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Preface

heu-ris-tic [adjective]
1. serving to indicate or point out; stimulating intereshaseans of furthering investigation.
2. encouraging a person to learn, discover, understandyleg problems on his or her own, as by experimenting, evalggiossible

answers or solutions, or by trial and error: a heuristichearmethod.
[Source: Dictionary.com]

Introduction

This book is an outgrowth of classes given at the Universitfalifornia,Santa Barbara, mainly for students who hattelit
mathematical background. Many of the students indicated tiever understood what mathematics was all about (beybad w
they learned in algebra and geometry). Was there any moreematics to be discovered or created? How could one actually
discover or create new mathematics?

In order to give these students some sort of answers to suestigns, we designed a course in which the students coulc
actually participate in the discovery of mathematics. Thsswas not presented in the usual lecture fashion. Andiihdt
deal with topics that the students had seen before. Ordadggbra, geometry, and arithmetic played minor roles intrabthe
problems we addressed. Whatever algebra and geometryidregtear was relatively easy and straightforward.

Our objective was to give the students an appreciation ofiemaatics, rather than to provide tools they would need inesom
field that required mathematics. In that sense, the coursdikesa course in music appreciation or art appreciatioch®ourses
don't attempt to train students to become pianists, comppse artists. Instead, they attempt to give the studenénsesof the

subject.
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Why do so many intelligent people have so little sense of #id 6f mathematics? A partial explanation involves the clifity
in communicating mathematics to the general public. Wittsmecial training in astronomy, medicine, or other scfenéreas,
a person can still get a sense of what goes on in those arddsyjusading newspapers. But this is much more difficult in
mathematics. This may be so because much of modern matksrmatlves very technical language that is difficult to @g¥
in ordinary English. Even professional mathematiciangroftave difficulty communicating their work to other professl
mathematicians who work in different areas.

This isn't surprising when one realizes how many areas ab@eegs there are in mathematibathematical Review@R)
is a journal that provides short reviews of mathematicalepsphat appear in over 2000 journals from around the worlde T
subject classification used by MR has over 50 subject araab,@ which has several subareas. Each of these subareasimas
sub-sub areas. A research mathematician might be an erpmavéral of the sub-sub areas, be conversant in several areh
know very little about the other areas.

Objectives

Our objective is to impart some of the flavor of mathematice AW this in several ways. First, by actively participatinghe
discovery process, a reader will get a sense of how mathearaidiscover new mathematics.

A problem arises. Discovery often begins with some expartatén to help give a sense of what is involved in the problem
After a while one might have enough understanding of thelpmlio be able to make a plausible conjecture, which one then
tries to prove. The attempt to prove the conjecture can heweral different outcomes. Sometimes the proof works. Qtimes
it doesn’t work, but in trying to prove it one learns much mab®mut the problem and identifies some stumbling blocks.

Sometimes these stumbling blocks seem insurmountable ramdfries to prove they actuallre insurmountable—the con-
jecture is false. That may create its own stumbling blocKsth® time one learns more and more about the problem. Kioak
either proves the conjecture or disproves it. (Or simphegiup!).

We shall see all of this unfolding in the several chaptert@tiook. Our discovery process will be similar to that of @aesh
mathematician’s, though our problems will be much lessrimeth.

The first part of each chapter deals with a problem we wish tsicer. We then go into the discovery mode and eventually
obtain some answers. After this we turn to other aspects tienzatics related to the material of the chapter. What isigtery
of the problem? Who solved it? What are some related probRhiew can other areas of mathematics be brought to bear on th
problem? Do computers have any role in solving the problaaised? What about conjectures that seemed to be true, beit wer
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eventually proven false? Or remain unsolved?

We have tried to find some balance between discovery andiatistin. This is not always possible: it is impossible to sesi
the many occasions when some idea leads naturally to anetmeterful idea. The reader will not discover the connegtewen
with prodding, so we drop our heuristic approach and explannew ideas. This is probably in the nature of things. When w
look back on everything we have learned, certainly it is @bmbination of stuff we figured out for ourselves and otheff $hat
we learned from others. It is the combination of the two thakes learning rewarding and productive. It is likely thessron
just the instruction part that explains the many people imworld who claim to dislike or fear mathematics.

Prerequisites

The main prerequisite for getting much from this book is asity and a willingness to attempt the problems we presemesd
problems usually set things up for the next stage in the desyoprocess. This is different from most text books, whéee t
problems at the end of a section are intended to firm the reakisowledge of the material just presented.

Almost all problems have answers supplied at the end of tlgteh The word ASwWER following a problem indicates
that an answer is supplied. For readers using a PDF file on auemor laptop screen, that word is hyperlinked to the answe
Readers working on a paperback version will have to scanrtti@tthe chapter to find the appropriate answer.

When the book is read in a self-study manner, rather than lassrmom setting with an instructor to set the pace, these ma
be a temptation to move ahead quickly, to get to the end of theegs to learn the result. (Did the butler commit the crime?
We urge that one resist the temptation. The students whdgahbst out of the class were the ones who participated §ctive
the discovery process. This included working the problesithay arose. They said that understanding this processfwagre
value to them than learning the answer.

In order to understand the material in most of the chapters,n@eds a bit of algebra (just enough to be able to manipulate
some simple algebraic expressions, though such manipogaflay only a very minor role), a bit of geometry, and adittl
arithmetic.

One topic that is not usually covered in a first course in alg&mathematical inductianThis tool appears in several places.
Readers not familiar with mathematical induction can reabty work through a chapter that has an induction argumetit u
that argument is needed. At that point, one can consult theeAgix where induction is discussed and induction pro@dgaren
that are relevant to various problems we discuss. Inductams not take part in the discovery process—it is used ongtidy
that certain statements are true.
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Rigor versus intuition

Professional mathematicians must be rigorous in their wbhks involves giving careful definitions, even of appahgfamiliar
objects. This often involves a great deal of “technical niraety.” A mathematician needs to know such thingesactlywhat a
“curve” is, what it means to “go around a curve so that thed@ss to the left,” how to mathematically describe the nunifer
“holes” in a pretzel and the meaning of area.

It should be understood, however, that this is not the sd@navhen a mathematician first starts thinking of a problerd an
working out a solution. Things are rather vague and inteiiivthe early stages. The polish and rigor appear in fulldancly in
the final drafts.

Since this book is not intended for mathematicians, who d@aafuire formal definitions and proofs, we can relax these
requirements considerably. Everything we say in an infbnvay can be said in a mathematically rigorous way, but that is not
our purpose. Our purpose is to provide some of the flavor ohemastics and introduce the reader to topics that some stiden
were surprised to find involved mathematics. Thus we canftakgranted that readers intuitively understand conceytt as
curves, inside, left, holes, and area. We will occasionddigcribe a concept with which the reader may not be fambiatrour
overall style is primarily a leisurely, informal one.
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To the Instructor

One might notice that, on occasion, one or more problemesvicdifter only a short discussion. This occurs when we belileige
short discussion already presents an opportunity for thdareto get a sense of how we might continue. When we taught the
class, we often found it convenient to make a small amountagness on each of two chapters in one class session. How thi
worked in practice varied with what happened in class dsons Sometimes the material we list as problems actualiaine

part of the class discussion, rather than as problems tosoeisied at the next class session. It worked best to be #eadilol

see where the discussion took us in determining whether m@disolve some of the problems in lecture form, or leave them
problems to be discussed in the next class meeting.

In a typical one-quarter term we would have covered four tdrapn a leisurely fashion, at least through the discovéih®
solution to the main problems of the chapter. We also were talbtover some of the material at the end of the chapterslablai
time, class interests, and level of difficulty relative te $tudents’ backgrounds determined what we covered.

We provide answers to most of the problems, in particulahtse that point the way to further progress. We leave a few
unanswered. Some of these we used as quizzes or homeworkdtidied.
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Chapter 1
Tilings

It is easy to imagine a rectangle tiled with squares. Thelfantheckerboard in Figur&.1is a tiling of a square by sixty-four
smaller squares.

Figure 1.1: Checkerboard.

A little more artistically, the tiling in Figuré.2shows a rectangle that has been tiled into a number of snsgilerres arranged
in an attractive design.
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Figure 1.2: Greek mosaic made with square tiles.

In both these cases all the squares are of equal size. Thasiidr in the pattern we see for checkerboards or for many
ceramic tilings of kitchen floors. But what if the squares moeall of the same size?

Figure 1.3: Tiling a rectangle with squares

Figurel.3has tiles of unequal size but many of them are of the same\aihat if we insist thato two of the squares can be
of the same sizeA few moments of thought shows that this problem is much,mharder.
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How does one begin to discover such constructions? Perftapsrging to find one you will give up in frustration and sesp
that no such tiling can exist.

We don’t recognize this as a problem that we can attack by &tlyecstandard methods of arithmetic, algebra or geometry.
This is a situation that often arises in creative mathersatide are faced with a problem but are at a loss about whatttmbling
to bear on the problem. What to do? Faced with this type oflpropthe creative mathematician would probably begin bngy
to get afeelfor the problem by experimenting with a few examples.

1.1 Squaring the rectangle

The problem of tiling a rectangle with unequal sized squhessbeen described by some as the problesqoéring the rectangle
We do not know in advance on starting to look at such a problémtier there is a solution, and if there is a solution how we
should go about finding one.

Perhaps we should begin by seeing whether we can put togefiear squares (no two of the same size) in such a way that
they combine to form a rectangle. (At this stage, it's alniistworking a jig-saw puzzle.)

Let’s start with a small number of squares. A moment’s refdecteveals that it is impossible to achieve our desiredlresu
with only two or three squares. With four squares, there aite @ few ways in which the squares can be combined. Figudre
shows two possibilities that you might have tried.

Problem 1 Experiment with four, five, and six squares. That is, try tmbime the squares in such a way that the resulting figure
is a rectangle. Remember thad two squares can be the same size Answer O

1.1.1 Continue experimenting

Did you find a tiling of a rectangle by four, five, or six squarab of different sizes? If so, check again. Are two of the &®gs
the same size? You do not need a ruler to check this. Simpliyplé numbers which you think represent the lengths of tthessi
of the squares and see if everything adds up right. For exam@ might think that the configurations in Figure are possible
after all. Maybe our drawing program does not quite get thadione, but the configuration there is possible with the ridjivice
of dimensions.
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Figure 1.4: Tiling a rectangle with four squares?

The chances are that you did not arrive at a solution to thel@m It must also have become clear that as the number o
squares we use in our experimenting increases, the numiesisehtially different configurations we can put togetherdases
rapidly. Even with six squares, the number of configuratiescan try is very large—and it gets much worse if we tried t® us
seven or eight tiles.

How should we proceed? Our experimenting has not broughtsatuéion to the problem. But that does not mean it was a
waste of time. We may have learned something.

1.1.2 Focus on the smallest square

For example, we may have noticed that many of our attempt®ladcertain difficulty. Perhaps we can find a way to overcome
this difficulty. Or, perhaps it is impossible to overcomesriétby making the problem one with no solution. What is thiisodilty?
Consider again, for a moment, the configurations that yea tout while working on Problerfh. For each of these look to see
where you placed the smallest square.
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Figure 1.5: Where is the smallest square?

In each case there appeared a small space neighboring thessrile. Perhaps you noticed a similar state of affairsame
of your attempts with four, five or six tiles. If we were abledomplete these attempts by adding more tiles, these snzalesp
could accommodate only tiles which are small enough to fittihé space. And this would create even smaller spaces, tibdok fi
with even smaller tiles. We can certainly continue to addlenand smaller tiles, but at some point the process muptistee
are to arrive at a solution to our problem. At this point it nlegk hopeless. Perhaps we can use what we have learned ® pro\
that there is no solution to the problem that uses only foue, dir six squares.

1.1.3 Where is the smallest square

Let us focus on the difficulty we encountered. If thexa solution, there must be a smallest squarAnd that smallest squa®
must fit into the picture somewhere. Where? Maybe we can shairhere is no place for it to fit.

This is what our experimenting showed — whenever the snialtggare was in one of our trials, there was a space neiglgoorin
it which could accommodate only still smaller squares. $Thight not have been true of all our trials, but it probablyswae of
most of those trials that offered any hope of success.) Wdwrkel the smallest square fit? Could it be in a corner as inreig?
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Figure 1.6: Where is the smallest square? (In a corner?)

Is the smallest square in a corner? A moment’s reflection shows it can’t be. Singés the smallest square, its neighbors must
be larger as in Figur#.7.

-

Figure 1.7: The smallest square has a larger neighbor.

But that creates exactly the kind of space we've been talliiaut. Only squares smaller th&rould fit into that space.

Is the smallest square on a side? Similarly, we see tha®cannot be on one of the sides of the rectangle as Fig@idustrates.
It's two neighbors on that side must be larger than S; oncenagamall space is created. So, if there is a solution to the
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Figure 1.8: The smallest square has two larger neighbors.

problem at all, the smallest square must lie somewheredribilrectangle, i.e., its sides cannot touch the bordereaftttangle.
Problem 2 Do you think it is possible to find a tiling using exactly foguares of unequal size? O

Problem 3 Do you think it is possible to find a tiling using exactly fivesor squares of unequal size? 0

1.1.4 What are the neighbors of the smallest square?

Did you find a tiling with five or six squares? If so, you'd bettdeck that it really works. Did you find a proof that there @s n
solution? If so, you'd better make sure you really have afroo

Let’s analyze a bit more. Suppose there is a solution@isdthe smallest square. We kndmust be inside the rectangle.
What possibilities are there for the relationship betw8and its neighbors?

A possible case? A neighbor ofS might extend beyon& on both sideas Figurel.9illustrates. This, we see is not possible
because two other neighbors (the ones below and abovéhe diagram) would then create a small space.

Another possible case? The smallest squar®@ may have a side bordering on two neighbors as Figut8illustrates. This is
impossible for the same reason.
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Figure 1.9: Possible Neighbor of the smallest square? (No.)

Figure 1.10: Two possible neighbors of smallest square?)(No

The only possible case! Each neighbor of the smallest squ&®as a side which fully contains one side®fbut extends on
one side ofSonly. Figurel.llillustrates this. Is this possible? At least no small spaelieen created. This is the only case we
cannot rule out immediately.
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Figure 1.11: Four possible neighbors of smallest square®/ifkl)

What does a solution look like? We now know that if there is a solution, the only possible etaent of the smallest squase
is thatS be somewhere inside the rectangle and be surrounded byigtsboes in a windmill fashion. We have not determined
that a solution exists. But we have learned something abbat & solution must look like (if there is a solution at all).

This leaves us with two options: we could continue to try tovghhere is no solution. How might we try? Perhaps we can
still show that there is no place to p8t Or maybe the second smallest square creates a problem.[t@wmatve is to switch
gears again and try to show there is a solution. If we takepibsstive option, we are far better off than we were at the fr@gQ.

We need try only such constructions which have the smaltgsire surrounded by its neighbors in a windmill fashion.d tey
that for awhile and see what it leads to.

Problem 4 Experiment with four, five, and six squares trying to comlbireesquares in such a way that the resulting figure is a
rectangle. (Same as Probleimbut use newly learned information.) Answer O

1.1.5 Isthere afive square tiling?

It is clear that we need not try to find a solution with four sgaga One thing we've already learned is that a solution (& on
exists) requires at least five squares, nansand its four neighbors. Let'’s try a solution with five squar®ach a solution must
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involve Ssurrounded by its neighbors in a windmill fashion. Figarg2illustrates an attempt at this. In the figukeB, C andD
are squares surrounding a central sguare

Figure 1.12: We try for a five square tiling.

Careful measurements of the sides of the squares in thiggooafion will reveal that they are not exactly squares. (#ved
want them exactly squares.) But that may mean no more thawéehaeren't careful with our drawing. And, after all, no oranc
draw a perfect square! One would hardly discard the idea otk gust because no one can draw a perfect circle.

If we think the diagram above represents a solution, we shiulto find numbers representing the sides of the squares s
that all the requirements of our problem are satisfied.

An algebraic method To check that a proposed solution is correct or to prove thpmbposed solution is impossible, we can
use some simple algebra. Suppose the diagram representdians Denote the length of the side $by s and the length of
the side ofA by the lettera. The labeling is shown in Figure.13

Then,B has side lengtk—+ a (why?) soC has side length

S+ (s+a)=2s+a
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mv Tile

Figure 1.13: a, b, ¢, d, and ands are the lengths of the sides of the “squares.”

andD has side length
S+ (2s+a) =3s+a.
But, looking atA, S, andD, we see thad = d+s. Thusa = 4s+a, that is,s= 0. This shows that our configuration is impossible.
The squaresreduces to a point, and the other four squares are all of the si&ze.
The only other possible five-square configuration using owdmill idea would look similar to this and would check out
negatively too. To this point, then, we have proved thatiingossible to solve our problem with five or fewer squares.

1.1.6 Isthere a six, seven, or nine square tiling?

In the problems below determine whether the suggested cwafigns can work. Don’t go by the accuracy of the drawingst Ju
because some of the tiles don’t look like squares doesn’hriied one can't distort the picture some, keeping eachrtitesisame
relationship to its neighbors, and making all the tiles sgsialn some cases you may need to use the algebraic tectuiithie
section.

Problem 5 Does this configuration in Figuré.14of six “squares” work?
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Figure 1.14: A tiling with six squares?

Answer O
Problem 6 Does the configuration of seven “squares” in Figurel5work?

