line of 3 X's or 3 O’s.
consider all the end positions of the game; there are sonte
less than a hundred of these. We call some of these pos
white positions and the restack Figure3.2shows an end po
sition. We can call it black or white as we please. The win
of the game is declared following this rule: if the end pasit
is white then player | wins, while if the end position is bla
then Player Il wins.

An analysis of this game leads to a proof that tic-tac-toe
a strategy and we will not have to supply the strategy as [be
the proof.

Problem 76 Let an end position be defined as white if th
are three X’s on one of the diagonals and let every other
position be defined to be black. Show that one of the pla
has a winning strategy in new rules tic-tac-toe. Answer QO



Problem 77 In any new rules tic-tac-toe game prove that
ther player | has a winning strategy or else player Il has
winning strategy. Answer O

Problem 78 In any tic-tac-toe game (played by the ordine
rules) use Probleni7 to prove that player | has a strategy th
must end in either a win or a draw. Answer 0

Problem 79 (Equivalent games)Here are the rules for the G
of 18: From a deck of cards extract nine cards numbered f
2-10 and place face up on the table. Each of two playel
turn takes a card. The player wins who first obtains three s:
whose sum is exactly 18. Show that this game is “the same
a tic-tac-toe game. (This concept of two games being “egt
lent” will be important later.)
Answer O

Problem 80 (Simple card game)Analyze the following car
game. From a deck of cards extract the Jacks, Queens,
Kings of hearts, diamonds and spades. These nine card
placed face up on the table. Each of two players in turn te
a card. The player wins who first obtains three cards of tt
types: three-of-a-kind, JQK of the same suit(&f, Qi#, KO),

or (JO,Qé, K<), Answer O



3.2 Combinatorial games

Mathematicians study games like tic-tac-toe, chess, @rsc¢
and many others by describing the features that are sir
Among these similar features are that there are two playeos
play by certain rules known to both players, taking turnsafhe
ter another, continuing until a win or a draw is declared. B
players are fully informed about the state of the game (thez
no hidden elements such as cards not turned over or dice
be thrown). There is no element of chance. They describe
games asombinatorial games

Of particular interest in any combinatorial game is whet
either player can force a win and, if so, by what strategy.
we have long known, correct play by both players in tic-t
toe must end in a draw. In 2007 it was determifafier years
of computer calculations, that the same is true for checl
For chess the situation is unknown; it is possible that ode
could force a win but we do not even know whether that wc
be white or black.

The games we shall study are all combinatorial games
they are very special. They are said to ibgartial in that
both players must play the same ruleand the player whe
makes the last legal move is declared the wirind@ihere are

1Jonathan Schaeffer et aCheckers is solvedscience Vol. 317 no. 584¢
pp. 1518-1522.

2This is called thenormal play condition We will also, much later in the
chapter, consider a different kind of combinatorial gamerglthe last playe



no draws. For example, Tic-tac-toe (like chess and chell
is not impartial: one player plays the X’s and the other piz
plays the O’s. The last player to make a legal move may
necessarily win (it could be a draw).

The most important impartial combinatorial game is Ni
It is the first such game to receive a complete mathema
solution. We would expect (by using the same argument a
used in ProblenY7) that one of the two players in any gar
of this type should have a winning strategy. But how co
we determine which one has the winning strategy? How c
we determine what that strategy should be? How would wi
about finding out the answers to these questions?

In order to motivate our development and to clarify wil
we are really looking for in a strategy, we shall begin withmso
simpler games before attacking Nim. Some of the ideas w
will surface here will be central to our development.

3.2.1 Two-marker games

Two markersA and B are placed above positive integers
the number line. (Think of this as a long board with hol
The holes are numbered213,.... Pegs marked andB can
be inserted in the holes.) For example, we might have pl:
A at hole number 4 an® at hole number 9 as indicated
Figure3.3

to make a legal move loses.



U SN S

123456 7 8 9101112

Figure 3.3: A game with two markers at 4 and 9.

The two players move alternately. A move consists of ir
ing either one of the markers to the left as far as one wants
the proviso thaB stays to the right of A. (Markers must t
placed above an integer.) The player who makes the last
move wins.

e

123456 7 8 9101112

Figure 3.4: The ending position in a game with two marke

Figure 3.4 illustrates the end position in any game of
markers. This must occur only whéhis at position 1 and
is at position 2. To win in a game of 2-markers you would
well-advised to keep the end position always in mind.

Example 3.2.1 Let us play the two-marker game with marke
at 4 and 9 (as in Figurd.3). The player whose turn it is he
seven possible moves: he or she can mite any one of the
positions 1, 2 or 3 or can mo&to any of the positions 5, 6,



or 8. The game ends when a player has no move available.
must occur only whei is at position 1 andB is at position 2.
The player who made the final legal move wins.

A bit of reflection shows that, for this game, we can gL
antee a win by the following procedure. We md@/&o 5. Now,
according to the rules, our opponent cannot mBvele or she
must moveA. Whatever move our opponent makes, we ans
by movingB right next toA. Following this procedure, we se
that eventually our opponent must mo¥%é¢o 1 and we answe
by movingB to 2. We won. <

The strategy in the example would work no matter what
original position was, as long as it was possible for us toer
B at our first turn. For two-marker games we can say that t
are preciselywo kinds of positionsones in which we can mak
a good move and ones in which no good move can be ma

3.2.2 Three-marker games

Let us complicate the game by introducing a third mafken
an integer to the right oA andB. For example, we might sta
with the position indicated in Figur@.5 with markers at 4, 9
and 12.

The rules are as before. When it is our turn, we may n
any of the three markers as far as we wish to the left as lor
the relative order of the marker from left to right remaine
same—B must stay betweeA andC. The game ends when
player has no move available.
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1 23 456 7 8 910111213

Figure 3.5: A game with three markers at 4, 9, and 12.

L 44 SUUUUUUIN

1 2 3 45 6 7 8 9 10111213

Figure 3.6: The ending position in a game with three mark

Figure 3.6 illustrates the end position in any game of
markers. This must occur only wheis at position |,B is at
position 2, andC is at position 3. Keep this end position
mind as your final goal.

Problem 81 Find a strategy for the three-marker game. Be
by experimenting with a marker board and the three marl
A, BandC. Answer O

3.2.3 Strategies?

Let us digress for a moment and consider a game like c
or checkers. What is it that distinguishes a strong ches®p
from a weak one? Obviously, that is not a question which
be answered easily—a strong player knows the openings



studied many combinations, knows the endings, and can
ahead many moves.

But there is one feature we can focus on which will
central to our development of the marker games and Nin
good chess player will recognize many positions as desi
to achieve. For example, very early in one’s learning of
game of chess, one realizes that if one can achieve a poisit
which one has the king and the queen while the opponen
only the king, the game can be won quickly.

As one improves, one recoghizes more and more of
desirable positions. Thus, the good chess player can hawg |
many subgoals when playing chess. He does not have t
how to checkmate the opponent from the very beginning o
game—he must only try to achieve one of these many d
able positions. The same is true of checkers and of oth
these two-person games of skill. Our device for discove
strategies for Nim and the marker games is to find a wa
determining all of these sub-goals for the given game.

Perfect strategies? Usually, by a strategy, we mean sot
method we can use to improve our chances of winning. In
ample3.2.1we did not merely improve our chances of winnir
We can winevery timeprovided we start first. And we will los
every time that we start second if we are playing againsta
formed opponent.

There are many strategic advantages that a clever ar
formed chess player can use. An international grandmasgte



win any game he or she plays against a lesser player. But
is as yet no known perfect strategy for chess. For the gam
this chapter we are not content with just strategies. We \
perfect strategies.

3.2.4 Formal strategy for the two-marker game

Let us formalize what we discovered in the two-marker ga
We use the suggestive notatiBn= A+ 1 to describe the fac
thatB is adjacent to A. Observe three facts:

1. 2=1+1, thus the final position satisfies the equat
B=A+1

2. If B=A+1, then any move whatsoever results in a
sition for which that equation is no longer satisfied.

3. IfB#A+1, thereis amove which results in the equat
being satisfied.

Let us say that a position Ealancedf it satisfies the equa
tion B= A+ 1 and that it isunbalancedf B £ A+ 1. With this
language, the three observations above become:



3.2.2 (Balanced positions in marker games)Every position in the
game is either balanced or unbalanced.

1. The final position is balanced.

2. If a position is balanced, then any move whatsoever egul
a position that is unbalanced.

3. If a position is unbalanced, there is a move which resulta
position that is balanced.

Once we have articulated the situation in this balanced
unbalanced language we can easily prove that we do in
have a strategy. We can always move from an unbalance
sition to a balanced position. Our opponent always rece
a balanced position and must destroy the balance. The
position is balanced. Eventually, after some finite numlfe
moves, our opponent is faced with this final balanced pas
and has no move. We win!

Thebalanced positionare the subgoals that we seek. T
will be true inall the games we shall look at in this chapter. |
very important that one understands the notiohalancedpo-
sitions before proceeding further, so we suggest that y@ack
the preceding discussion and relate it to the two-markereg
before going on.

3.2.5 Formalstrategy for the three-marker game

The three-marker game has been used by some teachers
ementary school as a device for motivating children to p



tice addition and subtraction. The children usually digsp
through playing the game repeatedly, that the balanced
tions are given by the equation

A+B=C.

They do not know anything about balanced positions, of @t
they just discover that they can win if they can obtain thase
sitions.

Following the strategy that the children discovered, le
say that a position in the three-marker gaméasancedif it
satisfies the equatioA+ B = C and that it isunbalancedf
A+B#C.

Problem 82 Verify that each of the three parts of Statenteat.
apply to the three-marker game. Answer O

Problem 83 Discover the balancing positions for the four-m
game and prove that the same three rules apply to them.
Answer O

Problem 84 What are the balancing positions for the five &
six-marker games? Answer O



3.2.6 Balanced and unbalanced positions

Generally we are seeing that, in games of this type, an ai
sis using the ideas of balanced and unbalanced positieads
to a strategic way of thinking about the game. Any end p
tion is balanced. A balanced position always leads to anlur
anced position. An unbalanced position always allows a n
to some balanced position. If this is so the strategy is clear

It might seem that determining which positions in a ga
are balanced and which are unbalanced takes some con
able skill. It was easy for the two-marker game, rather ha
for the three and four-marker games, and apparently forntec
for a five-marker game. In fact, though, it need not take s
but it does take patience. We can do this formallydoygame
of the kind we study in this chapter.

We assume, as always, that the players alternate tur
making moves according to the same rules. After a finite n
ber of moves the game ends and the last person to mo
declared the winner.

Defining balance You might have noticed that in trying t
determine the balanced positions in a game, there is a
of “working backwards.” The final position is balanced. \
then seek simple balanced positions that lead quickly to

3In the literature theinbalancedpositions are often callel-positions (be-
cause thenextplayer is to win), while thebalancedpositions are known a
P-positiong(because thpreviousplayer is to win).



final position. (Think of our discussion about chess.) Then
seek positions that lead to one of the positions we havedjr
determined to be balanced.

We can put these ideas into a formal setting. This m
rial is somewhat abstract but not difficult. We merely def
carefully what we mean bstarting at the end of the ganaad
what we mean when we say a positiorb@lanced or unbal-
anced The definition rests on the principle of mathemati
induction.

A formal way of presenting these ideas and checking
accuracy of our intuitions is to introducebalancing numbe
for any position in a game. I§ is one of our games anglis a
position in that game we define Balafipgby these rules:

1. If pis an end position in the gant then Balancép) =
0.

2. If pis not an end position in the gandgg first find all the
positionspy, p2, ..., pn that could be obtained from th
positionpin one legal move. We use the notation

pW p17 va---apn

to indicate that any move that can follgwis in this list.
Then compute the list of numbers

Balancép:), Balancépy),...,Balancépy).



3. Balancép) is defined to be zero if zero doaest appear
in the list and to be 1 if zerdoes appeain the list.

A position with a balancing number of zero is said to
balanced If the balancing number is 1 then itimbalanced

Note how these rules will always require a position wit
zero balancing number to lead to nothing but positions wi
balancing number of 1. Observe too that these rules wil
ways require a position with a balancing number of 1 to lea
at least one position with a balancing number of 0. Our c
nition is designed precisely around the rules that we de\iis:
Statemen8.2.2for our marker game.

This is an example of a recursive definition; we have
build up the values of the function Balarige step by ster
starting close to end of the game. In a way we would h
to play the game backwards.

The way that we have defined the balancing number st
that

e Any end position has a balancing number of zero.

o |fa position has a balancing number of zero then all p
tions which follow it in the game have a balancing nu
ber of one.

o If a position has a balancing number of one then thel
at least one position that follows it in the game that h:
balancing number of zero.



Thus balanced and unbalanced positions are defined
in any game, and they behave precisely as we required fc
marker games in Stateme®2.2 The strategy in any game
the same: always (if you can) leave your oppenent a bala
postition, forcing him to unbalance it at his next move. 8i
the game ends in a finite number of steps at a final balance
sition, the player who can follow this strategy must have en
the last move and is declared the winner.

Depth of a position In practise it is easy to see that this |
cursive definition will assign a value to each position in ¢
game. To make it more precise how this is done let us ir
duce the notion oflepthof a position. This is just a measure
the maximum number of moves left in the game. Any end
sition (there may be several) has no further moves possilole
is said to be atlepth zero Such positions are always balanc
If a position can move only to a depth zero position, then
said to be atlepth one Such positions are always unbalance

If a position that is not at depth zero or depth one can rr
only to a depth zero or a depth one position, then it is saicbt
atdepth two Such positions may be balanced or unbalan
We would have to check. Generally a position that is notfit
atdepth 0, 1, 2, ..., ar— 1 and that can move only to suck
position, is said to be at depth At depthn the game must en
in at mostn moves.



All games solved! By this simple definition we have pre
cisely defined, for any game of this type, how a position r
be considered balanced or unbalanced and we have a m
for computing that fact. Thus we can solve all games!

Well not all games, because not all games are of this t
Tic-tac-toe, chess, and checkers have rules that areetifféar
the two players (e.g., one player plays the X's and the otie
O’s). The game may end in a draw. The rule is not that the
player who is able to make a move wins.

But, for finite games of the last-move type discussed sc
the solution is exactly this. Compute all balanced pos#i
and play the game in such way (if possible) as to leave
opponent only balanced positions. If you start play with
unbalanced position then you will surely win. If you staray
with a balanced position then, provided your opponent m:
just one mistake, you will win.

Is this practical? Recursive definitions like this one, hov
ever, are particularly difficult and tedious to compute. Ga
other hand they are particularly easy to program and run
computer. Unless the game has billions and billions of fodes:
positions (like chess and checkers do), a short amount &f
will enable a full computation of all the balanced positioAs
human computation by hand could be extremely slow anc
dious.

The moral is do not play any of these games against a ¢
puter; you will surely lose. It may be safe to play again:



human, unless she has figured out a cleverer way to find
anced positions without having to compute Balgmgdor all
positions in the game in the way the recursive definition |
scribes.

For us the problem now is not finding all balanced p«
tions, but finding some elegant and simple way of desc
ing them without having to resort to brute force and comy
Balancép) for every position in the game.

Problem 85 In the game of 2—pile Nim, players in turn ta
matchsticks (one or more) from one of two piles. The playe
take the last matchstick wins. Compute the depth and baigr
numbers for enough positions that you can make a reasor
conjecture about which positions are balanced and which
unbalanced. Answer O

Problem 86 (Red and black argument) Suppose that all th
positions in a game are described as either red or black
that these three statements are true:

1. Any end position is red.
2. Any red position can move only to a black.

3. From any black position there is at least one move |
red position.

Show that the red postitions are balanced and that the b
postitions are unbalanced. Answer O



Problem 87 In Problem85you would have made a conjectu
about the balanced and unbalanced positions in the garr
2—pile Nim. Use the red and black argument to prove this ¢
jecture.

Answer D

Problem 88 The game of 2—pile SNIM is played exactly
Nim but each player has the option of adding one match:
to a pile or removing as many as he pleases from that |
Show that, even though the balanced positions are the sar
for Nim, there is no winning strategy. What is wrong here?

Answer O

Problem 89 In our four-marker game (in the answer to Pro
lem83) we said that a position was balanced if and only if 1
equation D— C = B— A was satisfied. Use the red and ble
argument to prove this fact. Answer O

Problem 90 In a game every move from a balanced posit
will produce an unbalanced position. In some games the
verse is also true: every move from an unbalanced pos
will produce a balanced position. How would you descr
those games? Answer O

Problem 91 If Player | faces an unbalanced position the ch
lenge for him is to select a correct move (there must be at |
one) that rebalances and leaves a balanced position. Ifé?l:
Il faces a balanced position then every move she makes



(unfortunately) produce an unbalanced position. |Is themg
strategic choice for Player Il in such a game? AnswerQ

3.2.7 Balanced positions in subtraction games

The analysis of the balanced and unbalanced positions i
two-marker and three-marker games presented little diffic
The four-marker game was a bit tougher, and the five and
marker games of ProbleB¥ may well have defeated you.

For a little more practice with these ideas here are s
simpler games where the balanced and unbalanced pos
are in some cases easy to work out. Remember that evelr
sition must be either balanced or unbalanced: we are loc
for a fast and easy way of finding out which is the case for
position.

Problem 92 In this game there is one pile of matchsticks &
each player removes 1, 2, 3, or 4 sticks at a time. The wil
is the one removing the last matchstick. What are the bath
positions for this game? Answer O

Problem 93 In this game there is one pile of matchsticks &
each player removes 1, 4, 9, 16, ...sticks at a time, alv
restricted to a perfect square. The winner is the one rentp
the last matchstick. Find all the balanced positions lesst
25 for this game? Answer O

Problem 94 Find all the balanced positions between 25 &
100 for the game of ProblefB. Answer QO



Problem 95 Do you have a conjecture as to a formula that v
produce all the balanced positions for the game of Prob&r
Answer O

Problem 96 In the most general one-heap subtraction ga
there is one pile of matchsticks and each player removes-a
lowed number of sticks at a time, always restricted to nus
from a given subtraction set S. The winner is the one remo
the last matchstick. Thus Probled@iis a one-heap subtractio
game with S= {1,2,3,4}. Problem93is a one-heap subtrac
tion game with S= {1,4,9,16,25,36,...}. Find the balancec
positions for a subtraction game given the subtraction set

S={1,2,3,4,5,6,7,8,9,10}.
Try to experiment with other choices of S. Answer O

Problem 97 Give rules for a two-heap subtraction game a
find some balanced positions in the simplest cases. O

Remarks For some of the one-pile subtraction games the
ysis is fairly easy. But, even when things prove difficult tore
pute, the resolution always follows from our balanced and
balanced accounting. For the marker games the same is
By the time we get to five and six-marker games (as in P
lem 84) we ran into considerable trouble finding the balan
positions. Equations defining balanced positions similéindse
for the two, three and four-marker games did not come to r



readily. There is a reason for this and we will discover teat
son later. Instead of pursuing the marker and subtractioreg:
further at this time, we will continue with some other garmr
But we will return to the marker games later.

3.3 Game of binary bits

The game of binary bits that we introduce in this section c
tains much of the important structure of all of our games
is fundamental to all of combinatorial game theory. We s
with an equivalent game that provides our introduction ®
bits game.

3.3.1 Acoingame

This game is played with coins—pennies, nickels, dimes,
guarters. Each position in the gameanigiles of 0—4 coins suc
that each pile contains at most one coin of each type. The
of the game are

1. Each play of the game requires a player to remove ol
more coins from one of the piles.

2. Optionally the player may also add one or more cc
to the same pile provided the coins added in are of |
value than the highest-value coin removed. (E.g., apl
removes a dime and a penny and can add a nickel (if t
is not one there already) but cannot add a quarter.



3. The player to take the last coin is the winner of the ga

The easiest way to display a position in the game, bott
the purposes of writing about it and for the purposes of |
itself, is to arrange the coins in a rectangular display aws
andn columns as in Figur8.7. Pennies are recorded on t
bottom row, nickels on the row above and so on until the g
ters are displayed on the top row as Fig8reillustrates.
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Figure 3.7: Position in the coin game.

We do not yet see what positions in such a game w
be balanced or unbalanced, but a person aware of the str
would see immediately that the position in Fig®.€is unbal-
anced. A balancing move is to take a dime from the 5th
and toss in a nickel. That takes only a couple of seconc
compute if one knows the strategy. Moreover a strong pl



will notice that there are exactly two other balancing mo
that would have worked too. Did you?

Problem 98 Play some simple coins games with one, twc
three piles. What did you observe? Answer O

Problem 99 Show that the coin game must end in a finite ni
ber of moves.
Answer D

3.3.2 A better way of looking at the coin game

In analyzing this game one soon realizes that the notan
®, @, and@©@ are completely unnecessary since the posi
in the rectangular array already determines which coingsap
That means we need record oS or NO in each case.

The traditional way to do this now, especially since the
vent of computers, would be to use binary bits—the bit :
used foryES and the bit 0 is used fovO. That means that Fig
ure3.7 can be written out instead using the simpler Figdu&

Also we can simplify the moves in the game if we real
that removing a coin simply changesY&s to aNoO, i.e., it
changes a 1 bitto a 0 bit. Similarly adding a coin changes:
to aYES, i.e., it changes a 0 bit to a 1 bit. We are just flippi
bits, which is a good description of what computers do. Tt
if we translate the coin game to binary bits, we arrive at
binary bits game of SectioB.3.3which is exactly identical tc
it.
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Figure 3.8: The same position in the coin game with bir
bits.

Problem 100 (A card game)In this game a deck of cards

shuffled and fourteen cards are dealt on the table face uj
play in the game requires the player to remove one of the c:
He then has the option of removing more of the cards of
same suit that have lesser face value, and/or adding (fran
left-over pile) any cards of the same suit that have lesses
value. How would you analyze this game? Answer O

3.3.3 Binary bits game

In the game obinary bitswe start off with amx n rectangular
array of zeros and ones. There angows andn columns anc
only the numbers 0 and 1 can appear. As is often the cas
numbers are callebits. A legal move of the game is describ
this way:

1. The player selects a 1 bit in some position and chang
to a O bit.



2. The player may optionally change any or all of the |
in the column below the selected bit 1.

Play evidently stops when all the bits have been changed
The player who made the last legal move wins.

At first it seems obvious that the game eventually stop:
moment’s reflection, however, may give us pause. As the g
progresses some moves may add 1 bits, so the total coun
bits does not always go down. In Problé®lyou are asked t
show that the game is finite. This, we recall, is essentialiif
analysis in terms of balanced and unbalanced positionshis
successful.

Example 3.3.1 A move in a 5x 3 game is illustrated in Fig
ure 3.9 Here the player elected to change one of the 1 bit
the second column, and he also flipped two of the lower bi

010 [01I0
011 |o0[0]1
011 —[011
000 |0[1]0
110/ [100

Figure 3.9: A move in a % 3 game of binary bits.

Can you spot whether this was a good move? Was the
better move? <



The mx 1 game Here there is but one column and the sti
egy should be obvious. The player to start simply choose:
topmost 1 bit and changes that bit and all the ones below
zero bits. The game is over and he wins. A position with ar
bits is unbalanced.

The mx 2game Here there are two columns and the strat
is obvious... after some thought. In Probl&é62you are askec
to solve the game. The strategy that works is catlfedmirror
strategyand plays an important role in game theory.

The mx 3game Here there are three columns and the st
egy is no longer obvious at all. At this point the game
comes rather more interesting. We know that an analys
balanced and unbalanced positions will result in a comiyle
solved game but we do not yet know how to do that in
simple way.

Problem 101 Show that every game of binary bits must en
a finite number of steps. Answer O

Problem 102 Find a complete strategy for the m2 game of
binary bits. Answer O

Problem 103 Which, if any, of the positions in tfex 3 games
of Figure 3.10are balanced? Answer O

Problem 104 Which, if any, of the positions in tlex 3 games
of Figure3.11are balanced? Answer QO



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1

o 0o o o 0o o o 0o o 0o 0o o 0o 0o o
0o 0o o 0o 0o o 0o 0o o 0o 0o o 0o 0o o
o 0o o o 0o o o 0o o 0o 0o o 0o 0o o
11 0 101 1 101 1 1 1 o0 11 1
1 0 o0 11 1 11 0 11 1 1 0 o0

Figure 3.11: Which positions are balanced?

Problem 105 Which, if any, of the positions in tfex 3 games

of Figure3.12are balanced? Answer O
o o o] |o ool o
A PR

Figure 3.12: Which positions are balanced?



Problem 106 Do you have a conjecture? Answer O

Problem 107 Define a position in a nx 3 game to be even
there are an even number tfbits in each row. Define a pc
sition in a mx 3 game to be odd if there is at least one r
containing an odd number dfbits. Check each of the follov
ing:

1. The end position of the game is even.

2. If a player makes a move from an even position it
surely result in an odd position.

3. If a player faces an odd position there is always a chc
of move that leaves an even position.
Answer O

Problem 108 Give a complete solution for the m3 game of
binary bits. Answer O

Problem 109 Are you prepared to announce a solution for 1
m x n game of binary bits? Answer O

Problem 110 Describe all the balancing moves in the cc
game displayed in Figura.?7. Answer O

Problem 111 In the coin game one can change the rules
allow more coins in each pile. For example:

1. Each play of the game requires a player to remove all
coins of the same type from one of the piles.



2. Optionally the player may also add coins to or subtr
coins from the same pile provided the coins addec
subtracted are of lower value than the coins initially |
moved. (E.g., a player removes all dimes and then
add or subtract as many pennies and nickels as he ple
but cannot add any quarters.

3. The player to take the last coin is the winner of the ga

How does this change the game? Answer O

Problem 112 In the coin game one can change the rules
allow any player to keep the coins that he has removed. |
does this change the game? Answer O

Problem 113 (A number game) A game similar to binary bit:
starts with a mx n rectangular array of arbitrary numbers. .
legal move of the game is to change any nonzero numb
zero and, optionally, change any or all of the numbers in
column below the selected number. The last player to n
wins. Analyze this game. Answer O

Problem 114 (A word game) This word game is also simila
to the game of binary bits. The players start with three orer
words. A player moves in this game by selecting a word al
letter that appears in that word. He must remove all appe
ances of that letter in the word chosen and may, optionadig,



in or remove any other letters that are earlier in the alphgl
For example if the six words are

[ Twas brillig and the dlithy toves]

then a legal move would be to select the “I” brillig and re-
move both of them. The “r" cannot be removed but the of
letters can and any letters a—k could be added in, for exar

brillig ~~ abbrek

would be allowed. The last player to move wins. Analyze
game. Answer O

Problem 115 Are you prepared to announce a solution for 1
game of Nim? Answer O

3.4 Nim

The classical game of Nim is played as follows. Four pile:
matchsticks (or cards or coins) containing 1, 3, 5, and kst
respectively, are placed on a table as indicated in Figur@

One of the players removes one or more sticks (as mal
he likes) all from the same pile. Then the opponent does
same from the remaining stick¥he player who takes the la
stick wins.

We do not need match sticks to play the game, of cot
We could instead consider the quadruple of numb&r3,5,7)



Figure 3.13: A game of Nim.

and lower one of those numbers to start the game. Then ot
ponent would lower one of the remaining numbers. The g
ends when there are no positive numbers left; that is, wHe
four numbers are zero. This corresponds to having no m:
sticks left on the table.

The general Nim game There is nothing special about tl
numberg1,3,5,7). We can play the same game with any nu
ber of piles of matchsticks, and the number of sticks in edleh
can be chosen as we like. We can describe a Nim gamekw
piles containing, ny, ..., Nk sticks in the piles by writing

(n1,ng,...,Ng).

Our objective is to find a winning strategy that will apply
everyNim game, no matter how many piles there are anc
matter how many sticks are in each pile.



3.4.1 The mathematical theory of Nim

At this stage we know how to solve the game of Nim in a te
nical sense. We can simply describe all balanced and alllui
anced positions. Lacking any better ideas we just startea
end of the game working backwards. Maybe the real struc
will emerge. Or perhaps the real structure will remain myst
ous even after seeing all the balanced positions.

The complete mathematical theory for the game of N
was discovered by Charles L. Bouton who published his ok
vations in the research journahnals of Mathematics 1901.
Bouton’s paper marked the beginning of the theory of what
called combinatorial games.