Answer O
Problem 7 Does the configuration of nine “squares” in Figufiel5work? Answer O
Problem 8 Experiment some more. Construct diagrams like those inlBnob, Problem6 and Problen. Answer O

1.2 A solution?

While working on Problen8 you may have succeeded in arriving at a diagram such as ththanappears in Figure. 16 We
don't have to sketch it accurately; the figure suggests @ngibssible configuration that might look like this. As usdaf our
method, the smallest square is labeled asd its neighbor aa. The rest of the side lengths would then be determined as the
figure shows.
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Figure 1.15: A tiling with seven squares? With nine squares?

Can this configuration be made into a solution? That is, cAresaofs anda be found so that all the rectangles are squares?
Since the right and left sides of the rectangle must haveahedength, we calculate

7a+6s=9a—s

or
7s = 2a.

If, for example. we take = 7 ands = 2 we would have §= 2a and we would arrive at the following diagram in Figurd 7, the
tiny square having side 2.
Thus, we see there is a solution to the nine square problemadft And, to be sure, the diagram that we and you used for
this solution would not have had tiles tHabked like squareéunlike the final neat graphics here) but the algebra vertfiatwe
can create a tiling meeting all our conditions.

Problem 9 Here is the algebraic method of this section as describedibiaktVv T. Tutte (1917—2002), one of the founders of this
theory:

“The construction of perfect rectangles proved to be quiigye The method used was as follows. First we sketch a rdetaogup into
rectangles, as in [Figutelqd. We then think of the diagram a bad drawing of a squared ngtta the small rectangles being really squares,
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da+4s Sa-s
a-—-=s
a+s
3a+2s a 4a
2a+S

Figure 1.16: Will this nine square tiling work?

and we work out by elementary algebra what the relative siféle squares must be on this assumption. Thus in [Figl#we have
denoted the sides of two adjacent small squaresdiydy and then that the side of the square next on the leftiy, and so on. Proceeding
in this way we get the formulae ... for the sides of the 11 sswliares. These formulae make the squares fit togetheryexactiThis gives
the perfect rectangle . ..the one first found by [Arthur] $br—W. T. Tutte12].

Carry out all the arithmetic needed to construct Figurel8 the initial sketch for Stone’s tiling. Then do the necegsar
algebra to find the sides of the eleven squares. Answer O
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2
A5
9 r7
25 28
16

Elements: 2,5, 7, 9, 16, 25, 28, 33,

Figure 1.17: A tiling with nine squares!

1.2.1 Bouwkamp codes

Our solution of the rectangle in Figufiel7tiled with nine squares is something we might want to keegarteof and commu-
nicate to others. If we send someone a picture they can edmghk that we have it all right and can see exactly what owttisol
is. Suppose we communicate only the size of the smaller eguar

2,5 7,9, 16, 25 28 33 36.
A little more helpful would be to indicate also the size of theye rectangle, in this case

61 x 69.
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14y — 3X

11y Y

3x-3y
3X+y
X+ 3y
2X+ 95y X
y 2X+Yy
X+ 2y

X+Yy

Figure 1.18: Initial sketch for Arthur Stone’s eleven-seugling.

In theory that should be enough for someone who likes fienplistzles, but these nhumbers alone don't tell the story in any
adequate way. The picture does, but that is an inefficienttvagmmunicate our ideas.

The Dutch mathematician Christoffel Jacob Bouwkamp (12083) devised a simple code that is much used nowadays
Problem10 asks you to devise your own code, but the answer (found atth@iethe chapter) gives the Bouwkamp code and a
brief description of how it works.

Problem 10 There are 21 square tiles in Figutel9. How could you send a text message to a friend (no picturesvetl) that
would allow him to reconstruct this tiling?
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27
35
50
8
19
15 | 17 |11
-2 6
25 Sk 18 24
29 16
4—
42
33 37

Figure 1.19: Can you reconstruct this figure from the nuntbers
Answer O

Problem 11 Give the Bouwkamp code for Figuiel?. Answer O

Problem 12 Here are the Bouwkamp codes for the only ninth order squagethngles. Construct the one that is not in the text
already.

Order 9, 33 by 32: (18,15)(7,

7
Order 9, 69 by 61: (36, 33)(5,
Answer O
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1.2.2 Summary

Let us reflect on where we have been so far in this chapter. &veedtwith an interesting (but puzzling) geometric prohldm
was unlike the usual high-school geometry problems in tbaerof the usual techniques of geometry could be broughtdo be
on the problem.

At first, the problem wasn’t one for which we had any ideas ktoala solution. So we played around with it in the hopes
of learning something. What we learned by experimentingughovas that there was a difficulty caused by the small space
adjoining the smallest square in most of our attempts. Mayakewas the key to the problem. Perhaps there was no sqlatioh
perhaps we could prove that by showing there’s no place sihallest square.

We succeeded in eliminating certain placements for thelestaquare, seeing that such placements always createdl|h
spacethat needed an even smaller square. But one such placendenbtdseem to lead to any problem. We returned to the
drawing boards, armed with our new information. Eventualé/were able to use a bit of algebra together with what we éshrn
to arrive at a solution.

So we've solved our problem. Now what? A creative mathernzatimight ask a lot of questions suggested by this problem.
Which rectangles can one tile with squares? Are there argreguhat can be tiled with unequal squares? What othegdikne
possible or impossible?

For additional examples of tilings, see Ste#.[ In that reference one can find a leisurely development ofimber of
guestions related to tiling. In particular, a surprisingyvimwhich tiling and electrical theory are related is deysd there and
leads to the theorem that if a rectangle can be tiled withregua any manner whatsoever, then it can also be tiled byres|ad
of the same size.

We will continue with some related material for those readeno want to purse these ideas further. For mathematicians n
problem ever stops cleanly: there are always some moreigugesb address, more ideas that our investigation suggests

1.3 Tiling by cubes

What about tilings with other types of figures? One can ashkogoas questions in higher dimensions. Is it possible taafill
rectangular box with cubes no two of which are the same s&suggested in Figure20? This is the three dimensional version
of the problem we just solved. At first glance it appears to lnelmmore difficult. But, perhaps some of the insights we micke
up from the two-dimensional case can be of use to us in theetdimensional version.
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Figure 1.20: Tiling a box with cubes.

Problem 13 Determine whether or not it is possible to fill a three-dimenal rectangular box with cubes, no two of which are
the same size. Answer O

1.4 Tilings by equilateral triangles

Figurel.21shows a tiling of an equilateral triangle with other equitat triangles, but notice that there are several duptinati
of same sized triangles in the figure.

Similar ideas to those developed so far in the chapter arfeliseshowing that it is impossible to tile an equilaterahtrgle
with other equilateral triangles no two of which are the saime. Problenmi4 asks you to do this.

1.4.1 (Tutte, 1948)If an equilateral triangle is tiled with other equilateratiangles then there must be two of the smaller
triangles of the same size.

This was first proved by W. T. Tutte in 1948 (see iteti][in our bibliography). An accessible account of this probleppears
as the chapter

W. T. Tutte,Dissections into equilateral triangldpp. 127-139)
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Figure 1.21: Equilateral triangle tiling.

in the book by David Klarner that is referenc&d] in our bibliography. A 1981 article by Edwin Buchman in then&rican
Math. Monthly (see 15]) shows, using Tutte’s methods, that there is no convex digrall that could be tiled by equilateral
triangles unless at least two of those triangles are the saae

For further discussion of these topics see the book of SheBtein P] that appears in our bibliography.

Problem 14 Show that it is not possible to tile an equilateral triangléhwsmaller equilateral triangles, no two of which are the
same size. Answer O

1.5 Supplementary material

We conclude our chapter with some supplementary matedaltite reader may find of interest in connection with the bl
of squaring the rectangle.
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1.5.1 Squaring the square

We have succeeded in tiling some rectangles with unequaksguiut none of our rectangles was a square itself. Is ittpese
assemble some collection of unequal squares isguare

The description of the problem aguaring the squareriginates with one of the four Cambridge University studerutte,
Brooks, Smith, and Stone who attacked the problem in 193bastintended humorously since it seems to allude to the famou
problem ofsquaring the circlevhich means something totally different and was well-knawbe impossible.

Tutte in his autobiographical memoulescribes Arthur H. Stone (1916-2000) as the one of the fbrproposed the problem.
He had found an old puzzle in a book of Victorian puzzles emithy Henry Dudeney, an English puzzler and writer of re@eat
mathematics.

Figure 1.22: Tutte and Stone.

See Figurel.23for Dudeney’s statement of his problem. The “solution” of firoblem in the book is given by Dudeney in
Figurel.24where the inlaid strip of gold is the black rectangle in theldhe. The problem is calledady Isabel’'s Casket(In

1Graph Theory As | Have Known, Iby W. T. Tutte (item 1.3] in our bibliography).



22

40.—Lady Isabel's Casket.

Sir Hugh's young kinswoman and ward, Lady [sabel de
Fitzarnulph, was known far and wide as “lsabel the Fair."
Amongst her treasures was a casket, the top of which was perfectly
square in shape. [t was inlaid with pieces of wood and a strip of
gold, ten inches long by a quarter of an inch wide.

When young men sued for the hand of Lady Isabel, Sir Hugh

prornisccl his consent to the one who would tell him the dimensions

of the top of the box from these facts alone : that there was a
rectangular strip of gold, ten inches by }-inch ; and the rest of the
surface was exactly inlaid with pieces of wood, each piece being a
perlect square, and no two pieces of the same size.  Many young
men failed, but one at length succeeded. The puzzle is not an easy
one, but the dimensions of that sirip of gold, combined with those
other conditions, absolutely determines the size of the top of the
casket.

Figure 1.23: Lady Isabel's Casket (from a 1902 English bdgbuzazles).

CHAPTER 1.

TILINGS
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1.5. SUPPLEMENTARY MATERIAL
Victorian England a casket was not necessarily just foraiaimg corpses, but could be “a small box or chest, often fimee a
beautiful, used to hold jewels, letters or other valuablas’defined in the World Book Dictionary].)

b- 4 -
20

Figure 1.24: The “solution” to Lady Isabel's Casket.



24 CHAPTER 1. TILINGS

Stone realized that the problem was tougher than Dudenethbadht, for, if this figure were indeed thmiquesolution of
the problem, that could only mean that none of the squardseiigure could be divided into smaller unequal squares. They
learned that the great Russian mathematician Nikolai dikglch Lusin (1883-1950) had conjectured that no squanédme
squared. Thus the four of them decided that they could makergputation by solving this Lusin Conjectumgo square can be
subdivided into a collection of squares no two of the sane siz

In fact they not only succeeded in squaring the square bubdiniyy deep connections to the problem with graph theory and
electrical networks.

The smallest squared-square Did you notice that Figuré.19is a squared-square? ProblémMasked for the Bouwkamp code
for this tiling by twenty-one unequal squares. This is thedst order example of squaring the square.

Observe that every squaB2whether the length of its sides is an integer, a rationalbbemor even an irrational number, can
be tiled with squares of unequal size. Just shrink or stritelsquare in Figuré.19to the size ofS. This gives a tiling ofS.

A final word. The problem that began this chapter was to determine whittisezverpossible to tile a rectangle with squares
of unequal sizes. We answered this question in the affir@alile question remainghichrectangles can be tiled in this manner.
The answer to this question is given following the answerrttbem19.

1.5.2 Additional problems

For those readers who did not get enough problems to work endre some more. We also have added some more Bouwkam
codes problems as they appear to be popular entertainmments (ike Suduko problems). Note that with these codes one ca
design jig-saw puzzles consisting of unequal squares whigt be assembled to form a large rectangle. The Bouwkamgscod

themselves then are quick descriptions of how to assemélpi¢ites to solve the puzzle.

Problem 15 Here are the Bouwkamp codes for all of the tenth order squeeethngles. Sketch the tiling figures for as many of
these as you find entertaining.

Order 10, 105 by 104: (60, 45) (19, 26) (44, 16) (12, 7)(33)
Order 10, 111 by 98: (57,54)(3, 7, 44) (41, 15, 4) (11) (26)
Order 10, 115 by 94: (60, 55) (16, 39) (34, 15, 11) (4, 23) (1

(28)

9)
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Order 10, 130 by 79: (45,44, 41)(3, 38) (12, 35) (34, 11) (23)
Qder 10, 57 by 55: (30,27)(3, 11, 13) (25, 8) (17, 2) ( 15)
Order 10, 65 by 47: (25,17, 23) (11, 6) (5, 24) (22, 3)(19)

O

Problem 16 Here are the Bouwkamp codes for all of the eleventh orderrsguactangles. If this still amuses you, sketch some
more figures.

Oder 11, 112 by 81: (43,29,40)(19,10)(9, 1) (41)(38, 5)(33)
oder 11, 177 by 176: (99, 78)(21,57) (77, 43) (16, 41) (34, 9) (25)
Order 11, 185 by 151: (95,90) (5, 24, 61) (56, 25, 19) (6, 37) (31)
Order 11, 185 by 168: (100, 85) (43, 42) (68, 32) (1, 41) (4, 40) ( 36)

(

E
Order 11, 185 by 183: (105, 80) (33, 47) (78, 27) (19, 14) (5, 56) (51)
Order 11, 187 by 166: (99,88) (10, 78)(1,9)(67, 25, 8) (17) (42)
Order 11, 191 by 162: (97,94) (26, 68) (65, 32) (9, 17) (33, 8) (25)
Order 11, 191 by 177: (102, 89) (40, 49) (75, 27) (48, 19) (10, 39) ( 29)
Order 11, 194 by 159: (100, 94) (29, 65) (59, 25, 16) (9, 7) (36) (34)
Order 11, 194 by 183: (102, 92)(31, 23, 38) (81, 21) (8, 15) (60) (53)
Order 11, 195 by 191: (105, 90) (15, 31, 44) (86, 34) (18, 13) (57) (52)
Order 11, 199 by 169: (105, 94) (19, 75) (64, 33, 8) (27) (31, 2) (29)
Oder 11, 199 by 178: (102, 97)(16,81)(76,15,11)(4 23) (19) (42)
Order 11, 205 by 181: (105, 100)(6, 13, 81) (76, 28, 1) (7) ( 20) (48)
Qder 11, 209 by 127: (72,71, 66) (5, 61) (1, 19, 56) ( 55, 18) ( 37)
Order 11, 209 by 144: (85,57, 67) (47, 10)(77)(59, 26) (7, 40) ( 33)
Order 11, 209 by 159: (89,49, 71) (27, 22) (5, 88) (32) (70, 19) (51)
Order 11, 209 by 168: (92,64, 53) (11, 42) (44, 31) (76, 16) (73) (60)
Order 11, 209 by 177: (96,56, 57) (55, 1) (58) (81, 15) (66, 4) (62)
Order 11, 97 by 96: (56,41) (17, 24) (40, 14, 2) (12, 7) (31) ( 26)
Order 11, 98 by 86: (51,47)(8,39)(35,11,5)(1,7)(6)(24)
Qder 11, 98 by 95: (50,48)(7, 19, 22) (45, 5) (12) (28, 3) ( 25)

O

Problem 17 If a rectangle is tiled by squares, all of different sizeg #econd smallest square cannot touch the border of the
rectangle. Prove this statement. O
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Problem 18 Suppose we are given a rectangle of dimensior$aCan this rectangle be subdivided into equal sized sqRares
Answer O

Problem 19 Suppose we are given a rectangle of dimension®aUnder what circumstances can you be sure that this ret¢éang
cannotbe subdivided into a finite number of (not necessarily eqg@liares? Answer O

1.6 Answers to problems

Problem 1, page 3

Figurel.25shows some possibilities with four unequal squares thathyigit have tried. These two are unsuccessful.

 m

Figure 1.25: More experiments with four squares.

Problem 4, page 9

A four square configuration can’'t have a windmill and so we gass over the possibility of a four square arrangement. f¥isir
try at the five square configuration (using the windmill ideauad the smallest square) might look like that in Figlir26. Does
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this, indeed, represent a possible soluiifore get the dimensions rightOur drawing program won'’t produce accurate squares

but the layout looks promising.

Before reading on in the text, try to see if you can find dimensithat would make this configuration work. Label the side
lengths of the squares and see if there are numbers that Waobu can show that there cannot be such numbers then you will
have succeeded in showing that this particular arrangedues not work.

Figure 1.26: We try for a five square tiling.

Problem 5, page 11

In the figure of Problen®d, we see that two of the tiles have a common side. If they areetsqoares, they must be the same
size, violating a condition of our problem. Thus we do notchedo the algebra. A tiling that looks like this does not sobur
primary problem: find a tiling with all squares different sizes

Problem 6, page 12

In the figure for Problen®, we see a plausible configuration. None of the squares (@eddhey could be squares) is the same
size as any of the others. We need to find exact numbers thad wake this work.
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If the diagram could be a solution, we can spot which of theasegicould be the smallest. Denote the side of that square b

s and denote the side of its right-hand neighborbyVe then compute the (sizes of) the sides of the remainingreguarriving
at the diagram in Figuré.27.

Figure 1.27: Lengths in terms of sides of 2 adjacent squargsidurel.15

Since the top and bottom of a rectangle are of equal length,
3s+2a=>5a—3s

so that 2= a. Thus two of the rectangles would have to have sides equal tAdhin this violates our primary objective: find a
tiling with all squares ofiifferent sizesDid you notice that other requirements are violated?