Research papers announce and publish results in a
tively compact form for the mathematical community. His ec
plete paper is reproduced in the paperback edition of this
Our interest here is not in the result or formal proofs of
result, but indiscovery

If you are impatient to learn the strategy and beat all y
friends at Nim go to the appendix and read Bouton’s pape
you wish, as we do, to go through the process of discoveri
clever mathematical theory, begin instead by playing thaey
and looking for the underlying structures.

3.4.2 2-pile Nim

As an easy warm-up, let us begin with 2—pile Nim. Here
have two piles of sticks and our objectivetis take the lasi



stick Our analysis will use the usual ideas of balanced
unbalanced positions.

A position in two-pile Nim is described by a pair of nur
bers(m,n) representing two piles of sticks, one containimg
sticks and the other containimgsticks.

Starting at the bottom, we know th@, 0) is balanced an
can deduce that therefo® 0) and(0, 1) are unbalanced. Car
on until you are able to spot the pattern.

Problem 116 Discover the strategy for 1—pile Nim.
Answer D

Problem 117 Discover the strategy for 2—pile Nim.
Answer D

Problem 118 The mirror strategy that we used in Probldm7
works for 2—pile Nim, but is not much help with 3—pile Nim
4—pile Nim. Even so, there are some situations where it
work. Show that a mirror strategy will win a game of 4—p
Nim if the opening position is of the forfm,n,m,n).

Answer O

Problem 119 (Kayles) The mirror strategy works for a nun
ber of other games. Try it on the game of Kayles. Line
number of coins in a row so that each coin touches its ne
bors as in Figure3.14



00000000000000,

Figure 3.14: Coins set up for a game of Kayles.

The rules of the game are that a player may remove a si
coin or two coins that touch each other. The last player toer
wins. Show how a mirror (Tweedledum-Tweedledee) stre
can be used to solve this game. Answer O

Problem 120 (Circular Kayles) Find a strategy for the gam
of Kayles when the coins are arranged in a circle instead
straight line. Answer O

3.4.3 3—pile Nim

Let us proceed to 3—pile Nim. Here things are quite a bit i
complicated. The game has a rather complex structure a
will take a while to discuss the balanced positions.

For 2—pile Nim we discovered in Problehi 7that the bal-
anced positions arthose which have the same numbeeach
pile. These are games of the foifm n), indicating two piles
so that each pile hassticks. Unfortunately knowing the con
plete strategy for 2-pile Nim doesn’t give us any clues asiéc
strategy for 3-pile Nim.

We also could have expressed our solution of 2—pile |
in terms of the mirror strategy. Again this doesn’t help us
finding a solution to 3—pile Nim. The only method we have t



is general enough to lead us in the right direction is to $e
for balanced and unbalanced positions.

You may wish to find an opponent with whom to play
few games, just to get a feeling for the game. Start with ga
which do not have many sticks in each pile.

The situation is a bit like chess or checkers. By play
a few games, one can learn how to play better, but to bec
a really good player, one must also begin to learn somet
about the structure of the game. A difference is that in o
to become an excellent chess player, we must devote a
deal of time to the subject. And no one knows a perfect cl
strategy. With Nim we shall eventually see what the per
strategy is. And it involves only a few ideas.

Starting off at the bottom we can easily construct a few |
anced positions. As usué,0,0) is balanced and that shov
us that(1,0,0), (0,1,0), and(0,0,1) are unbalanced. At th
next level(1,1,0), (0,1,1), and(1,0,1) are balanced so th:
(1,1,1) must be unbalanced. Carry on. Does a pattern eme

Problem 121 Are the two position$1,2,2) and (1,1,2) bal-
anced or unbalanced?
Answer O

Problem 122 (The position(1,2, 3) is balanced) Go through
all the details necessary to check tt{at2, 3) is balanced.
Answer O



3.4.4 More three-pile experiments

In solving a number of our problems we took advantage of
fact that we knew all the balanced positions in two-pile N
Thus we can easily spot whethém,n,0) is balanced or no
because this is identical to playing the gafnen) in two-pile
Nim. While this was a bit of help, it proves to be a dead end
finding the pattern that describes the three pile game.

This is disappointing since it means a familiar techni
is not going to work. Going from two-pile Nim to three-pi
Nim presents us with a different game. Mastery of the for
gives us only minimal assistance in playing the latter. Tames
will happen with 4-pile Nim: even if we compile a list of &
balanced positions in 1-pile, 2-pile, and 3-pile Nim, welv
still have trouble.

We need to find a new kind of pattern. If you have exp
mented with a number of small games, you have undoubt
begun to pick up certain patterns although, at this stags,
still not clear how to exploit those patterns.

Example 3.4.1 Did you notice that the games
(1,0,1), (2,0,2), (2,1,3), (3,0,3), and(3,1,2)

are all balanced? Compare that with the fact that the game
(1,1,2), (2,2,4), (2,3,5), (3,2,5) and(3,3,4)

are all unbalanced.



These two groups of games form a certain pattern obte
from the firstin each list. Thu$2,0,2) is thedoubleof (1,0,1).
The other three games in the first group can be obtained
near-doublingrom (1,0,1) or (2,0,2) by adding a stick to ex
actly two of the piles. |

Examples such as these might suggest that doubling or
doubling a game does not change its status — if the ori
game is balanced, so are the resulting games obtained by
bling or near doubling. If that turns out to be true, it willvgi
us a large collection of positions whose status we will knov

What about the other near doubles we obtain by douk
the number of sticks in each pile and adding one stick to
actly one of the resulting piles? Or to all three of the rasgl
piles? For example, from the ganig 0,1) we would get the
games(2,1,2), (3,0,2), (2,0,3), and(3,1,3). What do you
think happens? Work it out, make a conjecture, and then s
your conjecture is valid for the examples in Problelds-126

Problem 123 Which of the games

(2,4,6), (2,5,7), (3,4,7), and(3,5,6)
are balanced and which are unbalanced? Answer O
Problem 124 Which of the games

(2,6,8), (2,7,9), (3,6,9), and(3,7,8)



are balanced and which are unbalanced? Answer O
Problem 125 Which of the games

(3,4,6), (2,5,6), (2,4,7), and(3,5,7)
are balanced and which are unbalanced? Answer [
Problem 126 Which of the games

(3,6,8), (3,7,8), (3,6,9), and(3,7,9)
are balanced and which are unbalanced? Answer O

Problem 127 Study the patterns of Problem®3-126. How
are they related to the gamés, 2,3) and(1,3,4)? Do you see
any connection between the strategies for these gafhes3)
and(1,3,4), and the games in Problemi23-126 Answer O

3.4.5 The near-doubling argument

Can we yet spot the structure of the balanced posi-
tions in 3—pile Nim? A flash of insight would help
and perhaps you have had one. If not, then the line
of reasoning we now follow will lead us closer to
the moment of recognition.

The bright idea we need to progress further is appare|
the experiments we have so far performed, provided we



at things from a new point of view. We noticed that all the
positions were balanced:

(17 1,0)
as well as
(2,2,0), (1+2,142,0), (2,1+2,140), and(1+2,2,1+0).

This includeq3,2,1), so(1,2,3) would be balanced too.
The same kind of doubling produces yet more balancec
sitions:
(1,2,3)

as well as

(2,4,6), (1+2,1+4,6), (2,1+4,1+6)and(1+2,4,1+6).

Starting at(2,2,0) and using the same pattern produces
(2,2,0)

as well as

(4,4,0), (1+4,1+4,0), (4,1+4,1+0)and(1+4,4,1+0).

A little checking shows that these too are balanced.
If we were to include in this list all the different perm
tations we would recognize that we have obtained all of



balanced positions close to the end of a 3—pile game jus
doubling and redoubling1,1,0) and maybe adding a coup
of 1's each time. If we continue this process further pert
we can generate all balanced postions.

Examples such as these suggest that doubling a balz
game does not change its status. Nor does doubling and a
1 to two of the piles. If that turns out to be true, it will give
a large collection of positions whose status we will knowre
is our conjecture.

Near doubling Start with any Nim positior{x,y,z). Any of
the four positions

(2%,2y,22), (2x+1,2y+1,22), (2x+1,2y,2z+1), or (2x,2y+]

are said to benear-doublef (x,y,z). Note that a positior
cannot be a near double of more than one choide,ofz).

3.4.2 (Near doubling argument) A position(x, Y, z) in 3—pile
Nim is balanced if and only if it is a near-double of anott
balanced position.

To prove this statement we use an argument that shou
familiar to us. We used it before in our even/odd analysisef
game of binary bits. Let us call a positioned positionif it is
near-double of a balanced position. Every other positicaid
to be ablack position



The end positionisred The end position in a three pile gar
of Nim is (0,0,0). Since this is balanced and is its own ne
double the end position is red.

Any red position must move only to a black Start with any
of these red positions:

(2%,2y,27), (2x+1,2y+1,27), (2x+1,2y,2z+1), or (2x,2y+]

where we are assuming that y, z) is balanced.

It is enough for our argument to consider only moves
take away sticks from the first pile—the argument is the s:
for the other cases. Taking away an even numlxesfticks
from the first pile results in

(2x,2y,22) ~~ (2[x—K], 2y, 22),
(2x+1,2y+1,22) ~ (2[x— K| + 1,2y + 1,22),
(2x+1,2y,2z+ 1) ~ (2[x— K] 4+ 1,2y,2z+ 1)

and
(2%,2y+ 1,22+ 1) ~» (2[x— k]|, 2y+ 1,22+ 1).

We recognize a doubling or near-doubling of the pie k,y, z).
But (x—Kk,y,z) must be unbalanced since it came from a m
out of the balanced positiofx,y,z). Consequently all of th
resulting positions are black, i.e., all of our red positidrave



moved to black if we remove an even number of sticks.
Start again with any of these red positions:

(2%,2y,22), (2x+1,2y+1,22), (2x+1,2y,2z+1), or (2x,2y+]

but this time remove an odd numbeée-21 of sticks, again fron
the first pile:

(2x,2y,22) ~ (2[x— K] +1,2y,22),

(2x+1,2y+1,27) ~ (2[x— k+1],2y+ 1,22),
(2x+1,2y,2z+ 1) ~~ (2[x— K] + 2,2y,2z+ 1)

and
(2x,2y+1,2z+1) ~ (2[x—K +1,2y+ 1,2z+1).

Again we recognize all of these positions to be black, i.k.
of our red positions have moved to black if we remove an
number of sticks.

Any black position can be moved to at least one red We
need to consider several cases of black positions and, ébr
one, determine how to make the correct move to a red pos
1. Suppose thd®x, 2y, 22) is a black position. The(x,y,z)
is unbalanced and so there is a balancing move which le
say, the positior(x—k,y,z). Since that position is balance



the doubled position
(2x— 2k, 2y,22)

is a red position. This gives us a way to move from the blac
the red if we start af2x, 2y, 2z) assumed to be a black positic
Take away R sticks.

2. Suppose thd®x, 2y+1,2z+1) is a black position. The
(x,¥,2) is unbalanced and so there is a balancing move w
leaves, say, [Case 2a] the position- k,y,z) or [Case 2b] the
position (x,y — k,z) or [Case 2c] the positiofx,y,z— k). We
need consider only the first two cases.

In Case 2a the positiofx — k,y,z) is balanced, hence tt
near-doubled position

(2[x—k|,2y+1,2z+1)

is a red position. This gives us a way to move from the blac
the red if we start at2x, 2y + 1,2z+ 1) assumed to be a blac
position. We removeRsticks from the first pile.

In Case 2b the positio(x,y — k, z) is balanced, hence tt
near-doubled position

(2x,2[y— k| +1,2z+1

is a red position. This gives us a way to move from the blac
the red if we start af2x, 2y + 1,2z+ 1) assumed to be a blac
position. We removel— 1 sticks from the second pile.



3. Suppose the starting position (@x + 1,2y, 22); this is
always a black position since two of the entries are ever
(x,,2) is balanced then there is an obvious move: take a
1 from the first pile to produce the red positi@x, 2y, 2z). If,
however,(x,y,z) is unbalanced we can balance it to the pc
tion (x—Kk,y,2) or perhapgx,y — k,z) (the remaining case i
similar). In the first situatiori2[x — k], 2y, 2z) is a red position
which we obtain by removingk2- 1 sticks. In the second sit
ation (2x+ 1,2y — k], 22) is a red position which we obtain k
removing X — 1 sticks.

4. The only case that we must finally consider is a posi
of the form(2x+ 1,2y + 1,2z+ 1); this is always a black pos
tion since each of the entries is odd. How can we move to ¢
position?

If (x,y,2) is balanced then there is an obvious move: t
away 1 from the first pile to produce the red positi@s, 2y +
1,2z+1). If, however,(x,y,2z) is unbalanced we can balan
it to the position(x—k,y,z) (the remaining cases are simila
Then(2[x—Kk],2y+1,2z+1) is a red position which we obtai
by removing & — 1 sticks.

Conclusion Our analysis shows that we can win the gat
starting from a black position, since we can always find a \
to produce a red position and our opponenet must always
duce a black position. Eventually we end up with the posi
(0,0,0) which is a red position and we win. This is exac
the same as the balanced and unbalanced argument and



that the red positions are simply the balanced positionglas
black positions are the unbalanced one. So now we can
the red and black language and go back to balanced and L
anced.

We have not really solved the game, we have just fo
a convenient way of describing balanced positions in the
guage of near-doubling. A little more thinking about thisph
ever, leads to an elegant solution.

3.5 Nim solved by near-doubling

We can now easily generate all the balanced position in &4l
pile Nim game using the near-doubling argument. For exan
starting with the balanced positid, 0,0) we can construct al
of its near-doubles

(1,1,0), (1,0,1), and(0,0,1)

and then all near-doubles of those three positions. All <
positions must be also balanced. By continuing in this way
see that all of these positions are balanced:

(1,1,0), (1+2,2,1),(1+2+2%1+222),

(1424224282428 14 2%), (142+22+2%1+2+232%), ..

This is faster than starting at the bottom and directly cotimgu
balanced positions by our other method. But it s still solina



strange-looking.

At some point in these investigations, now or perhaps
earlier, we must begin to see that our perception of the p
lem has been clouded by using the decimal arithmetic nota
Certainly this pattern demandsinary interpretation These
examples suggest it. Near-doubling suggests it.

An elegant strategy for Nim will become transparent [
vided we switch to a binary representation of the piles.
example, the position

(1,2,5,7,11),

written in decimal notation, is far less informative to usrtt
when written in binary notation. Doubling or near-doubli
this position in decimal notation is a tedious exercise ithal
metic that does not reveal much. Doubling or near-doub
this position inbinaryis surprisingly simple and revealing. Tt
reader is invited to review binary arithmetic (covered now
Section3.5.1) before returning to this in Examp&5.3

3.5.1 Review of binary arithmetic

We provide now a quick review of how numbers can be
pressed in different bases. This section may be omitted f)
reader who feels comfortable with base 2 arithmetic and-i
ger to apply it to the Nim game.

Suppose we have 147 eggs. What does the notation “



really mean? One way of understanding the notation is as
lows. If we put our eggs into boxes of ten eggs each, we wi
have fourteen boxes and seven eggs left over. These sevel
account for the numeral “7”.

We now put the fourteen boxes into crates which hold
boxes each. We fill up one full crate and have four boxes
over. These four boxes account for the numeral “4”. Sinceet
are fewer than ten crates, we need not do any further grou
We have one crate left over and this accounts for the nun
1.

But egg boxes usually hold twelve eggs each. Ifac
contains twelve boxes, we could easily check that we wt
have one crate, no loose boxes, and three loose eggs; thig
represent the number of eggs in base twelve. Our proce
arriving at the numeral 103 can be looked upon as succe
division and recording remainders: if we divide 147 by 12
get 12 with a remainder of 3, thus accounting for the “3’
“103”. If we then divide 12 by 12, we get 1 with a remainder
zero, thus accounting for the “0” and the "1".

We can do the same computation relative to any pos
integem > 2, thus arriving at a bagsenumeral for the (base ter
number 147. We simply divide by and record the remainde
then divide the partial quotient bhyand record the remainde
etc. We continue the process until the final partial quotig!
zero.

Example 3.5.1 We illustrate withn = 2 and we work agait



with the number 147 as our starting point.

147+-2 =73 withremainder 1
732 =36 with remainder 1
36+-2 =18 with remainder 0
18+2 =9 with remainder O
9+2 =4  with remainder 1

: =2  with remainder 0
=1 with remainder O
=0  with remainder 1

ENNIN
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This all works out to the notation 10010011 meaning
1.2"40-2°40.2°+1.2°40.-2540.2°+1-2' +1

where the final remainder is the left-mdst and the first re-
mainder is the right-modit.

Thus 147 (base 10) equals 10010011 (base 2). Note
this is really similar to the meaning of 147 (base 10):

1.10°+4-10+7.

In fact we have verified an unusual looking statement, nar
that

1.10°+4-10+7=1-2"40-2540-2541.2°+0-2°40- 2%+ 1.

Both of these are just ways of writing the number we knov



147.
You may wish to check (just by ordinary arithmetic) tt
147 can also be written as

147=1-122+0-12+3.

Thus our number one-hundred and forty-seven can be wi
as 147 (base 10), or as 10010011 (base 2) or even as 103
12).

All of these are just different ways of writing the numk
which we usually call one-hundred and forty-seven (and
ancient Romans would have called CXLVII). <

Example 3.5.2 For practice, we do one more quick compu
tion. To write the number twenty-six (i.e, 26 in the usualé
10) as a base 2 numeral, we observe that

26=-2 =13 withremainderO
13+-2 =6  withremainder 1
6+-2 =3 withremainder0
3+2 = with remainder 1
1+2 = with remainder 1

Thus
26 (base 10¥ 11010 (base 2)

Note that we do not need the numbers 13, 6, 3, and 1 e
to continue the calculations. We need just the remainde
1, 0, 1, and 1.When read from bottom to toghis is just the



base 2 numeral for 26. While we are accustomed to rea
numerals from left to right, the convenience of doing the €
putations in the way we did results in our reading these il
representations from bottom to top.

Writing in columns  We shall need frequently to write ot
binary numbers itolumngrather than rows. Thus the numk
26, which in standard binary notation becomes 11010, wil
expressed as a column this way:

26 (base 10)= 11010 (base 2}

OrRrORR

Note that the column order is the exact reverse of the o
in which we computed the bits in our computation above.
computed the bottom bit first and then all the other bits ireor
from bottom to top. <

3.5.2 Simple solution for the game of Nim

The near-doubling argument allows us to generate quickdy
easily all the balanced positions in Nim. When we do thisgi
binary notation the structure becomes almost obvious.



Example 3.5.3 A position in the game of Nim written in dec
mal notation as
(1,2,5,7,11)

appears in binary notation as
(1,10,101,111 101))

or, if we prefer to arrange the bits in columns, we can disj
the position as

mooo
or OO
~OoOro

=)
[ =

1

Near doubling is easy now. Multiplying by two simply rais
the rows in the display:

orooo
corooO
oroOoRroO
ORrRrREFLRO
oOr PR OR

To add a pair of 1’s (or two pairs of 1's) add them to the bott
row. <

Example 3.5.4 We already know thatl, 2, 3) is a balanced po



sition. We express this position in binary:

0 0 O
0o 1 1
1 0 1

This position is a near-double of the position

0O 0 O
0 0 O
0o 1 1

which itself is a near-double of the end position

0O 0 O

0 0 O
0 0 O

Note that there are an even number of 1 bits in each
Doubling merely adds a row of zeros to the bottom. N
doubling does the same, but adds possibly two 1 bits tc
bottom row. Even if we do this thousands of times, one tt
is transparent: there will always be an even number of 1 i
every row. |

In fact we can prove this fact in complete generality.

3.5.5 A position in 3-pile Nim is balanced if and only if the
are an even number dfbits in each row.

All balanced positions can be generated by starting witt
balanced positiof0,0,0) and doing near-doubling repeated



Every near-double has an even number of 1 bits in each
That is all there is to the proof.

This also gives us our game strategy. If a position is
balanced it is because there is an odd number of bits in ol
more rows. At least one of the columns will allow a reduct
of sticks in its associated pile so as to produce an even nu
of bits in each row. Binary arithmetic shows how.

3.5.3 Déjavu?

Haven’t we seen this before? The game of binary bits in
tion 3.3 looks identical to this. In the game of binary bits t
balanced positions were exactly the same: even number
bits in each row. Is it possible? Why didn’t we notice tl
before?

3.5.6 The game of Nim is equivalent to the game of bin
bits.

We need to check that the rules of Nim and the rule:
binary bits are the same. Certainly the positions are thesa

In the game of Nim(ng,ny,...,nk) the rules require us t
select a pile and reduce the pile by one or more sticks. |
convert each of the numbers to binary and use them to p
game of binary bits the rules require us to select a binarg |
in some column to change to 0 and then change (as we pl
all the bits below it. If we remember how binary arithme
works we see that this is equivalent to reducing the Nim nun



that corresponds to that column. The Nim game ends wi
position of (0,0,...,0) while the binary bits game ends wi
no 1 bits just O bits. The last player to move wins.

The two games are identical. Thus, since we have an
solution of the binary bits game, we have an obvious stra
for Nim: convert every Nim game to a binary bits game

Example 3.5.7 The position(1,2,5,7,11) in 5-pile Nim is un-
balanced. (Not so easy to see.) The balancing move is to
10 sticks from the last pile. (Really not at all easy to se&@ré
is only one balancing move. (Why?)

The answer to our difficulties is to play binary bits inste
where everything is truly easy to see. Conyé&r,5,7,11) to
(1,10,101,112,101)) in binary. Now display this position a
in Figure3.15 Here we have entered each of the binary

00001

OO
oOr o
P, O R
e
S e)

Figure 3.15: The positiofil, 2,5,7,11) displayed in binary.

pressions for the numbers 1, 2, 5, 7, and 11 as binary colu
Taking sticks from any one of these five piles is the same
legal binary bits move on one of these five columns.



Figure3.16shows the correct balancing move in this ga
of binary bits. This corresponds to the move

(1,2,5,7,11) ~ (1,2,5,7,1)

in our 5—pile Nim game.
00001 000 0]0]
00110 00110
—
01011 01010
10111 10111

Figure 3.16: The movél, 2,5,7,11) ~ (1,2,5,7,1) displayed
in binary.

This makes it clear why the balancing move is to take
sticks from the last pile. We can also see at once that th
the only balancing move possible. A 5—pile game would h
defeated us before. Now the play in binary notation is sirai
forward (depending on your skills with binary arithmetic).
<

Problem 128 Under what conditions will it be possible to fir
more than one balancing move in a three—pile Nim game? |
many balancing moves will there then be? Answer O

Problem 129 Find all three ways in which the game (9,11,
can be balanced. Answer O



Problem 130 Can there be more than 3 balancing moves i
3-pile Nim game? Answer O

Problem 131 In a 10—pile unbalanced Nim game, what is 1
largest possible number of balancing moves? Answer O

Problem 132 In a 11—pile unbalanced Nim game, what is 1
largest possible number of balancing moves? Answer O

Problem 133 How many different balancing moves are th
for the Nim gam¢1,3,5,7,9,11 13 10000Q? Answer O

Problem 134 How can you tellimmediately that the Nim gal
(136,72,48,40) is unbalanced? Can you spot the pile tt
needs adjusting without much computation?  Answer D

Problem 135 (Opening strategy)You are invited to a game ¢
Nim and you spot that the opening position is balanced.
opponent invites you to start. What do you do? Answer O

Problem 136 (Poker Nim) You are invited to a game of Nil
played with coins and with a new rule. The coins are place
three piles and each player, in turn, may take as many coir
he likes from a single pile and keep them aside. At any ple
the game a player may decide to return coins from his col
tion as he wishes, and place them on a pile, instead of redu
a pile. The player who takes the last coin wins and seize
the coins on the table. Discuss. Answer O



3.6 Return to marker games

Let us return now to the marker games. We have alread
tablished that the 2, 3 and 4—marker games have balance
sitions which can easily be described in terms of simple e
tions:

B=A+1

for the 2—marker game,
A+B=C
for the 3—marker game, and
D-C=B-A

for the 4—marker game. But we did not see what to do for
5 or 6-marker games. It appears to be obvious that we st
search harder, much harder, to find the correct equatiottisdc
n—marker games!

But that would be misguided. There is a pattern which ¢
eralizes from 2, 3 and 4—marker games tonadinarker game:
but this is not it. Many times in mathematics the attempt to-
eralize something requires a new way of looking at the sim
cases.

Let us pause and reflect on this for a moment. The stra
for 2—pile Nim is the mirror strategy (the Tweedledee-Twedt
strategy). Had we insisted on finding some kind of mirrortst



egy for 3—pile Nim we would have surely failed. Instead
came up with the strategic device of converting the numtme
binary. That allowed us to solve all Nim games. Had we loo
at the 2-pile Nim game in binary we might have noticed that
mirror strategy was really all about ensuring an even nurab
1 bits in each row. We missed the chance to find the patterr
works for all Nim games because we were looking too har
the wrong pattern.

The same is true for marker games. By looking too clos
at the balancing equations for 2, 3 and 4—-marker game
completely miss the perspective that will allow us to sollle
Marker games.

3.6.1 Mind the gap

The perspective that we need for marker games involves v
ing a move as alosingor openingof a gap. Agapis just the
number of holes—legal positions—between a pair of mark
Once we have expressed the objective of the game in the
guage of gaps and openings and closings, rather than eqsi
we will find a pattern that works in general.

Example 3.6.1 [Gaps in a 3—marker game] Place mark&rs
andC at 4, 9 and 13 as in Figuf17.
We know that the position is balanceddft- B = C, which
we can rewrite as
A-0=C-B.



(0 A B C

123456 7 8 9101112131415

Figure 3.17: Gaps in the 3—marker game with marker
4,9 and 13.

To interpret this in the language of gaps we would prefe
write
A-1=C-B-1

There are gaps between 0 aldetweem andB and betweer
B andC. Of these it is only the first and third gap that cc
cern us. Both gaps are equal to 3 as we see by countin
equivalently, by computing — 0—1 andC — B — 1).

Thus we have a balanced position corresponding to the
sition (3,3) in Nim. If our opponent moves, this reduces ¢
gap and we answer by movirgthe same number of place
If the opponent moveB, this widens a gap, and we answer
movingC the same number of places. If our opponent mc
C, this reduces a gap and we answer by movinthe same
number of places. <

Example 3.6.2 [Gaps in a 4—marker game] Place markays
B, C, andD at 5, 10, 20, and 30 (as in Figugeld. The bal-
ancing move would be to mou&from 30 to 25, for in that cas



we would have
B-A=D-C=5,

a balanced position. Expressing this in terms of the two ¢
we would have

B-A-1=D-C—1=4,

so that the number of holes betweArandB is the same a
the number of holes betwe&handC. We have closed the ge
betweerC andD to the same size as the gap betwéeamdB.
Note that it is only these two gaps that matter; the other
(between 0 ané or betweerB andC) do not interest us.

A =) C D,
5 10 20 30

Figure 3.18: Gaps in the 4—marker game with marker
5, 10, 20, and 30.

The balancing equation is really demanding that we
velop a mirror strategy (Tweedledee-Tweedledum stratigy)
focuses instead on the two gaps. That means, too, that th
a similarity between the strategies for the 4—marker ganade
the 2—pile Nim game. The games themselves are not iden
The pointis that a position in a 4—marker game can be bala
by comparing it with a related position in a 2—pile Nim gar
<



Problem 137 Explain the similarity between the strategies
the 4—marker game and the 2—pile Nim game? Answer O

Problem 138 Formulate a similar analogy between the 3-m:
game and the 2—pile Nim game. Answer O

Problem 139 Formulate a similar analogy between the 2-m:
game and the 1—pile Nim game. Answer O

Problem 140 Use the strategy for 3—pile Nim to find strateg
for the 5 and 6—marker games. Note that these strategie
not involve simple equations similar to those which arost
the lower order marker games. Answer O

3.6.2 Strategy for the 6-marker game

Once it occurs to us that we can use the gaps to compar
position to a Nim game the solution is simple. We do not e
have to do much more thinking about it.

Let us consider first the 6-marker game. Designate
markers, from left to right, b, B, C, D, E, andF. The gaps
(number of empty holes) betweénandB, betweerC andD
and betweeit andF give us three numberg, y andz, which
correspond to a certain Nim ganiey,z) as indicated in Fig
ure3.19

Since we are counting holes in between,

x=B-A-1,



ABCDF
X y z

Figure 3.19: The three key gaps in the 6—-marker game

y=D-C-1,

and
z=F-E-1.

The argument Define a position in the 6-marker game
be ared positionif the gaps(x,y,z) correspond to a balance
position in 3—pile Nim. Call the positioblackif this is not so.
Then

1. Thefinal position in the 6—-marker game is a red posit
This is becaus€0,0,0) is a balanced position in Nim.

2. Any move from a red position will result in a black po.
tion. This is because any such move will change on
the markers and so change exactly one of the gaps.
(%,Y,2) is balanced in Nim, the new set of gaps must
unbalanced in Nim.

3. Given a black position there is a move of markers
produces a red position. A black position correspo
to a gap triple(x,y,2) that is unbalanced in Nim. Fin



a balancing move in Nim and then move the appropr
marker to produce a new balanced set of gaps.

The final position is red, red always moves to a black,
from a black one can find at least one move to a red. It foll
that the red positions are the balanced positions in the fiken
game and the black positions are all unbalanced.

A small subtle point This argument shows that we have c:
tured all of the balanced positions by comparing to Nim. Bl
does not say that the two games are identical.

If a position corresponds to the gapsy, z) and one of the
markersB, D, or F is moved, then indeed the new gap posit
does correspond to a move in Nim because one of the nur
X, ¥ or z has been reduced. But if one of the mark&r€, or
E is moved the effect is that afideninga gap. This does nc
correspond to a move in the associated Nim game. In Nin
change numbers only by reducing them.

But this doesn’t impede our play. We just move the ma
at the other end of the gap to restore its previous size.
leads to the same balanced Nim game that existed befor
opponent made his move.

Example 3.6.3 Consider the marker game with markers at
5,7, 12, 15 20, and 24

as in Figure3.20



A D =
5 7 12 15 20 24

Figure 3.20: The 6-marker game with markers
5,7, 12, 15, 20, and 24.

The gaps are of sizes 1, 2 and 3 respectively. Thus, we
at the associated Nim gani&,2,3). We remember that thi
as a balanced Nim position. (If we do not, we could write
numbers out in binary and check.)

Our opponent makes a move: say, he or she move:
markerE from 20 down to 18. This widens a gap, so does
correspond to a Nim move. Even so, Nim helps us rebalan

Our answer is to move markerfrom 24 to 22. The mark
ers are now at 5, 7, 12, 15, 18, and 22. This position c
again corresponds to the Nim garfie2,3) . Now, suppose
our opponent moves markér from 15 down to 13. This re
duces a gap, so @toescorrespond to a Nim move: the marke
are now at 5, 7, 12, 13, 18 and 22, and this corresponds t
Nim position(1,0, 3). This Nim position is unbalanced and v
could balance it by taking 2 sticks from the third pile, leay!
the balanced Nim positiof1,0,1).

This Nim move would correspond to the move in the mat
game in which we move markérfrom 22 to 20. The marker
arenow at5, 7,12, 13, 18, and 20. This is a balanced pos
because it corresponds to the Nim gafhg®, 1), <



3.6.3 Strategy for the 5—marker game

For the five marker game, the analysis is the same in all de
except that our gaps are determined by the number of hol
the left of A, the number of holes betwedhandC and the
number of holes betweeld andE give us three numbers,

y andz, which correspond to a certain Nim garfrey,z) as
indicated in the sketch:.

O+ xXx—>A+—B+y—>C+—D<+z—E.

Since we are counting holes in between,
x=A-1y=C-B-1 andz=E-D-1.
Example 3.6.4 Consider the marker game with markers at
5, 10, 14, 20 and 22

as in Figure3.21
© A D @ ®» @
5 10 14 20 22

Figure 3.21: The 5-marker game with markers
5, 10, 14, 20 and 22.

This corresponds to the Nim gani# 3,1). This Nim po-



sition is unbalanced and could be balanced by taking 2 s
from the first pile, leaving the positidi2, 3,1). This would cor-
respond to moving markek from 5 to 3, leaving the markel
at 3, 10, 14, 20, and 22. <

3.6.4 Strategy for all marker games

With more than 6 markers, the analyses are similar. A ma
game with an even number of markers, say @rresponds t
a Nim game oh piles. A marker game with an odd number
markers, say2— 1, also corresponds to a Nim gamenqgdiles.
One must only remember that the number of holes betv
the successive pairs of markers determines the associate
game, and that if the number of markers is odd, our first gz
that between 0 and.

Problem 141 The marker game with markers at
10, 15, 20, 25, 40, 50, 60and80
as in Figure3.22corresponds to what Nim game?
AlBICID @ ¢ © H

10 20 30 40 50 60 70 80 90

Figure 3.22: An 8—-marker game.

Answer O



Problem 142 The marker game with markers at
10, 15, 20, 25, 40, 50and60

corresponds to what Nim game? Answer O

Problem 143 Find all balancing moves in the game with ma
ersat5, 9, 13, 14, 20 and 27.
Answer O

Problem 144 Find all balancing moves in the game with ma
ersath, 9, 13, 14 and 20.
Answer O

Problem 145 Find all balancing moves in the game with ma
ersath, 9, 13, 14, 20, 27, 33 and 100.
Answer D

Problem 146 Find all balancing moves in the game with ma
ersath, 9, 13, 14, 20, 27, 33, 100 and 200.
Answer O

Problem 147 Is it possible that an 8—marker unbalanced ga
could have more than 4 balancing moves? Explain.
Answer O

3.7 Misere Nim

In our two-player game of Nim the player who takes the
stick wins In the Misere version of Nim, the player who i



forced to take the last stidkses It is the Misére version of th
Nim game that plays a mysterious and recurring role in A
Renais’s cult 1961 filnhast Year at Marienbad/here the piles
take the form of rows of cards.

Figure 3.23:Last Year at Marienbad

Problem 148 Find a winning strategy for the game of Misé
Nim. Answer O

3.8 Reverse Nim

A student in one of our classes suggested a variant of Nin
this variant there are several piles of match sticks. The
players move alternately and the one who takes the last
wins. The difference is that in this game, a player may tak
many sticks as he or she wishes, but at most one from eact



Thus, when it is your move you may take a single stick fr
each of as many piles as you like but you must take at leas
stick.

There is also aniséreversion of this game. The rules f
Reverse Misére Nim are the same except that the one who
the last sticoses

Problem 149 Find a strategy for this game of Reverse Nim
Answer O

Problem 150 Find a strategy for this game of Reverse Mis
Nim.
Answer O

3.8.1 Howto reverse Nim

We already know a simple strategy for Reverse Nim (P
lem 149 but if we revisit this problem it will help in finding
a strategy for the misére version of the game. We illustrgt
considering a Reverse Nim gar(ig5,3,1) as in Figure3.24

Figure 3.24: A Reverse Nim game with 4 piles.



Arrange the piles in a more suggestive format as in |
ure3.25 Here there are two perspectives on the same pos
as the shading suggests. In the first perspective we see
and in the second we see columns.

Figure 3.25: Two perspectives on Reverse Nim game wi
piles.

Let us take the viewpoint that eacelumnis a pile. We
now have seven piles of sticks. The rules of Reverse Nim-r
late into allowing us to take as many sticks as we like as lar
we take them all from the same vertical pile. (We must tak
least one stick, of course.) So our Reverse Nim géime 3,1)
translates to the ordinary 7—pile Nim game

(43,32211).

Figure3.26shows this position along with the necessary ct
putation in binary that allows us to recognize the positier
unbalanced in 7—pile Nim.

There is one balancing move (in 7—pile Nim), namely



4, 3 3, 2, 2 1, 1
1 0 0 0 O O O
0 1.1 1 1 0 O
0 1.1 0 O 1 1

Figure 3.26: Playing the associated 7—pile Nim game.

take all four sticks in the first (column) pile leaving
(0,3,3,2,2,1,1).
The new display of sticks (in Reverse Nim) is
(6,4,2)

since we have taken one stick from each of the four piles o
original Reverse Nim problem. This isillustrated in Fig@ra7

We can continue in this way, going back and forth betw
the Reverse Nim position and the corresponding Nim posil
making our move in Nim and interpreting it in reverse Ni
Of course, we didn’t need to go to all this trouble to achi
a balanced position because we had already observed (in



Figure 3.27: After the balancing move.

lem 149) that the balanced positions are those in which all p
have an even number of sticks, so it was obvious that ir
original Reverse Nim problem all we had to do was take
stick from each pile. But our perspective allows us to un(
stand the structure of the game in a way that could be usefi
determining a strategy for the Reverse Misére version of
game. What is this strategy?

3.8.2 How to play Reverse Misére Nim

While playing Reversévlisére Nim we simply shift our per-
spective as we just did for Reverse Nim. Consider each col
as a pile and use the strategy that we developed for Misére
in Section3.7 on the resulting Misére Nim game, repeate
translating our results back and forth between the Reveise
ere Nim positions and the corresponding Misére Nim positi

Observe this offers another example of a case in whi
simple solution to a problem does not reveal enough to ot
solutions to closely related problems. Here the easy swluti
Reverse Nim offered little help in solving Reverse MisereN



We saw an additional example with our marker games.
simple solutions involving algebraic equations to idgnttie
balanced positions for such games with four or fewer m:
ers may have suggested similar equations for games ingp
more than four markers. But that led us in the wrong direct
Once we understood Nim, however, it was easy to make
correct connection to the marker games.

We see similar situations in many parts of mathematics.
example, in our chapter on Links, an easy solution to coostl
ing certain configurations will not point the way to obtaigi
constructions of configurations that are slightly more ctaxy
We will need another perspective for that. The key concep
volves introducing a new idea. Once the new idea has |
formulated, the method of proceeding becomes clear.

3.9 Summary and Perspectives

We obtained complete strategies for two rather complic
games: Nim and the Marker Games. Several aspects of cre
mathematics and discovery appeared in our developments

1. We started with very simple versions of the games
low marker games and 2—pile Nim). This gave ueel
for the game and helped us “discover” the conceiadf
anced positionsvhich was central to all of our games.

2. Our experience with some easy 3—pile Nim games



useful in obtaining strategies for more complicated :
pile games. The big step was our recognizing that
strategies had something to do wiloubling or near-
doublingof piles and eventually we made the connect
with base 2 arithmetic and recognized Nim as equiva
to the binary bits game.

3. Once we understood 3—pile Nim, it was a small ste
understand Nim with any number of piles. But, our
derstanding of the 2, 3 and 4 marker games appear
offer no help towards understanding marker games
more than 4 markers. This was so because we foc
on the wrong thing: the position of the markers inst
of the size of the gaps. Surprisingly, the marker ge
turned out to be closely related to the game of Nim—
relationship was so close, in fact, that our strategy
Nim allowed us to determine a strategy for the mar
games.

In these observations is an example of something tha
ten occurs in mathematics. Two seemingly unrelated prab
lend themselves to similar mathematical analysis. What
means, of course, is that the two problems really have a
ilar underlying structure, even though the two problems 1
superficially appear to be unrelated. Another example iga
prising connection that exists between our material ondiln
Chapterl and electricity.



Some of the material in this section, and a very nice tr
ment of various other games, can be found in the &xdur-
sion into Mathematicby Beck, Bleicher and Crowe (itemi]
in our bibliography).

3.10 Supplementary material

We conclude our chapter with some supplementary mat
that the reader may find of interest in connection with oudt
of the game of Nim.

3.10.1 Another analysis of the game of Nim

Our analysis of the game of Nim is close to the original id
of Bouton when he solved the game in 1902. The game
revisited in the 1930's by R. P. Sprague and P. M. Grundy it
pendently. Mathematicians often revisit old problemsngyio
find new perspectives and possible generalizations. Sofhs
the processqueezing the lemonlf you have ever squeeze
a lemon you well know that you can always find at least
more drop.

Let us go back to one-pile Nim and two-pile Nim. The
games were very easy to solve but it is notsbéutionthat we
want to revisit, but thenature of the games. Curiously, twc
pile Nim looks to be just two games of one-pile Nim. Y
could describe the rules as requiring each player at histtu



select one of the one-pile games and play a move in that.
game ends when there are no moves to be made in either
one-pile games. Two-pile Nim is just the sum of two game
one-pile Nim.

Do notice, however, that adding two games produces s
interesting complexities. The strategy for one-pile Ninesl
not help at all in determining the strategy for two games
one-pile Nim added together.

Adding two games Suppose that we have two gam@sand
G of our familiar type: in each game players take turns moy
and the winner is declared by the player who made the ladt
move. We can produce a new gamgie+ G» called thesum of
the two gameby making this rule: each player at his turn is
select one of the two games and play a legal move in that g
The game ends when there are no moves to be made in
of the two games and the player to make the last move wir

For example a two-pile Nim gani&, 10) would be the sun
of the one-pile Nim gamé7) and the one-pile Nim gam@0).
Similarly the classic Nim gam, 3,5, 7) is the sum of the fou
one-pile Nim gamesl), (3), (5), and(7). Or, if you prefer, it
is the sum of the two two-pile Nim gamés, 3) and(5,7).

Our goal in studying this game summing idea is to find
how information about the separate gangg@sand G» can be
used to find a strategy for the garge+ G».



3.10.2 Grundy number

The first element of wishful thinking we can dispense with-€
ily. Even if we know all the balanced and unbalanced posii
for the gameg;; and G» this in no way helps us find the be
anced and unbalanced positions for the gane- Go. We saw
this in our study of Nim. Even though a Nim game may
thought of as a sum of smaller-pile Nim games, we found
solving one-pile Nim did not help solve two-pile Nim, nor ¢
solving both of these help in solving three-pile Nim.

In Section3.2.6we described balanced positions in a ga
using the computation of the balancing humber Balépge
That balancing number just computes as 0 or 1 dependin
whether the positiom in the game is balanced or unbalanc
The computation loses all other information. The cleveai
of Sprague and Grundy was to adjust this to reflect just hov
a position might be “distant” from a balanced position.

The definition Here is the definition. Note how closely
follows the way we defined the balancing number Balépge
for positions in a game in Sectidh2.6

1. If pis anend position in the ganggthen Grundyp) = 0.

2. If pis not an end position in the gandgthen find all the
positions
P~ P1, P2,...,Pn



that follow from one legal move, and compute the lis
numbers

Grundy(p1), Grundy(pz),...,Grundypn).

Then Grundyp) is defined to be the smallest of the nu
bers 01,2,3,... that doesiot appeatin this list.

Thus the Sprague-Grundy function Gruigdy assigns &
number to each positiop in the game. We start at the bc
tom. Any ending position has a value of zero. Sopdfis an
end position, then Grundpo) = 0. For any other positiop in
the game we look for all possible positiogghat can followp
by a single move. Then Grun(ly) is defined to be the smalle
integer that is not the same as one of the values Grigndgr
some positiorg that can followp. Thus write out

0,1,2,3,4,5,6,...

and strike out the ones that have appeared for a positior
lowing afterp. Take the smallest that is left. You have to te
Grundy(p) = 0 if none of the next positions has a zero val
(This is why balanced positions will have Grurigy = 0.)

This is an example of a recursive definition; we have
build up the values of the function Grungy) step by step start
ing close to end of the game.



Note that
Grundy(p) = 0 if and only if Balancép) =0
and
Grundy(p) > 1 if and only if Balancép) = 1.

Problem 151 Compute the values of the Sprague-Grundy fi
tion for a position in a one-pile game of Nim.
Answer O

Problem 152 Let us play the Nim gam@, 2,3). Compute the
Sprague-Grundy function for all the positions

(0,0,0), (0,0,1), (0,1,0), (1,0,0),(0,1,1), ..., (1,2,2), (1,2
in the game. Answer O

Problem 153 See if you can discover the exact formula for
Sprague-Grundy function for a position in a two-pile game
Nim. Write

Grundym,n) = ma&n

and find what this operation must be. This is called the N
sum and is explained in detail in Secti@nl0.3below. You
may succeed in spotting how to compute this. [Hint: Lool
the numbers in binary.] Answer O

Problem 154 If you succeeded in determing how the operat



ma n works then give a try at proving that the Grundy num
for a position(m, n) in 2—pile Nim is exactly the Nim-sumdm.
Use induction on the depth of the position. Answer O

3.10.3 Nim-sums computed

Binary additionwithout carryis a special case of bitwise adc
tion where

0+0=0

1+0=1
and

1+1=0.

That leads to the notion of a nim-sum. We define the supmn
to be be the number obtained by summim@ndn (expressec
in binary) but adding the binary bits without carry.

Example 3.10.1Let us perform the computation
7®5=2.

In decimal it looks rather mysterious. If we write in bina
instead
111101=10



the pattern is clearer. Not clear enough? How about

[N
(SN =N
or o

<«

Problem 155 Do some of the computations in Figu3e28 0O

(1 2 3 4 5 6 7 8 9 10
110 3 2 5 4 7 6 9 8 11
2,3 0 1 6 7 4 5 10 11 8
312 1 0 7 6 5 4 11 10 9
4,15 6 7 0 1 2 3 12 13 14
514 7 6 1 0 3 2 13 12 15
6|7 4 5 2 3 0 1 14 15 17
716 5 4 3 2 1 0 15 14 13
8/ 9 10 11 12 13 14 15 0 1 2
9/ 8 11 10 13 12 15 14 1 0 3
1012 8 9 14 15 12 13 2 3 (

Figure 3.28: An addition table fap.

3.10.4 Proof of the Sprague-Grundy theorem

Readers with more mathematical background could benefit
reading the proof of the Sprague-Grundy theorem. It is abr



erably longer than any of the previous proofs in this chay
but it illustrates how a proof in a more advanced book mi
look. It reveals the structure of some of the types of game:
studied in this chapter.

We have already studied a special case of this. In P
lem 153we discovered that the 2-pile Nim gartm, n), which
is the sum of the two one-pile gamés) and (n), has the
Grundy value equal tom@ n.

3.10.2 (Sprague-Grundy theorem)The Grundy humbers fc
the sum of two games can be written in the form

Grundy(p1, p2) = Grundy p1) & Grundy(pz).

whereg is the nim-sum operation.

Depth of a game How far are we from the bottom of th
game? A game with no moves has depth 0. A game whel
moves lead immediately to the end position has depth 1. én
way we can define depth for any position in the game. (D¢
of a position is defined in Sectidh2.6 but it is enough to se
this intuitively for our proof.) This allows us to use indiart

on the depth of a game. Usually the statement we want to f
is obvious at depth zero, so the induction starts off easily.

Proof of the theorem At depth zero the theorem is eviden
true, since it amounts only to the fact thab@ = 0. Thusiit is



only the induction step that takes us some trouble. Our p
below uses the assumption that we already know the the
is true at any lower depth.
Let
b = Grundy(p1) @ Grundy(p2)

In order for us to prove that Grungigi, p2) = b we must show
that both of these statements are true:

1. For every non-negative integak b, there is a follower
of (py, p2) in the sum game that has Grundy vaaie

2. No follower of (p1, p2) has the Grundy valule.

Then the Grundy value &ps, p2), being the smallest valu
not assumed by one of its followers, mustthe

To show (1), led = a® b and letk be the number of digit:
in the binary expansion af, so that

k1< g < 2K

andd has a 1 bit in the kth position in the binary expansion
We have to remember now thdi= ad b and remember to
how the binary without carry operatian works. Sincea < b,
b must have a 1 in the kth position aadnust have a 0 there
Since
b = Grundy(p1) ® Grundy(p2)

we see thap; [or perhapz] would have to have the proper



that the binary expansion of Grun@y ) [or perhaps Grundypy)
has a 1 in the kth position.
Suppose for simplicity that it is the first case. Then

de@ Grundy(p1) < Grundy(ps).

Now we have to remember what it means for a number t
smaller than a Grundy number. We would know that there
move frompy to a positionp; with that smaller number as i
Grundy number, i.e., that

Grundy(py) = d& Grundy(ps).

Then the move fronips, p2) to (p, p2) is a legal move ir
the sum game and

Grundy(p;) & Grundy(pz) = d & Grundy( p1) & Grundy(pz) =d
We have produced the move

(P1, P2) ~ (P, P2)

for which
Grundy(pj) @ Grundy(pz) = a.

Since this position is at a lower depth we know (by our ind
tion hypothesis) that

Grundy(pj, p2) = Grundy(p;) © Grundy(p;) = a.



Thus the follower p/, p2) in the sum game has a Grundy nu
bera. This verifies our first statement.

Finally, to show (2), suppose to the contrary thpt, p2)
has a follower with the same Grundy value. We can supj
that this involves a move in the first game. (The argun
would be similar if it involved a move in the second game.)

That is, we suppose th@p], p2) is a follower of (pz, p2)
and that

Grundy(py, p2) = Grundy(p; ) & Grundy(pz) = Grundy(p1) G

(Here we have again used our induction hypothesis sinc
position (pj, p2) is at a lower depth.) Just like in ordina
arithmetic (using+ instead of as here) we can cancel the
two identical terms and conclude that

Grundy(p;) = Grundy(p1).
But this is impossible since
pL~ P}

in the first game and no position can have a follower of
same Grundy value.

That completes the proof at the induction step and sc
theorem follows.



3.10.5 Binary arithmetic keeps coming up?

To explain the nim-sum requires an analysis using binati-a
metic. Why does this binary beast come out every time
address some problem about Nim and rest of the games th
have studied? There is an explanation that we can sketch

First of all there is an algebraic structure that we may
have noticed. If\ is the null game (i.e., the game with no le
moves) then it must have a Grundy number of 0. But for
other gameg the sum gamé& + A and the sum gam@&(+ G
are just the original gamg. (The only legal moves in the su
game are the moves i itself.) Consequently

0en=0&n=0

for any integen.
The second element of algebraic structure is that the g:
G1+ G2 and G2 + G1 are identical. Consequently

mon=men

for any integersn andn.
The third element of algebraic structure is that the gam

(G1+G2)+ G3

and

G1+ (G2 + G3)



are identical. Consequently
(me&n)&p=me (nd p)

for any integersn, n, andp.

The final element of algebraic structure is that any posi
p in a gameg gives rise to a balanced positigp, p) in the
sum gameg + G. This is because we can always win fron
position(p, p) by playing the mirror strategy, Consequently

nen=0

for any integemn.

That is a lot of algebraic structure. The words norm:
used to describe this structure (some of them familiar) ane-c
mutative, associative group with every element its ownlisge
(We will see groups structures again elsewhere in this)téxi
we describe this structure to an algebraist we will be told
stantly that the group operation is simply 1-bit binary diddi
without carry.

3.10.6 Another solution to Nim

We have solved Nim by converting it to a binary bits game.
can also solve Nim by using Nim-sums.



3.10.3 (Sprague-Grundy solves Nim)A position
(n1,nz,n3,...,ng) in a k-pile Nim game is balanced
and only if

mMeneonRd- - ®&nk=0_0.

This follows directly from the Sprague-Grundy theorem
the Grundy number for that position computed directly fr
the sum ok one pile games

(nl), (nz), . (nk)

Ne&NR2E&N3H--- DB Nk.

Problem 156 Use the Sprague-Grundy theorem to show t
the Nim positior(m, n) is balanced if and only if ra= n.
Answer O

Problem 157 Use the Sprague-Grundy theorem and Tabi3
to show that the Nim positiofi, 2, 3) is balanced and2, 3,4)
is not. Answer O

Problem 158 Use the Sprague-Grundy theorem and Tabi3
to find a balancing move fd2,3,4). Answer 0

3.10.7 Playing the Nim game with nim-sums

The easiest way to play the correct strategy in Nim is to cdr
all piles to binary and then play the game of binary bits.



other rather elegant way of playing the game is to use the
sum operation as the key. A positiom,nz,nz,...,ny) in the
game of Nim is balanced if and only if the nim-sum

nNene&Nzd---eng=0.

The nim-sum operation then helps in computing the cor
move to make in the game. FiguBe28on page248is useful
in giving us the addition table that we would need to use
memorize) if we wish to be skillful players.

We illustrate with a simple example. But be sure to
Problem163and Problemi64to make sure you see a possil
subtlety in the method.

Example 3.10.4The game&8,10,12) is unbalanced. What at
all the balancing moves? We compute

8910012=(8010)@12=2012= 14
We note that
801090120 14=14914=0.

Thus the only possible moves in the game that will prod
a balanced position are

(8,10,12) — (86:14,10,12) = (6,10,12),

(8,10,12) — (8,104:14,12) = (8,4,12),



and
(8,10,12) — (8,10,12¢ 14) = (8,10,2)

All of these are legal Nim moves. <

Example 3.10.5Here is the same example but with the ari
metic argued in a different way. The garf&10,12) is unbal-
anced. What are all the balancing moves? We note that

(8910)48910=0
and so we move
(8,10,12) — (8,10,[8 10]) = (8,10,2).

Similarly
8¢ (812 12=0

and so we move
(8,10,12) — (8,[812],12) = (8,4,12).

And finally
(10012)®10412=0

and so we move
(8,10,12) — ([1012],10,12) = (6,10,12).

All of these are legal Nim moves. <



Problem 159 Computel3@ 126 8. Answer O

Problem 160 Solve for an integer x so th88® x = 25.
Answer O

Problem 161 Whatisnbn®n&®---&n? Answer O

Problem 162 Is the collection of nonnegative numbers w
the operation® a group? (The notion of a group is defin
later on in Sectiort.9) Answer O

Problem 163 Try the method of Exampl&10.40n the game
(3,10,12). Compute

34106 12= (39 10)p12=9¢12="5.
So are these the balancing moves
(3,10,12) — (39 5,10,12)

(3,10,12) — (3,109:5,12)

and
(3,10,12) — (3,10,12¢5)?

Answer O

Problem 164 Try the method of Exampl&10.50n the game
(3,10,12). Are these the balancing moves:

(3,10,12) — (3,10,[3% 10))



(3,10,12) — (3,[3912],12)

and
(3,10,12) — ([1012],10,12)?

Answer O

3.10.8 Ohbituary notice of Charles L. Bouton

The obituary notices of Bouton at the time of his death in 1
praised much of his academic work but made no mention o
solution of Nim. A century later we can see that he shoulc
credited as one of the founders of combinatorial game the
And Nim, at first seen as a particular example of an inter
ing game, turned out to be fundamental to the whole the
His name now is far more likely to be mentioned in the con
of game theory than the study of transformation groups
would have been his main interest during his career. As a
ute to him we include here this obituary notice (even tho
Nim does not appear) and, in our appendix, we include a «
of Bouton’s paper on Nim.

CHARLES LEONARD BOUTON

Professor Charles Leonard Bouton died on Febru-
ary 20, 1922. See thBULLETIN, vol. 28, p. 82
(Jan.—Feb., 1922).

A MINUTE READ BEFORE THE FACULTY OF
HARVARD UNIVERSITY



March 28, 1922

Charles Leonard Bouton was born in St. Louis,
Missouri, April 25, 1869. His father, William Bou-
ton, was of Huguenot descent, and the family was
long established in New England. At the close of
the Civil War, William Bouton settled in St. Louis,
where his regiment had been disbanded. Charles’s
mother, Mary Rothery Conklin, was also of old
American stock; her grandparents were Scotch. Willié
Bouton was an engineer by profession. His grand-
father is said to have been the projector of the Erie
Railroad, and was the author of the first article on
its construction. Charles was the only one of the
four sons who did not follow in his father’s foot-
steps. The home atmosphere was academic and
intellectually stimulating.

Bouton received his early education in the public
schools of St. Louis, and took his first degree, that
of Master of Science, at Washington University in
1891. Here, he came under the instruction of a
highly skilled teacher of descriptive geometry, Dr.
Edmund Arthur Engler. The next two years were
given to teaching in Smith Academy, St. Louis,
and these were followed by a year as instructor
in Washington University, part of his work being
to assist Professor Henry S. Pritchett. His next,



and as it turned out, his last move was to Har-
vard. The years '94-'95 and '95-'96 were spent
in the Graduate School. He took the master’s de-
gree at the end of the first year, and at the end
of the second he was awarded a Parker Fellow-
ship for study abroad. His two years at Leipzig
were most profitably spent. He chose as his mas-
ter that most original geometer, Sophus Lie, then
at the height of his fame. As a matter of fact, Bou-
ton was one of the great Norwegian’s last pupils,
for Lie returned to Norway in 1898 and died soon
after. All of Bouton’s subsequent scientific work
bore the clear impress of Lie’s genius. His two ad-
vanced courses, which he originated soon after his
return to Harvard, dealt respectively with the the-
ory of geometrical transformations and the appli-
cation of transformation groups to the solution of
differential equations. The graduate students who
subsequently had the good fortune to prepare for
the doctorate under his care generally took up sub-
jects connected with the theory of transformations.