Problem 7, page 12

Again we see no immediate objection to this configuratiomight work. Let's do our algebraic computations. There amesl
ways to do this. Here’s one in Figute?8 that gives us the sizes of some of the squares. We now cortijaitine darkest square
in the figure has side

(a—3s)—a—s=—4s.
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This is again impossible, now because we have produced &wveegamber for the length of a side.

a—2s
a—3s

Figure 1.28: Some square lengths labeled for Figuié

Remark Note that our arguments never involved a statement suchhastite is much too thin to be a square.” Even if we
had been correct with such a statement, this would not rul@ gimilar configuration in which all the tiles were squargsich

a configuration could possibly have been achieved by progeicel and horizontal stretchings of the entire configarat But
our arguments in all three of the problems in this sectiom&ubthat something was inherently wrong with the ways sontbeof
tiles related to their neighbors. One couldn’t stretch thiefigurations and render all the tiles squares of differeagss

Problem 8, page 12

0.K. We are now ready to take another crack at finding a saiutiWe have a simple and easy to apply algebraic method for
checking our proposed solution. We know in advance wheréatefgthe smallest square.

If our attempts fail, perhaps we can discover some unreBlawdifficulty inherent in the problem. If we can prove that
there is such an inherent unresolvable difficulty, then wiehaive proved the problem has no solution. Many problemsg@das
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mathematics have no solution and we might be equally prosth@iving that the problem is impossible as finding an answer.

But first, experiment some more.

Keep in mind that there must be more than five squares, thdesnailust be surrounded by its neighbors in a windmill
fashion, and the requirements of the problem must be metlyApw algebraic method for obtaining the sizes of the siddb@®
tiles (if they are to represent a solution) and see what #zaid to. Instead of proceeding almost blindly, try to modigrams
you have already studied, such as those in this section. Batewent wrong with these attempts and try to overcome tlfiealify
(or try to find some irreconcilable difficulty).
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Problem 9, page 14

78
99

21

57
43

I

5116
41

Elements: 9, 16, 21, 25, 34, 41, 43,57, 77, 7€
Figure 1.29: Realization of Arthur Stone’s eleven-squdiregt
The dimensions of Stone’s tiling are shown in Figar29 Just do the elementary algebra using the same method thaede

and you should be able to discover all of the dimensions. Yay wish to compare the length of the side of the rectangleen th
upper right hand corner with the lengths of the sides of thereetangles below it to obtain §6= 9x.
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Problem 10, page 16

A reasonable start at communicating the configuration infelg19is to start at the upper left corner and report the adjacent
squares at the top from left to right:

50, 35, 27.
Then what to report next? You might decide to spiral arourdaiitside of the square in a clockwise direction. But thatld/ou
likely end up in trouble. The Bouwkamp method is just to kegporting left to right all the new squares you see at eacH.leve

There are ten levels in the picture (count them) and so yod ageport at each of these levels. The level is defined by thefto

the squares, starting with the very top level which we detidereport by the numbers [50, 35, 27].
In the Bouwkamp code, brackets are used to group adjaceatesjwith flush tops, and then the groups are sequentially
placed in the highest (and leftmost) possible slots. Fareakample of the 21-square illustrated in the problem the é®d

50,35,27], [8,19], [15,17,11], [6,24], [29,25,9,2], [7,18], [16], [42], [4,37], [33].

Problem 11, page 17
(36,33, [5,29, [25,9,2], [7], [16].
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Problem 12, page 17

33

18 15

32

14
10 9

Figure 1.30: A 33 by 32 rectangle tiled with nine squares.

In Figure1.30is a picture that corresponds to the Bouwkamp code

Order 9, 33 by 32: (18,15)(7,8)(14,4)(10,1)(9).

Problem 13, page 19

It is a bit more difficult to experiment with the three-dimanmsal setting than it was with the two-dimensional settime remark
before the problem suggests that “some of the insights weegiap from the two dimensional case can be of use to us in this
three dimensional version.” The key in two dimensions wasu$e of the smallest square argument. Try this:
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Use the smallest cube argument!

Don't read the rest of the answer without trying again. Yowmwash to glance at Figur#&.31

Our proof is an indirect one. We assume that there is suchstremtion and find that there is a contradiction.

Suppose a rectangular box were filled with cubes no two of kvhiere of the same size. Consider only those cubes which
lie on the bottom of the box. The bottom faces of these culeshi floor of the box by squares, no two of the same size. The
smallest of these tiles must be surrounded by four othex itile windmill fashion. LeK; be the smallest of the cubes lying on
the floor of the box. From what we just said, we see kais surrounded by four larger cubes which forroaeraroundK; as

suggested in Figuré.31

Ve

Figure 1.31: A tower of cubes arouikd.

Now consider those cubes whose bottoms lie on the top fakg.oFheir bottom faces tile the top face Kf. As before, we
conclude that the smallest of thesgis surrounded by four larger cubes which form a tower arotind i
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Continuing in this manner we see there can be no end to thi®pso No matter how many of these cubesKy, Ks, ...we
have obtained, there must still be smaller ones lying on fapeosmallest obtained to that point.
Thus, we have proved this:

1.6.1 (No cubing the box)It is impossible to fill a rectangular box with cubes, all offdient sizes.

Our techniques in the tiling problem of studying the locatid the smallest square was useful to us in two ways: firstave
us information about the structure of tilings of rectandigsquares of different sizes—the smallest square mustrbeusided in
a certain way by its neighbors; secondly. It suggested aroapp to solving the analogous problem in three dimensispate.

Problem 14, page 20

The smallest cube argument that succeeded for ProbBsnggests that smallest triangle argumerttan be developed for this
problem, and indeed very similar ideas will work here.
Our proof is again an indirect one. We assume that there s&w@onstruction and find that there is a contradiction.
Assume that we have a tiling by smaller equilateral triasgéd! of different sizes. Start by looking for the smallesrigle S
that touches the bottom of the triangle. Argue that it musk llike Figurel.32.

V4

Figure 1.32:Sis the smallest triangle at the bottom of the tiling.

Then look for the smallest triangl€ that touches the top of the triangBe Argue that it must look like Figuré.33 This
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argument keeps going indefinitely and so we shall soon rumfiniangles, just as in our solution to Problerf we ran out of
cubes.

Figure 1.33:T is the smallest triangle that touch8s

Problem 18, page 25

To begin the problem check that, whaandb are integers then the rectangle can be easily subdividedlirgqual sized squares,
all of side length 1.

Suppose or b is not an integer and/b can be expressed as a fractioyin, wheremandn are positive integers. Then=cm
andb = cnfor some numbec. Thus take small squares of side lengtand there are certainiyjnsuch squares fitting inside the
rectangle.

If a/bis not a fraction (i.e., it is an irrational number) then therould be no choice of side lengtffor the small squares to
work out. In modern language two real numba=ndb arecommensurablé a/b is a rational number (i.e., a fraction). Thus the
answer to the problem is that we must req@r@ndb to be commensurable.

Problem 19, page 26

We just saw in Problemi8 that a rectangl® cannot be tiled with equal squares unless the sides of th&ngle are commensu-
rable. It is also true for any tiling by a collection of squathat this same condition must be met. A proof that a rectaceh be
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so tiled if and only ifa andb are commensurable is given in

R. L. Brooks, C. A. B. Smith, A. H. Stone and W.T. Tutfiehe dissection of rectangles into squarBsike Math. J.
(1940) 7 (1): 312—340.

Probably the first proof of the theorem tlzatectangle can be squared if and only if its sides are comorabte is by Max Dehn,
Max Dehn, Uber Zerlegung von Rechtecken in Rechtecke, Madkische Annalen, Volume 57, September 1903.

though it might be rather more inaccessible to most of owleea



Chapter 2

Pick’s Rule

Look at the polygon in Figurg.1 How long do you think it would take you to calculate the ar€afe of us got it in 41 seconds.
No computers, no fancy calculations, no advanced mathtrgtsimple arithmetic. How is this possible?

The projects in this chapter have as their centerpiece wabkghed in 1899 by Georg A. Pick (1859-1942). His theorem
supplies a remarkable and simple solution to a problem iasar8et up a square grid with the dots equally spaced one jrach a
and draw a polygon by connecting some of the dots with sttdilgds. What is the area of the region inside the polygon?

You will likely imagine counting up the number of one-inchusges inside and then making some estimate for the partial
squares near the outside. Pick’s Rule says that the areaeaamniputedexactlyandquickly: look at the dots!

As is always the case in this book, it is thiscoverythat is our main goal. Many mathematics students will lebimitheorem
in the traditional way: the theorem is presented, a few cdatfmns are checked, and the short inductive proof is pteden
class. We take our time to try to find out how Pick’s formula htigave been discovered, why it works, and how to come up with
a method of proof.

8Y
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Figure 2.1: What is the area of the region inside the polygon?

2.1 Polygons

In Figure2.1 we have constructed a square grid and placed a polygon ogritdah such a way that each vertex is a grid point.
The main problem we address in this chapter is that of deteéngnihe area inside such a polygon. We need to clarify oguage
a bit, although the reader will certainly have a good inteiiidea already as to what all this means.

Familiar objects such as triangles, rectangles, and datetals are examples. Since we work always on a squarehgrithe
segments that form the edges of these objects must join tigdrdthe grid.

2.1.1 Onthegrid

We can use graph paper or even just a crude sketch to vistiadizgid. Formally a mathematician would prefer to call thiel @
lattice and insist that it can be described by points in the plane inittlger coordinatés

Lit is usual for mathematicians to describe the integers

74 733 727 713 0, 17 2, 3, 4,
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But we shall simply call ithe grid It will often be useful, however, to describe points tha an the grid by specifying the
coordinates.

Problem 20 A point (m,n) on the grid is said to be visible from the orig{®,0) if the line segment joiningm,n) and (0,0)
contains no other grid point. Experiment with various clesiof points that are or are not visible from the origin. Whai gou
conclude? Answer O

2.1.2 Polygons
It is obvious what we must mean by a triangle with its vertioaghe grid. Is it also obvious what we must mean by a polygon
with its vertices on the grid? We certainly mean that theesngioints
Vi, Vo, V3, ..., Vi
on the grid and there arestraight line segments
ViVo, VoVa, VaVa, ..., VoW1 (n>3)
joining these pairs of vertices that make up the edges ofdahgpn. Figure?.2illustrates. Need we say more?

Problem 21 Consider some examples of polygons and make a determiratida whether the statement above adequately
describes a general polygon on the grid. Answer O

2.1.3 Inside and outside

A polygonP in the plane divides the plane into two regions, an insideandutside. Points inside & can be joined by a curve
that stays inside, while points outside can be joined by gectirat stays outside. If you travel in a straight line fronmoapinside
to a point outside then you will have crossed the polygontidke facts may seem quite obvious, but a proof is not easy.

Nor is it as obvious as simple pictures appear to suggestgifraa polygon with thousands of vertices shaped much like a
maze or labyrinth. Take a point somewhere deep in the mazéyataldecide whether you are inside or outside of the polygon
We might be convinced that there is an inside and there is tideubut it need not be obvious which is which.

by the symbolZ (the choice of letter Z here is for Zahlen, which is German“‘farmbers”). Then the preferred notation for the grid cotiisgsof all pairs
(m,n) wherem andn are integers (positive, negative, or zero) wouldZBe
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v,

Figure 2.2: A polygon on the grid.

For these reasons we merely state this as a formal assunfiptioar theory:

2.1.1 Every polygon P in the plane divides the plane into two regjdneinsideof P and theoutsideof P. Any two points inside
(outside) of P can be joined by a curve lying inside (outsieBut if a line segment has one endpoint inside P and the other
outside P, then this line segment must intersect P.

It is common to call the inside @olygonal regionto refer to the polygon itself as thwundaryof the polygonal region, and to
refer to points inside but not on the boundaryraerior points For simplicity, we often refer simply to thasideof the polygon.

Problem 22 If you are given the coordinates for the vertices of a polygpacified in order and the coordinates of some point
that is not on the polygon, how might you determine whether goint is inside or outside the polygon? Answer O
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2.1.4 Splitting a polygon

A polygoncan be spliinto two smaller polygons if there is a line segmenbining two of the vertices that is inside the polygon
and does not intersect any edge of the polygon (except atvhedrtices which it joins). Figur@.3illustrates one particular

Figure 2.3: Finding a line segmehtthat splits the polygon.

case. The large polygon with eight vertices has been spdittimo polygonsM andN. The polygonM has five vertices and the
polygonN also has five vertices.

This splitting property is fundamental to our ability to peathings about polygons. If every polygon can be split imaker
polygons we can prove things about small polygons and uséattteto determine properties that would hold for largerygohs.

Problem 23 Figure 2.3 shows one choice of line segment L that splits the polygomw iany other choices of a line segment
would do the split of the large polygon? Answer O

Problem 24 Experiment with different choices of polygons and deteemaihich can be split and which cannot. Make a conjec-

ture.
Answer O
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Problem 25 Prove that, for every polygon with four or more vertices,réhis a pair of vertices that can be chosen so that the
line segment joining them is inside the polygon, thus smiitthe original polygon into two smaller polygons. Answer O

Problem 26 In Figure 2.3 the large polygon has eight vertices. It splits into two golygs M and N each of which has five
vertices. Each of the smaller polygons has fewer verticas the original eight. Is this true in general? Answer O

2.1.5 Area of a polygonal region

A polygonal region (the inside of a polygon) hasaaea This is rather more straightforward than the statementitaibsides and
outsides. If you can accept the elementary geometry thahwwa learned (the area of a rectangle is given by lengthidth,
the area of a triangle is given by 1/2 basex height) then polygonal area is simple to conceive. Breakptiiggon up into
small triangles (as in Figur2.4 for example); then the area would be simply the sum of the afélae triangles. Figur@.4is
considered &iangulation of Figure2.1.

Figure 2.4: A triangulation of the polygon in Figuzel

There are more sophisticated theories of area but we doed tieem for our process of discovery here. It is really quite
clear in any particular example how to triangulate and tloeechow to find the area. Better is to show that any polygontzEn
triangulated.

Problem 27 Figure 2.4 illustrates a triangulation of the polygon P. Can you find #etient triangulation? Answer O
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Problem 28 Using the splitting argument of Secti@nl.4show that every polygon can be triangulated by joining appede
pairs of vertices. Answer O
2.1.6 Areaof atriangle

Let begin with an elementary geometry problem. We ask foatiea of a triangle with its three vertices at the po{i®®), (s,t),
and(a,b) on the grid. Figure.5illustrates one possible position for such a triangle. Pingblem will not necessarily help solve
our main problem (finding a simple method for all polygons) ibwill be an essential first step in thinking about that gewb.

@b

(0,0 °

Figure 2.5: Triangle with one vertex at the origin.

What method to use? The first formula for the area of a triangle that all of us |leatts the familiar
1/2 x basex height

With that formula can we easily find the area of all trianglestlee grid? Yes and no. Yes, we can do this. No, sometimes we
wouldn’t want to do it this way.

We can find (although not without some work) the length of adg f a triangle since the corners are at grid points. But
finding the height would not be so obvious unless one of thessglhorizontal or vertical.

Is there a formula for the area of a triangle knowing just g#reths of the three sides. Should we pursue this?
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Seem reasonable? Given a triangle on the grid we can use thageyean theorem to compute all the sides of the triangle.
Once you know the sides of a triangle you know exactly whatribegle is and you should be able to determine its area.

Heron’s formula Search around a bit (e.g., on Wikipedia) and you will likelydfiHeron’s formula. If a triangld has side
lengthsa, b, andc then

AreaT) = \/s(s—a)(s—b)(s—c)
where
a+b+c
s= >
is called the semiperimeter af (since it is exactly half of the triangle’s perimeter). Wikdia lists three equivalent ways of
writing Heron'’s formula:

Area(T) = %\/(&2 12+ )2 — 2(at + b4 )

and

AreaT) = %\/(a+b—c)(a— b+c)(—a+b+c)(a+b+c).

While all this is true and we could compute areas this wayésm't appear likely to give us any insight. Well, these catafions
will work, but after a long series of tedious calculationswi# not be any closer to seeing how to find easier ways.

So, in short, not a bad idea really, just one that doesn’termeful to our problem. This problem should encourage you to
find a different way of computing the area of triangles on ttid.g

Decomposition method to compute triangle areas A better and easier method for our problem is to decomposger|aeasier
triangle that contains this triangle. Then, since the @enest add up to the area of the big triangle (which we canyefisd)
we can figure out the area of our triangle by subtraction.

In Figure2.6 we show a larger triangle containifigthat has vertices 40, 0), (0,b), and(a,b). This triangle has baseand
heightb and so areab/2. The figure shows the situation for the pofgit) lying above the line joining the origin an@,b) and
t < b. There are other cases. Probl@masks you to verify that the formula we obtain is valid in albes.
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Ob (s,b (@b

(0,1

(0,0

Figure 2.6: Decomposition for the triangle in Figw&

In the figure we see, in addition itself, two triangles and a rectangle. The dimensions ofdlctangle arsby b—t. The
base and height of the triangle below the rectanglesarelt; the dimensions of the triangle to the right of the rectaragéb — t
by a— s. Thus this decomposition of the large triangle must give

ab st (a—s)(b—t)
> = Area(T) +s(b—t) tot—— —

The rest is now algebra, but fairly simple if a bit longer tlyau might prefer. We see that
1
Area(T) = > {ab—2(s(b—t) —st— (a—s)(b—t)}
Tidy this up and find that
at— bs
2

You should be able to verify that, in the cases we didn't adeisior the location of the poinfs,t), we obtain the same
formula, or the formula with the sign reversed, that is

AreaT) =

bs— at

AreaT) = >
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The simplest way to report our findings is to give the formula
at—bs
2

Area(T) =

which is valid in all cases. (This is Proble?d.)
This is likely more algebra that most of our readers wouldedarsee. Nothing here was all that difficult however. This
formula is not simple enough to be a candidate for our “sithatea calculation formula.