After receiving the doctorate at Leipzig in 1898
Bouton returned to Harvard and began a long pe-
riod of work, broken only by occasional sabbati-
cal absence. He threw himself with the greatest
zeal into his duties as a teacher. At one time or
another, beside the alternating advanced courses



mentioned, he taught nearly every one of the lower
and middle group courses in mathematics. No pains
were too great for him to spend, either on the prepa-
ration of lectures or on helping the individual stu-
dent, whether a Freshman or a candidate for the
doctor’s degree. His characteristic quality of sci-
entific sanity was invaluable, for it led him always
to emphasize that which was permanently impor-
tant, and to avoid tinsel and sham. A fine example
of his didactic sense is seen in a collection of prob-
lems on the construction of Riemann’s surfaces,
published in volume 12 (1898) of tNNALS OF
MATHEMATICS. He was equally successful in arous-
ing the interest of a beginner by showing him a
model or a diagram or an enlightening example
of a new theory, and in guiding a graduate with
sure hand toward researches of permanent value
and importance.

Those qualities which made Bouton an admirable
teacher were conspicuous in his other professional
activities. He was an editor of tH®ULLETIN OF
THE AMERICAN MATHEMATICAL SOCIETY from
1900to 1902, and an associate editor oftRANS-
ACTIONS of the same society from 1902 to 1911.
His power of keen yet kindly criticism, and his
unerring mathematical judgment made him an ef-
ficient referee. His advice was prized by all who



knew him, his opinion was always heard with re-
spect, and his sanity was no less remarkable than
his unselfishness. All of these qualities were drawn
upon in full measure in the autumn of 1918 when,
almost overnight, he was called to organize the
mathematical instruction of nearly a thousand men
in the Students’ Army Training Corps. He carried
this work through with conspicuous success, and
the leading teachers of mathematics in the schools
of this community, who enthusiastically rallied to
the support of Harvard and the nation in that cri-
sis, found in him a helpful guide and an efficient
administrator.

His home life was beautifully quiet and peaceful.
In 1907 he married Mary Spencer of Baltimore,
and she, with their three daughters, Elizabeth, Mar-
garet, and Charlotte, survives him. Yet for some
time before the end, long dark shadows were cross-
ing his life. The persistent after-effects of a hur-
ried operation for appendicitis seemed to sap his
strength. Family cares and anxieties multiplied,
reaching a crisis in 1918 with the death of his younges
child. His breakdown in 1921 seemed but the in-
evitable end toward which events had long been
tending. His death deprived the university of a
faithful servant, and the community of a single-
minded and upright gentleman.



From the Bulletin of the American Mathematical Society, 292

3.11 Answers to problems

Problem 76, page 168

This is quite easy since we can find a winning strategy
player Il. In the first two moves there is a simple way of
suring that the end position can never be white. In this ¢
we proved the existence of a winning strategy for one of
players by specifying what it should be.

Problem 77, page 168

Suppose that player | does not have a winning strategy. \
would this mean? Player | moves. Since he has no win
strategy, there is at least one move that player Il can madte
does not ensure a win for player |. So she should make
move. Then Player | moves again. Since he has no win
strategy, there is at least one next move that player Il caeer
that does not ensure a win for player |. So she should make
move. This continues until the game is over and player Il
won. That is her strategy. We know only that at each s
there must have been some correct strategic choice, but v
not know without detailed analysis what that move is.



Problem 78, page 169

Define an end position to be white if it is a win for player | o
it is a draw. Define an end position to be black if it is a win’
player Il. Then if we apply Probleri7 we know immediately
that either player | has a strategy that must end in eithema
or a draw or else player Il has a wining strategy.

We know from experience that player Il has no winni
strategy otherwise we would surely have found it before
were eight years old. We also know that there is no pos:
advantage in this game to going second. We can prove
however, by astrategy stealing argumentWe imagine tha
player Il does have a winning strategy and we ask her to vr
down. Then we steal it. If that strategy did work we could
it to win ourselves. Make a first random move. Then follow
stolen strategy as if you were player Il (placing X’s where
strategy tells you to place O's). If the strategy requires tm
place a mark on a square that you previously used, just m:
new random move. The strategy guarantees a win. But it (
because player Il should always win with correct play. T
there is no winning strategy for player Il as we suspected.

Problem 79, page 169

The fact of two games being “identical” is important to ¢
investigations. For this game arrange the nine numbers 2
a 3x 3 square array so that the sum along any row or coll
or diagonal is exactly 18. Figu®29illustrates this.



31105
8| 6 |4
71219

Figure 3.29: The game of 18 is identical to tic-tac-toe

Then a move in the game of 18 for a player consists es
tially of choosing a position in the array and marking it w
either an X or an O depending on whether he is the firs
second to move. The two games are then easily checked
identical.

After a child has mastered the game of tic-tac-toe it wc
be a good exercise to have them play this game. At s
point they will spot the strategy (assuming the arithmekitiss
are relatively strong) and perhaps even notice that the gsu
equivalent to tic-tac-toe.

Problem 80, page 169

This game too is the same as a tic-tac-toe game.

For this game arrange the nine cards inLa3square arra!
so that the rows, columns and diagonals are the same ¢
eight winning card combinations. Figuse30illustrates this.



JO | QO | KO
J& | QA | Ké
JO | QU | KO

Figure 3.30: The card game is identical to tic-tac-toe

The game has the appearance of being a typical card ¢
because the winning combinations are rather familiar dngs
it is nothing more than the usual trivial game of tic-tac-ttee
scribed in different language.

Problem 81, page 174

The full strategy is described in Sectidr2.5 At this stage yoL
may not be able to articulate the strategy in the same largy
that we will use, but you can experiment enough with the g
to devise a way of winning. As before, you should discc
that there are precisely two kinds of positions: ones in Wi
we can make a good move and ones in which no good r
can be made.

Start with the simplest positions and determine which c
can be classified as good (or winning) positions and which
sitions are bad (or losing).

Problem 82, page 178

The final position is balanced because 1+2 = 3. For a bala
positionA+ B = C, then no matter what move is made, one <



of the equation is reduced while the other remains the s:
Thus, any move will destroy the balance.

For an unbalanced positigx+- B # C. There are two case
A+B<CandA+B>C. If A+B < C, we can reduc€ so that
A+B=C. If A+ B>C, thenA>C—Bso we canreduc&to
re-establish the balance. In either case, there will be sertm
re-establish the balancing equatiér- B=C.

Problem 83, page 178

Call those positions in the four-marker game which satikgy
equationD —C = B— A, balancedand all other positions fo
which D — C # B— A unbalancedMake sure to verify that th
three conditions for balance are met.

For example, if a position is balanced, then we need to s
that every immediately following position is unbalanced.
move requires us to change the position of exactly one o
four markers. Clearly any such move will change one sid
the equation

D-C=B-A

and produce an unbalanced position.
On the other hand if a position is unbalanced then

D-C#B-A



In that case either
D-C>B—-A orelse D-C<B-A

Which marker would you move in each of these two cases

Problem 84, page 178

Not so easy. In fact the discussion so far might lead you tc
lieve that you should search for just the right equationjlair
to the situation for the three and four-marker games. Thes
not work.

If you run out of ideas (as we fully expect you will) mo
on to the next section and read about some other combinla
games. We will return to this problem later with some fre
ideas.

Problem 85, page 184

This exercise is an essential one to perform in order to see
the balancing definition works. To study a game this way
needs only to know, for any given position, all of the pogitic
which follow from it by a single legal move. For 2—pile Nil
this is easy.

Describe a position in the game &w,n) if there arem
sticks in the first pile ana sticks in the second. Try to con
pute the balancing number f(®, 1) for example. List all of the



positions which follow directly fron{2,1):
(2,1)~ (1,1), (0,1), and (2,0).

That means you cannot compute the balancing numbé¢2fay
until you know the balancing number for each of these o
positions.

Start at the bottom (i.e., the end of the game). If you c
pute the balancing numbers in the order suggested in Fy8
the definition is easy to apply. Here we start at the lowestid
(the end position) and work back to higher depths a step
time. Note that, if you have found all the balancing numbét
any depth, you will be able to find all the balancing number
the next higher depth.



Position | Depth | Balancing Number
(0,0 0 0 [balanced]
(1,0) 1 1 [unbalanced]
0,1) 1 1 [unbalanced]
1,2 2 0 [balanced]
(2,0) 2 1 [unbalanced]
0,2 2 1 [unbalanced]
(2,1) 3 1 [unbalanced]
1,2) 3 1 [unbalanced]
(3,0) 3 1 [unbalanced]
0,3) 3 1 [unbalanced]
(2,2) 4 0 [balanced]
(3,1) 4 1 [unbalanced]
1,3) 4 1 [unbalanced]
(4,0) 4 1 [unbalanced]
0,4) 4 1 [unbalanced]
(3,2) 5 1 [unbalanced]
(2,3) 5 1 [unbalanced]
4,1) 5 1 [unbalanced]
(1,4) 5 1 [unbalanced]

Position | Depth | Balancing Number
(5,0) 5 1 [unbalanced]
(0,5) 5 1 [unbalanced]
(3,3) 6 0 [balanced]
(4,2) 6 1 [unbalanced]
(2,4) 6 1 [unbalanced]
(5,1) 6 1 [unbalanced]
(1,5) 6 1 [unbalanced]
(0,6) 6 1 [unbalanced]
(6,0) 6 1 [unbalanced]
(6,1) 7 1 [unbalanced]
(1,6) 7 1 [unbalanced]
(5,2) 7 1 [unbalanced]
(2,5) 7 1 [unbalanced]

7 ]

(43)

1 [unbalanced




For example we can illustrate with the positi¢8 1) at
depth 4. The possible moves from this position are:

(3,1) ~ (2,1), (1,1), (0,1), and (3,0).

From the table we already know the balancing numbers
these positions are

1,0,1, and 1
Consequently, since 0 appears in this list,
Balancg3,1) = 1.

You can continue much further if you are not yet bored.
plying the definition, even in such a simple case as 2—pile,!
can be quie tedious. At some point you can spot the pattert
can figure out a correct strategy for play.

How could we use such a table? Well, if we simply can
spot the pattern, then make a large table. While you arende
consult the table. For example, you are at the posit#b8) in
the game and must decide to make a move. In the table yo
that it is unbalanced. Therefore there must be a move tha
can make to rebalance it. Look for a balanced position al
it in the table and see if you can move to that position. Ab
(4,2) in the table are the balanced positiq2s2), (1,1), and
(0,0). The only one you can reach(8,2). Accordingly then
you make your move: take two sticks from the first pile.



The other obvious way to use such a table is to spot patt
It is pretty clear from the table so far that the only balan
positions are those of the forfm,m). Any position (m,n)
with m # n appears likely to be unbalanced. How would y
go about proving this?

Problem 86, page 184

We recognize these three statements as the same as thc
the marker games in Statemeéh®.2 It is clear that a playe
can always win from a black position by choosing to move
a red position. But if a black position is balanced, thereds
strategy that will always win from that starting point besa
your opponent can always produce a balanced position.
black positions must be unbalanced. For much the same re
red positions must be balanced.

This red and black argument thus allows us to find all |
anced and unbalanced positions without going through the
putations involved in finding the value of Balaripg for every
position in the game. If we can spot a pattern that follows
red/black scheme we can immediately claim to have foun
the balanced positions.

Inductive proof You might also wish to prove that all re
positions are balanced by induction. Start at depth zeres@
positions are red and are balanced. At depth one all posi
are unbalanced and these must be black since they move c



the depth zero positions that are red. Assume that red=txdk
and black=unbalanced for all depths 0,1,2n.—.1 and show
that the same must be true at depth

Problem 87, page 184

The conjecture is that a positigm,n) is balanced in 2—pile
Nim if and only if m= n. Define a positiorfm,n) to be red if
m= n and to be black ifn £ n. Just check that

1. The end positioif0,0) is red.
2. Any red position(n,n) can move only to a black.

3. From any black positioim,n) with m = n there is at
least one move to a red position.

Then apply the red/black argument to conclude that red f
tions are balanced and black positions are unbalanced.
that, although we used the balancing numbers to guide u
wards our conjecture, we do not need them for our proof tt
position(m,n) is balanced if and only ifln=n.

Problem 88, page 185

The name SNIM is meant to suggest “Stupid” Nim. If you pl
the game with a friend you will see why. For example, s
with the position(3,5). A balancing move is to produd8, 3).



Your opponent will know where this is heading and add a s
to one of the piles. The game play looks like this:

(3,5) ~ (3,3) ~ (3,4) ~ (3,3) » (4,3) ~ (3,3) ~ (4,3) ~~ . ..

and continues forever, with no end and no winner.

It is an essential part of our theory that the game we
studying must be finite. It is possible to study infinite gayr
but the strategy that is based on the balanced and unbal:
analysis depends on the game being finite.

Problem 89, page 185

Declare those positions in the four-marker game that setisf
equation
D-C=B-A

to be red and declare the others to be black. Now just chetl
the three conditions hold. Note that this is precisely what
did before in Probler83. Now we have defined what balanc
and unbalanced actually mean for any game. An appeal t
red/black argument shows that, indeed, the positions factw
the markers satisfy the equatibn- C = B— A are the balance
positions in the sense of our new definition of balanced.



Problem 90, page 185

Such a game is not a game of strategy, although it might
appear to the players to involve some mysterious stratelyy.
main feature of such a game is that no strategy or effo
needed to play the game. No matter what the players d
winner of the game is determined from the very first move
Player | starts with a balanced position he loses. If Play
starts with an unbalanced position he wins no matter hov
chooses to move. We have seen such a game already ir
tion 2.6.3when we were studying triangulations of polygon

Problem 91, page 185

The answer is no, if Player | is skilled at finding the balagc
moves. If Player Il suspects that Player | is not quite sdeiki
then there is an obvious, but weak, strategy. She shouldyal
select amove that leaves the position as complicated aibf®
in the hope that her opponent will make a mistake.

Problem 92, page 186

The balanced positions are 5, 10, 15, 20, ... (any multipl
5).



Problem 93, page 186

One way to calculate balanced positions is to creatieeefor

this game. Here is how that works. First we note that 0

balanced position—the player facing this position has ngem
Thus for any numbes that is a squares=1,4,16,25, ..., the
position 0+ sis unbalanced.

The player facing such a position may take all the sti
leaving 0, which is a balanced position. The smallest nun
not yet shown to be unbalanced is 2. This number is balar
(Check this). Thus for any squasethe position 2+ sis un-
balanced, so 3, 6, 11, 18, ...are all unbalanced. The sm
number not yet shown to be unbalanced is 5. Thus 5 is
anced.

Continuing in this way we find many unbalanced positi
and see that the only balanced positions less than 25 aré()
7,10, 12,15,17, 20, and 22.

Does this inspire you to predicall the unbalanced pos
tions over 25? The pattern emerging might suggest that we
obtain all balanced positions by alternating adding a 2 al
3 to the previous balanced position found. We can dodhi
infinitum Does that work? (See Proble®d and Problend5
before jumping to any conclusions.)

4If an 1.Q. test were to ask for the next terms in the sequen&e ®, 7, 10,
12, 15, 17, 20, 22, ... what would most people respond?



Problem 94, page 186

The sieve method that we used in solving Prob&sted to the
balanced positions,2,5,7,10,12,15,17,20, and 22.

We can apply the sieve again and keep going to obtai
the remaining balanced positions less than 100. Or we cét
claim to see the pattern: all balanced positions seem tarat:
by alternating adding a 2 and a 3 to the previous balancec
sition found.

Whoops! Continuing our sieve process we find, inste
that the remaining balanced positions less than 100 are%3-
44, 62, 65, 67, 72, 77, 82, 85, and 95. We no longer see
same 2 and 3 pattern, nor indeed any pattern. Do you?

Problem 95, page 187

We have no idea what type of formula might work. In fa
as of July 2010 no one had found one. Computers were
to work generating balanced positions. They found that én
first 40 million positive integers, about 180000 were baésh
positions. They had a number of conjectures about how c
balanced numbers had various numerals in the units pos
Only one such number, 11356, had a 6 in that position.
their conjectures turn out remains to be seen. Many refese
to this problem can be found by checking Wikipedia. Lc
under “subtraction games.”

This is an example of a problem that looked simple at
but proved difficult. It is also an example of a process thai



ter many initial computations suggested patterns [as wadt
in solving Problemd3 up to 25], only to be proved false. W
discuss more extreme examples of this in a later chapterlin
ume 2 where we discuss the famous (incorrect) conjectur
Polya and Mertens.

Problem 96, page 187

If the subtraction set is
S=1{1,2,3,4,5,6,7,8,9,10}

then the balanced positions are the multiples of 11.

Problem 98, page 190

The one pile and two pile games would likely have cause
troubles. The three pile game is much more difficult, but nes
you spotted exactly what the balanced and unbalanced
tions are. Later on we will find the exact strategy for the c
game by comparing it to the binary bits game.

Problem 99, page 190

This observation is important to make. We cannot use our

anced and unbalanced arguments unless the game is finite
It is not true that each move of the game reduces the r

ber of coins on the table. It is occasionally possible to



more coins than are removed. But each move of the g
does reduce the total value of all the coins in play (chec i
Thus the total value goes down with each move and eve
ally reaches zero when there are no more coins in play ar
further moves possible.

Problem 100, page 190

Begin by displaying the cards on the table in ax18 rectan-
gular array. The bottom row displays all the 2’'s (if there
any) and so on up to the top row that displays the aces. -
recognize that the display can be translated to binary bits
no loss of information.

As we did for the coin game we use the bit 1 ¥&@Sand the
bit O for NO to indicate whether a card is or is not on the tal
Again we can simplify the moves in the game if we realize t
removing a card simply change¥&Sto aNoO, i.e., it change:
a 1 bit to a 0 bit. Similarly adding a card changes@to a
YES, i.e., it changes a 0 bit to a 1 bit. Once again we are
flipping bits instead of playing with cards.
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Figure 3.32: A position in the card game.

Figure3.32shows such a display, along with the equival
array of binary bits, for a game in which the deal is

AQ, QU, 80, 60, 3O, 100, 60, 50, 10%, 2%, Ak, A, 104, 74.

The play of the game is exactly the same as the play o
game of binary bits so the game is completely analyzed by
equivalent game.

If you do wish to play this game perhaps you might wan
reduce the size of the game by using only part of the full d
of cards. Otherwise the play of the game may take a long t
But do notice that the game is easy to play.

For examplefter you have discovered the strategy for
gameyou would instantly recognize that the position in F



ure 3.32is unbalanced and that the only balancing move i
take away @ and 8? and to add to the table the cardst2,C
79,50, and 27, This will take only seconds to spot.

Problem 101, page 193

Usually for our games this is obvious. Here you might h
been bothered by the fact that a play of the game remove:
binary bit but could well add many more. However, you mi
have noticed that only finitely many positions are possitte]
no position can be repeated. (Why can none of the positio
repeated?)

Another solution is don’t simply count binary bits, but d
weightedcount. Each 1 bit on the bottom row receives a wei
of 1. Each 1 bit on the second row receives a weight of 2. E
1 bit on the third row receives a weight of 4, and so on. N
we see that every play of the game, while it may not rec
the actual count of 1 bits, it does reduce the weighted cc
When the weighted count is zero there are no more 1 bits
the game stops.

Problem 102, page 193

You can start with a 2 2 game. There are only a few possik
ities and you should notice the pattern. By the time you f
mastered the 8 2 game the strategy is apparent.



The mirror strategy If the two columns are identical the
the position is balanced. Thus a balanced position hasre
two 1 bits in each row or two 0 bits in each row. If playe
makes a move in such a position then player Il jugtors the
same move back at him in the other column. Eventually
wins.

If the two columns are not identical the position is unk
anced. If a player can make a move in such a position he
balances the game by making the two columns identical. T
the next player is doomed since every move she makes u
ances the position.

The mirror strategy plays an important, strategic role i
number of games that have this feature: the game can be
into two identical pieces. Some authors prefer to call it
Tweedledum-Tweedledee strateégihatever Tweedledum doe
in one of the columns, Tweedledee does the same in the
column. Tweedledee wins.

Problem 103, page 193

The ones with an odd number of 1 bits are unbalanced.

one with an even number of 1 bits is balanced. These posi
are very close to the end of the game and it is always ea
determine in such cases which positions are balanced ot-u
anced.



Problem 104, page 193

Just play the games and see if you can force a win or not
of these are unbalanced.

Problem 105, page 194

All of these are balanced.

Problem 106, page 195

In Problem104all positions were unbalanced and all these
sitions had one or more odd rows, i.e., rows with an odd nur
of 1 bits. In ProblemL05all were balanced and all these po
tions had only even rows—every row had an even number
bits. Now do you have a conjecture?

Problem 107, page 195

Note that this is the same scheme that we use in a red and
argument, although we have expressed it in the even anc
language. The first two statements are quite clear. In the
position there are only zeros so certainly that is an even |
tion. If the player starts with an even position he must sede
1 bit in some column to change. At that point he has alre
produced a row with an odd number of 1 bits and so an
position.



Let us check the final statement. If the position is odd t
then there are one or more rows with an odd number of
Take the topmost odd row and choose a 1 bit to change.
makes that row now even. But there are possibly other
rows, each of them lower than the one you chose. Eac
those rows can be adjusted by changing the bits as nece
The result is an even position.

oORrORPR
P ORREE
(e =N =W

Figure 3.33: An odd position.

For example, Figur&.33illustrates an odd position in
5x 3 game. It is odd because four of the rows have an
number of 1 bits. To balance will require that we change
four of these rows (but leave the one even row alone). It ig
and obvious how to do this. Figu34shows one way, bu
there are two other ways in which you could have changed
position to an even one using a legal move in the binary
game.



ORORR
RPORPFKH
cor kK
ORORR
RPORPFH
NEREE

Figure 3.34: How to change an odd position to an even posi

Problem 108, page 195

It is clear that even and odd positions behave precisely &
balanced and unbalanced positions. The strategy of the
that will work is to start (one hopes) with an odd positic
There is a move that will change it to an even position. Y
opponents move will undoubtedly change it back to an odo
sition. This continues until the game stops and we kno
stops at an even position. It must have been you that mad
last move and so you win. (Of course, if you must start v
an even position just play modestly hoping that your oppbl
will make a mistake and leave an odd position.)

Problem 109, page 195

It is not difficult to see that the argument of Problé®7 ap-

plies to any size game of binary bits. Thus the analysis of
game in terms of even and odd rows will solve the the 4

game, than x 5 game and indeed the x ngame.



Problem 110, page 195

You shouldn’t have to convert to binary, but you should be:
to spot the correct strategy. There are an odd number of d
(but an even number of quarters). So you must remove ol
the three dimes. You have to balance the nickels too, bu
pennies are balanced.

Notice, that with this strategy, the game is easy to p
Against a player who does not know the correct strategy
win every time and your game play is very rapid. Unfortunat
a shrewd opponent might be able to spot what you are d
and realize how doomed he is each time he faces a po:
with an even number of coins of each type.

Problem 111, page 196

It makes it messier and, perhaps, more confusing for you!
ponent. But if you work on it for a while you will see that tf
game is exactly equivalent to binary bits too and is playeti
the same strategy.

Problem 112, page 196

A winner would still be declared when the last coin is remaqv
but any person playing the game would prefer to be a losel
walk away with the most money. Thus the right strateg
to select the pile of largest value at each turn and take al
money. In the end you lose the game and leave richer.



In the language of game theory we have essentially cha
the game to ascoring game Many card games do not er
with the winner the player making the last move, but the pie
who accumulates the most points. Our theory of balancec
unbalanced positions does not apply to scoring games.

Problem 113, page 196

Itis a good choice of game to impose on a friend who consi
himself bad with arithmetic. It appears to require grealt gki
working with numbers, but this is deceptive. The structure
the game play is simpler than it at first appears: some nom-
numbers are merely replaced by zeros.

As soon as this occurs to us we realize that the game i
just “similar” to the game of binary bits; it is identical. #f
a few plays of the game we recognize that all that matte
whether a number is zero or non-zero. Replace all the nam:
numbers with the binary bit 1. Then the rules of the game
identical to those for binary bits.

To play this game just convert any position to the equ
lent position in binary bits and play the strategy that weeh
described.



10-9 0
-3 11-32
0 11 32
4 0 0
0-140

Figure 3.35: A position in the numbers game.

For example, Figurg.35shows a position in & 3 numbers
game. We must determine whether the position is unbala
or balanced. If it is balanced then we must find at least
move that will balance it.

Figure 3.36illustrates how we can solve this problem
converting that position to a position in a binary bits gaie.
make the correct balancing move in the bits game, and
return back to an equivalent position in the numbers game

10 -9 0 110 110 10-9 0
-3 11-32 111 1@1 73@32
0 11 32| =— [0 1 1 01 1|-—|0 1132
40 0 100 10 40
0 -14 0 010 0/0|0 0jo0|o0

Figure 3.36: Playing the numbers game.

The choice of 666 is of course arbitrary here and inter
only to irritate an opponent; any nonzero number will do
trick. Here we see that, while the game had a different



pearance to the game of binary bits, it has exactly the s
structure—the two games are equivalent once we find ho
match up positions and moves. Sometimes this is easy tc
sometimes not.

Problem 114, page 197

Itis a good choice of game for a child who needs some pra
on the order of letters in the alphabet. The structure of Hmee
suggests something tricky about words and letters but the
is completely equivalent to the binary bits game.

Begin by displaying the letters in each of thevords in a
26 x nrectangular array. The bottom row displays all the a’s
there are any) and so on up to the top row that displays the
Then recognize that the display can be translated to birtsy
with no loss of information.

As we did for the coin game and the card game we use
bit 1 for YES and the bit O foNO to indicate whether a letter |
or is not in the word that corresponds to a column. Again
can simplify the moves in the game if we realize that remoy
a letter simply changes¥eESto aNO, i.e., it changes a 1 bit t
a 0 bit. Similarly, adding a letter (if that letter was notealdy
there) changes RO to aYES, i.e., it changes a 0 bit to a
bit. Once again we are just flipping bits instead of playinghwv
words.



For example the position
[ ebbde caecde cddc

in this game can be displayed as the 8 arrays of bits in
Figure3.37.

O R O R K
P O R kP
O O Fk O

Figure 3.37: A position in the word game.

Since no letters higher than “e” appear we do not need
higher rows. This is an unbalanced position and can be e
balanced in the manner shown in Fig3:88

110 110
111 1@1
011 — |0 1 1
100 1[1]o
010 0/0]|0

Figure 3.38: Balancing that same position in the word gar



Thus a correct response in this position would be the p|
[ ebbde caecde cdde~ [ ebbde cebe cddc

changing just the second word. While the game had a diffe
appearance to the game of binary bits, it has exactly the
structure—the two games are equivalent once we find ho
match up positions and moves. (Indeed, the position in
game that gave rise to the scheme in Figdi&/ is exactly the
equivalent position that we saw before in the numbers g
play of Figure3.36) As always, sometimes this is easy to s
sometimes not.

Problem 115, page 197

Maybe so, maybe not.

Problem 116, page 200

Remove all sticks. You win. A balanced position conta
no sticks; every pile that contains one or more sticks is
balanced.

Problem 117, page 200

This involves experimenting until you see what is involviea;
mulating a conjecture of what are the balanced positions,
then verifying that the three conditions required for thedfe



balanced positions are met. In other words, you must s
that your conjectured set of balanced positions meets tiee
conditions of Statemer®.2.2

1. The final position (no sticks remaining) is balanced.

2. If a position is balanced, then no matter what move
opponent makes, the resulting position is unbalan
and

3. If a position is unbalanced, then there is a move we
make which results in a balanced position.

Define a position in the two-pile game @s, n) if there are
m sticks in the first pile and sticks in the second pile. If, ne:
the end of the game you leave your oppon@ni), you will
evidently win. If he leaves yo(L,0), (2,0), (3,0) etc. you will
win immediately by taking all of the sticks in that pile.

You can easily verify that a positigim, n) should be callec
balanced ifm = n and unbalanced i # n. Check the three
conditions.

We have already seen this situation in our solution of Pi
lem 102 in the game of binary bits. Let us repeat what
learned there but modified now to discuss 2-pile Nim. T
will save the reader some flipping.

The mirror strategy The balanced positiofm, m) in the 2-
pile Nim game offers the player a chance to use the mirrot-s
egy. If player | makes a move in such a position then ple



Il just mirrors the same move back at him in the other p
Eventually she wins. The mirror strategy (or Tweedledt
Tweedledee strategy) we have seen before. Whenever a
can be split into two identical “subgames” this strategyl b
successful. Whatever Tweedledum does in one of the
Tweedledee does the same in the other pile. Tweedledee \

Problem 118, page 200

Think of the gam&m,n,m,n) as being two identical games |
2—pile Nim by placing a mirror in the middle:

(m,n| mn).

Now your opponent makes a move on one side of the m
and you just repeat it on the other side. Since you alway®l
a position that has this mirror symmetry you must be the wir
as the final positiorf0, 0,0, 0) has this same symmetry.

This shows that every positida, b, a, b) in the game is bal
anced, but it does not firell balanced positions in 4—pile Nin
This does not matter to us because the mirror strategy al
us to control the game and avoid encountering positions
we do not know how to balance.

Since the mirror strategy is so easy to apply, it is very
ductive. You might think for a while that it will help in all Na
games, but this is not so. We will need some fresh ideas
for 3—pile Nim.



Problem 119, page 201

For the first move of the game take away one or two coin
as to leave two separated rows containing the same numt
coins. For example (as illustrated in FiguBel4) if there are
14 coins and we would remove the two middle coins so &
produce two separate games of Kayles with 6 coins in
game.

QOO0 OOO000
O OOONC00000
o OO O 00O

Figure 3.39: A sequence of moves in a game of Kayles

Apply the Tweedledum-Tweedledee strategy (i.e., the |
ror strategy) to all subsequent moves. Whatever your oppc
does to one side you respond with the same thing on the
side. You win.

There is an odd thing about this strategy, apart from
fact that we must have the first move in order to apply it.
do not know all possible balanced and unbalanced posi
and yet we can win by controlling the flow of the game to v
only positions that allow us to apply the mirror strategy.e’
starting position is always unbalanced, every move we n
is a balancing move, and every move our opponent mak
necessarily an unbalancing move.



If you wish to apply this in practice, note that you w
surely win every time you start first, and that you may w
win occasionally when you start second. That makes the ¢
quite favorable to you. But the strategy is always the sande
your opponent may spot what you are doing. To avoid this
to destroy the symmetry a bit by using a variety of coins. |
ure3.40shows the same sequence of moves, but here the
are varied and this little slight-of-hand trick helps obscwhat
might have been an obvious strategy.

Q@ Q@ GQ®eco
@ @ ® @©oo

Figure 3.40: The same sequence of moves in a game of Ke

Problem 120, page 201

The opening position in a game of Kayles where the coins
arranged in a straight line is always unbalanced. Thus P!
| can always win. If the coins are arranged in a circle then
first move must break the circle and the coins are (essgpnti
back to being arranged in a straight line.



Thus the opening position in circular Kayles is always |
anced and so Player Il will win simply by waiting until t
second move and playing the usual Kayles strategy.

Problem 121, page 202

It is easy to see thatl,2,2) is unbalanced, because it lea
directly to the balanced positid@, 2, 2) (the same as the 2—pi
game (22) which we saw was balanced). The gaftel, 2) is
unbalanced for the same reason.

Problem 122, page 202

One argument is the working-backwards one. The pos
(1,2,3) is not far from the bottom of the game. The positic
that follow from here are

(15053)’(052)3)’ (1) 1)3)’(1)2)2)’ (1)2) 1)) and(]‘?z?o)'

If all of these are unbalanced théh 2, 3) must be balancec
If one of these is balanced théh,2,3) is unbalanced. If we
don’t know the status of one of these then do the same thi
that position to find out what is the situation.

Another argument is to show how we could respond to
ery move by our opponentin a way to produce a balanced |
tion. That proves that all of the moves directly from ffie2, 3)
position must themselves be unbalanced.



Let us give the details by this method to show that the g
(1,2,3) is balanced. This will give us an indication of what o
might do in order to show that a position is balanced. Note |
the little bit of knowledge we have already obtained simgdi
our task considerably.

We must show that no matter what move our opponentn
from the position(1,2, 3), we can find an answer which leav
a balanced position. The chart below shows our answer to
of the six allowable moves for our opponent.

Position after opponent’s move Position after our answe
0,2,3) 0,2,2)
(1,1,3) (1,1,0)
(1,0,3) (1,0,1)
(1,2,2) 0,2,2)
1,2,1) (1,0,1)
(1,2,0) (1,1,0)

Figure 3.41: Positions in the ganik 2, 3).

Thus, no matter what our opponent did, we were able to n
a move which left our opponent with a balanced position.
know each of these positions is balanced because they a
equivalent to 2—pile Nim games of the foifm n), and we have
already seen that every such position is balanced.

Problem 123, page 204

All of the games are balanced.



Problem 124, page 204

All of the games are unbalanced.

Problem 125, page 205

All of the games are unbalanced.

Problem 126, page 205

All of the games are unbalanced.

Problem 127, page 205

Problem127 carries the key to the whole structure of Nim.
will certainly be worthwhile to one’s understanding of Nim
put in whatever time is necessary to discover this key!

Problem 128, page 222

If the highest row with an odd number of 1's in it has one
there will be exactly one balancing move, and that move r
be made from that pile which corresponds to that columr
it has three one’s in it, there will be three possible move
balance the position. One such move will be possible f
each column.



Problem 129, page 222

This game can be balanced in these three ways. Remc
from the first pile or remove 7 from the second pile or rem
11 from the third pile. While these are not obvious when
problem is expressed in decimal notion you should have |
trouble if you express the problem in binary.

Problem 130, page 222

The answer isi0. This is so because there are only three p
and there cannot be more than one balancing move from
pile.

This statement is correct since, if it were not, there wc
be two positionga, b, ¢) and(a, b, d), both balanced, with c an
d different. But this would imply that a move from a balanc
position could result in another balanced position, an isspc
bility.

Problem 131, page 223

The largest number number of balancing moves is 9.

Problem 132, page 223

The largest number number of balancing moves is 11.



Problem 133, page 223

Without computing anything it is clear that the position is |
balanced and that the only move will be to take most or a
the big pile that contains 100000. That answers the que
but you might want also to find out exactly how many to tal

Problem 134, page 223
Why is the Nim game
(136,72,48,40)

unbalanced? Note that 13627 > 72. Thus if we were tc

convert this to a position in a game of binary bits the top |

for this game has only one 1, and the game is unbalance

balancing move must come from the pile with 136 sticks.
Generally

(really big not so bigsmaller still...)

makes it easy to spot which pile to choose and why the pos
is unbalanced.

Problem 135, page 223

Decline. If your opponent knows the strategy then you
surely lose. If you think your opponent is naive then start



taking one stick from the largest pile. If she plays a balag
move then she knows the strategy.

Another opening gambit is to offer politely that she sho
start instead. This appears very courteous since, in alatlo
games, it is an advantage to start. If she insists that youlg}
start you can test her out this way: agree to start, but sély
start, but let's make it more interesting” and quickly adt
bunch of sticks to form a new pile. Think for awhile befc
making the move: then remove all the sticks from the new
and say “Your move.”

This is really a great joke. If she is unamused then
know she is fully aware of the strategy, for you have imme
ately turned her into player one starting the original bedar
game.

Problem 136, page 223

Nice game and more interesting than Nim since there is m
on the table. It also appears to add a new element of str:
which increases the strategic interest.

But the deadly Nim strategy cannot be defeated by a pl
adding coins he has collected. Each time a player take
coins and adds them to a pile in a balanced position, take!1
coins back and add to your own collection of coins, thus ret
ing to a balanced position.

The game is a bit unusual for us in that, if neither pla
caught on to this strategy, the game could go on forever.fE



one player adheres to the take-back strategy the game eac
finite number of steps with a winner.

Problem 137, page 228

To balance an unbalanced 4—marker game requiregbps
be made equal. To balance an unbalanced 2—pile Nim gan
pilesmust be made equal.

The similarity between the strategies for the 4—marker g
and the 2—pile Nim game is this: the strategy in the first i
make the gap betweehandB the same as the gap betweer
andD. The strategy in the second is to make number of st
in each pile the same.

Let us write the balanced positions for the 3-marker ga
in the form

A—-0=C-B.

This is more conveniently written as
A-1=C-B-1

since these two expressions actually measure the gap thri
This translates into

the gap betweeA and 0 = the gap between C and B



or

# of empty holes to the left ok =# of empty holes betwedd

For 2—pile Nim, we can formulate the balanced positions a
# of sticks in the first pile= # of sticks in the second pile.

Thus, we hope to be able to use the strategy for 2—pile
to give us a strategy for the 4—marker games. Let us see
that works.

A move in a balanced 4—marker game might be to mg\
or D. If Bis moved, the gap betwedénandB is reduced. ID
is moved, the gap betweé&handD is reduced. We can resto
the balance by movinB or B, respectively, the same numb
of holes that our opponent movécbr D.

This is in perfect correspondence to balancing an un
anced 2—pile Nim game. In this game our opponent t
sticks from one of the two equal piles. Our answer is to t
the same number of sticks from the other pile, thus restc
the balance.

The other possible move in the 4—marker game consis
moving A or C. If A is moved the gap betweeh andB is
increasedIf C is moved the gap betweéhandD is increased
This does not correspond to a move in Nim, because in
the size of a pile must beduced not increased. In that cas
however, we can movB or D to restore the gap to its origin
size.



Thus, our strategy has two parts to it: if our opponent
duces a gap, we reduce the other gap the same amoun
corresponds to Nim. If the opponent increases a gap, w
duce it the same amount.

Problem 138, page 228

The answer to Problei37 (for the 4—marker game) will helg
The main starting point is the equatién+ B = C, rewritten as

A—-0=C-B.
This shows that the two gaps between 0 &nahd betweer
andC are to be the focus of the strategy.

Problem 139, page 228

For a 2-marker game there are two gaps: the gap betwe
andA and the gap betweeghandB. Only the second gap is ¢
interest to us. The equatid= A+ 1, rewritten as

B-A=1

reveals that the balanced positions are the ones with thma
closed and, indeed, we do remember that the correct str:
is to balance the position by completely closing that gags”
is equivalent to a position in a 1—pile Nim game in which



only balancing move is to take at once all of the sticks froe
pile.

Problem 140, page 228

Reread the material in this section until you fully undemsit
it, and then work on Problerti40 without reading ahead t
Section3.6.2which gives a full solution.

We were guided in the case of the 3—marker and 4—me
games by the equations

A—-0=C-BandB—-A=D-C.

These told us exactly which gaps to work on and suggest
comparison with a 2—pile Nim game. Now we need to atte
to apply the same principle to the 5 and 6—marker games
seek a comparison to a 3—pile Nim game. Start by decidin
three gaps that you will use in your strategy.
Problem 141, page 233
The marker game with markers at

10, 15, 20, 25, 40, 50, 60 and 80

corresponds to the Nim game (4, 4, 9, 19).



Problem 142, page 234

The marker game with markers at
10, 15, 20, 25, 40, 50 and 60

corresponds to the 4—pile Nim game with g&@st, 14,9).

Problem 143, page 234

This corresponds to a 3—pile Nim game with the gap posi
at(3,0,6). The only balancing move is to move frof8,0, 6)
to (3,0, 3). This corresponds to moving the marker at 27 dc
to 24.

Problem 144, page 234

While most of the markers are at the same position in P
lem 143the gaps are completely different and the game
very different play. This marker game corresponds to a 8-
Nim game with the gap position &4,3,5).

Problem 145, page 234

This corresponds to a 4—pile Nim game with the gap posi
at(3,0,6,76). Without much thinking you should immediate
move the marker at 100 down a long way. How long?



Problem 146, page 234

This corresponds to a 5—pile Nim game.

Problem 147, page 234

Problem147asks if an 8—marker unbalanced game could f
more than 4 balancing moves. The 8-marker unbalanced (
can be analyzed via the 4-pile Nim game. This game he
most three balancing moves (Why?) so the same is true c
8-marker game.

Problem 148, page 235

To find a winning strategy you may wish to follow the appro:
of first comparing the strategies for Nim with Misére Nim 1
simple games. For example, proceed as follows:

(a) Determine the position that forces the next player to |
on the next move.

(b) Which positions, if any, are balanced when every pile
one stick?

(c) Which positions, if any, are balanced when exactly one
has more than one stick?

(d) Which positions are balanced when more than one pile
more than one stick?



Hint: Note the results ofb) and(c) and use the result
of Nim.

(e) Describe a winning strategy for Misére Nim.

Try to use this outline to discover the strategy before chneg
the answer which now follows:

Our winning strategy for Misére Nim follows this sugges
outline.

(a) When there is only one stick left, the next player must t
it and lose.

(b) When the number of piles is odd, the position is balan
When that number is even, it is unbalanced. (Check tl
Note that this is the opposite of the situation in Nim.

(c) None! The position is unbalanced, since by taking sti
from the big pile, leaving either one or no sticks in tl
pile, depending on whether the number of piles is e
or odd, a balanced position can be created. See (b).

(d) and (e). Suppose more than one pile has two or m
sticks.

1. If we can find a position such that any move tha
made leads to a position that is unbalanced bec
of (b) or (c), that position is balanced.



2. If not, we can try to postpone things to arrive
such a position eventually. We can achieve this
following the Nim strategy until we get to such
position!

Suppose we begin with a position that is balanced (in N
Any move our opponent makes creates an unbalanced po
(in Nim). This cannot be a position with no piles with mc
than one stick (because the case we are considering as:
more than one such pile). If the opponent’s move result
exactly one pile with more than one stick, we apply part ()

If the position obtained still has more than one pile w
two or more sticks, we rebalance as in Nim. Continuing
process we eventually arrive at a situation in which (b) r
applies.

Thus the Nim and Misére Nim games have exactly the s
balanced positions except when case (b) applies.

Problem 149, page 236

Although Nim has a very subtle strategy that required u
learn the binary system and compute sums of binary digis
strategy for Reverse Nim is quite easy.

We observe quickly that the balanced positions are tt
with an even number of sticks in each pile. The final posi
of no sticks satisfies the condition since zero is an even ear
Any move from such a position leaves at least one pile witl



odd number of sticks. And by taking one stick from each |
with an odd number of sticks, we have restored a position
all piles having an even number.

Problem 150, page 236

Don't jump to the conclusion that the balanced positions
those with all piles odd. Verify that that won’t work

Does the term “reverse” in the title of this section sugg
anything? If you think about that, you might see the answie
not, see Sectio.8.1

Problem 151, page 246

If there aren sticks in the pile (there is only one pile) th
the only positions in the game axe=0,1,2,....n. Certainly
g(0) = 0 andg(1) = 1. You can use induction to prove th

g(x) =x.

Problem 152, page 246

Let us usgy(a, b, c) to denote the value of the Sprague-Grur
function for a position(a, b,c) in the game. There are 24 pc
sible positions in all in this particular game and we neec
computeg(a, b, c) for each.



Certainlyg(0,0,0) = 0. These positions all lead direct
and only to(0,0,0):

(0,0,1),(0,1,0), (1,0,0)

and so each of these must be assigned a value of 1. The pc
(0,0,2) leads only to

(0,0,0) and(0,0,1)

and sog(0,0,2) = 2 (must be different from 0 and 1). Tt
position(0,0, 3) leads only to

(0,0,0),(0,0,1) and(0,0,2)

and sog(0,0,3) = 3 (must be different from 0 and 1 and 2).
The position(1,1,0) (which we happen to know is ba
anced) leads only t¢1,0,0) and(0,1,0) both of which have
agvalue of 1. Thug(1,1,0) =0.
Continue in this way working from the end of the gai
backwards. Note that we cannot determiiig, 2,3) until we
know all Sprague-Grundy values of all the positions

(0,2,3), (1,1,3), (1,0,3), (1,2,2), (1,2,1), and(1,2,0).

(We don't yet.) Then we would pick fay(1, 2, 3) the smalles
nonnegative number that hasn’'t been assigned for these
tions.



While we may lose patience with this procedure it is ide:
suited to computer programming. Thus, in practice, conmgu
the Sprague-Grundy function for all positions in a reasdn:
sized game takes no time at all.

Problem 153, page 246

First begin by computing the Sprague-Grundy function fc
number of positions in the game. Start at the lowest depthis
work up. This is rather tedious but will lead to an understz
ing of how this works. Figure 3.42 shows Depth and Sprag
Grundy numbers for various positions in 2—pile Nim. Deptl
defined in SectioR.2.6



Position(m,n)

Depth

=}

(0,0)
(1,0)
0.1
Ly
(2.0)
0.2
1
(12
3.0)
(2.2)
(CH)
(1.3)
3.2
(4.1)
(14
(5.0)
(0.5)
3.3
(4.2)

Position(m,n)

=}

(2.4
()
(1.5)
(6,0)
(0.6)
(4.3)
34
(5.2)
(2,5)
(6.1)
(1.6)
(7,0)
07
(4,4)
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The table shows our computations for the Sprague-Grt
numbers up to a few at depth 8. Let us illustrate the metho
showing that

2®3=1.

The Grundy number fof2, 3) is not completely easy to con
pute, butitis a straightforward computation. Just looKlaha
positions next aftef2, 3):

(2,3)~(2,2), (2.1), (2,0), (1,3), (0,3)
and the five Grundy numbers for these positions are
03223

as we have already computed since they are at lower dep
the game. The smallest number that does not appear is
Grundy(2,3) = 1 and consequently, as

Grundy(py, p2) = p1® P2

holds in our notation, then we can writet23 = 1.
Such a “sum” may at first appear to be rather myster
perhaps, but not in binary:

- (3)e(1)-(2)

Let us pick a few more mysterious sums from the table



display them in binary:

e (1)(1-(1)-
(3] (1)-(1)-

Try a few more and you will doubtless see the pattern whict
Nim-sum section which follows now explains. Try to verbel
what you have observed before reading on to a full descrig
of what a Nim sum is.

Problem 154, page 246

The method we use is the same method that will work to pi
the Sprague-Grundy theorem in Secti®i0.4 It is a good
warm-up to that theorem to try to see how this works here.

At depth zero the statement is evidently true since it ams
only to the fact that the Grundy number for the end posi
(0,0) in 2—pile Nim is exactly @ 0= 0. Thus it is only the
induction step that takes us some trouble.

Suppose that the positidips, p2) is at a depth for whict
we know that, for all positiongm,n) at any lower depth, thi
Grundy number fofm,n) in Nim is exactlym® n where this



is the Nim-sum (i.e., binary addition without carry). Ouppf
below uses the assumption that we already know this is tr
any lower depth.
Let
b= p1® p2

In order for us to prove that Grun@y:, p2) = b we must show
that both of these statements are true:

1. For every non-negative integak b, there is a follower
of (p1, p2) in Nim that has Grundy valua

2. No follower of (p1, p2) has the Grundy valule.

Then the Grundy value &p1, p2), being the smallest value n
assumed by one of its followers, mustline

To show (1), led = a® b and letk be the number of digit:
in the binary expansion af, so that

1< g < 2K

andd has a 1 bit in the kth position in the binary expansion

We have to remember now thdi= ad b and remember to
how the binary without carry operatian works. Sincea < b,
b must have a 1 in the kth position aadnust have a 0 there
Since

b=p1®p2

we see thap; [or perhapspz] would have to have the proper
that the binary expansion gf [or perhapsp,] has a 1 in the



kth position.
Suppose for simplicity that it is the first case. Then

do p1 < p1.

Define
pr=d® pr.
The move from(py, p2) to (pj, p2) is a legal move in 2—pile
Nim and
PLEp=dep@p=dob=(a®b)db=ad (bab)=a

We have produced the move

(p1, P2) ~~ (P1, P2)

for which
PP p2=a

Since this position is at a lower depth we know (by our ind
tion hypothesis) that

Grundy(pj, p2) = P12 = a.

Thus the follower p, p2) in Nim has a Grundy numbex This
verifies our first statement.

Finally, to show (2), suppose to the contrary thpt, p2)
has a follower with the same Grundy valleWe can suppos



that this involves removing sticks from the first pile. (Thre
gument would be similar if it involved the second pile.)

That is, we suppose th@p/, p2) is a follower of (py, p2)
and that

Grundy(p}, p2) = Py ® P2 = P1® P2-

(Here we have again used our induction hypothesis sinc
position (pj, p2) is at a lower depth.) Just like in ordina
arithmetic (using+ instead of as here) we can cancel the
two identical terms in the equation

P] @& P2 = P1& P2.

and conclude that
P1 = P1.
But this is impossible since
pL> P
since we have removed some sticks from the first pile. T
completes the proof at the induction step and so the state
must be true at all depths.
Problem 156, page 255

We simply note thain® n= 0 if and only ifm=n.



Problem 157, page 255

Since 6233 = (192)®3 =393 =0 it follows that the
position(1,2,3) is balanced. The other computation,

26304=(203)@4=104=5+0,

shows that2,3,4) is not.

Problem 158, page 255

We have computed the Grundy number for this position to
20304=(203)®p4=1p4=".
We know that 355=0 so
(502)®334=0

and
2¢ (395 ®4=0

and
203® (495)=0.

Check each of these numbers in the table:

(5®2)=7and(3®5) =6and(4®5)=1.



The only one that helps is the last one which tells us to rec
the pile with 4 down to 1 to change this position to a balan
position. We could also increase the pile with 2 up to 7 or
pile with 3 up to 6 but the rules of Nim don't allow us to a
sticks. (That would be playing the game backwards, retgy|
to a previous balanced position.)

Problem 159, page 257
133 12®8=09.

Problem 160, page 258
Set up the problem this way:

33 =1 0 0 1 1 0
o x = ?2 ?2 ?2 2 2?2 2
25 = 1 1 0 0 1

and remember to perform the binary addition without ca
Clearlyx is 111111 in binary. (What's that in decimal no
tion?)

Problem 161, page 258

You can easily check that®d n= 0 and so

nendn=(nNe&n)eén=0en=n.



In general, thenn@n@&na --- d nis either 0 om depending
on whether you are summing an even or odd number of ter

Problem 162, page 258

The associative rule
(men)&p=me (N p)

is stated in the lemma. The zero element of the group is @,it
since
(M®0)=04&m=0

and every element has an inverse for the operatiensince
nen=0.

Thus this is a group, a commutative group in fact simeen =
n&® mis always true.

Problem 163, page 258

It is certainly true that
(3,10,12) — (395,10,12)

(3,10,12) — (3,109:5,12)



and
(3,10,12) — (3,10,1245).

produce balanced positions but only one of these is a vatid
move. We have teubtractsticks from one of the piles and tw
of these suggestiorald sticks.

Problem 164, page 259

It is certainly true that
(3,10,12) — (3,10,[3® 10])

(3,10,12) — (3,[34 12,12
and
(3,10,12) — ([106»12],10,12)

produce balanced positions but only one of these is a vatid
move. We have teubtractsticks from one of the piles and tw
of these suggestiorald sticks.



Chapter 4

Links

Figure 4.1: Borromean rings (three interlinked circles).

Figure4.1shows three interlinked circles arranged in suc
way that should any one of the three circles be cut and remc
the remaining two circles would become separated. This
rangement has been known for many centuries and, becau
the number 3 and the special nature of the linking, has |



used for various symbolic representations.
Some suggest that an image of God as three interlaced
inspired Dante Alighieri (1265-1321). In hidivina Commedie

he describes this visioh:

Ne la profonda e chiara sussistenza

de I'alto lume parvermi tre giri

i tre colori e d’'una contenenza;

e I'un da l'altro come iri da iri

parea reflesso, e'l terzo parea foco

che quinci e quindi igualmente si spiri.

—([Dante,Paradisq 8§33, 115-120]

On a more profane level the name that is

most often attached to these three interlocked
circles arises from the Borromeo family of s
16th century Milan, who had such a figure o | g]j
their coat-of-arms. Many of our readers migh
prefer to call thes®allantine ringssince the |[if
three interlocked rings have appeared since
1879 as a company logo for Ballantine Ale.
The famous Ballantine three ring symbol (PuF ;
rity, Body, Flavor) was, according to compan \gure
folklore, inspired by the wet rings left on a ta-

ble as Peter Ballantine consumed his beel’a‘I

4.2:
)éallantme

In this chapter we consider a variety of problems relate

1within the profound and shining subsistence of the lofthiigppeared tc
me three circles of three colors and one magnitude; and areesereflectec
by the other, as rainbow by rainbow and the third seemed featbed forth
equally from the one and the other.



this construction. It is easy enough to design three cirttlats
interlink in the way the Borromean rings do. Could one do
same with four or five circles? Or could we arrange for ot
kinds of linking properties, say five rings linked togethleatt
do not fully separate unless two (any two) are cut away?

Our discovery process in this task is similar in many w
to the process that we followed in our Tiling chapter. As loef
we don't see immediately how any of the standard mett
of arithmetic, algebra, or geometry could be brought to |
on such problems. Once again we need to gitehfor the
problem by experimenting with a few examples.

4.1 Linking circles

Look at the two pairs of circles in Figu®3. Our sketch is
meant to suggest that they are curves in three dimensions

A B C D
Figure 4.3: Four circles.

The picture displays the fact that the circlésandB are
not linked together while the circléd andD are. This mean:



thatC andD cannot be separated (without cutting or tearir
We are going to consider a certain class of problems invgl
the ways in which three-dimensional curves can be linkee.
curves need not be circles.

4.1.1 Simple, closed curves

Before we state the first problem, we should make sure
agree on what a curve is or, more precisely, on what kinc
curves we shall be considering.

All of our curves are placed ithree dimensionand all are
simpleandclosedin the sense we now define.

Consider the five curves sketched in Figdré

28 8L

Figure 4.4: Simple curves, closed curves or not?

A curve is calledsimpleif it does not cross itself. The
means that in tracing out the curve (starting at any point
point except, possibly, the beginning and end of the tra



is encountered more than once. It is caltddsedif it “ends
where it starts.”

ThusA is simple but not closedB is neither simple no
closedC is closed but not simple arld andE are simple anc
closed. Curve€ is depicted in two dimensions and has a crc
ing point. Curvek is intended to be three-dimensional. P
of the curve—the part that appears as a break—Ilies belo\
darker part that “appears to cross” the broken part. Cn
doesnotcross itself.

The curves that are suitable for the discussion that foll
must be both simple and closed. For that reason, we she
ways assume (in this chapter) that when we use the ¢errre
we mean “simple, closed curve.” All of our curves are giver
three-dimensions.

4.1.2 Shoelace model

You might find it desirable to make a model with which to ¢
periment. Such models will be of use throughout this chaj
so it is a good idea to make such a model now. This cal
done in a variety of ways. For example, using the outer e
of paper plates or wire, construct several rings to repitaker
curves. Two or three of these rings should be pre-cut in st
way that they can be easily removed from a configuration w
out disturbing the rest of the configuration. We refer to ts:
“cutting away a curve.” You will also need something me
flexible for your experimentation. A long shoelace or ribk



will do. Figure4.5shows some equipment that might be us

Figure 4.5: Equipment for making models.

4.1.3 Linking three curves

Do you think it is possible to construct three curves that
linked in such a way that, if we cut away one of the three cur
the remaining two will remain linked? By this we mean that
matter which of the three curvege cut away, the remainin
two cannotbe separated without cutting or tearing. (Pulling
all right.)

Here is a different but related question:

2photo courtesy of Curry Sawyer.



Is it possible for three curves to be linked together
in such a way that no curve can be separated from
the configuration without cutting or tearing, but if
one is cut away, the remaining two can be sepa-
rated?

As before, we mean by this thab matter which of the
threeis cut away, the remaining twoan be separated. Thu
in a sense, the “break point” is at two curves: the configare
“hangs together” as originally constructed, but removahc
single curve causes the remaining configuration to “falktp:

The Borromean rings of Figuré. 1 give a positive answe
to the latter question. Check that Figutel does answer th
second question but not the first.

Problem 165 Is it possible to construct three curves that
linked in such a way that if we cut away any one of the tt
curves, the remaining two will remain linked?  Answer O

Problem 166 Without looking again at Figurel.1, describe
three curves linked together in such a way that no curve
be separated from the configuration without cutting or tagr
but, if one is cut away, the remaining two can be separatec
Answer O

4.1.4 3-1 and 3-2 configurations

Let us call the configuration that we constructed in Prokiléi
a 3-1 configuration. The “3” refers to the fact that there



three curves; the “1” indicates that theeaking points at 1—
the configuration can’t be separated without cutting oriteg
until we get down to one curve.

We call the second configuration (the Borromean ring
3-2 configuration because there are three curves linkeccn
a way that the configuration hangs together, but removalyf
one of the three curves by cutting causes the other two ct
to fall apart with no more than pull in the appropriate place
The breaking point is at 2.