Problem 29 Figure 2.6 shows how to compute the area of a triangle T that has vertt€®,0), (s,t), and (a,b) but only in

the special case shown for whi¢ht) lies above the line joining0,0) and (a,b) with t < b. Draw pictures that illustrate the

remaining positions possible for the poiist) and show that in each of these cases the formula

at—bs
2

is valid. 0

Area(T) =

Problem 30 (Area experiment) Try computing a number of areas of polygons with verticeshergtids, record your results and

make some observations. Answer O
Problem 31 Show that the area of every triangle on the grid is an integatltiple of1/2. Answer O
Problem 32 Use ProblenB1to show that the area of every polygon on the grid is an integeitiple of1/2. Answer O

2.2 Some methods of calculating areas

Before attacking our area problem let us take a short digne$s consider some possible methods of computing areas.|béta
do you think it would take to calculate the area inside theygah P of Figure2.7 that started this chapter by any of the methods
we have so far discussed?

The method we have already suggested for doing the compuitatbuld require us to break Upinto the three triangles
displayed in Figure.4, compute the area of each, and then add up the three areagouBwiould notice that none of the three
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Figure 2.7: The polygo® and its triangulation

triangles has a horizontal or vertical side. It would takeeaalculating to determine the areas of these triangles.nTéthods
of Section2.1.6would certainly work for each of these three triangles andrsa reasonable amount of time, we could indeed
compute the area of the polygon.

This is not impressive, however, and takes far longer thamthseconds that we claimed in our introduction. We should
consider some other approaches.

2.2.1 An ancient Greek method

Let’s look at another method that dates back to the ancieeéiar They devised a mettofibr approximating the area of any
shaped region.

Figure2.8 shows the polygon with some grid squares highlighted. If aent the grid squares that lie entirely insideand
add up their areas, we have an approximation to the areaiRsithis approximation is too small, because we have not cdunte
the contributions of the squares that lie only partiallyides?.

We could also obtain an approximation to the area that isaielby including the full areas of those squares that liggbisr
inside and partially outside. The exact area is somewhere between these two approximsationve do this for the polygon in
Figure 2.7, we find the two approximations are not that close to eachr.offigs is so because there are so many grid squares

2The ancient Greeks would not have used this method for firaliegs of polygons. It would be used for circles and other digjtinat couldn’t be broken
into triangles.
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Figure 2.8: Too big and too small approximations

each of area 1, that are only partially insiélethe difference between counting them and not counting tkeelatively large.

The method of exhaustion The two approximations will improve if we used smaller grgiares. They would improve again
if we used even smaller grid squares.

Suppose each grid square were subdivided into 4 smalleressjaad the process were repeated. Do you see that the ekcess
counting the partial squares is reduced, while the appratkan obtained by not counting them is increased. In a movaraztd
course one could show that by using smaller and smaller sguane can obtain the exact area using the theory of limhg. T
approximations that are too small increase towards the at@be the approximations that are too big decrease towhelactual
area.

How long do you think it would take to find the area®fising this method?

This method is sometimes called timethod of exhaustiowhich refers to the fact that the area is exhausted by eaptakt®ugh,
as you can well imagine, it might be the person doing the cdatipms that is exhausted.
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One wouldn't actually have to compug! those approximating areas. A person well-versed with timé process could
obtain formulas for the approximating areas at an arbitstage of the subdividing process and could then calculatdirtiit.
Still—not a quick process, probably slower than calcutatime area by our first method.

2.2.2 Grid point credit—a new fast method?

Now for our purposes, the sizes of our squares are fixed — theg\a area 1. To get an exact area we would have to calculate
the exact areas of the parts of the partial squares thatsligaR.

Is there a connection between the number of grid points amaudimber of grid squares inside a grid polygon? Perhaps we
can find a way of assigning “grid point credit” to grid point&t mimics the approximations we discussed. Since we den# h
the option of reducing the size of grid squares, we seek auflarthat gives an exact area, not one that requires somefdionito
Perhaps we can do this by giving credit to points dependintpein location inside the polygon. Let’s see if we can foratela
method of assigning full or partial credit to grid points.

If we were dealing with the whole plane, rather than with th&ide of a polygon, we would note that every grid point is a
corner point of four squares, and every grid square had fodipgints as corners. Thus one could count grid squares inyticwy
grid points. Of course, we are not dealing with the whole @Jame are dealing with a polygon. But it does suggest a start.

Assigning credit When a grid pointp is “well inside” the polygon, all four squares that hgvas a corner are inside. Let's
try giving full credit of 1 to such points.

What about other points? When only a certain part of the fquases that have the point as a corner lies inEidee try
giving that point proportional credit.

Notice there are several grid points, such as the gpioh an edge oP, many grid points likep “well inside” P, points like
w that are insidd® but near an edge, vertices likeand points likeu that are outside d? but near an edge.

In this simple figure, we see that only half of the area of the quares that hawgas a corner lies inside. Let’s try half
credit forg. You can check that the same is true of all grid points thabaran edge oP, except the vertices where a similar
picture would suggest credit different from 1/2.

We have already determined that the pgimteserves credit equal to 1 because the four squares assowitt p lie insideP.

At w the 4 associated squares appear to be more than half filladowithts ofP, sow should get more than 1/2 credit. The
vertexv should receive more than 1/2 credit. Even points likbat are outside but neBrdeserve some credit. The exact amount
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Figure 2.9: Polygor® with 5 special points and their associated squares

of credit each of these grid points deserves has to be ctddula
We can do this type of calculation for all grid points inside, or nealP, add up all the credits and get the exact areB. of

Is this useful or practical? This would be useful if there were a way of assigning credgrid points in a simple way, based
only on their location. Points well inside, like p would get full credit, and all other points whose associatgdares contain
points insideP (like g, w, v andu) would get credit between 0 and 1, based on the percentadpe air¢a of the four associated
squares that lies inside

Will adding up all these credits give us the exact area? Yeglli

Is this practical? Is it easy? Would all grid points on an edba polygon (except vertices) deserve credit exactly 1/86kL
at Figure2.10.

Here the pointp is located on the boundary of the triandleat (9,9). Our earlier example suggested that such a boundarn
point should receive credit 1/2. But less than half of thearkthe four squares having the pomas a corner lies insid€. So
this point p doesn’t deserve half credit after all: it deserve less. Vii@de to do a calculation to determine the credit this point
deserves, even though it lies on an edgé ofrhat would defeat our purpose of finding a simple and quickhoe of obtaining
the area.
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Figure 2.10: A “skinny” triangle.

We see that just knowing the location of a point gives no imiatectlue as to the proper credit, unless the point is weilllns
the polygon, or well outside it. A possibly messy calculatiwould be necessary to determine its proper credit.

How long do you think it would take to find the area®fising this method?

The answer is “Way too long.” The process would involve so imeelculation that for practical purposes it is useless.

Some other kind of credit? What now? We can give up the idea of assigning grid pointsitcréd, we can keep that idea, but
use what we have learned from our earlier experiments to fineyathat does lead to a simple, practical method of caladati
the area.

This sort of situation often occurs in mathematical discpveA plausible approach looks promising at first, but does no
achieve the desired outcome. Instead of giving up, the relsearetains part of that approach, but makes use of eanjgeri-
mentation and earlier results to find a similar method thattha desired outcome. In this case, it involves discovetiagorrect
simple and quick way to assign credit to grid points.
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2.3 Pick credit

The grid point credit idea based on area works certainlg édntirely general since it offers a method to compute the afany
figure. The figure need not be a polygon nor need it have anygointhe grid itself for this to work. The method assigns aeal
between 0 and 1 for every grid point but the nature of the paffiers no help in guessing at the credit—it must be computed i
each case. The only exception is that points well-insidgttggon clearly get a grid point credit of 1 and points welkside get

a zero credit.

Because the method is so general we do not expect it to offehimgight into the current problem. Nor is this method easy
or fast. We want a fast and easy method for computing polyiggmeas and we want a method that explains transparently ehy t
areas are invariably multiples of2 (as we saw in Problei32).

We will still use the idea of assigning a value to each grichpbut, encouraged by our earlier experiments and obsensti
we will assign only values of 0,/2, or 1. We will not attempt to assign values that imitate thid goint credit values. Points
with a small grid point credit might well require us to assigor 1/2 and points with a large area assignment might well require
us to assign 0 or /2.

We can call thisPick creditwith the understanding that it will be in almost no way rethte the grid point credit method we
have just proposed. As we have seen in working with grid poiedit, the credit each point gets simply must be computestet
is no way of looking at a point and deciding that some featfite@point justifies more or less credit.

For the Pick count we want to do no computations, although neendling to look for any features of the point that might
require different credits. We cannot decide whether a paéservesredit (in the same way that the area credit computations
did). We must simply experiment with different possibleigsments until we find the one that works.

2.3.1 Experimentation and trial-and-error

In order to get some familiarity with our problem let us cortgpeome areas for a variety of polygonal regions construaied
grids. These problems are essential training for our tadkhaip reveal the true nature of the problem we are trying lices®ne
goal we have, in addition just to familiarization with arealpems, is that of finding the appropriate Pick credit thaghtwork
for our area problem.

A good starting point is to investigate the area of primitivangles. A triangle on the grid must have all three vesgioa the
grid. If it contains no other grid points then it is calleg@mitive triangle
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Figure 2.11: Some primitive triangles.

Problem 33 (Primitive triangles) What can you report about the area of primitive triangles? Answer O

Problem 34 Find a number of triangles that have vertices on the grid andtain only one other grid point, which is on the
edges of the triangle. What did you observe for the areas? Answer O

Problem 35 Find a number of triangles that have vertices on the grid aodtain only one other grid point, which is inside the
edges of the triangle. What did you observe for the areas? Answer O

Problem 36 In Figure 2.12 we see a collection of four polygons each of which has 4 bayngaints and 6 interior points.

Compute the areas and comment.
Answer O

Problem 37 Show that it is possible to construct a polygon on the grid bz as its area any one of the numbers

1 SHS 7
1 -,2,-,3
7277

— 4
27 ) 27

E’ P
Answer O
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Figure 2.12: Polygons with 4 boundary points and 6 intermn{s

Problem 38 What numbers can appear as the area of a square on the gridZriExent with various possibilities and then
explain the pattern you see. Answer O

Problem 39 Look at Figure2.13 Compute the area of the rectangle R and the triangle T. Tsjgasng a Pick credit oflL
to every point that is inside P and a Pick credit®@fo every point that is not. Points on the boundary or outside@credit.
Consider how the area of interest compares with the totahefaredits. Try some other simple figures as well.  Answer O

Problem 40 Repeat the preceding exercise but this time try assignieditcof 1 to every point that is inside or on P. Points
outside get zero credit. Answer O

Problem 41 Can you see a way to improve the approximation in Probl€rby giving less credit for the grid points that lie on
the polygon (i.e., on the edges of the rectangle R or of thedte T)? Answer O
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LR T

Figure 2.13: Compute areas.

Problem 42 Repeat Problerd1 with a few more examples using rectangles and triangles edthers on the grid. (It simplifies
the computation if you choose rectangles with horizontal artical sides and triangles with one vertical side and bogzontal
side.) Answer O

2.3.2 Rectangles and triangles

Our exploration in Problem39-42 has suggested a first estimate of the form
[# of grid points onP]
2
using our idea of full credit for the inside points and haiédit for the boundary points. We cannot say that the areguslso
we are using here the symbwelto suggest that this is an approximation or a crude first egéim
If we usel to denote the count for the interior grid points @ébr the count of the boundary grid points theRigk count
B

| _
T3

Area(P) ~ [# of grid points insideP] +

gets close to the areas that we have considered so far.

Example 2.3.1 Here is another computation that suggests that half-ciedixactly right for the assignment of credit to the
boundary grid points. The rectangle in Fig@é3can be split into two triangles as shown in Figaré4
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Figure 2.14: Split the rectangle into two triangles.

There is one interior point inside the rectangle that besoenboundary point for the two triangles. In the estimate lier t
rectangle that interior point gets full credit. For the tigdges it has become a boundary point, and so gives only hedfitdo each
of the triangles. This is appropriate since the area of eatiedriangles is exactly half the area of the rectangle.

The rectangle has 3 interior grid points, 12 grid points @nlibundary, and area 8. Each triangle has 1 interior poirtjr@p
on the boundary, and area 4. So, as we found in the problem$ortmula above gives a first estimate of 9 for the area of the
rectangle and 5 for each of the rectangles. In both casessthisiore than the correct values. |

Problem 43 Determine an exact formula for the area of rectangles wittiie@ and horizontal sides and with vertices on the
grid work. Compare with the actual area. Answer O

Problem 44 Determine an exact formula for the area of triangles with gegical side and one horizontal side and with vertices
on the grid work. Compare with the actual area. Answer O
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2.3.3 Additivity

One of the key properties of areaadditivity. If two triangles, two rectangles, or any two polygons theatéano common interior
points are added together the resulting figure has an ares thgual to the sum of its parts. Certainly then, Pick’s folemif it
is a correct way to compute area, must be additive too in soaye w

Let us introduce some notation that will help our thinkingr Bny polygorP we simply count the points in or on the polygon,
assigning credit of 1 for points inside and2lfor points on the polygon. Call thRick’s countand write it as

Pick(P) = | +§.

The valuel simply counts interior points anél counts boundary points. We are nearly convinced, at thiggestaat Pick’s count
does give a value that is 1 more than the area. Is Pick’s caldtitivze?

SupposeM andN are polygons with a common sidebut no other points inside or on the boundaries in commonnThe
andN can be added to give a larger polygon with a larger area agjur&2.15 Call it P. The larger polygon has all the edges
of M andN except forL which is now inside the large polygdh

M L

Figure 2.15: Adding together two polygonal regions.
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Now we wish to show that we can determine RRkfrom
Pick(M) + Pick(N).
Then we want to use this fact to advantage in our computations

Problem 45 We know that
Area(P) = AreaM) + Area(N).
ComparePick(P) andPick(M) + Pick(N). In fact, show that
Pick(M) + Pick(N) = Pick(P) + 1.

Answer O
Problem 46 Write a simpler and more elegant solution of Probléiusing the notation of this section. Answer O

Problem 47 Suppose that a polygon P has been split into three smallgrgpok R, P,, and B by adding two lines joining
vertices. Show that

Pick(Py) + Pick(P,) + Pick(Ps) = Pick(P) + 2.

2.4 Pick’s formula

We have established the formula -

AreaP) = Pick(P)—1=1+ >~ 1
for certain rectangles and for certain triangles. Any polygvhich we can break up into parts comprised of such reaareyid
such triangles can then be handled by the additivity of aaedsthe additive formula for the Pick count using methods axeh
already illustrated. If you think of some more complicatedlygons, you might find that they can be broken up into triaagbut
not necessarily triangles with one horizontal side and @mgoal side.
Let’s first experiment with a particular example of a triamgfiat does not meet those requirements.
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Example 2.4.1 Let’s try our formula on the triangle in Figuiz16 The base of this triangle has length 10 and its altitude is 8.
Thus its area is 40.

Figure 2.16: A triangle with a horizontal base.

Our conjectured formula uses 33 interior points and 16 banngoints, giving an answer of
33+16/2—-1=40

for the area, which is the same answer. <

The formula works but we have not seen why since we merely diohagputation. We might try to check that this formula
would work for all triangles with a horizontal base (this isoBlem48). Then we could try a more ambitious problem and
determine that all triangles have the same property (thirablem49). Problem48is just a warm-up to the full case and is

not needed. Probled9 can be proved just by knowing that this formula is correctrimtangles and for triangles with both a
horizontal and a vertical side.

Problem 48 Show that the area of any triangle T with vertices on the grid ith a horizontal base is given by the formula
Area(T) = Pick(T) — 1.

Answer O
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Problem 49 Show that the area of any triangle T (in any orientation) wightices on the grid is given by the formula
Area(T) = Pick(T) — 1.
Answer O

2.4.1 Triangles solved

The figures that we saw in the answer for Prob#nduplicated here as Figukel7, are the most complicated ones that can arise
if one wishes to follow the method suggested. The key iddaaisttiangles in any odd orientation can be analyzed by tapki

R N
2 & BRI
B BB s BER IS ER L REE &

Figure 2.17: Triangles in general position.

rectangles and triangles in a simpler orientation. It isgtfiditivity properties of areas and of Pick counts that piesithe easy
solution.

Let us revisit Problerd9 and provide a clear and leisurely proof. We need to analyegsithation depicted in the right-hand
picture in Figure2.17. Here we have labeled the first triangleTas this is the triangle in a strange orientation for which we do
not yet know that the Pick rule will work.

The remaining triangle$;, T,, andTs are all in a familiar orientation and we can use Pick’s ruleesaoh of them. Together
they fit into a rectangI® for which, again, we know Pick’s rule works.
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The additivity of areas requires that
Area(R) = Area(To) + Area(Ty) + Area(T,) + AredTs).
The additivity rule for the Pick count we have seen in the jonev section:
Pick(R) 4 3 = Pick(To) + Pick(T1) + Pick(T2) + Pick(Ts).