4.1.5 A 4-3 configuration

What should we mean by a 4-3 configuration? Well, that wc
be a configuration of four curves linked together in such a:
that they hang together but cutting away one of the curvesas
the remaining three to fall apart. And this is true no ma
which of the four curves is cut away. In short the break
point is at three curves—any three.

Problem 167 Do you think it is possible to construct a 4-
configuration? Answer O

4.1.6 Notso easy?

Experience has shown that many students have difficult
their first attempts to construct a 4-3 configuration. As
fore, we may as well begin by placing three separated cu
near each other. This represents the initial setup. We tlye



to weave a fourth curve (the shoelace) through them in o
to construct the 4-3 configuration. Then, no matter how th
done, we can at least be assured that removal of the shc
will cause the remaining three curves to fall apart. (They
already separated.)

But then the trouble begins. Unless we have a very us
model, or three or four hands, or a friend to hold part of
model while we do our weaving, we wind up with knots in 1
shoelace, the model falling on the floor or other such proble

And to make things worse, when we finally get things
gether it almost works. But then we try to cut away a curv
“check it out” and see it does not quite work. A little chan
might do it, but by now we forgot what we did to make it :
most work. Frustrating. We know. We tried and it happene
us.

There must be a better way. Even if we had a good mc
four hands, a friend to help, and we solved this problem v
will we do when we get to more complicated linking problen

4.1.7 Finding the right notation

Let’s return to the 3-2 configuration. We might observe 1
our construction method solved the problem. We could
a model that worked, but the language was awkward and
munication was difficult. We had to talk about the “curve
the right,” and the “remaining curve.” And we drew a pictt
which suggested words such as the following:



“go through the curve on the left from top to bot-
tom, then the curve on the right from top to bottom,
then the curve on the left from bottom to top, then
the curve on the right from bottom to top and then
return to the starting point.”

(We might add “Do not passo and do not collect $200.")
We could simplify things considerably with a bit abta-
tion. If we label the curve on the lefk and the curve on th
right B, our description could be writtehBA’BP.
Simple, isn’t it? After working a bit with the notation yc
will find that it has made things quite easy. The notation ¢
tains all essential ingredients. The expression

ABABP
is read from left to right and translates into

“Go throughA, thenB, thenA backwards, theB
backwards.”

(The fact that we ended where we started is understood ar
parenthetical reference to the gamévtsinopoly™ is of course
unnecessary.)

All we needed was a labeling of the curves (other than
shoelace) and our notation provides a “recipe” or a set o
rections for the construction. There are, of course, twogs
we are assuming tacitly: we are assuming the first curves



already been labeled and placed appropriately, and we al
suming that in passing through a given curve there are tw
rections we could use, one positive and one negative. Tleu
notationA and AP represent passing throudh but in the first
case the shoelace passes throAgh the direction we callec
positive and on the second it was in the opposite direction.

Which direction we designate as positive (for each cu
is immaterial, but once we have chosen it, it is essentiahtle
remain consistent. We shall answer Proble®7 soon. If you
were unable to solve it, try it again, but first do the proble
below.

Pulling is allowed, but remember, the weaving mast
where it started and the shoelace is assumed solidly atte
at its “two ends.” (The quotation marks are there becaust
shoelace is just a physical model of the concept of simpkeecl
curve and we are not really thinking of such a curve as ha
endsany more than we do of a rubber band or a circle.)

Problem 168 Let A and B be separated curves. Weave Y
shoelace through the curves A and B according to each o
descriptions below:

BABPAP, APBAR®, AAPBBP, AAAPAP and ABEAP.

Provide a pencil sketch of the result (if you can) as well &s

lowing the instructions on your physical model. (This peshl

and the next two should be done together. Use your mode
Answer D



Problem 169 Which of the descriptions in Problet68 lead
to a 3-2 configuration? Answer O

Problem 170 Which of the descriptions in Probleht8lead to
a configuration that can be separated without cutting or te

ing.
Answer O

Problem 171 Study the results of Problefr68 Problem169,
and Probleml70. What patterns do you notice in those wh
give rise to 3—2 configurations? Do you nhotice any symmet
Do you notice anydelayed undoingsf things already done
Try to articulate for yourself what makes the 3—2 configuna
work. Answer O

Figure 4.6: Cole and Eva with model.



Problem 172 Figure 4.6 shows Cole and Eva with a model
a configuration. Is this one of the configurations we have
cussed?

Answer O

Problem 173 Construct a 4-3 configuration. Answer O

4.2 Algebraic systems

Perhaps you have noticed similarities between our notatiok
things you remember from arithmetic or algebra. First ofal
expression such &sB is reminiscent of the operation of mu
tiplication. Of course, in our setting andB do not represen
numbers. Far from it. And writin@ next toA doesn’t mear
we multiply Aby B. That wouldn't make sense in our setting

To get a better idea of what we mean when we say tha
notation is reminiscent of algebra, we shall undertake lzere
long-winded digression.

An algebraic systernonsists of a collection of objects (e.
numbers), one or more operations (e.g., addition or midap|
tion), and some rules or axioms governing the ways in wi
these objects can be combined. Familiar to us from the rdle
arithmetic are the commutative and associative laws forr
tiplication: whatever number&, B andC we choose, it will
always be true thafB = BA and that(AB)C = A(BC). For



example 2x 3= 3 x 2 since both equal 6 and
(2x3)x4=2x%x(3x4)

since both equal 24. This is a theorem: technically2and
3 x 2 mean two different things, but they can be proved tc
equal. Similarly(2 x 3) x 4 and 2x (3 x 4) mean two differen
things but they can be proved to be equal for numbers ani
operation of multiplication. It is rules similar to theseattwe
are interested in when discussing algebraic systems. dhde
some algebraic systems, things look pretty much the san
they do in ordinary algebra or arithmetic.

4.2.1 Some familiar algebraic systems

Here are some examples of algebraic systems with which
may or may not be familiar.

1. The objects arpolynomials They can be added or mu
tiplied and the laws of combination that apply to numb
apply here as well. For example

M 4x+1)+[3x—2) =x*+4x—1
and
P+x+1] x[3x— 2] =3+ X +x—2.

2. The objects aréunctions They, too, can be added |



multiplied and the laws apply. For exampfe-+ sinx is
obtained by adding the functioff to the function six.
Furthermorex? + sinx = sinx+ x2.

3. The objects arenatricesof fixed dimension. Additior
and multiplication are defined but the commutative |
of multiplication does not hold. For example

1 00 0 1 1 1 11
1 2 3 |+ 2 0 -1 |= 3 2 2
-1 0 5 -2 0 -1 -3 0 4

4. The objects areectors Again addition can be defined |
a natural way and the usual laws hold with respect to
operation of addition. For example

(1,2,3)+ (5,6,—3) = (6,8,0).

4.2.2 Linking and algebraic systems

In the setting of our linking problems, each configuratioregi
rise to an algebraic system. The configuration is $heat-

ing set-up for example, two separated curvesandB. Each
shoelacayives rise to ambjectof this algebraic system via if
formula The formulais just a string of the letters (in this cés
andB) that corresponds to the way the shoelace links the ct
in the starting set-up. We discuss this in more detail latéhnis

chapter in Sectiod.9.2



For example, the expression
ABA’BB

would represent the curve that goes throéglthenB, thenA

backwards then twice throuddand then returns to the startir
point. Theoperationfor the system can be describedase
object of the system following anothexs an example, iK =

ABandY = A°BB, thenXY = ABA’BB.

In order to create an algebraic system we must do se
more things: we must decide what it means for two of our
jects to beequaland we must determine what the basiws of
combinatiorare.

4.2.3 When are two objects equal?

What should it mean for two objects to bgual?This does not
mean that they are the exact same expression. It depends
algebraic system to interpret equality. For example in tbe
mentary theory of fractions/2 and 2/4 and 1734 are definec
to be equal, even though they are not identical expression:
Well, for our purposes in the linking problems, it would
natural to define equality in such a way that two objects
equal if and only if they have exactly the same linking pref
ties. For example,

AAP BB®, APA, BB, AB’BAP, andAAAAAPAP



all are different expressions for the shoelace which lirdither
A norB. That is, an appropriate pull on the shoelace will se
free from the curved andB. Similarly,

A, ABR, AAPA, andBAA’BPA

all represent the same linking properties: a curve thaffface
goes througt and returns home.

Problem 174 Interpret, for this problem, A and B as positi
numbers and interpret®and B’ to be the reciprocald /A and
1/B. Compute each of the expressions

AA> BB®, APA, BB, AB’BAP, and AAARAPAP.
Answer O

Problem 175 Under the same interpretation as in Problém4
compute each of the expressions

A, ABB’, AAPA, and BAABPA.

Answer O

4.2.4 Inverse notation

For numbers we wouldn’t writd? for the reciprocal oA. We
would write A~1. ThusAA™1 = A=A =1 for numbers; e.g.
5x51=5"1x5=1. This suggests that we should use



same notation for our linking instruction to go backwardsis]
suggests, too, that we should use the symbol 1, not for the |
ber one, but for any curve that doesn't link eitifeor B. Our
notation becomes even more reminiscent of algebra.

We would see quickly, for example, that in our setting

AA 1 ABB AL or AlaAATT

are all equal to 1. It would also be true, just as in ordin
arithmetic, that
IA=A1=A

(If a curve doesn’t link anything and then links in effect it
has linked onhyA).

Thus we shall decide on the more natural algebraic note
A~1lto representthe instruction to go throuybackwards. We
can then use our elementary skills in algebra to help us \
out the effect of such complicated expressions as we sg
Probleml74and Probleni75 Those expressions now assu
the simpler and more familiar form

AAL BB ! A'A B7!B, AB'BA!, andAAAAIATIATT
all of which reduce easily to 1 and
A, ABB 1, AATIA, andBAABA

all of which reduce easily té.



4.2.5 The laws of combination
We can now easily verify that

e The commutative lawails: AB andBA are, in general
different.

e The associative law is validA(BC) = (AB)C) is always
true.

You can use your models to check these facts, or you car
give simple arguments to verify this. For example, since

ABA !
gives rise to the 3—-2 configuration while
AABB =1

we see the commutative law fails. On the other haki@®C)
represents going through then throughB andC, then home
That has exactly the same effect as the linkiA8)C.

Problem 176 Use your model to verify that
ABA B +£1.

(The commutative law does not hold.) O



4.2.6 Applying our algebra to linking problems

Where does all this get us? For one thing, it allows us in s
cases to check the linking effect algebraically withougrehce
to a picture or model. For example, we can reduce the ex|
sion

ABA BB !AA!B

algebraically as follows
ABA BB 'AAB=ABA 111B= ABA 1B

Thus, in effect, our shoelace has gone through A, e
thenA backwards, theB. We can reduce this no further.

Cutting away But there is something even more useful ¢
tained in our algebraic system. Our algebraic system iscpe
ularly useful when it comes toutting awayone of the circles
Consider the expression

ABA 1B,

which we saw gave rise to the 3-2 configuration when apy
to two separated circles. What happens when we cut awa
circle A? We saw that the shoelace @avere not linked.

But we can tell thigust by inspectinghe expression

ABA 1B L.



How is cutting awayA reflected in the expressigkBA 1B~1?
If Ais cut away, then we in effect have a netarting set up
the one circleB. Where the shoelace originally went throu
Ais now an empty space.

Simply remove the symb@l (andA~1) whenever it appear
in the expressioABA B, We arrive at the expressi@B*
which of course equals 1, a curve that links nothing.

What we have just seen is an essential step in our atten
construct configurations exhibiting certain linking proes.
To make sure we understand it, use your model to answe
next problem where one circle has been cut away.

Problem 177 Start with three separated circles A, B and
What happens when B is cut away from the expressions .
ABCA1B~IC-1 and ABA1B 1. Answer O

4.3 Return to the 4-3 configuration

Now we return to the 4-3 configuration. We begin with th
separated circled, B andC. We wish to wind our shoelac
throughA, B andC in such a way that the configuration har
together, but removal of one of the curves causes the rengp
three curves to fall apart. This must be true no matter whic
the curves we remove.

Translated into our algebraic setting, we seek an expne:
involving the lettersA, B, andC that does not reduce to an €



pression with fewer letters, but removal of a single leterses
the expression to reduce to 1.

Before trying to achieve this, observe that for the 3-2 ¢
figuration, the expressioABA B~ does not reduce, but ir
deed removal of eitheh or B causes the resulting expressi
to collapse to 1.

4.3.1 Solving the 4-3 configuration

There are a number of ways of achieving the 4—3 configura
Here is one of them, which you may have discovered

ABA 1B IcBaB A 1c?

Try it on your model, making sure to avokhots.Observe,
removal ofA results in the expression

BB lcBBlcl=1ciCcl=ccl=1
The same is true B is removed. IfC is removed, we obtain
ABA B !BAB Al =ABA 11AB A
=ABIB A l=ABB A l=A1A1=AA1=1
Undoing If we understand the algebraic model, this last cc

putation can be greatly simplified. We must observe only
removal ofC causes successiwmllapses from inside to ou



side. Look at the expression for the 4—-3 configuration ce
fully to see what'’s involved. Each actionusidonen little later.
For A andB, the undoing is postponed only one step, butGc
it is postponed several steps. Let’s see why that works. éfic
in the expression is anothendoing.The entire expression

ABA 1B71
is undone by the expression
BAB*A!
because
(ABA'B 1) (BAB AT = 1.

In our algebraic notation this means that
(ABA1B1) ' = (BABIATY).

Observe that to achieve this, we have undone each lir
ABA1B~! but in the reverse order. It's like putting on yo
socks and shoes. To undo that action, you undo each ste
in the reverse order, you first take off your shoes and then
socks. Or, at least, we do. The same is true for any linking
undo it, that is to find an expression for the inverse, you u
each link but in the reverse order.



Problem 178 Check each of these statements on your moc
(ABCBY) '=BC B A ! and (ABY) T=BAL
O

Problem 179 Compatre the expressions for the shoelace in
3-2 and 4-3 configurations:

e The 3-2:ABA 1B 1,

e The 4-3:ABA 1B 'CBAB'A"1C 1= (ABA 1B 1)C(ABA™
Answer O

Problem 180 Construct a 5—-4 configuration. Answer O

4.4 Constructing a 5—4 configuration

Once we understand what makes the construction of the
configuration work, we find the problem of constructing a *
configuration a bit less challenging. We begin with four s
arated circles and label thef& B, C, andD. We now wish
to weave the fifth curve through these circles in an apprc
ate way. We know by now that we must undo each actio
a later time. Just how much later this should be might nov
apparent.



4.4.1 The plan

In case it is not yet entirely clear, consider the followirgm

e For a 3-2 configuration, begin with two separated cir
A andB and this expression for the last curve

ABA 1B 1.

e For a 4-3 configuration, begin with three separated
clesA, B, andC and this expression for the last curve

ABA 1B-IcBAB A 1C 1.

Noting, as we did before, that the expression for the fo
curve in the 4-3 configuration can be written in the fot@X ¢
where

X =ABA B!

we are naturally led to try the formula
yby D!
for the fifth curve of the 5—4 configuration, with
Y =ABA !B icBAB A IC?
This becomes

ABA 1B-cBAB !A-lcDcaBA B ic1BAB A DL



4.4.2 \erification

To verify that our proposed solution

ABA 1B-cBaB A lIcDcaBA B Ic1BAB 1A 1D !
(4.1)
works we must check these two things:

e The entire configuration hangs together.

e The removal of any one of the five curves causes the
maining curves to fall apart.

That the configuration hangs together is probably clea
now. You can check it with a model, but you can see it m
easily from the algebraic model. No reduction is possibaé
algebraic expressiord (1). This is because the only admissit
simplifications allowable are to replace an expression S
XX~1 by | and to therdrop the 1, and no such expression ¢
pearsin{.1).

To check that removal of any one of the curves cause:
remaining curves to fall apart, we must verify that remowa
a single letter whenever it appears causes the entire eskqine
to reduce to 1. We do this for the lettArand leave it to yoL
to verify that this happens when the lettd8<or C or D are
removed instead k. Removal ofA leads to the expression

BB cBB cipcBB c BB D!

=1cicipcic b t=ccipccip?



=1D1D 1=DD 1=1.

Do you think you could have constructed the 5-4 con
uration using only trial and error on your model? Note t
the shoelacehad to go through the curves 22 times in all.
perhaps you found a simpler solution.

4.4.3 How about a 6-5 configuration?

Suppose we now wanted to construct a 6-5 configuration. |
our solution of the 5-4 configuration lead us on to more ¢
plicated problems?

The pattern is probably clear by now, but the notatior
getting rather out of hand. Note, for example, that the

e 3-2 configuration required 4 winds by the shoelace.
e the 4-3 configuration required 10 winds by the shoele
e the 5-4 configuration required 22 winds by the shoel

A bit of reflection would show that the 6-5 configurati
would require 46 winds by the shoelace. Some simplifica
of notation is necessary, or at least desirable, here.

We note that each of the three configurations we have
structed so far is of the form

uvu-iv-1



wherel is an expression involving, perhaps, several winds
V represents a single wind. For example, in the 4-3 config
tion,

U=ABA B

and
V =C.

This suggests our new notation.

4.4.4 Improving our notation again

Let us introduce some short-hand notatiorJ landV are any
expressions involving several letters (suchfas3, C, D, E,
etc.), let us writgU,V) to represent the expression

(U,V)=Uvu v-1

Thus forU = ABA 1B~ andV = C the expressiofJ,V)
becomes

(U,V) = (ABA B ) C(ABA 1B 'C T
=ABAB-IcBAB A ICL.
This gives us a compact notation.

Problem 181 Verify that, in this notation, the fifth curve for tt



5—4 configuration becomes
(((A,B),C),D).

O

Problem 182 Write the sixth curve of the 6-5 configuration
the compact form. Answer O

Problem 183 Show that if A= 1 in the expressiofi(A,B),C),
then

Answer O

Problem 184 Show that if B= 1 in the expressiofi(A,B),C),
then

O

Problem 185 Show that if C= 1 in the expressiofi(A,B),C),
then

4.5 Commutators

The expressiolfA, B) has a name in the study of algebra. |
called thecommutatoiof A andB. More generally, ifX andY



are any expressions in several letters, tt¥érY) is called the
commutatoiof X andY. For instance, if

X =ABA B!
andY = C then
(X,Y)=XYxy-l=aBA 1B icBAB A lC?

which we saw gives the fourth curve in the 4-3 configurat
Since
ABA1B~1=(AB),

the expressioiiX,Y) above equal§(A, B),C). This is a com-
mutator, one of whose terms is itself a commutator. We
such an expressionampound commutatoBecause of wha
will follow shortly, it is important to understand this conum
tator notation. As practice with the notation, do each of
following computations before proceeding further.

Problem 186 Show that
1. ((A/B),A 1) =ABA 1B~ A-1BAB!
2. (ALA1),B) =1

3. ((A/1),C),D) =1.
Answer O



Problem 187 To see the importance of putting in all comn
and parentheses in the commutator notation, verify thaeim-(
eral

1. (AB) # (A,B).
2. (AB)"1+# (A B)L.

3. (AB,C) # (A,B)C # ((A,B),C).
O

Problem 188 One reason thatX,Y) is called the commutato
of X and Y is that X¥=Y X if and only if(X,Y) = 1. Prove
this. Answer O

4.6 Moving on.

So far, we have seen how to construct the 3—-2, 4—-3, 54
6-5 configurations. All of these are configurations of theet
(n+1)—n; i.e., the breaking point occurs when a single curv
removed from the configuration.

What if we want the breaking point to occur somew
later? For example, how could we construct a 4—2 conf
ration? First, we must be sure we understand what a 4—2
figuration is. It consists of four curves linked together ircls
a way that the entire configuration hangs together, that vah
of a single curve causes the remaining three to hang toge



but removal of a second curve causes the remaining two t
apart.

Before embarking on the construction of a 4—-2 configt
tion, let us pause for a moment to take stock of where we ¢

4.6.1 Where we are.

After some trial and error with our models we discovered t
to construct the 3—2 configuration. Perhaps we were also
cessful in constructing the 4—3 configuration by this mett
Perhaps not. In any case things quickly became too con
to rely on trial and error and on our simple model. We arri
very naturally at an algebraic formulation of our problems.
It amounted to beginning with an appropriate placernr
of our first few curves and then writing down an express
for the last curve. This expression had to link all the erpt
curves and had to have the property that removal of a si
letter caused the entire expression to reduce to 1. Afterila
we saw the advantage of compact notation, and we introd
the idea of a commutator. All this allowed us to see the st
ture of the configurations in an algebraic setting. Thereev
several new concepts, all of which evolved naturally:

o Algebraic expressions for the last curve.

e How to simplify such algebraic expressions, using id
suggested from elementary algebra.



e The idea of a commutator and the natural extension
compound commutator.

By successive compoundings of the commutator, we v
able to construct more complicated configurations.

We need only one more idea to show us the way to ¢
structing any configuration we wish. This idea will arise
connection with the 4-2 configuration. It will become clee
bit later.

4.6.2 Constructing a 4—-2 configuration.

Let’'s get started with the construction of a 4-2 configurat
First of all, what do we start with? Since the breaking pc
is “2,” we may as well begin with two separated circleand
B. This way, when the two new curves that we shall add
removed, we will end up with the two separated curieand
B that we started with.

Now what? That is, how should the third curve be wo
throughA andB?

Before attempting Problet89and Probleni 90try to de-
termine what concepts are involved. Whether or not you ak
solutions, check our answer. Much of the reasoning in tt
answers will be needed in constructing the configuratioat
follow the 4—2 configuration.

Problem 189 What expression should represent the third cu
Cc? Answer O



Problem 190 What expression should represent the fourth
D, in the 4-2 configuration? Answer O

Problem 191 Compare the two solutions
ABCA B ICc?
and
(A,B)(A,C)(B,C).

How many winds does each require? Would either of tt
methods be useful for obtaining other configurations suc
the 5-2 or 5-3 configuration? Answer O

4.6.3 Constructing 5-2 and 6—2 configurations.

Let us try to imitate the two methods we used for the 4-2 ¢
figuration to construct a 5-2 configuration.

Problem 192 Construct a 5-2 configuration. Begin with tv
separated curves A and B and determine formulae for the
maining curves C, D and E.

Answer O

Problem 193 Construct a 6—2 configuration. Use the mett
that starts off with ABCD... Answer O

Problem 194 Construct a 6—2 configuration. Use the mett
that starts off with(A,B)(A,C)(A,D).... Answer O



4.7 Some more constructions.

What about the 5-3 configuration? How can we use wha
have already learned? How do we begin? The last questic
of course, easy to answer. Since the break pointis “3,” we 1
beginwith three separated curves; B andC.

Arguing as before, we want our fourth curve to wind thro
these three curves in such a way as to form a 4-3 configure

Problem 195 Now what? Answer O

4.8 The general construction

We are now ready to understand the general construction
fore proceeding to that, construct each of the configurat
below. Do this by indicating how many separated curves
the process and then giving the expression for the remai
curves, stating what the result is after each curve is added

For example, the following format for the 6—4 configurat
can serve as a model. Begin with four separated ciréleB,
C, andD.

Add Formula
E (((A,B),C),D)
F | (((AB),C),D)(((A,B),C),E)(((A.B),D),E)(((B,C),D),E)




Problem 196 Construct a 6—3 configuration. Verify that yo
constructions works. O

Problem 197 Construct a 7—3 configuration. Verify that yo
constructions works. O

Problem 198 Construct an 8—4 configuration. Verify that yo
constructions works. Answer O

4.8.1 Introducing a subscript notation

The configurations that Probleri86-198ask for should offel
no serious difficulty (except that they take increasing ant®
of space to write down).

Consider Problem 98 It asked for eight curves linked tc
gether in such a way that the break point occurs at 4 cu
The eighth curveH, was added to a 7—4 configuration. T
formula for the eighth curve involves 35 compound comr
tators on four letters, for examplé(A,B),C),D). Each suct
commutator has twenty-two winds. The eighth curve thus
35x 22= 770 winds. Even the short-hand commutator nc
tion would involve writing down 35 compound commutato
Note that replacind\, B, C or D with a 1 causes all commut:
tors involving that letter to collapse, leaving a 7—4 confégion
as required.

More notation The time has come, once again, to introd
some further short-hand notation. Let's discuss this tordest



kind of notation might be useful.

First, let's look ahead. The 8-4 configuration would b
nuisance to write down in full commutator notation—but
could still do it. What if, for example, we instead wanted
determine the 30th curve in a 30-20 configuration? We
that our alphabet, with only 26 letters, is inadequate.

Of course, we could add the Greek, (3, v, ...), Hebrew
(0, 3,7, 3...), and Old-Germar(, B, €, ...) alphabets ir
order to obtain more symbols to use. But then what woulc
do if we wanted to construct a 300-200 configuration? (
3,000-2000 configuration?

There must be a better way! There is. Itis, in fact, qt
simple (though it may appear complicated at first). First
can solve our dilemma of running out of letters of the alplh
by introducing subscripts. Thus, instead of writing thertht
curve in a 4-3 configuration as

((A,B),C),

we call our first three curved;, A, andAg instead ofA, B and
C. The fourth curveéd4 then has the formula

Aq= ((AlvAZ)vp\"?)'

Then, for example, the fifth curve of the 5-3 configurat
will have the formula

As = ((AlaAZ)aAGX(AlaAZ)aA4>((A1aA\'3>aA4)((A2aAG>aA4>



4.8.2 Product notation

This hasn’t saved us any work yet, but we see, for exan
that it would save us introducing a new letter to our alphéibe
writing the 28th curve in a 28-3 configuration. Let's see f
we can save ourselves some work. Consider, once agail
fifth curve As in the 5-3 configuration. There are several thi
we may notice:

e The formula forAg involves several commutators on th
letters, a typical one beingAs,A2),As).

e The subscripts are in increasing order when we read
left to right.

e The several terms that appear consist of all commutz
of the form((A;,Aj),Ax), with i < j <k <5, wherei, j
andk are chosen from the integers 1, 2, 3 and 4.

If we look at other configurations, such as the 6-5 conf
ration, we would see a similar situation (when we use our
script notation).

How can we incorporate these three observations in a
gle simple compact form? The notation below would foll
standard mathematical notational procedures for contplic
products. Write

= DAL A).
fe i<j|:!<<5((Al J) Ak)



Let’s dissect the notation:

o ((A,A)),A) represents the typical term. For examy
wheni =1, j =2 andk = 4, we get((A1,A2),As).

e The Greek lettefll (upper casen) indicates “product.
We are not actually “multiplying” here, of course, t
the notation we have been using all along suggests “
tiplicative notation.”

e Under the symboll we seei < j < k < 5. This indi-
cates first that the subscripts that appear are in incree
order, and that all such subscripts withj, k integers
greater or equal to 1 and less than 5 are included. N
the “5” tells us thak is no larger than 4.

Example 4.8.1 How would this notation work for the constru
tion of the 8—4 configuration? Let’s do it in detail. We use
customary format with our new notation.

Begin with four separated curvég, Ay, A3 andA4. Add
to thisAs to get a 5—4 configuration, thei to get a 6—4 con
figuration, them; to get a 7—4 configuration and, finalBg to
get a 8—4 configuration. The formulas are evidently:

Ag = (((AlaAZ)aA3)aA4)

i<j<k<l(<6

A7: |_| (((AlaAJ)vAk>aAf)

i<j<k<t<7?



A= ] (((ALA)A)A).

i<j<k<(<8

<

Simple, isn’t it? Note we needed a fourth subscriphere,
because each commutator involved fteiters Note also tha
the stopping point8 in our last formula) agrees with the su
script of the curve we are representing. What would be
formula for the eleventh curve of an [I-6 configuration bhijt
our methods? The answer is simply

A= !_l (((((AhAJ)vAk)vA/Z)aAm)vAn)
i<j<k<l<m<n<ll

Note that cutting away a single curve, sAy, causes al
commutators involving®4 to reduce to 1, so what remains
equivalent to the tenth curve of a 10—6 configuration. Wher
have cut away all but 7 curves, we arrive at the 7—6 config
tion, so cutting away one more curve, causes the remainin
to fall apart.

4.8.3 Subscripts on subscripts

Are we now, finally, finished with these linking problems?
most, but not quite.