The extra 3, we remember, comes from the fact that three piaitartices are recounted when we do the sum.
Now we just have to put this together to obtain the formula va@tynamely that

Area(Tp) = Pick(Tp) — 1.

Problem 50 Do the algebra to check that
Area(Tp) = Pick(Tp) — 1.
Answer O

Problem 51 Consider once again the polygon P in Figire. What would Pick’s formula give for the area of the P? Trialagel
the polygon, use Pick’s formula for each triangle, add updreas, and compare with the area that you just foundAnswer O

2.4.2 Proving Pick’s formula in general

We have so far verified that the formula works for triangleatiy orientation. We should be ready now for the final stagéef t
argument which uses the triangle case to start off an inolugtioof that solves the general case.

The key stage in your induction proof will have to use $ipditting argumenthat we saw in Sectio.1.4 Use mathematical
induction on the number of sides Bfand, at the critical moment in your proof, use the splittinguanent to reduce a complicated
polygon to two simpler ones.

Problem 52 Prove that the formula
AreaP) = Pick(P) — 1
works for every polygon P having vertices on the grid. Answer O

3See the Appendix for an explanation of mathematical indndfiyou are not yet sufficiently familiar with that form of quof.
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2.5 Summary

We have obtained a quick, easy, accurate formula for cdiogléhe area inside any polygon having vertices on the grid.
Try this formula on the polygon in Figutz 18where we have made the task of spotting the appropriate gidgpsomewhat
easier. How long did it take? Did you improve the record of ddonds?

Figure 2.18: Polygoi® with border and interior points highlighted.

Let's review our method of discovery. In Section2.1.6we revisited some formulas for the area of a triangle that wghim
have learned in elementary geometry. These formulas d&lth area of a triangle, but would often involve some unpleias
computations. (We were seeking something quick and easyWw#Ye able to use such formulas to prove that every polygtn wi
vertices on the grid has an area that is an integral multipléz (Problem32)

We proceeded in Sectigh2to discuss some other methods for computing areas of patyddone of these met our require-
ment of quickness and ease of computation. One of these stegige notion of giving “credit” to grid points inside, on, rear
the polygon. To calculate an area by this method would ofteolve a huge amount of messy calculation, so it was an inipedc
method. But it did suggest a method of giving credit to gridhg Our experiences in solving the problems of Secidhl
suggested that only 0, 1/2 and 1 should be considered ablgossedits.

So we did some more experimentation, in SecoB) based on our observations. We did some calculations fatively
simple polygons, and arrived at a formula that actually gérecarea for a variety of cases — in particular for rectangles
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triangles that have at least two sides that are vertical dedwatal. By now it became natural to suspect that the foenvwé
obtained would actually apply to all polygons with vertiaasthe grid. But we had some more checking to do — we hadn't yet
checked more complicated polygons, even triangles whogs sire not vertical or horizontal.

In Section2.4 we put it all together. First, we established the result fbtrengles with vertices on the grid, regardless of
their orientation. Then we used mathematical inductioneigfy the formula for all polygons with vertices on the grid/e had
accomplished our goal.

The role of induction By the time we came to the actual proof by induction, we wel@dat) convinced that the formula is
correct. The discovery part was complete. We used induaioy for verification purposes. It was not part of the disagve
process.

This will be true of every use of mathematical induction irsthook. By the time we get to the induction step, we are almost
convinced that the result we obtained is correct. The indadtep removes all doubts.

Other methods There are many other approaches to proving Pick’s formutaneSof the material in Sectiors6.3 2.6.5
2.6.7, and2.6.8discuss other approaches that shed some additional ligtiteosubject. In a later chapter in Volume 2 we will
use some graph theory and a theorem of Euler to revisit Pilci&izrem.
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2.6 Supplementary material

2.6.1 A bit of historical background

A bit more historical detail on Pick himself is given in theigle by M. Ram Murty and Nithum
Thain ([L7] in our bibliography) from which the following quote is take

“Pick was born into a Jewish family in Vienna on August 10, 98He received his Ph.D. from the
University of Vienna under the supervision of Leo Koenigsfee in 1880. He spent most of his working
life at the University of Prague, where his colleagues andestts praised his excellence at both researc i
and teaching. In 1910, Albert Einstein applied to become#&egsor of theoretical physics at the University #8
of Prague. Pick found himself on the appointments committebwas the driving force in getting Einstein
accepted. For the brief period that Einstein was at Pragei@nkl Pick were the closest friends. They
were both talented violinists and frequently played togetin 1929, Pick retired and moved back to his
hometown of Vienna. Nine years later, Austria was annexe@Gégmany. In an attempt to escape the
Nazi regime, Pick returned to Prague. However, on July 1821Be was captured and transported to the
Theresienstadt concentration camp. He passed away thteethdays later, at the age of 82.

Pick’s formula first came to popular attention in 1969 (séyeears after Pick published it) in Steinhaus’s 8
bookMathematical Snapshats '

Pick’s theorem was originally published in 1899 in Germage(g] in our bibliography). Re-
cent proofs and extensions of Pick’s theorem can be foundvaral American Math. Monthly
articles by W. W. FunkenbuscH]| Dale Varberg 4], and Branko Griinbaum and G. C. Shep-
hard p]. Figure 2.19: Pick

2.6.2 Can’t be useful though

Is Pick’s theorem of any use? Not likely, you might say. Hera remark though that might change your mind:

“Some years ago, the Northwest Mathematics Conference aldsmhEugene, Oregon. To add a bit of local flavor, a forester
was included on the program, and those who attended hi®sagsre introduced to a variety of nice examples which itatstd
the important role that mathematics plays in the foreststigu One of his problems was concerned with the calculaifdhe
area inside a polygonal region drawn to scale from field datained for a stand of timber by a timber cruiser. The stashdar
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method is to overlay a scale drawing with a transparency dolwdnsquare dot pattern is printed. Except for a factor dégen
on the relative sizes of the drawing and the square grid,réeeiaside the polygon is computed by counting all of the fidtg
inside the polygon, and then adding half of the number of diiish fall on the bounding edges of the polygon. Although the
speaker was not aware that he was essentially using Pick’'sifa, | was delighted to see that one of my favorite mathamalat
results was not only beautiful, but even useful.”

The quote is due to Duane W. Detemple and is cited in the afiglBranko Griinbaum and G.C. Shephdid |

2.6.3 Primitive triangulations

Primitive triangles play a key role in our investigationsheBe are the triangles that contain no other grid points ttein three
vertices. We saw that each primitive triangle had argadnd Pick’s formula confirms this.

A primitive triangulationof a polygon on the grid is a triangulation with the requiremiaat each triangle that appears must
be primitive. Figure?.20illustrates a polygon that contains two interior grid psilgading to a primitive triangulation containing
eight primitive triangles.

How would one go about constructing such a triangulationatMne always exist? What other features are there?

The splitting game To study these questions let us introduce a sinspldting gamethat can be played on polygons. Mathe-
maticians frequently introduce games to assist in the aisabf certain problems. We will return to the investigatafrgames in
other chapters.

Two players agree to start with a polygon on the grid and, ¢akdihg turns, to split it into smaller subpolygons on thedgri
Player A starts with the original polygon and splits it inteot (by adding one or two line segments according to rulesngive
below). Player B now faces two polygons. She chooses onesof #nd splits it into two (by following the same rules). Plae
now faces three polygons. He chooses one of them and spiits itwo. Player B now faces four polygons. She chooses one of
them and splits it into two.

And so on. The game stops when none of the polygons that oeeaade split further. The last person to move is declared
the winner.

The rules The rule for each move is that the player is required to chagselygon in the figure that has arisen in the play of
the game and that has not, as yet, been split. The player pfiesitbat polygon in one of these two ways:
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Figure 2.20: A primitive triangulation of a polygon.

Type 1 The player selects two grid points on the boundary eptilygon. The line segment joining them is constructed igeai/
it is entirely inside the polygon, thus splitting the polygiato two smaller polygons.

Type 2 The player selects two grid points on the boundaryeptilygon and also a grid point in the interior. The two lingreents
joining the interior grid point to the two boundary pointg &ionstructed provided they are entirely inside the polygon

Note that each play of the game splits the original polygda more and more pieces. More precisely, after the first move
the original polygon has been split into two polygons, affitersecond move there will be three polygons, and aftekithenove

there will bek+ 1 polygons. At some point we must run out of grid points that be joined and the game terminates with a
winner declared.

Problem 53 Play the splitting game using the polygon in Fig@r@1as the starting polygon. What can you reportAnswer O

Problem 54 Play the splitting game a few times with some simple choitpslggons. What can you report? Answer O
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Figure 2.21: A starting position for the game.

Problem 55 Prove that any play of the splitting game always ends withiaitive triangulation of the starting polygon.
Answer O

Problem 56 Use Pick’s formula to compute the area of all primitive triges. Answer O

Problem 57 Suppose that the starting polygon has B grid points on thetdaty and | grid points in its interior. Using Pick’s
theorem, determine how many triangles there are in the fiositjpn of the game and how many moves of the splitting gaeme th
must be. Answer O

Problem 58 Suppose that the starting polygon has B grid points on thentbary and | grid points in its interior. Which player
wins the game? Answer O

2.6.4 Reformulating Pick’s theorem

We can reformulate Pick’s theorem in terms of primitiverigalations using what we have discovered by playing thistisy
game.



70 CHAPTER 2. PICK'S RULE

We saw that primitive triangulations must exist. We saw thate was always the same number of triangles in any prienitiv
triangulation. We observed that we could count the numbétiarigles by the formula
2l +B—2

Pick’s theorem provided the area gf2lfor every primitive triangle. All these facts add up to Psctheorem and, had we known
them, the area formula+ B/2 — 1 would have followed immediately. Consequently the follogvstatement is equivalent to
Pick’s area formula and is a better way of thinking about @ arbetter way of stating it.

2.6.1 (Pick’s Theorem) A primitive triangulation of any polygon P on the grid exjsied moreover
1. The area of any primitive triangle /2.

2. The number of triangles in any primitive triangulationRfs exactly
20 +B-2

where | is the number of grid points inside P and B is the nunabgrid points on P.

Some people on first learning Pick’s area formula ask for ge@ation of why such a simple formula works. They see that
it does work, they understand the proof, but it somehow aludem intuitively. But if you ask them instead to explain vithg
primitive triangulation formula

21 +B-2

would work, they see that rather quickly. Of course coungrtgangulation ofP depends on grid points in and & Of course
interior points count twice as much as boundary points irstracting a primitive triangulation.

Oddly enough then, thinking too much about areas makes aesifopnula more mysterious. Stop thinking about why
areas can be explained by grid points and realize that Plickisula is actually a simple method for counting the triasgin a
triangulation. The area formula is merely a consequenckeotounting rule for primitive triangulations.

2.6.5 Gaming the proof of Pick’s theorem

We used our knowledge of Pick’s theorem to analyze compliébed splitting game. Not surprisingly, we can use the spijtt
game itself to analyze completely Pick’s theorem.
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We know that any splitting game will always result in a prir@ttriangulation of any starting polygon. We wish to esistil
that the number of triangles that appear at the end of the ¢gmateays given by the formula

20 +B-2

wherel is the number of grid points insid@andB is the number of grid points oR.
Let us take that formula as a definition of what we mearhgycount

Coun(P)=21+B-2
for any polygonP. Note immediately that i is a primitive triangle then
Coun({T)=2x0+3-2=1
We play the game on a polygdhsplitting it by a Type 1 or 2 move into two polygon andN. Simply verify that
Count(P) = Coun{M) + Coun{N).

This is just a simple counting argument looking at the grahglthe splitting line. (Do this as Probless).
That means that if we play the game one more step by splittirigto two subpolygondl; andM, the same thing happens:

Coun{M) = Coun{M;) + Coun{My)

and so
CountP) = Count{M;) + Coun{M3) + Coun{N).

So, if we play the game to its conclusioR,is split into n primitive trianglesTy, T, ...T, in exactlyn— 1 plays of the game.
Consequently
Coun(P) = Coun(Ty) +Coun{T,) +---+Coun{T,) =1+1+---+1=n.

That completes the proof that ColR} always gives exactly the correct number of triangles in tfiigve triangulation ofP.

Problem 59 We play the game on a polygon P splitting it by a Type 1 or 2 mmueetivo polygons M and N. Verify that
Coun{P) = Coun{M) + Coun{N).
Answer O
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Problem 60 Wait a minute! We promised to prove Pick’s theorem using traey We still want to show that for a primitive
triangle T,

Area(T)=1/2.
Can you find a way? [Hint: triangulation works here t00.] Answer O

Problem 61 This proof is simpler, perhaps, than the first proof we gaveiok’s theorem. Why didn’t we start with it instead?
Answer O

2.6.6 Polygons with holes

We now allow our polygons to have a few holes. Again we askHerarea of a polygon constructed on the grid but allowing a
hole or perhaps several holes. The problem itself is not st ihave can compute the area of the holes since then the answer

Figure 2.22: What is the area of the polygon with a hole?

found by subtracting the area of the holes from the area giohggon.

In Figure2.22the holeH is a rectangle with area 2; sinékis also on the grid this is easy enough to compute. Indeee if th
holes are always polygons with vertices on the grid we carPidés Rule many times to compute all the areas and thenastibtr
out the holes.
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But let us find a more elegant solution. If we use Pick’s Ruldtipie times we may end up counting many of the grid points
several times. There must be a simple generalization ofittleférmula

AreaP)=1+B/2-1
that will accommodate a few holes. Now countingve would ignore points inside the holes. And counti)gve would have to

include any boundary points that are on the edge of the holes.
Polygons with one polygonal hole

Figure2.23shows a rectanglB with a hole created by removing a rectangldrom the inside of. All of the vertices ofR and
H are on the grid. HerBis a 5x 12 rectangle an#ll is a 2x 4 rectangle. Thus the area between them is 8G= 52 units. Our

Figure 2.23: Rectangle with one rectangular hold.

objective is to use our counting method directly to cal@ithe area between the polygdhsndH.

Problem 62 Experiment with the polygons in Figuge23and others, if necessary, to conjecture a formula for thedretween
two polygons. As always the polygons under consideratiert@have their vertices on the grid. Answer O
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Problem 63 Our previous method was (i) counting interior points at fedlue of 1, (ii) counting points on the boundary of the
polygon at half value ot/2, and finally, (iii) subtractingl. What goes wrong if we try the same argument for the figure avith
hole? Answer O

Problem 64 (An algebraic argument) Let us do the entire calculation algebraically. Take P asdbeer polygon, H as the hole
polygon, and G as the region defined as P take away H. We knawHiok's Rule that

AreaP) =1(P)+B(P)/2—-1
where by BP) we mean the number of boundary grid points on P, and(BYy Wwe mean the number of interior grid points inside
P. Similarly

AreaH) =1(H)+B(H)/2—-1

where by BH) we mean the number of boundary grid points on H, and(bl) e mean the number of interior grid points inside
H.
Find the correct formula for the subtracted aréaeaP) — Area(H) in terms of [G) and BG). Answer O

Polygons withn holes

The algebraic argument we gave is quite general, it apptiesmly to any polygorP with vertices on the grid and any other such
hole polygonH insideP, but also applies (with obvious minor changes) wRdrasn such polygonal holes inside it. To complete
the theory, then try to guess at the final formula and to vérifiging the techniques seen so far.

Problem 65 Determine a formula for the area that remains inside a polygath n polygonal holes. Answer O

2.6.7 Animproved Pick count

Our Pick-count policy was to assign a count value of 1 for ghts inside the polygon and a count value of 1/2 for grichjoi
on the polygon itself. This was certainly successful singave us the formula

AreaP) = Pick(P) —1
which works, as we now have proved, for all possible polygeitls vertices at grid points.
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There is another rather compelling and elegant way to do dn@tc This makes for a neater proof. This is not a new or
different proof, we should point out. But it is a rather tidaywof expressing the same ideas.
The idea behind it is that the additive formula for the Pickitin

Pick(P) 4+ 1 = Pick(Py) + Pick(P2)

for the situation when the polygda is split into two polygons?; andP, with a common edge is not quite as “additive” as we
would prefer: it has this extra 1 that must be included. Tlditemhal 1 comes from the two vertices that get assignedriibth
the counts. That destroys the additivity, but only by aditilt. To get true additivity we will use the idea that angles @aturally
additive.

Angle of visibility We do a different Pick count. For each point in or on a poly§one decide what is itangle of visibility
This is the perspective from which standing at a point we stethe inside of the polygon. For points interiorRave see a full
360 degrees. For points on an edge but not at a vertex we sgermkide of the edge, so the angle of visibility is 180 degree
Finally for points at a vertex the angle of visibility woule Ibhe interior angle and it could be anything between 0 degaee
360 degrees. We would have to measure it in each case.

Modified Pick’s count Our modified Pick’s counts to take each grid point into consideration, compute itgeof visibility,
and divide by 360 to get the contribution. Points inside @#/360=1. Points on the edge but not at a vertex get 180/380=1
And, finally, points at the vertex ge/360 wherea is the degree measure of the angle. The new Pick count we viié as

Pick (P).

Add up the count for the vertices At first sight this seems terribly complicated. How would wedrepared to measure all of
the vertex angles? We would never be able to perform thistc@urt that is not so.
Take a triangle for example. Except for the three verticesctbunt is (as usual) to use 1 for inside points and 1/2 for edge
points. The three vertices taken together then contribute
a+b+c
360
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While we may have trouble measuring each of anglel andc, we know from elementary geometry that the angles in any
triangle add up to 180 degrees. So we see that the contribatithe vertices is
atb+c 180 1
360 360 2
The old way of counting would have given ug2k-1/2+ 1/2 which is 1 larger than this. Thus for any triangle
Pick'(T) = Pick(T) — 1= Area(T).
In general for a polygon witlm vertices it might appear that we would have to compute théearaf each of the vertices to

get the contribution
yta+--+an

360
But the angles inside any polygon withvertices add up to 188 — 2) degrees. This is because any such polygon can be
triangulated in the way we described earlier in the chaftier.example, a quadrilateral can be decomposed into twaglga by
introducing a diagonal. Each of the triangles contribut®@ degrees, so the quadrilateral has a total »f180 degrees as the
sum of its interior angles at the vertices.
Thus we see that the contribution at the vertices of a polygitimn vertices is

atapt---+ay 180(n—2) - E—l
360 N 360 2 i

Compare the old count to the new count The old way of counting would have given us 1/2 for each ofrihertices for a
total of n/2 which is again 1 bigger. Thus we see that for any polygon

Pick’ (P) = Pick(P) — 1= AreaP).
This also explains the mysteriousl that needed to occur in Pick’s formula.

Additivity  The ordinary Pick count using Pi@R) is not quite additive. Every use of the additive rule reqiiieebookkeeping
for the addition 1 in the formula
Pick(P) + 1 = Pick(Py) + Pick(P,).
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That made our computations a bit messier and gave us a gligrtkintuitive formula
Area(P) = Pick(P) — 1.
Now that we have a better way of counting grid points we haveegigely additive formula
Pick’ (P) = Pick'(Py) + Pick'(P»)
and an intuitive area formula
AreaP) = Pick' (P).
That supplies a different way of writing our proof for Pick&emula that is rather simpler in some of the details. Se®dlRm67.
Problem 66 Prove the additive formula
Pick’ (P) = Pick*(Py) + Pick'(P»)
for the maodified Pick count for the situation when the polygda split into two polygonsRand B with a common edge.
Answer O
Problem 67 Reformulate the proof of Pick’s formula using now the modliRé&ck count to show that
Area(P) = Pick' (P).
Answer O

Problem 68 Determine a formula for the area that remains inside a potygath n polygonal holes using the modified Pick
count idea. Answer O

Problem 69 Does the formula you found in Probless help clarify the formula we have found in Problé&®for the area inside
polygons with holes? Does it explain why that formula neagetb count the number of holes (i.e., why the formula had an n
that appeared)? Answer O

2.6.8 Random grids

Instead of a square grid let us start off with a large coltecf points arranged in any fashion, as for example in Figuze
where the grid points have been chosen at random.
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Figure 2.24: Random lattice.

In Figure2.25we have constructed a triangle with vertices at grid poiffitdis random lattice. There are three boundary
grid points (the three vertices) and two interior grid psjnh our usual notatio® = 3 andl = 2. We do not ask for an area
computation, but we do ask (as before) whether there must @xirimitive triangulation? We ask too how many trianglesila
appear in a primitive triangulation of a polygon on this @rid

Figure 2.25: Triangle on a random lattice.
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Try a few examples until you come to some realization aboesdhproblems. The situation is not merely similar to the
problem of polygons on square grids: it is identical. In &cP.6.3we proved that iPP is a polygon on a square grid there must
exist a primitive triangulation. In Sectidh6.5we proved that, i hasl interior grid points and boundary grid points, then the

number of primitive triangles that appear is always exa2tly B — 2. Certainly the same formula works here for the particular
case of the triangle in Figuiz25

Figure 2.26: Primitive triangulation of the triangle in Eig2.25

An examination of our proofs in those sections shows thab giamt of the argument did we use any features of a square grid
the points could have been arranged in any fashion at all g rioofs would be unchanged. Hence the result is unchangec
there must always be a primitive triangulation and any stiehgulation contains exactlyl 2 B— 2 primitive triangles. The grid
points can assume any pattern at all.

When we were concerned about areas then the fact that thevgsidquare and the points neatly arranged mattered a gree
deal. When we turn just to counting the pieces of a primiti@ngulation the geometry no longer matters. The answet mus
depend only on the number of boundary points and the numhetesfor points.

Problem 70 Sketch a primitive triangulation of the polygon in Figuze27that is on a random grid. How many triangles are
there in any primitive triangulation? Answer O
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Figure 2.27: Sketch a primitive triangulation of the polggo

2.6.9 Additional problems

We conclude with some additional problems that are relaid¢kde material of this chapter.

Problem 71 Use Pick’s Rule to prove that it is impossible to construcieguilateral triangle with its vertices on the dots in a
square grid. Answer O

Problem 72 (Stomachion) Find the areas of the polygons in Figu?e28by using Pick’'s Theorem or a simpler method.
Answer O

Problem 73 A Reeve tetrahedrois a polyhedron in three-dimensional space with vertice$0a®,0), (1,0,0), (0,1,0) and
(1,1,n) where n is a positive integer. Explain how the Reeve tetnaimeghows that any attempt to prove a simple version of
Pick’s theorem in three dimensions must fail.

Answer O

Problem 74 (Bézout identity) Two positive integers are said to be relatively prime if thaye no factor in common. Given two
relatively prime positive integers a and b, show that thedistepositive or negative integers ¢ and d such that

act+bd=1.
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Figure 2.28: Archimedes’s puzzle, called the Stomachion.

Answer O

Problem 75 Let T be a triangle with vertices &0,0), (1,0) and (m,n), with m and n positive integers and>nl. Must there be
a grid point(a,b) in or on T other than one of the three vertices of T? Answer O
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2.7 Answers to problems

Problem 20, page 41

Figure2.29illustrates a number of points in the first quadrant that anel @re not visible) from the origin. Clear(g, 1) is visible
from the origin, but none of these points
(2,2), (3,3), (4,4), (5,5),...
(marked with an X in the figure) are visible precisely becaiisé) is in the way Similarly (4,5) is visible from the origin but
none of these points
(8,10), (12,15), (16,20), (20,25),...

are visible.
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Figure 2.29: First quadrant unobstructed view fr@yD).

The key observation here is the notionaafmmon factar You can prove (if you care to) that a poifm,n) on the grid is
visible from the origin if and only ifn andn have no common factors. (For examp810) is not visible because both 8 and 10
are divisible by 2. Similarly{12, 15) is not visible because both 12 and 15 are divisible by 3.(BL8) is visible since no number
larger than 1 divides both 4 and 5.)

In particular we see that some elementary number theorytésieg into the picture quite naturally. That suggests thist
investigation is perhaps not as frivolous and elementagnasmight have thought. In Problerd we will see an application of
Pick’s theorem to number theory.
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Problem 21, page 41

If you take the three points
(0,0), (1,1),(2,2)
as
V17 V27 V3

then you will see the trouble we get into. We could avoid thithwriangles by insisting that the three points chosen asces
cannot lie on the same line.

Another example is taking

(070)7 (270)7 (17 1)7 (_171)
as
Vla V27 V37 V4'

Certainly there is a square with these vertices but we woane o specify a different order since the line segnmgit and the
line segmenYsV, cross each other. We don't intend these to be the edges.

Yet again, an example taking

(0,0), (2,2), (2,0), (1,0,), (2,2), (0,0)
as
V1, Va2, V3, Vi, Vs, Ve

shows that we should have been more careful about specifijatgthe vertices are all different and the edges don’t conss

overlap.
A reasonable first guess at a definition would have to incllidb@elements in the following statement:
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2.7.1 A polygon can be described by its vertices and edges thatobesgtthese rules:

1. There are n distinct points
Vi,V2, Vs, ... V.

2. There are n straight line segments
ViV2, VoV3,V3Vy, ..., VaVh

called edges. Two distinct edges intersect only if they has@mmon vertex, and they intersect only at that commonxverte

Even that is not quite enough for a proper mathematical diefimibut will suffice for our studies. The reader might takis t
as a working definition that can be used in the solutions tthblems.

Problem 22, page 42

First consult your list to identify a vertex that occurs atanp (x,y) for whichy is as large as possible. Then walk, without
touching an edge, up to a vertex. Go around the polygon inr @aigsulting your list of vertices for directions, stayingse to
the border, but without actually touching an edge or veresentually you will arrive near a vertex you have identifiechaving
the largesy value. Which side of that point are you on?

This could be written up as a computer algorithm to test angtgo find out whether it is inside or outside. Certainly in a
finite number of steps (depending on how many edges we misivjolve can determine whether we are trapped inside or free
to travel to much higher places.

Problem 23, page 43

There are five choices of splitting lines in addition to theelsegment. Notice that there are many other ways of joining pairs
of vertices, but some ways produce line segments that airelgrautside the polygon or cross another edge. The sittisii
choices are illustrated in Figuge7.
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Figure 2.30: The six line segments that split the polygon.

Problem 24, page 43

Certainly you would have discovered quickly that no tringan be split this way. But in every other case that you censil
there would have been at least one linthat splits the polygon.

Thus it appears to be the case that every polygon with fouraremertices can be split by some line segment that joins two
vertices without passing through any other points on an efltfee polygon. That is the conjecture.

Problem 25, page 43

This may not be as obvious as it first appears, since we mustdmrall possible cases. It is easy to draw a few figures where
many choices of possible vertices would not be allowed. dtéar in any particular example which two vertices can belulset
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our argument must work for all cases.

We assume that we have a polygon witkiertices wheren > 3 and we try to determine why a line segment must exist that
joins two vertices and is inside the polygon (without hiftianother edge).

Go around the polygon’s vertices in order until you find thceasecutive vertice8, B andC such that the anglg ABCin
the interior of the polygon is less than 180 degrees. (Whylavthis be possible?)

The proof is now not too hard to sketch. Suppose first thatrihiegle ABC has no other vertices of the polygon inside or on
it. If so simply join A andC.

The line segmenAC cannot be an edge of the polygon. We know thBtandBC are edges. IAC were also an edge, then
there are no further vertices other than the three veri¢& andC. Since we have assumed that there are more than 3 vertice
this is not possible. (Statemebt7.1on page85 has a formal description of a polygon that we can use to makeatgument
precise.) Consequently this line segmA@tsplits the polygon.

There may, however, be other vertices of the polygon in fhagie. Suppose that there is exactly one veXgin the triangle.
Then, whileAC cannot be used to split the polygon, the line segnBeftcan. Again we are done. Suppose that there are exactly
two verticesX; andX; in the triangle. Then one or both of the two line segméis or BX, can be used. To be safe choose the
point closest td.

Suppose that there are exactly three vertiégsX,, andXs in the triangle. Then one or more of the three line segmBXis
or BX; or BX3 can be used. Draw some figures showing possible situaticsesetbow this works. Note that the point closedBto
is not necessarily the correct one to choose.

The general argument is a bit different. Suppose there aetlgx verticesXy, Xp, . ..X, inside the triangléABC. Select a
point A’ on the lineAC that is sufficiently close té so that the trianglé&'BC contains none of the poini§, Xy, ...X,. Now move
along the line to the first poimk” where the trianglé\’BC does contain one at least of these points. From among thesseh
the vertexX| that is closest t®. ThenBX; can be used to split the polygon since it can cross no edge @fdlygon.

Problem 26, page 44

If M hasm vertices,N hasn vertices and the large polygon (before it was split) pagrtices then a simple count shows that
m+n=p+2
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since the two endpoints &fgot counted twice. But you can also observe that
m> 3 andn > 3.

Combining these facts shows finally that

m=p+2-n<p+2-3=p-—-1
and

Nn=p+2-m<p+2-3=p-—1
So the two polygon$/1 andN must have fewer vertices than the original polygon.

This fact will be a key to our induction proof later on. If eygrolygon (other than a triangle) can be split into subpohsyo
with fewer vertices, then we have a strategy for provingestents about polygons. Start with triangles (the cese3). Assume
some property for polygons with 3, 4, ..., andrertices. Use these facts to prove your statement aboug@adywithn+ 1
vertices. Take advantage of the splitting property: theplolygon withn+ 1 vertices splits into two smaller polygons with fewer
vertices.

Problem 27, page 44

Perhaps you answered that this was the only triangulatiasiple. If so you didn't look closely enough. There is one enor
triangulation ofP that uses additional edges joining a pair of vertices asreigL illustrates.
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Figure 2.31: Another triangulation &*.

But, in fact, any decomposition &finto smaller triangles would also be considered a triariguiaand can be used to compute
areas. The most interesting triangulations for our studyabfgons on a grid might require us to use grid points forivesgt of
the triangles. There are many such triangulations poskible.

More generally still, we could ignore the grid points eriirand allow any decomposition into smaller triangles. Oagain,
there are many such triangulations possibleFpindeed there are infinitely many.

Problem 28, page 45

To start the problem try finding out why a polygon (of any shapieh four vertices can always be triangulated. Then work on
the polygon with five vertices but use the splitting argumergnsure that this polygon can be split into smaller polgg@ach
of which is easy to handle.

A complete inductive proof for the general case is thenyfattaightforward. Len be the number of vertices of a polygon
P. If n= 3 then the polygon is already triangulated.ni= 4 simply join an appropriate pair of opposite vertices andgliltbe
triangulated. Ifn =5 use the splitting argument (which we have now proved in IBrol25) to split P into smaller polygons.
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Those small polygons have 3 or 4 vertices and we already kowt triangulate them. Andsoon....
Well “and so on” is not proper mathematical style. But thigusnent is easy to convert into a proper one by using the
mathematical induction. You may need to review the mataritie appendix before writing this up.

Problem 30, page 48

It is good practice in starting a topic in mathematics to expent on your own with the ideas and try out some examplektoAl
often in a mathematics course the student is copying dowensixte notes about definitions and theorems well before akelés
to conceptualize what is happening.
In this case you will certainly have computed polygons wims or all of these areas:
1 3 .5 7
2t 2%2%%
But you will not have found any other area values. We cena@xipected fractions, but why such simple fractions? Alkare
appear to be given by some formula

4,....

N

2
whereN is an integer. This, ifitis true, is certainly a remarkatdatiire of such figures. Few of us would have had any expettatio
that this was going to happen.
Our best guess is that, for polygons on square grids, songeihibeing counted and each thing counted has been assigned
value that is a multiple of 2. The natural thing we might consider counting is grid pmifgut what values should we assign to
each grid point?

Problem 31, page 48

As we have already determined, a trianglevith vertices at0,0), (s,t), and(a,b) must have area given by
at—bs
2
The numerator is an integer so the area is clearly a multiple' 2.
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Now, by drawing some pictures, try to find an argument thaadlyou to conclude that all triangles anywhere on the grid
can be compared to a triangle like this. We must be able tondlaat every triangle on the grid is congruent to one with dexer
at(0,0) and of this type. Then, since we have determined that tlisdgte has area an integer multiple gR1then every triangle
on the grid has this property.

Problem 32, page 48

In Problem28 we saw that all polygons on the grid can be triangulated langlies on the grid. Each such triangle has an area
that is a multiple of 12. The polygon itself, being a sum of such numbers, also hasesnthat is a multiple of /2.

Problem 33, page 55

You should be able to compute easily the area of any triaihglehas one side that is horizontal or one side that is véerticéhat
case the formula

1/2 x basex height

immediately supplies the answer. For primitive triangléthes type you will observe that both base and height are heatea
is immediately ¥2.
If the triangle has no side that is horizontal or verticaktiiee formula

1/2 x basex height

while still valid, does not offer the easiest way to calceltie area. For these triangles the methods of Seétiblshould be
used. For example compute the area of the primitive triawile vertices af0,0), (2,1) and(3,2). Try a few others.

You should have found that all of them that you considerect fzaea exactly 1/2. Again the number 1/2 emerges and seem
(perhaps) to be related to the fact that all of these figures baactly three points on the grid. Also, we know that evaangle
on the grid has an area that is some multiple &;1since primitive triangles are somehow “small” we shotilthe surprised if
all have area exactly/R, the smallest area possible for a triangle on the grid.
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Problem 34, page 55

You should have found that all of them have area exactly 1. ®Weaompare with primitive triangles in a couple of ways.
Problem33 shows that primitive triangles must have arga.1

The extra grid point on the edge of these triangles appeamriibute an extra credit of/2. Or, perhaps, we could observe
that the extra grid point allows us to split the triangle iti@ primitive triangles each of which has areg21 Both viewpoints
are useful to us.

Problem 35, page 55

You should have found that all of them have area exactly 3f#& dingle grid point in the interior of the triangle can bengi
to the three vertices, dividing the original triangle intode primitive triangles. Since each of these has area t&diog to
Problem33, the total area is 3/2.

Problem 36, page 55

You should have found that all of them have area exactly & likely a mystery to you, however, whether these two numBers
and 6 adequately explain an area of 7. (Is there some forraulatich, if you input 4 and 6, the result will be 77?)

Does this mean that all such polygons (with 4 boundary p@ints6 interior points) must have area 7? Our choice of polygon
was driven mostly by a desire to find figures whose area coultbbguted without much difficulty. It is not clear at this stag
whether much weirder figures would or would not have this priyp

But, if this is so, then it appears (quite surprisingly) tothe case that the area inside a polygon with vertices on tide gr
depends only on knowing how many grid points there are on tiggpn itself and how many grid points there are inside the
polygon.