Once again, we are soon going to run out of letters—or
subscripts! For example, the 11-6 configuration involved
indices (i.e., letters or subscripts)j, k, £, m, andn. If we



wanted the 100th curve in the 10070 configuration, we wi
need 70 letters. How can we modify our notation one
time to accommodate to such a configuration. As before
introduce numerical subscripts on thebscriptsthemselves!
Thus, in place of, j, k, etc., we uséy, i, i3, etc. We can thel
write A;1 in the 11-6 configuration using as indidgsio, i3,

...ig in place of the more clumsy lettersj, k, ¢, m, n that we
used previously:

A11: I_l (((((Ail7A52>aAi3>aAi4)vA55)vAie>'

i1<ip<iz<ig<is<ig<ll

In practice we would prefer to omit some of the expression
merely indicating with ellipses (i.e., three dots) thattakse
parentheses and subscripts are needed:

A= |_| ((---((AilvAiz)aAh)a---)vAis)'

i1<ip<-<ig<1ll

Why all those dots? The first set of dots indicates that v
haven't written in all of the parentheses: there should kediv
them. We can reduce the mess by eliminating some and u
dots to indicate that more are really intended. The secon
of dots, those undg], indicates that we have omitted the p
of the expression

i3 < i4 < i5



that should be included. Finally, the third set of dots, th
inside the parentheses, indicates that we have not writttei
elementsh, andA;;. The reader of such a formula is expec
to understand what is missing and fill it in if necessary.

This convention saves us some writing once the patte
clearly understood. For example, the 100—70 configure
would be almostimpossibly complicated, but the dots heip ¢
siderably. The 100th curve in that configuration is simplytw
ten as,

A100: I_l (- (AL AL ) - ) Aigg)-

i1<ip<-+<i70<100

Problem 199 Write the 50th curve in a 87—-33 configuration
our new notation. (Assume the first 49 curves form a 4¢

configuration.) Answer O
Problem 200 How many winds are there in the eleventh cu
in an 11-5 configuration? Answer O
4.9 Groups

One of the many aspects of modern mathematics that di
guishes it from say, nineteenth-century mathematics, as
there is nowadays a good deal of emphasisbstract struc-
tures What this amounts to is that mathematicians will of
study some abstract system defined axiomatically, which
on the surface, no connection with the real world.



Why should one study such abstract systems? One re
is this. Many real life situations to which mathematics hasit
successfully applied appear to be quite different in natoué
actually involve the same mathematical analysis and the:
structure. We saw this many times in the chapter on Nim.
studying the abstract structure, one reduces the anatyfis
essentials. Anything one proves within the abstract ggttien
applies to each realization of the abstraction.

One such abstract structure is that gfraup. We shall de-
fine the notion of a group and give a few examples of gro
We won’t develop any of the theory of groups (there are m
excellent books on groups) but the several examples will
gest how a general abstract theory could be useful in stgc
individual instances of the theory.

Definition of a group A groupis a setG together with ar
operation- that satisfies the following fodiconditions:

1) If a andb are elements ofs thena- b also be-
longs toG. (We might writeab for a-b. Some-
times other notation such asor + is used for the
operation to suggest multiplication or addition.)

2) There is an element 1 belonging@such that
a-l=1-a=aforallain G. The element 1 is

SNote that there is no fifth condition requiring thth = b-a. While many

groups do have this property (totemmutative properjywe have seen that oL
group does not.



called the identity. (Some times, when “+” is the
notation for the operation, the identity is denoted
by 0.)

3) If aiis an element o5 then there is an element
a~! called the inverse of such thata-a™t =1
anda—!-a=1. (When+ is the symbol for the
operation, one writes-ain place ofa'.)

4) If a, b, andc are elements oB then(a-b)-c=
a-(b-c). This is called thessociative law

At this point, the definition of a group is, of course, abstr:
Let’s look at some examples.

Example 4.9.1 Let G consist of the positive real numbers, a
let “-” denote usual multiplication (i.e., the operation that
would have written asxX” in elementary school). Then

1. If aandb are positive real numbers, sodsb.
2. The usual number 1 satisfiasl =aand 1-a=a.

3. If ais a positive real number, ther?! is denoted com
monly as Yaanda '-a=1anda-at=1. @lis, of
course, a real positive numbeiaifs.)

4. This is just the usual associative law for the multipli
tion of real numbers.



How we group the numbers does not affect the outcc
For example,
4.(5-6)=4-30=120

and
(4-5)-6=20-6=120

D |

Example 4.9.2 Let G denote the integers (including the ne
tive integers) with + for the operation. Itis easy to see thist
gives us a group. |

4.9.1 Rigid Motions

For those with a bit more background in mathematics, we n
tion that the examples that appeared in Sectichl (polyno-
mials, functions, matrices, vectors) can all be endowet &
group structure by choosing some appropriate group ope:
Other important groups involve symmetries, permutations
tations, or rigid motions in a plane.

To illustrate, we can describe the appropriate group og
tion used in studying the group of rigid motions. It is simiia
our operation in linking.

If A andB are rigid motions in a plane, thekB is just the
the motion achieved by applyirgjthenA. Suppose consists
of translating every point 2 units to the right, aBdotates a
point 90 degrees about the origin. ThAB consists of firs
rotating, then translating, whilBA consists of first translating



then rotating. In Figurd.7we showAB applied to a triangld
with one point at the origin.

Figure 4.7: AB: First rotate the triangle then translate.

Figure4.8showsBA applied to the triangl&. (We see tha
the group of rigid motions is not commutative.)

~~
~.
~

Figure 4.8: BA: First translate the triangle then rotate.



Note It is customary to read from right to left in describil
rigid motions. ThusAB indicates doingB first.

4.9.2 The group of linking operations

Our algebraic work in this chapter can be viewed as pal
group theory. We give an intuitive and mathematically inec
plete description of this view now.

Suppose we begin, as we have many times, with three
separated circle, B, andC in space. We view this as a startil
set-up. Each starting set-up leads to its own linking gré8pe
Sectiond.2.2)

We consider all possible ways of weaving a fourth cu
throughA, B, andC and write down what we called oformula
for the fourth curve.For example ABC* would mean this:
our curve goes through, thenB and then backwards throug
C and finally returns to its starting point. Thastiondescribed
by ABC ! is an element of our group. So is any similar acti

What is our group operation that corresponds to tiewe
used in our definition of a group? It is simpdpingone action
then the other. For example, if we firgd ABC* and therdo
BAC A we get

ABC 1BAC!A

(ABC ). (BAC'A).

In this case, there are no simplifications possible. Sonestj



as we saw, there are simplifications possible. For example
(ABA1B71). (BAB 1AL

reduces to 1. This follows from the associative law in the-c
nition of a group. We leave it to the reader to verify that w
we have been doing with links will satisfy the four stated ¢
ditions defining a group.

If we look at our first two examples of groups, involvil
ordinary numbers, we see that those groupscaramutative
groups,(e.g.,.a-b=b-aanda+b=b+ain the two examples)
We have already observed that the groups involved with
linking problems are not always commutative. For exampl
AandB are separated circles, thAB # BA We can check thit
by using our model and verifying tha&tBA 1B~1 £ 1, i.e., it
does not reduce to a curve that links neitAer B.

Problem 201 Begin with twolinked circles A and B. Wind ¢
third curve through A and B according to the formula ABB~1
Show that the third curve can be pulled free from A anc
thereby showing that AB BA. (See Problerh88in Sectiort.5.]
O

Problem201 illustrates one simple situation of a linkir
problem that gives rise to a commutative group. More ge
ally, our groups are noncommutative, although a group m
have special relations in it that do commutate. For exanifp
A andB are linked, buC is separated fronA andB, then the



relationAB = BAis valid on the resulting group, but we cat
write, for exampleAC=CA. (Make a model.) Thus, for exan
ple, we can writetABC = BAC, but we can’t writeABC= ACB
if we want to make a correct assertion in this group.

Problem 202 Suppose that the circles A and B are linked,
C is separated from A and B. Simplify each of the followinc

ABA1B~!A and ABCAIB!A.

Where feasible, check with a model. O

4.10 Summary and perspectives

There are a number of things to be learned from this cha
Let's review what we did.

1. We started with two simple configurations (the 3-2
3-1 configurations) and then asked for the construc
of a 4-3 configuration.

2. It became clear that pictures were inadequate for e»
imentation. So we made models which helped exg
mentation.

3. But the models soon proved inadequate. We came
urally to a method of keeping track of our actions:
bookkeeping system. This system soon began to



like ordinary algebra, although symbols suchfddid
not mean multiplication of numbers.

. We soon saw that this simple bookkeeping system
actually an algebraic system with very simple propert
And, more importantlyit related directly to our linking
problems

Cutting away a curve corresponded to removing the
responding letter. That little bit of algebraic structt
helped enormously in solving the simpler linking prc
lems. They were simpler because of our algebraic m
ods. The 5-3 configuration, for example, may have b
impossibly difficult for us to construct without such
system.

. The algebraic formulation actually helped pinpoint
intuitive idea of undoing everything we do, but to de
such undoings an appropriate length of time.

. Even our algebra became prohibitive once we gotton
complicated figures. The expressions just got too Ic
So we incorporated our intuition into the algebra and
troduced commutators and compound commutators.
two useful notions involved “compounding” of comm
tators and “multiplying” commutators.

. Even here, our notation was inadequate when we
cussed configurations such as the 8—4 configurations



10.

notion of commutator simplified things, but still the
were just too many commutators to combine.

. So we finally obtained adequate notation in Secti@nl

. Note that our final notation does more than just sho

the writing of a formula. It contains the entire structt
of any of our configurations. When we began the li
ing problems, we may have had no idea where we v
heading. As we progressed we learned more and f
about the structure afk configurations, and we inco
porated what we learned in our notation. Sectiod.1
developed the entire structure of such configuration:
least those constructed by our methods.

We also saw that some methods had the advanta
simplicity, but also had the disadvantage of not point
us in the best direction for proceeding. For example,
fourth curve in the 4-2 configuration could be taken :

D=ABCA B Ic L

This helped us obtain th&h curve in ther2 configura-
tion, but gave no hint for constructing the3 configura-
tions. Our other method was less efficient, but did ¢
us such a hint. This phenomenon often occurs in ma
matics. One solves a problem, but the particular solu
does not help us resolve new related problems

4Recall that our solution for two, three, and four-marker gardid not lead



11. Finally, we discussed groupsry briefly. Groups pro-
vide a general framework for studying a number of me
ematical systems such as those associated with lin
problems. A good understanding of groups can help
understand other linking problems that we have not
sidered. And other problems not at all associated \
links. Are groups the final answer? Of course not. Sc
algebraists study systems, very abstract systems, of\
the entire theory of groups is just a simple example! /
S0 it goes.

4.11 A Final Word

In a certain sense we have solved the linking problems wi
out to solve. In another sense, we haven't.

Let’s discuss this point, first in a broader context invoty
an aspect of evolution in mathematics and then in the spe
context of what we have done with links. When a mathema
subject is in its infancy, it is not always entirely clear wh
exactly, the subject under study is.

to a general solution until we completely changed our petsgeand looked
only at the gaps.



4.11.1 As mathematics develops

When earlier generations of mathematicians studied regio
space bounded by a surface, they might not have known ex
how regionsor surfacesor boundedwere to be interpretec
They had easy to visualize models in mind. For exantipée
region bounded by a spheneakes sense (i.e., the inside of t
sphere). So too does the inside of a bagel or pretzel. -
also had no difficulty in counting the number of holes in ap
zel, even though the concept bble may not have been we
defined.

After all, if we look at a bagel we would agree that it h
one hole, without our needing to know, in a strict mathenad
sense, what a hole is. But, when one proceeds to more co
cated surfaces, one needs to have a mathematically preays
of dealing with the concepts.

Earlier generations of mathematicians often made sig
cant contributions to a subject even though some of theiky
was mathematically imprecise. We would say their work \
not rigorous. One could say that their work contained err
But, in a sense, it would be more descriptive to say their
containedyaps their results were correct under somewhat n
restrictive conditions than they supposed. For examplenéf
defines a region in a certain way and th@ovesa theorem
about regions which is valid only if the region meets some
tra conditions (not mentioned in the definition), one has@
in reasoning.



Imprecise work is by no means worthless—it just doe
always apply without some sort of modification. For exam
one constantly applies plane geometry ideas in real lifen
though the surface of our earth is more like a sphere than
a plane. Thus we think of a baseball infield as planar sq
without that creating any real problems. The error in doing
is small, but would be great if the sides of our “square” w
thousands of miles rather than 90 feet. Similarly, Newtor
physics is fine when it applies, but became inadequate to
with such things as objects moving close to the speed of |
or tiny objects such as atoms.

4.11.2 Agap?

After creating our algebraic structure, we assumed it fiailyr
expressed the structure of our linkings. It seemed to do
that. Actually it didn’t!

Consider, for example, the expressidBA 1. As an ele-
ment of our group, it is not equal to the elemé&htbecause
ABA1B~1is not equal to 1. But if our shoelace follows the |
structions given b : ABA™! applied to two separated circle
we find we can “slip”A off C, leavingB, as shown in Fig-
ure4.9. Thus the formulaABA™! does have the same linkir
properties as the formuR does. The algebra and the linki
were at odds.

The same thing would happen any time we had a forn
of the formXY X1, whereX andY are any elements of o



A
C

Figure 4.9:A “slips off” C.

group. There would be a cancellation that takes place ir
linking, but not in the group. In our group structteandX —*

can’'t cancel each other (XY X~1) unlessX andY commute.
But, when applied to links, such a cancellation can takegpl

How can we take this into account in our work? Actua
we have taken it into account, although we have not statec
explicitly.

Our project was to construci— k configurations. We al
ways had an initial set-up df separated curves. All the fo
mulas we have used for the shoelaces in our configura
are products of commutators or compound commutators.
problem of cancellation does not take place with commusa
For example, the shoelace for our 4-3 configuration hac
formula

ABA B lcBAB A ICL.



No cancellation here!

We successfully avoided all cancellations in our devel
ment by restricting our group suitably to group elements
actuallydodescribe the linking structure afk configurations
If we had tried to use the full group to represent all poss
linking structures, we would have run into difficulties. A\
saw with the curveABA! applied to two separated curvas
andB, the group would not describe some of the linkings ac
rately.

Example 4.11.1Let’s look at a rather artificial but clear e
ample that illustrates this perspective. Suppose we wabot
prove that two squares in the plane are congruent if and br
their projections vertically onto theaxis have the same lengt
We wouldn’t be able to do that—the statement is false.

The group of rigid motions in the plane (see Sectio®.])
includes rotations, and the length of a projection of a sgj
can change under a rotation. But if we restrict our focu
only those squares that have horizontal and vertical sales
we consider only the translations, the statement is trués
clear that such a square can be translated onto another
square if and only if the two squares have the same side lg
and that happens if and only if their projections ontoxkeis
have the same length.



B
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X
Figure 4.10: Projections of squares on xaaxis.

Note that in Figuret.1Q A can be translated ont®, but a
rotation would be required to move ontoC. Here we have
restricted our attention to only certain squares, and haee
only those rigid motions that are translations. Rotatiods'd
enter the picture. <

In our linking project, we didn’t discuss all possible lir
structures; we restricted ourselves to separated cuna$os
n—k configurations. We used only the subgroup consistin
products of commutators and compound commutators. C
elements of the linking group played no role.

4.11.3 Is our linking language meaningful?

In our study of links, we used a number of terms that hac
tuitive content for all of us. Terms such asrve go through



A backwardswinds hangs togetheffalls apart, etc. were cer:
tainly meaningful to us for purposes of communication,
even for purposes of making models of various of our cor
urations. We constantly used expressions suchegsirated
curves or we can pull the curve out of A without cutting
tearing, or these two curves have the same linking propert
We also sometimes gave warnings suchbascareful not to
create any knots in your shoelad&/e did not, however, defin
these concepts in any precise way.

For our purposes it may not have been necessary ftc
fine all these terms. We can construct (at least theoretjc
any configuration of the type we discussed. But we hav
solved any of these problems in a strict mathematical se
The amount of mathematical machinery necessary even t
cuss linking problems rigorously is enormous.

4.11.4 Avoid knots and twists

Let’s illustrate the kinds of difficulties one encounteroife
tries to mathematize our discussion.

1. We all know intuitively which direction isackwards
whenwe go through a curve C backward®r do we?
If Cis a circle, we can all agree which directionfig-
wards and which direction idackwards But can we
agree which direction is which € is the 50th curve ir
an 80-20 configuration?



Figure 4.11: This curve can be transformed into a circle

2. One difficulty is that a curv€ may havdwistsin it. Can
we tolerate twists? Small twists, surely. But what ab
big twists? Or multiple twists? What exactly is a tw
and what makes a twigmall big, or multiple? And
are these distinctions really important? And are tw
important? If so, can they be avoided?

() S

C
Figure 4.12: Curve with “ear-like” twists.

3. The curve in Figurd.11is not a circle, but can be tran
formed into a circle bystretching bending pulling, etc.
No cutting tearing, or pastingis necessary (whatever tt
precise meanings of these terms are).



4. The same is true of the cur@in Figure4.12, although
you may need to make a model to visualize it (sim
untwist the ears to begin).

5. Now, add a circlé to the configuration passing throu
the ears to obtain the curve in Figutel 3

ey

Figure 4.13: IC = AA1?

Make a model and check that the resulting configura
will not come apart without cutting or tearing. But note tl
our curve with earsC, went through A and then through
backwards.

In other words, our twisted curve has forméA1. But it
doesn’t reduce to 1. What went wrong? In terms of our ca
language, we allowed twists, not paying attention to oulieya
warning to avoid knots and twists. But we still don’t knc
what a twist is. If we remove the circl&, ourtwisted curve
is not distinguishable from any other curve according to



usage of the term curve. But, in the presencéis linking
properties withA are quite different from the linking properti
of an untwisted curve with formulaA—1.

The point to these remarks is to make it clear that so
thing we hadn't really come to grips with enters here. Ourk
isn't wasted. We can still construct our configurations ifcaa
avoid knots and twistehatever that may mean. But, for a pi
cise mathematical development, one would have to know
the terms mean and also how to deal with them mathematic

4.11.5 Now what?

For our purposes it was easier simply to ignore the troulnhes
issues we have identified and possibly other issues we mi
If these can’t be addressed, the status of our work is tha
made a plausibility argument, but have not provided a rigs|
proof. Maybe we (or someone else) can make our proof
orous or find another proof. Or show that our result is fa
perhaps by showing no configuration of some specific siz
possible.

What is the current status of the problem? The original
work in this area dates back to paper by Hermann Brunn (1¢
1939), in 1892. Brunn constructed-(n — 1) configurations.
He acknowledged that his work was not rigorous. The cor
erable technical machinery necessary to handle such pnst
rigorously had not yet been created. But, because of hié c



nal paper, today an—k configuration is called an—k Brunnian
link.

In 1961, Hans Debrunner did provide a rigorous proo
Brunn’s result. And, he rigorously proved the existencelb
n—k configurations! Phew!

Then, in 1969, David Penney (see itedhip our bibliogra-
phy) provided a much simpler rigorous proof of the existesfc
all nk configurations. Our chapter provides an intuitive, n
rigorous development leading to Penney’s formulation. -F
ney’s paper was only two pages long. It did not involve
covery of the solution. It used mathematical induction tafye
that the solution via compound commutators works. He hg
discover this somehow (perhaps along the lines of our dpv
ment) but the actual paper was only a verification of a forn
he had discovered.

This progression is common in mathematics. Someone
covers a result and proves it. Perhaps the proof is not r
ous. Someone else provides a rigorous proof. Then yet an
mathematician finds a much simpler proof.

4.12 Answers to problems

Problem 165, page 330

You probably answered this without difficulty. You simp
constructed three curves with each of the three pairs lirale



shown in Figuret.14.

Figure 4.14: The three curves are linked in pairs.

Compare Figurd.14with the Borromean rings of Figure1
Observe that, in Figuré.1, the entire configuration is linkec
but no pair of curves is linked. Here, each pair of curve
linked.

Figure4.15shows a different solution for this same prc
lem made with a “shoelace” model. Comparing the soluti
given in Figure4.14and Figure4.15we see that, had we ch
sen to make the shoelace go “backwards” through the se
circle (instead of forwards as here) we would have congstl
the same configuration in both. Should we have a langua
describe backwards and forwards? (See Seectiarv for the
answer to this question.)



S\

Figure 4.15: A shoelace model of a 3—1 configuration.

Problem 166, page 330

This is a bit harder than Problef65 without cheating anc
looking at the Borromean rings for guidance, but you may f
succeeded by reasoning more or less along the following.|
We may as well begin with two separated circles (as indic;
below).



Figure 4.16: Start with two separated circles for Probles@

We now wish to “weave” a third curve through the two st
arated circles in such a way that the conditions of the prat
are satisfied. That s our third curve (the “shoelace” if walm
a model as suggested) must weave through the other tv
that removal of one of the three curves causes the configar
to “fall apart.” This must be true no matter which of the thi
curves is removed. It must also be true that the entire con
ration of three curves “hangs together.”

Now itis clear that, no matter how we weave in the “shoe
removal of it will cause the other two curves to fall aparth€y
are already separated.) Our task is to do the weaving in si
way that, if we removed either of the other two curves, the
maining one and the shoelace can be separated withoutg
or tearing.

Once we understood this much, we could experiment
our shoelace and we might well arrive at a configuration <
as the one in Figuré.17.



Figure 4.17: Weave the curve through the circles.

Let's see what happens with this configuration.

1.

If we cut away the shoelace, the remaining two cul
are already separated.

. If, instead, we cut away the curve on the right as in |

ure4.18 the shoelace is draped over the remaining ct
near the poinX. If we hold the shoelace & and pull,
voila, we have effected the separation.



Figure 4.18: Cut away the circle on the right.

3. Similarly, if we cut away the curve on the left as sho
in Figure4.19 the shoelace is draped over the remain
curve in such a way that if we hold the shoelace with
hand near the point and with the other hand near tl
pointZ and pull, once again, voila!



e

Figure 4.19: Cut away the circle on the left.

Can you visualize all that? Perhaps you need the model.

Problem 167, page 331

If you think it possible, look again at the reasoning thattie«
the construction of the 3-2 configuration to see if there is
discernible pattern that could be of some help. And use"
model.

Itis too hard to rely on a picture. Itis much easier to exp
ment with three rings and a shoelace. If, on the other hand
think it is not possible, try to discover some basic irredlainde
difficulty (as you did with the tiling problems in Chaptér.



Problem 168, page 334

Figure 4.20illustrates a curve (using the model) that is d
scribed by the expressia¥BAP.

Figure 4.20:APBAP’.

5Photos courtesy of Curry Sawyer.



Figure4.21illustrates a curve described by the expres:
ABBAP,

Figure 4.21:ABB°AP

Problem 169, page 335

The first two expressiorBABPA? andAPBAR® from Probleml6
give rise to 3-2 configurations. These are really essentiad
same as the description we gave before with the rolésanfd
B reversed or the directions we chose as positive changed

Problem 170, page 335

The last three expressioAs’BB?, AAAPA, and ABBPAP re-
sult in configurations that can be separated with no more
a “pull.” (No cutting or tearing necessary.)



Problem 171, page 335

When an action is undone immediately (adPBBP, AAAPAP,
andABPPAY) it is as if the action had not been accomplishe
the first place. Note how this can happen in stages. For €;
ple, inABBPAP the elemenA is not undone until later, bug is
undone at the first opportunity and that allodv$o be undone
too. This is necessarily vague (at this stage). Part of wigs
shall be doing is to make it more precise.

Problem 172, page 335

Yes. Taking the left ring a#\ and the right ring a8, the
shoelace has the formudBAPBP. So it is a 3—2 configuration

Problem 173, page 336

If you have not constructed the 4-3 configuration yet, tryimag
Try to use what you have learned from Problgiii)

Problem 174, page 340

Check, using the ordinary rules of arithmetic, that eactef
expressions

AAP BB®, APA, BB, AB’BA, andAAAAAPAP

is equal to 1.



Problem 175, page 340

Check, using the ordinary rules of arithmetic, that eactef
expressions

A, ABR, AAPA, andBAA’BA

is the same aA.

Problem 177, page 344

Check that
ABC=— AC

ABCA B lIcl— AcAalc?
ABABl—1

both algebraically and by thinking about what is really gp
on.

Problem 179, page 347

If, in the 4—3 configuration, we let represent the curve
X =ABA B!
then the 4-3 configuration takes the form

xcxic L.



It's just like the 3—2 configuration except thXt represents
more than just a single link.

Problem 180, page 347

A construction is given in Sectioh 4, but you should try befor
reading on. To do this construction you must first indicate
starting set-up, and then give an expression for the acfitirec
fifth curve (the shoelace).

You will have to verify that no matter which of the fiv
curves is cut away, the result is 1. Also, you should check
if no curve is cut away, the entire configuration hangs togje
Unless you have a very good model, you will find it diffic
actually to construct it physically.

Problem 182, page 352

The 6-5 configuration is constructed by beginning with 5 <
arated curved\, B, C, D, andE and winding the sixth curvi
through the given five according to the expression

((((A,B),C),D),E).

Note, as before, that replacing any of the let#&rB, C, D or E
by | causes the entire expression to reduce to I. Note aldc
the shoelace must go through 46 winds to complete its tas



Problem 183, page 352
That((1,B),C) = 1 follows from the reduction
((1,B),C) = (1,B)C(1,B) c?
=1B1 B cBiB 1 lct=BBlcBBIC =1

Here we have used the fact thatll= 1. Make sure you fol
low the above computations and fill in whatever steps are-n

ing.

Problem 186, page 353

Problem186 and Probleml87 are straightforward comput:
tions, but you may need to work out the details for Problé¥@

Problem 188, page 354
SupposeXY =Y X. By definition
(X,Y)=Xxyxty-1

and this is the same &X X 1Y~1 because we are assumi
for the problem thaKY =Y X. Thus, putting this all togethe
we have

(X,Y)=Xyxytoyxxlyl=1



Onthe other hand, ifX,Y) = 1, thenXY X~Y~1 = 1. Thus
(XYXY ) (YX) =1(YX) =YX
while, it is also true that
(XYXY 1) (YX) = XY XY 1Y X = XY.

HenceXY =Y X. Make sure you understand each step of
argument above.

Problem 189, page 356

To answer this problem, we need to know what we are lool
for. We will eventually have four curves, B, C, andD. The
breaking point for the 4-2 configuration is 2. Thus each pia
curves must be separated, but each group of three curves
hang together. Another way to say this is that each grou
three curves must form a 3-2 configuration. For in that c
the three curves will hang together, but removal of one n
curve will cause the two remaining curves to fall apart. Tt
the third curveC should form a 3-2 configuration with and
B. This gives rise to the formulg, B) for C.

Problem 190, page 356

We first observe that the formula must have the quality
removal of a single letter leaves a 3—2 configuration. Fo



that case, removal of a second letter will cause the exjne:
to collapse. Thus, you may expect there to be some symn
in the roles ofA, B, andC in the expression. Some studel
in the class suggeste&BCA B~1C~1 for the fourth curve D.
Let us verify that this gives the desired result.

If we remove | We arrive at
A BCBIc 1
B ACAICc1
C ABA1B1

Each of these three resulting configurations is a 3-2
figuration. If we remove, the curve we have just added, \
arrive at the 3-2 configuration formed By B, andC. And
that’s just what we wanted.

Here is another expression you may have tried for D:

(A,B)(A,C)(B,C).

Why is that a natural expression to try? Well, we want rem¢
of a single curve to result in a 3—2 configuration for the rem
ing curves. Algebraically, this is tantamount to the coiodit
that removal of a single letter (more precisely, replacing
letter by 1), results in an expression for a 3—2 configurat
Let’s check.



o If we replaceA by 1:

o Ifwe replaceB by 1: (A,B)(A,C)(B,C) = (A,C).
o If we replaceC by 1: (A,B)(A,C)(B,C) = (A,B).

Make sure you understand these computations.

Problem 191, page 357

The first solution,
ABCA B Ic?

has six winds. The secorid, B)(A,C)(B,C) has twelve winds
So the first is simpler and more efficient. And that's certam
desirable quality.

Another desirable quality is that the construction give
sights that are useful to further construction. For exanthie
3-2 configuration gave insights to the 4—3 configuration Wi
in turn helped us see how to construct the 5—4 configura
Does either of the constructions of the 4—2 configuratiop |
us see how to construct, for example, a 5-2 configurat
To find out the answer to this question, look at ProblEsa@-
Problem194in Sectior4.6.3



Problem 192, page 357

Since the break-point of a 5-2 configuration is at “2” we be
with two separated curvesandB. Following the reasoning @
Sectiord.6.2we see that should be added so that B, andC
together form a 3—2 configuration. ThBnshould be added s
thatA, B, C, andD form a 4-2 configuration. Finally we ac
E. Let us see what our two solutions to the 4-2 configura
have to offer.