Problem 37, page 55

In Problem30you likely constructed a few of these. Just describe a proedthat would construct one example for each of these.
Start perhaps with a triangle with vertices(@t0), (0,1), and(1,0). Just keep adding simple primitive triangles until you see a
way to write up your recipe.
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Problem 38, page 55

Your experiments should have produced squares with thess:ar
1,2 4,5 9 10, 13 16, 17, 20, 25, 26, 29, 36, 37, 40, 45, 52....
If you didn’t find many of these keep looking before you try pmsthe pattern or try to explain the pattern.

Certainly, for any integek, the squares with verticé®,0), (0,k), (k,0) and(k, k) is on the grid and has aré&& This explains
all of these numbers:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.....
What about the other numbers in the list we found above?

But the square with vertice®,0), (1,1), (—1,1) and(2,0) also works and has area 2 since each side lengifRis That
explains the number 2. More generally, for any choice of p@rb), there is a square with one vertex@i0) and the line joining
(0,0) to (a,b) as one of its sides. The side length is

Vaz+b?

by the Pythagorean theorem and so the area is

a?+b?.
Consequently any number that is itself a square or is a suma$quares must be the area of a square on the grid. That stattem
describes the list of possibilities that we saw.

Problem 39, page 56

The area of the rectangl® is 8. The number of grid points inside the rectangle is 3. Tétmsnting grid points inside is a
considerable underestimate in this case. Perhaps, hqwéatlemuch larger rectangles this might be a useful firsneste.
Similarly, the area of the triangl€ is 4. The number of grid points insideis 1. Again simply counting grid points inside
gives too low an estimate.
You may wish to try some other examples and see if the sameokiomhclusion is reached. A simple counting of grid points
inside produces estimates that are poor for these rekatvedll polygons.
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Problem 40, page 56

Once again the area of the rectanBles 8. The number of grid points insid&is 3 to which we are instructed to add the number
of grid points on the rectangle itself. There are 12 suchtp@nd adding these gives 423 = 15, considerably larger than 8.

The area of the triangl€ is 4. The number of grid points insideis 1 and the number of grid points on the triangle is 8. The
addition is 148 = 9, rather more than the area of the triangle.

It appears that, in order to reduce the total Pick credit avitlis closer to the actual areas we need to give less creddrhe
of the points.

Problem 41, page 56

The grid points orRandT are neither inside the polygon nor outside. We can try gitivegn less credit than 1. Our choices are
0and V2.

Let’s try 1/2 for all of them which would be a reasonable first guess. Fave find 12 such points (counting the corners of
R). Giving each such point half credit we obtain

3+6=9
whereas the area &fis 8. This is rather closer but is just an overestimate by 1.
Similarly, for the triangleT there are 8 grid points on the triangle. If we give them hadfeit, we obtain
1+4=5.

The area of the triangle is 4 and so, once again, we have faundeaestimate by exactly 1.
Try some other figures to see if this is what will always hapgmould we change the credit (reduce some of these points t
zero credit) or should we try to figure out why the extra 1 a?se

Problem 42, page 56

Your examples should show results similar to those we foarRroblem4 1. Trying for an estimate
[# of grid points onP]
2

Area(P) ~ [# of grid points insideP] +
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using our idea of full credit 1 for the inside points and haiédit 1/2 for the boundary points, in each case we found an overesti-
mate by one unit. Did you?

Problem 43, page 58

We have already seen that the formula
[# of grid points onP]
> -1
works in a few simple cases. Let us check that it must alwayk far rectangles with vertical and horizontal sides anchwit
vertices on the grid work.
If the rectangleR has dimensionm andn the actual area is the produtn We can count directly that

[# of grid points insideR] = (m—1)(n—1).

AreaP) = [# of grid points insideP] +

and
[# of grid points onR] = 2(m+n).
(Check these.)
Thus our calculation using this formula would result in
(m—n)(n—1)+ 2(m2+ N _ 1=mn

Since this is the correct area of the rectangle, the fornswalid at least in this special case.

Problem 44, page 58

We have already seen that the formula
[# of grid points onP]
2
works for all rectangles and, in a few simple cases, for safandles. Let us show that it works= T is a triangle with one
vertical side and one horizontal side and with vertices emgttid work.

Area(P) = [# of grid points insideP] + 1
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If the horizontal and vertical sides have lengttandn, the area of the triangle mn/2. Adjoining another triangl&’ as we
did in Figure2.14we arrive at a rectanglR® whose area imnthat is split into the two triangle$ andT’. The two triangles are
identical (one is a reflection of the other) and so they hagestime areas and the same number of grid points inside ané on tf
boundary.

Let p be the number of grid points on the diagonal of the rectaregteluding the two vertices. (There may be none.) We
easily compute (using Figuz14as a guide)

[# of grid points insideT] + [# of grid points insideT’] + p
= [# of grid points insideR]
and
[# of grid points onT] + [# of grid points onT’]
= [# of grid points onR] 4+ 2+ 2p.

This last identity is because the two vertices on the dialgareacounted twice, once fdr and once foil’ as also are any of the
other p grid points on the diagonal. Thus we can check using simpglebah that

[# of grid points onT] 1}

2
[# of grid points onR]
2

This last identity is clear since we already know that oumfola works to compute the area of any rectangle, andRéess area
mn

Thus we have verified that the formula does produce exautj}2, which is the correct area for the triandle This handles
triangles, but only (so far) those oriented in a simple wahwaihorizontal side and a vertical side.

The algebra is not difficult but it does not transparentlywsidiat is going on. In Sectiof.3.3we explore this in a way that
will help considerably in seeing the argument and in genengl it to more complicated regions.

2 x {[# of grid points insider] +

= [# of grid points insideR] + —1=mn
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Problem 45, page 60

The count is quite easy to do. Except for points on the lirevery point in the count for Pi¢k) is handled correctly in the
sum. The points oh, however, all get counted twice. The two vertices at the efidsget a count of 12+ 1/2 in the count for
Pick(P) but they get Y24 1/2+1/2+1/2 for the count PickM) + Pick(N). So that is 1 too much.

What about the remaining grid points, if any, bl They are also counted twice. But this takes care of itselfhé count for
Pick(M) + Pick(N) any such point gets a count of A+ 1/2. But that is exactly what it receives in the count for PRKsince it
is now an interior point and receives credit of 1. In shorhtheithout much trouble, we see that

Pick(M) + Pick(N) = Pick(P) + 1
where the extra 1 is explained simply by the fact the endpaifithe edgé. got counted twice.

Problem 46, page 60

We want to prove that
AreaT) = Pick(T) -1
for any triangle with horizontal and vertical sides. As wd i our previous solution we introdud€ the mirror image ofl so
thatT andT’ together form a rectangle. Then
Pick(T) = Pick(T’),
Pick(T) + Pick(T") = Pick(R) + 1,
and
2AreqT) = AreaR)
We are allowed to use the fact that A(Ba= Pick(R) — 1 that we proved earlier. So
Area(T) — Are;a(R) _ Pick(;%) -1 2Pick(T2) -1-1

which is the formula we wanted.

— Pick(T)—1
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Problem 48, page 61

This is just a warm-up to the general case discussed in Fnotelt is worth trying to handle this one using the ideas devetbp
so far since some thinking on this problem helps understatt@éwhat is needed for the harder problem.
For example, if the triangle is obtuse angled like the triafgin Figure2.32then add a right-angled triangkeso thatT and
P together make another right-angled trian@eWe know already that
AreaP) = Pick(P) — 1
and
Area(Q) = Pick(Q) — 1
but we want to show that
AreaT) = Pick(T) -1
is also valid. Simply use Pic¢K ) + Pick(P) = Pick(Q) + 1 and Are&T ) + Area(P) = Area(Q).

Figure 2.32: Obtuse-angled trianglewith a horizontal base.

If the triangle is acute-angled like the trianglan Figure2.33then it can be split into two right-angled triangles and hedd
in a similar way.
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Figure 2.33: Acute-angled trianglewith a horizontal base.

Problem 49, page 62

Let R be the smallest rectangle with horizontal and vertical sithat containd. ThenR is comprised ofT and some other
polygons for which we have already established the Pick éitmm Figure2.34 illustrates how the triangl@ plus some other
simpler triangles, and possibly a rectangle, might makenamthole of the rectangle.
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Figure 2.34: Triangles whose base is neither horizontalvadrcal.

Note the similarity between Figur234 and Figure2.6. Apply reasoning similar to that used in Probl&®to determine
whether the formula is valid for an arbitrary triangle. Thigygestion should enable you to solve the problem. Therdésaded

discussion, in any case, in Sectidn. 1

Problem 50, page 63

The algebra is quite simple, just a lot of adding and subitrgcHere is what we know:

AreaR) = Area(Tp) + Area(Ty) + AreaT,) + Area Ts),
Pick(R) + 3= Pick(To) + Pick(Ty) -+ Pick(Tz) + Pick(Ts),

Area(R) = Pick(R) — 1,
Area(T;) = Pick(Ty) — 1
Area(T,) = Pick(Tz) — 1

and

9

)

Area(Ts) = Pick(Ts) — 1.
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Thus
Area(Tp) = AreaR) — {Area(T;) + AreaT,) + Area T3) }
= Pick(R) — 1 — {Pick(Ty) + Pick(T,) + Pick(T3) — 3}
= {Pick(R) — Pick(T1) — Pick(T,) — Pick(T3) } + 2.

But

Pick(R) + 3 = Pick(Tp) + Pick(Ty) + Pick(Tz) 4 Pick(Ts),
which is the same as

Pick(R) — Pick(Ty) — Pick(T,) — Pick(Ts) = Pick(Tp) — 3.
Finally then

AredTg) = {Pick(Tp) — 3} +2 = Pick(Tp) — 1.

The proof is complete.

Problem 51, page 63

Figure2.35(which is just a repeat of Figur21in the text) indicates rather well which grid points to uses ywu can see, there
are six points on the boundary (in addition to the five vesfidbat must be included in our accounting. For the secorfdhtie
problem, triangulate into just three convenient triangled check the areas of each by counting according to the Biokufa
that we have now verified for triangles.
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Figure 2.35: What is the area insig@

Problem 52, page 63

Let us set up an argument using mathematical induction. &dr etegek > 3 let P(k) be the statement that for every polygon
with k or fewer sides the formula works. We already kne¢8) is valid (the formula is valid for all triangles)

Now suppose the formula is valid for all polygons wiilor fewer sides. (This is the induction hypothesis.) Bdie any
polygon withn+ 1 sides. We must show the formula is valid far

At this point we need the splitting argument. The essent@iadient in all inductive proofs is to discover some wayde the
information in the induction hypothesis (in this case theadormula for smaller polygons) to prove the next step irrdection
proof (the area formula for the larger polygon).
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Figure 2.36: Finding the line segment

As in Figure2.36 we use the splitting argument to find a line segmemthose vertices are endpoints Bfand the rest ob
is insideP. In the figure the line segmehthas separateR into two polygonsM andN. Because we have addéd the total
number of sides foM andN combined is now -+ 2, but each of the polygons separately has fewer thad sides. Thus, by the
induction hypothesis, the formula is valid for each of théygonsM andN.

Thus we know that

Area(P) = AreaM) + Area(N),

while

AreaM) = Pick(M) — 1
and

Area(N) = Pick(N) — 1.
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By our additivity formula for the Pick count,
Pick(P) 4+ 1 = Pick(M) + Pick(N).
Simply putting these together gives us
AreaP) = Area(M) + Area(N) = Pick(M) — 1+ Pick(N) — 1
= Pick(P) +1—2 = Pick(P) — 1.

This verifies that the Pick formula works for our polygBrwith n+ 1 sides. This completes all the induction steps and so the
formula must be true for polygons of any number of sides.

Problem 53, page 68

Figure2.37shows a possible ending position for this game. There arentioeir moves possible.

Figure 2.37: A final position in this game.

One thing that is evident from this particular play of the gaiw that the final position is a primitive triangulation oeth
original polygon. Would all plays of the game result in a gtive triangulation?
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In playing this game there were exactly 8 moves and so it wvasdlond player who made the last move and won the game
Would all plays of this game have the same result or was thensleglayer particularly skillful (or lucky)?

Problem 54, page 68

Choose a polygon that is not too large and play a few gamesdalowith a friend). You will certainly observe that the game
ends with a primitive triangulation of the original polygoviou may also have observed that, if you lost the game, eawhyibu
repeated the game (with the same starting position) youl@sono matter what new strategy you tried.

Did you observe anything else? You could have, if you thowuglitt also have counted the number of moves and counted the
number of triangles in the final figure. But perhaps you didiatice anything about this count beyond the fact that thebmarm
of moves and the number of triangles are closely related lesktnumbers didn’t change when you replayed the game on thi

polygon.

Problem 55, page 69

The game ends after a certain number of moves. Call this numbEhus, aftem moves, the polygon has been split ime- 1
subpolygons.

Are they all triangles?

Let us suppose not, i.e., that there is a subpolygon in thé fiosition with 4 or more vertices. According to the spligin
argument of Sectiof.1.4there must be a line segment joining two of these vertices/fach the line segment is entirely inside
the subpolygon. But that would allow a Type 1 move to be madesarthe game is not over after all.

Since they are all triangles we can ask

“Are they all primitive triangles?”

SupposdT is a triangle in the final position. Dodshave a grid point on the boundary other than the three veRitit did, then
clearly a Type 1 move could have been made by joining thatt poian opposite vertex. Dodshave an interior grid point? If it
did, then clearly a Type 2 move could have been made by joithiagpoint to two of the vertices. This shows that each tiliang
in the final triangulation must be primitive.
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Problem 56, page 69

Recall that a triangle with vertices on the grid is said to benjive if the only grid points on or in the triangle are ther¢e
vertices themselves. What is the area of a primitive triaRg|

Not surprisingly the answer is/2. We know that all polygons on the grid have an area that is lipteuof 1/2. These are
the smallest such polygons. We have also experimented w @n&tances with primitive triangles (e.g., in Probl&®) and in
each case we found an area g1

The Pick formula supplies this immediately.Tifis a primitive triangle, then there are no interior grid peih = 0) and there
are only the three boundary grid poini&-=£ 3). Consequently

AreaT)=1+B/2—-1=0+3/2—-1=1/2.
as we would have suspected.

Problem 57, page 69

Consider the final position. Aftem moves the polygon has been split imie- 1 subpolygons, each of which we now know
(because of Proble®sb) is a primitive triangle.
Each primitive triangle has ared2 (by Pick’s rule) and so the area of the original polyddmust be
n+1
2
since there ara+ 1 primitive triangles. Pick’s theorem says, on the otherdhémat
AreaP) =1+B/2—-1.
Comparing these two expressions we see that

AreaP) =

n+1 21+B-2
2 2
which shows that the number of primitive triangles in the lfo@nfiguration is

n+1=21+B-2
This number is always the same even though there may be angaestdifferent ways of ending up with a primitive triang et
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The number of moves in the game is then always given by
n=21+B-3.

Problem 58, page 69
In Problem57 we determined that, no matter what strategy either playat®lto try, the number of moves in the game is always
given by

n=21+B-3.

The first player wins if this is odd. The second player win$i§tis even.

Looking again at that number it is evident that the first ptayms simply if B is even and the second player win8ifs odd.
The number of interior pointkis irrelevant to the question of who wins (although the gasmaich longer il is big).

So the game is rigged. The player in the know just offers toegmisd in a game if she spots this odd.

Problem 59, page 71
Let us play the game on the polygéhsplitting it by a Type 1 move into two polygoridd andN. For a Type 1 move there is a
line L joining two grid points on the boundary Bfthat becomes a new edge fdrandN. We consider both sides of the equation
Coun{P) = Coun{M) + CountN)
that we wish to prove. Draw a picture or else what follows & juords that may not convey what is happening.
Now
Coun{P) =21 +B—2,

Coun{M) =2l +Bw — 2,

and
Coun{N) =2IN+B,—2

We use a simple counting argument looking at the grid aloagfiitting lineL. The count works out perfectly for points that are
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not on the splitting line. Every point in thg count appears in the counts g or By; every point in thd count appears in the
counts forly or ly.

For the grid points that are on the splitting line the two endpoints ok are counted twice, once for f@y and once for
Bn. The extra—2 accounts for that. Any interior grid points arthat appeared in the count fofwhere they count double) now
appear in the counts fd@y andBy (where they count as 1). That takes care of them too.

There remains only to do the same for a Type 2 move. But rdadiysame argument applies without any changes.

Problem 60, page 72

There are a number of ways to do this. One cute way is to useritingipe triangulation result itself to do this. The ideatisat
we already know primitive triangles have area at leg® {See Probler31.) A clever triangulation will show that they cannot
possibly have area more thap2l

Take any rectangl® on the grid with horizontal and vertical sides. We supposadictangle has dimensiops< g. Thus

AreaR) = pq.

We can easily count interior points and boundary points fichsa rectangle.

We triangulate the rectangle so as to find a primitive tridaipn of R. But we know how many primitive triangles there must
be forR: we just need to compute that

B=2p+2q
while
I =(p—1)(a—1).
So if nis the number of primitive triangles our formula gives us
n=CounfR)=21+B-2=2(p—1)(q—1)+2p+29—2=2pq.

All of our triangles have area at least2Lso if any one of them has area more thd@ the area of the rectangle would be bigger
than pgwhich is impossible. Thus each has ar¢a.1

Every primitive triangle can appear somewhere inside sucbctangle and be used in a primitive triangulation, so this
argument applies to any and all primitive triangles.
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Problem 61, page 72

Well many mathematicians would. But there is a huge inteiteap from a problem about area to a problem about primitive
triangulations. We began early on to sense a connection aaltl/fcame to a full realization only later on.