Itis convenientto use a chart that gives complete direst
for the construction. These directions should be such tt
skilled worker who understands our notation would be alie
least in principle) to make a model. Begin with two separ:
curves A andB. First attempt:

Add Formula Resulting Configuration
C (A,B) 3-2
D ABCA1B-1c! 4-2
E | ABCDA1B-Ic~1D! ?

Does the addition dE give rise to a 5-2 configuration? W
need only check that removal of a single letter gives rise
4-2 configuration. For example, removalAfjives rise to the
expression

Bcbe !c D!



so that the curveB, C, D, andE form a 4-2 configuration
Similar computations show that removal of any other singtle
ter gives rise to a 4—-2 configuration so the construction 8ic
The curveE has only eight winds. Pretty efficient—we could
possibly get by with fewer. (Why?) What about our other ¢
struction of the 4—2 configuration? Does that give any insig
Let's try to see what is involved.
The expression for D in that construction was

(A,B)(A,C)(B,C).

This construction succeeded because removal of any o
three letter@\, B, orC (more precisely, replacing the letter wi
1) gave rise to a simple commutator. This represents a 3—2
figuration. We should observe that the expression was cds
by combining the three lettes, B, andC in pairs in all pos-
sible ways:A with B, A with C, andB with C. If we extendec
this idea, we would arrive at the following description ofaane
figuration. Begin with two separated curvésandB.

Add Formula Resulting Confi
Cc (A,B)
D (A,B)(A,C)(B,C)
E | (A,B)(A,C)(A,D)(B,C)(B,D)(C,D)

Is this a 5-2 configuration? As before, we must show
replacing a single letter with | causes the expression taae



to a 4-2 configuration. If, for example, we replace the ledte
with |, we arrive at

(1,B)(1,C)(1,D)(B,C)(B,D)(C, D),

which reduces t¢B,C)(B,D)(C,D), a 4-2 configuration forme
by the remaining four curveB, C, D andE. A similar analy-
sis shows that the same is true if we replace any of the c
letters with 1: we always arrive at a 4-2 configuration for
remaining curves.

This solution is less efficient than the preceding one.
this case, the curve E has twenty-four winds. The last swil
required only eight winds foE.

Problem 193, page 357

The 6-2 configuration involves no new ideas. We can ex
either method that we have already used. For the first me
we would wind the sixth curve F through the 5-2 configurat
already constructed according to the formula

ABCDEA B Ic 1D 11

Ten winds in all.



Problem 194, page 357

The second method gives rise to this formulaFor

Forty winds in all.

Problem 195, page 358

If you did the reasonable thing and tried to extend the effic
method described in Probleh®@9and Probleni90for the 4-2,
5-2, and 6-2 configurations, you probably ran into difficult

Basically, what allowed that method to be so efficien
that the formula for the 3—-2 configuration involves only si
ple winds and inverses: we don't have to undo anything n
complicated than a single wind. For example, in the expoes

ABA 1B,
A1 undoesA, B~lundoesB. Thus, the expression
ABCA B ICc?!

allows removal of a single letter to result in a 3—2 configiorat
as required in a is 4—-2 configuration.

Now, with the 5-3 configuration, we are faced with sor
thing more complicated. Removal of a single curve must (
rise to a 4-3 configuration. And in the 4—3 configuration sc



of the “undoings” undo commutators, not just simple win
For example, in the expression

ABAB~cBAB!AlC?,

to undoC is simple, but to und&ABA1B~! requires the mor
complicated expressidBAB 1AL,

Perhaps you found a way of doing it. But does it offer
insights that will be useful in constructing more complazh
configurations? Our second method was less efficient thal
firstin constructing configurations which had the breakioigp
at“2.” But it did offer a clearer pattern for further consttion.

For example, to construct the 5-2 configuration, the 1
curve, E followed a formula which played no favorites w
respect to the letterd, B, C andD. It simply took all pairs of
those four letters, formed the simple commutators on theih
followed one-after-another:

E: (AB)(AC)(AD)(B,C)(B.D)(C,D).

Removal of a single curve resulted in a 4-2 configuratiol
desired.

This suggests that the fifth curve of the 5-3 configura
could follow a formula which played no favorites with resp
to the lettersA, B, C andD, takes all triples of those letter
forms compound commutators on them, and follows one-a



another.
E: ((AB),C)((A,B),D)((AC),D)(B,C),D).

Let's check. Removal of a single curve should result i
4-3 configuration. If we remova, for example, we arrive &
((B,C),D), which does represent a 4-3 configuration using
curvesB, C, D andE.

The same result occurs, of course, if any other curve i
moved. We shall not carry out a full computation here.
merely observe that, for examplg/1,B),C) = 1 (see Prob:
lem183).

Problem 198, page 359

The answer is given in Example8.1

Problem 199, page 365
Peo: 1 (G (A AL)AG) ) Aig).

i1<ip<---<izz<50

Problem 200, page 365

There are 11,592 winds in the eleventh curve in an 11-5
figuration. There are 252 commutators on 5 letters chosem



the 10 letterd\,...,A10. Each such commutator has 46 win
as we saw in Sectiofi.4.3



Appendix A

Induction

The story is told that when the great mathematician Karl Frie
Gauss (1777-1855) was a child, his teacher asked the por
add up all the integers from | to 100, (perhaps as punishnoer
talking in class). Within a few seconds, Gauss came up wiét
answer, 5050.

Here is how Gauss achieved this so quickly. He reast
as follows. Set up the sum

S =1 + 2 + 3 + ...+ 99
S = 100 + 99 + 98 + ... + 2
25 = 1010 + 101 + 101 + ... + 1C

1The same story has been told about many different matheematicBut it
may be true in the case of Gauss.



So twice the sum is 100 101 and the sum must be 5050.
The same technique could be used to show that for e
positive integer

n(n+1)

1+2+3+...+n= >

(A.1)

Suppose, now, that we hadn’t spotted this clever proof
nonetheless had begun to suspect some kind of formula w
be true. We might experiment (with small valuesipés we did
in all the problems we attacked, and guess the formiula)(
We can then easily check the formula fo= 1,2,3,... up to
quite large values. How far should we go in this process L
we are convinced the formula is indeed true?

The answer is that no amount of checking constitute
proof for all values oh. A mathematical proof requires a ve
fication foreveryvalue ofn, and checking a few million speci
cases does not prove the rest.

One way to verify that the formula works for all values
n uses the notion ahathematical inductiorwhich we discus:
in this Appendix. We shall see that this technique is useft
many parts of mathematics. In fact, mathematical induc
figures frequently in our problems dealing with Pick, Nimgle
Links.



A.1 Quitting smoking by the inductive
method

Before applying induction to proving some mathematicakst
ments let us try to get a sense of the method in an every
setting. Suppose a person who wished to stop smoking }
that if he (or she) could stop for just one whole day, he coaels
sure to avoid smoking for the very next day. If that were i
then, in fact, he could certainly stop smokiiogever, if only he
could stopfor a single day This would get him started: eac
day that he did not smoke would lead to the next smoke-
day.

In connection with our formulaA.1) we could argue sim
ilarly. Suppose one can verify that.(l) is valid for n = 1.
(That's like being able to stop smoking for that one day). #
suppose we could prove thiaithe formula is truefor any par-
ticular positive integen, then it must be true for the next int
gern+ 1. (That's the analog dénowingthat if he can go an
full day without smoking, he can certainly go one more). If
can do that, then we will have proved the validity 8f 1) for
all positive integers.



A.2 Proving a formula by induction

Let us return to the task of proving the formula that Gauss
covered on his own.

n(n+1)

14243+ +(n-1)+n=—

An easydirect proof of this would follow Gauss’s idea. Le
Sbe the sum so that

S=1+2+3+---+(n=1)+n
or, expressed in the other order,
S=n+(n-1)+(N-2)+---+2+1
Adding these two equations gives

2S=n+L)+(n+1)+(n+1)+---+(n+1)+(n+1)

and hence
2S=n(n+1)
or (ne1)
n(n+
S= 5

which is the formula we require.
Suppose instead that we had been unable to construc
proof. Lacking any better ideas we could just test it out



n=1n=2n=3, ...for as long as we had the patien
Eventually we might run into a counterexample (proving
theorem is false) or have an inspiration as to why it is ti
Indeed we find
1(1+1)

2
2(2+1)

1=

1+2=

3(3+1)

2
and we could go on for some time. On a computer we ct
rapidly check for several million values, each time findihgtt
the formulais valid.

If the computer ever finds a counterexample (josein-
stance where the formula fails) then that would be a prodf
it is a false formula..

But what if the computer never finds a counterexampl
the formula proves to be correct after hours of checking’
this a proof? If a formula works this well for untold millior
of values ofn, how can we conceive that it is false? We wol
certainly have strong emotional reasons for believing tre
mula if we have checked it for this many different values,
this would not be a mathematical proof.

Instead, here is a proof that uses the same method of ir
tion that we had the smoker use to quit his habit.

Suppose that the formula does fail for some valuen.o

1+243=



Then there must be a first occurrence of the failure, say

some integeN. We knowN # 1 (since we already checke

that) and so the previous integdr— 1 does allow a valid for:

mula. It is the next ond\, that fails. But if we can show the

this never happens (i.e., there is never a situation With 1

valid andN invalid), then we will have proved our formula.
For example, if the formula

1+2+3+---+m:m
is valid, then
m(m+1
1+243+--+m+(m+1)= %+(m+1)

~mm+1)+2(m+1)  (m+1)(m+2)

o 2 - 2 ’
which is indeed the correct formula far= m-+ 1. Thus there
never can be a situation in which the formula is correct ates
stage and fails at the next stage. It follows that the fornmui

always true. This is a proof by induction.

A first occurence of the failure? Our discussion in this sec
tion appealed to an idea that needs to be made precise.

smoker (using induction to quit) had failed in the attemipgnt
there must be a first day where he had a smoke. That s
obvious enough. If we apply (as we did) the same reasoni



the formula

1+243+--+m= w
then it again seems obvious that either the formula is valic
all mor else there is a first value affor which it fails.

There is a subtle difference between the two situations.
smoker will not live forever (especially if he resumes snmogi
But the formula might have an infinite number of valuesro
for which it is or is not true. Claiming that there is a first ez
of failure among the infinite possibilities is a deeper stegat
and is not as obvious as it appears or as we made it appes

In fact the principle of induction is equivalent to this rati
of a “first failure” and in more advanced mathematics cou
these principles need to be proved. In Probg below we
ask the reader to prove that the two ideas are equivalentyé
cannot, in an elementary course, ask the reader to prove
they are true.

A.3 Setting up an induction proof

This may be used to try to prove any statemefit) about an
integern. We wish to prove that the statements

P(1),P(2),P(3),...,P(n),...

(all of them)are true.



Here are the steps:
Step 1 Verify the statemen®(n) for n= 1.

Step 2 (The induction step) Show that whenever the stater
is true for any positive integenit is necessarily also tru
for the next integem+- 1.

Step 3 Claim that the formula holds for all integens> 1 by
the principle of induction.
A.3.1 Starting the induction somewhere else

An inductive argument is, on occasion, somewhat more co
nient if the statements are labeled differently. Thus mdtef
wanting to prove the statements

P(1),P(2),P(3),...,
we might want to prove the statements
P(0),P(1),P(2),P(3),...

or even,
P(3),P(4),P(5),....

There is nothing new here, just a different use of lab
Induction proceeds in the same way. For example here i



scheme that we would use to prove that each of the staten
P(0),P(1),P(2),P(3),...
is true.

Step 1 Verify the statemen®(n) for n=0.

Step 2 (The induction step) Show that whenever the stater
is true for any integem > 0 it is necessarily also true fc
the next integem-+ 1.

Step 3 Claim that the formula holds for afi > 0 by the prin-
ciple of induction.

A.3.2 Alternative method

An alternative format may also be used to try to prove angst
mentP(n) made about an integer In this version we do no
go from stepmto stepm+ 1. Instead we may rely upaail of
the stepdrom 1, 2, ..., up tanitself to help verify stepn+ 1.
As before, we wish to prove that the statements

P(1),P(2),P(3),...,P(n),...

(all of them)are true.
Here are the steps:

Step 1 Verify the statemen®(n) for n=1.



Step 2 (The induction step) Show that whenever the stater
is true forall positive integers 1, 2, .. mitis necessarily
also true for the next integen—+ 1.

Step 3 Claim that the formula holds for afi > 1 by the prin-
ciple of induction.

Note that the induction step is different in this meth
Whereas before we assumed tRém) was true and fashione
a proof thatP(m+ 1) should then be true, here we assun
more. We assumed that all of the statements

P(1),P(2),P(3),...,P(m)

are true, and then we found a proof tiim+ 1) should be
true.

Example A.3.1 There were many possible uses of induct
in Nim. For example, in 2—pile Nim we asserted that positi
of the form(n,n) were all balanced. We shall prove this n
using the alternative method of induction.

For each integen = 0,1,2,3,... we letP(n) be the state
ment that the positiofn, n) is balanced in a 2—pile Nim gam
The induction starts at = 0 and the needed steps are:

1. We proveP(0) is true.

2. We prove that ifP(k) is true whenever & k < m, then
P(m+1) is true.



Then we know, by induction, th&(n) is true for all integers
n> 0.

Here we begin our induction at= 0. Now, P(0) is the
statement that the positid0, 0) is balanced. This is true sinc
the final position in a Nim game is always balanced.

To verify the induction step, suppose tirék) is true when-
ever 0< k < m. Consider the gamgn+ 1,m+ 1). Any move
from this position results in a gam& m—+ 1) or (m+ 1,k)
where 0< k < m+ 1. By removing sticks from the remainir
pile containingm+ 1 sticks we can obtain the positigk, k).
This position is balanced (by the assumption thgk) is true
for all 0 < k < m). We have shown that whatever move ¢
opponent makes in the ganfm+ 1,m+ 1), we can respon
with a balancing move. Thugn+ 1,m+ 1) is balanced; i.e
P(m+1) is true, as was to be proved.

You may have noticed that we needed the full Induc
Hypothesis thaP(K) is truefor all 0 < k < min order to verify
thatP(m+ 1) is true. In many of the other applications of
inductive argument it was enough to assume only Eat)
was true in order to prove that+ 1) is true. <

In the exercises you are asked for induction proofs of
ious statements. You might try to give direct (nonindudti
proofs as well. Which method do you prefer?

Problem 203 Prove by induction that for every positive intec
n,2" > n. O



Problem 204 Formulate the example of the person who wis
to give up smoking in the language of Mathematical Induct
That is, what are the statementsfPforn=1,2,3,...? |

Problem 205 Prove by induction that for everya1,2,3,...,

n(n+1)(2n+1)

1242243 4. 4n?= 5

Answer O
Problem 206 Compute for n=1, 2, 3, 4 and5 the value of
14+3+5+---4+(2n-1).

This should be enough values to suggest a correct formutfa.
ify it by induction. O

Problem 207 Prove by induction that for everys 1,23, ...
the number
7n 74n

is divisible by3. 0
Problem 208 Prove by induction that for everysa1,2,3,...
(1+x)">1+nx

for any x> 0. 0



Problem 209 Prove by induction that for every-a 1,2 3, ...
1—rn+1

Tr4rif. pr=
1-r

for any real number g£ 1. |
Problem 210 Prove by induction that for everysa1,2,3,...
124+2843% ... 4= (142434 --+n?
O

Problem 211 Show that the following two principles are equ
alent (i.e., assuming the validity of either one of themyprihe
other).

(Principle of Induction) Let S be any set of posi-
tive integers such that:

1. 1belongsto S.
2. Forallintegers n, if nisin S, then so istl.

Then S contains every positive integer.
and

(Well Ordering of N) If S is a set of positive inte-
gers and contains at least one element, then S has
a first element (i.e., a minimal element).



Answer O

Problem 212 (Birds of a feather flock together) Any collec-
tion of n birds must be all of the same species.

Proof. This is certainly true ifn = 1. Suppose it is true fo
some valuam. Take a collection om+ 1 birds. Remove on
bird and keep him in your hand. The remaining birds are a
the same species. What about the one in your hand? Take
ferent one out and replace the one in your hand. Since he
is in a collection ofm birds he must be the same species 1
Thus all birds in the collection ah+ 1 birds are of the sam
species. The statement is now proved by induct[@miticize
this “proof”’] Answer O

Problem 213 In ExampleA.3.1we proved that all Nim game
of the form(n,n) are balanced. Use that fact and induction
prove that a 3-pile Nim game of the forfh b, ¢) is balanced if
bisevenand e b+1. O

Problem 214 The inequality
s onypon-ty g 2ty 20

has been used in our analysis of the game of Nim. Verify
induction. Answer O

Problem 215 Prove using induction: For every positive int
gern,
Ml 1=ty



(Thus, for exampl@* —1=2%+221241)

The problem shows that the largest binary numeral wit
fixed number of bits is one less than the smallest having
more bit, e.g.,

10000 1= 1111(base 2)
O

Problem 216 What is the corresponding statement for b:
ten of the statement in Problepi5? O

Problem 217 In Problemsl83 183and185in the Chapter or
Links we showed that if A (or BorC ) =1, then

Use induction to prove that if a single letter in a commu
tor of order n (that is, a commutator on n letters) is replac
with a 1, the entire commutator reducesto 1.  Answer O

A.4 Answers to problems



Problem 205, page 419
Check forn = 1. For Step 2 assume that

m(m+1)(2m+1)

12 4+2243%+-- 4P = 5

is true for some fixed value ofi. Using this assumption (calle
the induction hypothesis in this kind of proof), try to find
expression for

1242243+ 4+ mP 4 (m+1)2

It should turn out to be exactly the correct formula for thens
of the firstm—+ 1 squares. Then claim the formulais now proy
for all n by induction.

Problem 211, page 420

To prove that these two principles are equivalent we musts
that we can prove each of them if we are allowed to assum
other. For example, here is a proof that the principle of @c
tion is valid on the assumption that the 8eis well-ordered.
Suppose thabis a set of positive integers such that:

1. 1 belongs t&.

2. For all integers, if nisin S, then so in+ 1.



Then we wish to prove tha contains every positive intege
Suppose that it does not contain every positive integer en
T be the set of positive integers that are not containesl By
our assumptionT is a nonempty set. Therefore by the w
ordering ofN we know that it has a first element, say

Doesx = 1? No, because we know by Statement (1) 1
lisinS notinT. Thereforex— 1 is a positive integer the
does not belong td and so must belong t68. Statement (2
above then assures us thjat- 1) + 1 must belong t&. This
is impossible becausg— 1) +1 = x is the first element o
T. From that contradiction we see tHatmust indeed contail
every positive integer.

Now try proving the opposite direction: assume that
principle of induction is valid and show that every nonem
set of positive integers must have a first element.

Problem 212, page 420

The induction step (Step 2) requires us to show that if thies
ment form is true, then so is the statement for+ 1. This
induction step must be trueiii= 1 and ifm=2 and ifm=3
..., in short, for allm. Check the induction step fon= 3 and
you will find that it does work; there is no flaw. Check t
induction step form = 4 and again you will find that it doe
work.

But does it work for allm > 1? Well yes and no. Yes fc
m=3,m=4,m=>5, ..., butnofom=1andm=2.



Problem 214, page 421
To do this, letP(n) be the statement:

P(n): 2Mi>2npon1y .. oty 20
Ouir first step is to show that
P(1): 22>2'420

is true. But this amounts only to checking that-4.
Suppose now — the induction hypothesis — tan) is true.
Thus (withm some fixed positive integer) we are assuming |

P(m): 2Ml s omyom-1y .yl 20

is a true statement.
We wish to show that the statemdPtm+ 1) is true, i.e.,
our goal is to prove that

P(m+ 1) : 2[m+l]+l > 2[m+1] + 2[m+l]—l+ R 21+ 20
is a true statement. We can do this by using our induction
pothesis.
Check that
2M2 — 2™y 5 2(2M ... 421 4 20),

because of the induction hypothesis. Note that both sidtsec



inequality are even numbers. It follows that
2m+2> 2m+l++22+21+20

This is exactly the statemeR{m+ 1) and so that statement
true. The inequality now follows by induction for all valuet
n=123,....

Problem 217, page 422

P(n) now becomes the statement:

P(n): A commutator om letters of which one (letter) is 1 re
ducesto 1.

We used this result in Exampfe8.1without proving it.
We start withn = 2, since simple commutators involve
letters.

P(2): (1,B)=1B1"1B-l=1and(A 1) =AlA111=1.

so Step 1 is verified.
Supposé(m) is true, withm > 2. A commutator orm+ 1
letters has the form

(... ((A1,A2),A3),...,An),Am+1)-

If any of the lettersA;, (i = 1,...,m) is replaced by a 1, thi
collapses to the forrfill, Amy1) = 1, sinceP(m) is true andP(2)
is true.



If Amyq is replaced with 1, we arrive at

("'((AlaA2>aA(3>a~~~vAm>a1> -

(' . ((AlaA2>aA(3)a e 7Am)1( . ((AlvAZ)vp\"?)v---aAm>_ll
1

sinceP(m) is assumed true.

Thus, no matter which of the lettefg, Ay, ..., Amy1 IS re-
placed by a 1, the entire configuration reduces to 1. This ¢
pletes Step 2.

It follows thatP(n) is true for all positive integens > 2.



Bibliography

[1] Anatole Beck, Michael N. Bleicher, and Donald W

(2]

(3]

(4]

ren Crowe Excursion into Mathematics: The Millenniu
Edition. With a foreword by Martin Gardner. A. K. Petet
Ltd. (Natick, MA: 1969, 2000). ISBN 1-56881-115222

Charles L. BoutonNim, A Game with a Complete Mat
ematical TheoryAnnals of Mathematics, Second Seri
Vol. 3, No. 1/4 (1901-1902), pp. 35-39. [A reproducti
of the original paper appears in our Appendix.]

R. L. Brooks, C. A. B. Smith, A. H. Stone and W.T. Tut
The dissection of rectangles into squarBsike Math. J.
(1940) 7 (1): 312-340.

W. W. Funkenbusch;rom Euler’s Formula to Pick’s For-
mula using an Edge Theorefhe American Mathemati
cal Monthly, Volume 81 (1974), pp. 647-6486



(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

Branko Grinbaum and G. C. Shephateick's Theo-
rem The American Mathematical Monthly, Volume 1(
(1993) pages 150-1686, 87

David E. Penney,Generalized Brunnian LinksDuke
Math. J. (1969) 31-32385

Georg Pick,Geometrisches zur Zahlenleh®&tzungber.
Lotos, Naturwissen Zeitschrift Prague, Volume 19 (18
pages 311-31986

J. E. ReeveQDn the Volume of Lattice Polyhedaroceed-
ings of the London Mathematical Society, 1957, 378
160

Sherman K. SteinMathematics, The Man Made Un
verse Dover Publications, 3rd Edition (November 1
2010).21, 24

Hugo SteinhausMathematical Snapshqt8rd ed. New
York: Dover, pp. 266-267, 1999.

W. T. Tutte, The dissection of equilateral triangles in
equilateral triangles Proc. Cambridge Phil. Soc., ¢
(1948) 46348224

W. T. Tutte, Squaring the SquareChapter 17 in Martir
Gardner’sThe 2nd Scientific American book of mathen
ical puzzles and diversionSimon and Schuster, 196183



[13]

[14]

[15]

[16]

[17]

W. T. Tutte,Graph Theory As | Have Known, IClaren-
don Press, Oxford Lecture Series in Mathematics an
Applications, 199825

Dale E. VarbergPick’'s Theorem Revisite@he American
Mathematical Monthly Volume 92 (1985) pages 584-5
86

Edwin BuchmanThe Impossibility of Tiling a Convex R
gion with Unequal Equilateral TrianglesSrThe American
Mathematical Monthly, Vol. 88, No. 10 (Dec., 1981), ¢
748-75324

The mathematical GardneEdited by David A. Klarner
Wadsworth International, Belmont, Calif.; PWS Pubili
ers, Boston, Mass., 1981. viii+382 pp. ISBN: 0-5:
98015-524

M. Ram Murty and Nithum ThainPick’'s theorem vie
Minkowski's theoremAmer. Math. Monthly 114 (2007)
no. 8, 732—-73685



Index

additivity, 74

algebraic systen836

angle of visibility,99
Archimedes 107

area of a polygonal regiob3
area of a triangles5
associative law342

Bézout, Etiennel 61
backgammon165
balanced]l77, 179
balancing number.80
Ballantine Ale,325
Ballantine, Petef325
Beck, A.,242

binary arithmetic213 253
binary bits,188

birds of a feather}21
Bleicher, M. N.,242
Borromean Rings325

Borromean rings325
Borromeo family,325
Boukamp codes?9
Bouton, C.L.,199, 259
Bouton, C. E.179
Bouwkamp codesl 9, 29
Bouwkamp, C. J.19
breaking point331
Brooks, R. L.,25
Bruckner, Cole335
Bruckner, Eva335
Brunn, Hermann385
Brunner, Hans385
Brunnian link,385
Buchman, E.24

Cambridge University25
card game190
checkerboard]
checkers165



chess 165

Chinese checkerd 65
closed curve328

coin game 188
combinatorial gamed4,66
commensurable}4
commutative law342
commutator353

compound commutato853

compound commutato853

configuration 328
breaking point331
falls apart,330
hangs togetheB30
starting set-up338

Crowe, D. W.,242

curve,327
cutting away328
simple, closed328
twist, 382

cutting away a curve328

déja vu,220

Dante Alighieri,325
Dehn, M.,45
depth,182

depth of a game249
Detemple, D. W.87
dots,365

Dudeney, H.25

Einstein, A.,.85
equilateral triangle24, 107
equilateral triangle24
exhaustionf2

falls apart,330
forester87

formula, 338
Funkenbusch, W. W86

game of 18169
game of cards] 69
gap,225
Gauss, Karl Friedrich408
Grinbaum, B.86
grid, 48
grid point credit,63
group,366
examples367
linking operations370
groups,254, 365
Grundy number244
Grundy, P.M. 242

hangs togetheB30
Heron'’s formulas5

imperfect information166
induction,411
inside,50



inverse notation341
jig-saw puzzle3

Kayles,201
Klarner, D.,24

Lady Isabel's Caskef6
Last Year at Marienbad®35
lattice, 48

line that splits a polygorf1
Lusin Conjecture?28

Lusin, N.,28

marker games224
Mertens, F.278

mirror strategy282
Misére Nim,235
model,328

modified Pick’s count100
monopoly,165

mosaic,l

Murty, M. R., 85

N-positions,179
near doubling206
Nim, 166, 197
number game] 96

opening strategy23

outside 50

P-positions179
Penney, D. E.385
perfect information166
perfect strategyl. 75
Pick credit,68
Pick’s formula,77
Pick, G. A.,46
Poker Nim,223
Polya, G.278
polygon,49
polygons with holes95
primitive triangle,69
primitive triangulation 87
proof

induction,411

quitting smoking410

recursive definition181

red and black argumerit84, 185,
273 284

Reeve tetrahedroi07

Reeve, J. E160

relatively prime, 108

Renais, Alain235

Reverse Misére Nin236

Reverse Nim235

rigid motion, 368



semiperimeter;5
Shephard, G. C86
shoelace328 388
simple curve 328
smallest cube41
smallest squaréy
smallest triangle42
Smith, C. A. B.,25
splitting a polygonh1
splitting gameB7
Sprague, R.P242
Sprague-Grundy functior245
Sprague-Grundy theorer48
squaring the circle25
squaring the rectanglg,
squaring the squarés
squeezing the lemoR242
starting set-up338
Stein, S.21, 24
Stomachion107

Stone, A. H.17, 25
strategies174
strategy,167

strategy stealing265
subpolygons87, 116
subtraction game4,86
Suduko,29

sum of two games243

tetrahedron107

text messagel9

Thain, N.,85

Theresienstadt concentration ce
46, 85

three marker game&y3

tic-tac-toe, 167

tiling by cubes22

tilings by equilateral triangle23

triangulation,53

Tutte, W. T.,17, 24, 25

Tweedledum-Tweedledee strate
201, 283 294, 295

two marker games], 71

unbalanced]77, 179
Wikipedia,278
without carry,247
word game 196

Zahlen,48