We could have simply announced the connection and then edirtbis line of argument. Plenty of mathematics textbooks
and lectures do this kind of thing all the time. The proofs fas#, slick, and the student’s intuition is left behind tdataup
later. For a book on Mathematical Discovery we can take one tand try to convey some idea of how new mathematics might
be discovered in the first place.

Problem 62, page 73
In Figure2.23we can measure the rectangles directly and seePtimb 5 x 12 rectangle an#ll is a 2 x 4 rectangle. Thus the
area of the regio® betweernP andH must be
Area(G) = Area(P) — AreaH) = 60— 8 =52
[We could have used, instead, our old method of countingiort@oints at full value of 1 and points on the polygon at half
value of /2. ForP we count 44 interior points and 34 points BnThus our standard formula gives
Area(P) =44+34/2—1=44+17—-1=60
as expected. Fdi we have 3 interior points and 12 points dnso
AreaH)=3+12/2—-1=3+6-1=8
which is again correct.]
Let's see what we get if we try to use our formula for the arethefregionG betweenP andH. Here, once agairG has
interior points and points on the boundary; all the pointg tre on the boundary &f must be considered on the boundaryGof

We note that the grid points of the interior of G consists afsthinside P except the 15 that lie inside or on H. There are 2€
such points sb = 29. The boundary of the region in question consists of thggurisP andH. There are

B=34+12=46
grid points on this boundary. Trying our usual computationG, we obtain
Area(G) =1+B/2—-1=
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29+46/2—-1=517
This is actually quite encouraging since our formula gave tesult that isoo smallby only one unit.
Try some other choices fé&t andH. Both should be polygons with vertices at grid poirtisshould be insidé, andG is the
region formed from subtracting and its inside from the inside & Rectangles (as we used) make for the simplest computations
Try triangles and a few others.

Problem 63, page 73

Let's argue as we have several times previously. The gridipdansideP are of three types: those that are inditlethose that are

onH, and those that are not insittenor onH. Our computation for the area insiegave zero credit for the first type of point,

half credit to the second type of point, and full credit to thied type of point. It also gave half credit for the grid ptsronP.
Thus the total credit given t@ is provided by the area formula

AreaG) =1+B/2
whereas Pick’s formula (for polygongithout holes) would be

|+B/2—1
instead, resulting in too low a number for the area.
Problem 64, page 74
Simple algebra gives
Area(P) —AreaH) =1 (P)—1(H)+ [B(P)—B(H)]/2. (2.1)

Now figure out what (G) andB(G) must be. Directly we can see tHdG) includes the points counted fo{P) excluding those
counted inl (H) as well as those counted B{H ). Thus

1(G)=I1(P)—I(H)—B(H).
Similarly we can see th&(G) includes all of the points counted f8(P) plus those counted iB(H). Thus
B(G) =B(P)+B(H).
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Put this altogether using elementary algebra and find that
AreaG) = Area(P) — AreaH) = 1(P) —1(H) + [B(P) — B(
=[I(P)=1(H)=B(H)]+ [B(P)+B(H)]/2=1(G) +B(G)/2.
So finally the new formula for the regida (i.e., P with a holeH) is
Area(G) =1(G)+B(G)/2

which is exactly Pick’s formula without the extral. This is what we have already observed for specific examglespt that
now we have an algebraic proof of this fact.
We can think of this using the phrase “without the extt&’ or we could write our new one-hole formula as

Area(G) = (l(G)—F@ —1> +1

I
—
~

N

2
which might be more helpful since it asks us to add 1 to Piak'enlla.

Problem 65, page 74

The formula for the are® that remains inside a polygon with exactlypolygonal holes is
B
Area(G) = (I (G)+ @ — 1) +n.

Note thatn = 0 (i.e., no holes) is exactly the case for Pick's Rule and sonew formula is a generalization of Pick’s original
formula.

The proof can be argued via counting, as we have done ofteigebraically as in our last proof. HeB¢G) is the count we
obtain for all points lying on P as well as on any of thpolygons that create the holes. (We assume no two of the padylgave
points in common).

We leave the details to the reader, but for those who areeisiienl, we provide a calculation for the case of two holesp&sm
P is a polygon with holes created by two smaller polyg@andR as in Figure2.38
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Figure 2.38: Polygon with two holes.

We show that (G) + B(G)/2 is one less thaA(G). We have
1(G)=1(P)—1(Q) +B(Q) - I(R) -~ B(R)
and
B(G) =B(P)+B(Q)+B(R).
Thus
1(G)+B(G)/2=
1(P)—1(Q)—1(R) - B(Q) - B(R) +[B(P) + B(Q) + B(R)]/2=
1(P)—1(Q) —1(R)+B(P)/2—[B(Q) +B(R)] /2=
1(P)+B(P)/2—-[1(Q—-B(Q)]/2—[I(R)+B(R)]/2=
Area(P) +1— [AreaQ) + 1] — [AreaR) + 1] = A(G) — 1.
Thus the correct formula for the area®fis
AreaG) =[I(G)+B(G)/2—-1]+2

CHAPTER 2. PICK'S RULE
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as was to be shown.

For those of our readers rather braver here is the proof éogémeral case. It is exactly the same but just needs sonze extr
attention to notation so that the task of addingngiifferent elements is not so messy.

Instead of labeling the smaller polygons@sR, ... let us call thenP;, P, ..., B, and let us call the big polygoRy. Write
A =A(R), B =B(R), andl; =I(R). Then, for eacm 0,1,2,...,nwe know that Pick’s Rule provides

AR) =1 +Bi/2_ 1
and so, ifG is the figurePy with all the holes removed, then

~ AR~ 5 AR) -

n
Io-l-——l [I—F——l]
=

But it is easy to check that
n

|(G) = |o—'Zl(|i —I—Bi)

n
=Bo+ ) Bi.
2"
Put these together to obtain the final formula
AG)=[I(G)+B(G)/2—1]+n

and

as was to be shown.

Problem 66, page 77

This is almost obvious. For the points on the common edgeanigée of visibility for P, and the angle of visibility foP, add
together to give the angle of visibility fd?. For every other point there is no problem since they canapmay in the count for
P; or else in the count folP,.
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Problem 67, page 77

Start with triangles exactly as before and show that
AreaT) = Pick'(T)
for every triangle. This takes a few steps as we have alresely i1 Sectior?2.4.1

Then, since the new Pick count is strictly additive (no eftta be added), any figure that can be split into trianglesallo
the same formula for the area. But any polygon can be triated!

Problem 68, page 77

For each point in or on a polygda with a number of hole$l;, Hp, .. .Hyx we decide what is itangle of visibility This is the
perspective from which standing at a point we see into theensf the region. For points interior to the region we seelle3&0
degrees. For points on an outer edgd”diut not at a vertex we see only one side of the edge, so the ahgisibility is 180
degrees. The same is true for points on an edge of a hole, batvastex of the hole.

For points at an outer vertex of the region the angle of \igjbivould be the interior angle and it could be anything betn
0 degrees and 360 degrees. Finally for points on the bourafdhe region that are vertex points of one of the holes we do th
same thing. One side of the angle looks into the hole, the sille looks into the region of concern.

As before outmmodified Pick’s counis to take each possible grid point into consideration, asmfits angle of visibility,
divide by 360 to get the contribution. Points inside get 360£1. Points on the edge but not at a vertex get 180/360AHha,
finally, points at the vertex get/360 wherea is the degree measure of the angle. The new Pick count we viié as

Pick* (P).
Now, usingG to denote the region defined by removing the holes from insid® simply verify that
Pick’(G) + Pick' (H1) 4 Pick*(Hz) - - - + Pick' (Hk) = PicK' (P).
This is far easier than it appears. The only points that gehtsal twice in the sum on the left side of the equation aretpain
the boundary o6 that are also on a particular hdt. In computing Pick(H;) that point gets a count @/360 where the is the

angle interior toH;. In computing Pick(G) that same point gets a count[860— a]/360. The sum is 1 which the correct value
for this point since, considered mitself it is an interior point.
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The rest of the proof is obvious and requires only that we use
Area(G) = Area(P) — Area(H;) — Area(Hz) — - - - — Area(Hy) = Pick’ (G).
This uses the fact that we know this formula for all polygornhaut holes.

Problem 69, page 77

Problem68 presented an easier and more intuitive proof of a formuldhferarea of a polygonal regida with n holes. We need
to relate it to the other formula.

Use G to denote the region defined by removing a number of hblgsH,, ...H, from inside ofP, and use PicKG) to
represent the count that uses the angle of visibility.

Use PicKG) to represent the simpler count

Pick(G) =1+B/2

wherein the number of boundary poifgf G must include points on the boundary®fs well as on the boundary of one of the
holes. The numbdr, as usual, counts the number of interior points (here thespants inside? but not in one of the holes).

Now simply show that

Pick’(G) = Pick(G) —1+n.

That explains Pick’s formula and illustrates where treppears.

To verify this equation we need only focus on the verticesred of the holed;. Every other point is counted the same
whether it appears in the count for Pi¢&) or the count for PickG).

If there areh vertices on that holél; then we recall that the interior angles (interior to the hdfewould have a sum

a+ap+---+a,=180h—2).
since the angles inside any polygon whtkertices add up to 180 — 2) degrees.
But in the computation for PicKG) the same angles at the vertices appear but are complemergarshe corresponding
angles are
(360— al), (360— 8.2), 000 (360— ah)
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Thus we can compute the contributions of the vertices of tieH; to the count for Pick(G) to be
(360—a1) + (360—ap) +--- + (360—an)
360
B 360h—[a1 +az+ -+ ap) _ 360h—180h—2)
B 360 - 360
The count for the computation of PigR) using these same vertices is simpl§2, which is one smaller. But that is one smaller
for each hole This verifies

=h/2+1.

Pick’(G) = Pick(G) —1+n
and explains the appearance of the

Problem 70, page 79

The formula 2 + B — 2 provides, as always, the number of primitive trianglegufé2.39shows a number of different primitive
triangulations, all of which must have eight small triarsgileside.

Figure 2.39: Several primitive triangulations of the palyg
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Problem 71, page 80

If you started off by considering an equilateral trianglehaa horizontal or vertical base then you should have quididynissed
that possibility (even without Pick’s theorem).

Now let there be an equilateral triangle with side lengtnd with all three vertices in the grid. Thafis an integer (use the
Pythagorean theorem). What is the area of the triangle? BkisHRule says that all polygons with vertices in the gridddran
area that is1/2 for some integen. Find the contradictich

Problem 72, page 80

Figure2.40shows the areas labeled. Most of the areas are easier to tmoging familiar formulas. You might, however, have
preferred Pick’s formula for two of them.

4You may need to be reminded th@8 is irrational
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Figure 2.40: Archimedes’s puzzle, called the Stomachion.

Problem 73, page 80

Each vertex lies on a the points of the grid while no other gihts lie on the surface or in the interior of the tetrahedro
J. E. Reeve (see iter8][in our bibliography) used this tetrahedron as a countemgte to show that there is no simple version of
Pick’s theorem in higher dimensions. This is because thetsghiedra have the same number of interior and boundarysgfoin
any value ofn, but different volumes. Thus there is no possibility of anfiata for the volume of a tetrahedron (or a polyhedron)
that simply uses interior and boundary grid points. Theeesditl interesting problems to address, but Pick’s theoitseif does
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not generalize to higher dimensions as one might have hopegve’s paper discusses many such related problems but it i
intended for a serious mathematical audience and is notsmnread.

Problem 74, page 80

In number theory, Bézout's identity or Bézout’s lemma, ndraier Etienne Bézouit states that i andb are positive integers
with greatest common divisgg, then there exist integexsandy (called Bézout numbers or Bézout coefficients) such that
ax+hby=p.

Evidently we are being asked to prove only the cpsel. After you have succeeded, do try to use the same methodve fire
more general identity

This is not difficult to prove, if you have some knowledge ofiher theory and divisibility. Pick’s theorem allows a diffat
proof that relies on geometry rather than number properties

Let a and b be relatively prime integers. In the grid, drawfiteL from the origin through the poir{, b). Note that the line
segment betweef®, 0) and(a,b) does not pass through any other point on the grid.

If it did, say a different pointx,y), then

y/x=b/a = slope of the lind..

Take the point(x,y) as the grid point on the line and closest to the origin. We ktimavay = bx can be written as a product of
primes

ay=bx= p1pzps... Pk
Then, sincea andb have no common prime factorg,must contain all the prime factors bfwhich is impossible sincé is
supposed to be larger.

Now, keeping in parallel t&, move the lineL slowly upwards until it hits another lattice point of integmordinates. Thus
we can choose’ to be the closest parallel line to L that intersects a lagicit. Let (s, t) be the point the lattice point bhthat
is closest to the origin. Consider the trianglalefined by (0, 0), (a, b) and (s, t). This triangle has no intgwbints and its only
boundary points lie at its vertices, for if it had others themould have hit them before it got to (s, t), which is a conicéidn to

SWikipedia informs us: “Etienne Bézout (1730-1783) provieig tdentity for polynomials. However, this statement fateigers can be found already in
the work of French mathematician Claude Gaspard Bachet a&igi®(1581-1638)."
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how we defined (s, t). Therefore, by Pick’s Theorem,

AreaT) = %
But we have already seen in Problé@mi.6how to compute the area of such a triangle algebraically:
t—b
AreaT) = a > S
This means that
1 at—bs
2 2
Thereforeat — bs= 1. Substitutingc =t andd = —swe get
ac+bd=1,

which is what we required.

Problem 75, page 81

Yes, there must be at least one such point. One might try taHiegboint or show that it exists using elementary algebuathis
would get a bit messy. Much easier is to use Pick’s formuldrfangles.

The triangleT has base 1 and height from elementary geometry we know the aredlofs exactlyn/2. Sincen > 1, the
area ofT must be at least 1. Using Pick’s formula for triangles we se¢ if there were no grid points besides the vertices on or
in T, the area would be only/2.

We recall from Sectio2.3.1that we call such triangles primitive and a feature of ouotiies that all primitive triangles have
area J2. In short therT, having area 1 or larger is not primitive: therefore therestine a grid pointa,b) in or onT other than
one of the three vertices of.



Chapter 3
Nim

Most of us have at one time or another played games in whichavedfa single opponent: chess, checkers, monopoly, Chines
checkers, backgammon, various card games and the like. 8btinese games involvehance For example, the outcome of a
game of monopoly depends in part on the roll of dice and onscairawn from a stack. Most card games depend in part on which
cards one draws or is dealt.

Other such games do not depend on chance: the players mensédly and each player has completely free choice of move
subject only to the rules of the game. No move is dictated byadttcome of such things as rolling dice, selecting a card or
spinning a dial.

In many of the games we play there are different rules for Wee glayers (which may mean only that they use different
pieces). For example in chess one side plays the white pawbsne side plays the black pieces. Games in which both side
play by precisely the same rules are said tanbpartial.

In many games there isnperfect information for most card games the players do not know what cards thengmp is
holding.

In the type of games (called perfect information, imparti@mbinatorial games) that we shall study there are twoeptay
alternating moves, who see the entire positions and foll@vseme rules. The game ends after a finite number of moves. On
such game idim.

123
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Figure 3.1: A game of Nim.

Set out matchsticks as in the figure. There are two playersh Bayer, in turn, removes one or more matchsticks from éne o
the four columns. The player removing the last matchstigkswiou can play Nim with any number of columns and any number
of matchsticks in each column.

3.1 Care for a game of tic-tac-toe?

Figure 3.2: Care for a game?
Probably not. But why not? Perhaps it is because of this kedlvn fact.
3.1.1 (Tic-tac-toe) Player | in a game of tic-tac-toe has a strategy that will leackvery case to either a win or a draw.

But, in fact, that cannot be the real reason why you, as ar,adalno longer willing to play this game. The game of chexker
is identical in this respect: the first player in a game of &eex has a strategy that will lead in every case to either aowim
draw. Moreover, the second player has a strategy that wel@ny case force a draw. Thus two completely and perfedibyrimed
players would play every checkers game through to a drawyBiee. Just like tic-tac-toe.
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The difference, however, is that no one you meet knows tlagesty for checkers even though we can prove that one exists
Every schoolchild beyond a certain age knows the strategycftac-toe. Consequently tic-tac-toe retains no irdefer us while
checkers remains challenging and intriguing.

Prove that a strategy exists How does one go about proving that a strategy exists withctuidly finding one? We shall think
about this problem in the context of tic-tac-toe. Unfortighathat game is so familiar to us that it interferes with cessoning.
We adjust the rules of tic-tac-toe. The game playh@w rules tic-tac-toas exactly the same as before: the players alternate
placing X's and O’s in the squares stopping when all squanesiled or when there is a line of 3 X’s or 3 O’s. We consider all
the end positions of the game; there are somewhat less thandada of these. We call some of these positiahéte positions
and the resblack Figure3.2 shows an end position. We can call it black or white as we pled$e winner of the game is
declared following this rule: if the end position is whitesthplayer | wins, while if the end position is black then Plalyevins.

An analysis of this game leads to a proof that tic-tac-toeahsisategy and we will not have to supply the strategy as fpart o
the proof.

Problem 76 Let an end position be defined as white if there are three Xsnanof the diagonals and let every other end position
be defined to be black. Show that one of the players has a wjshiategy in new rules tic-tac-toe. Answer O

Problem 77 In any new rules tic-tac-toe game prove that either playeas B winning strategy or else player Il has a winning
Strategy. Answer O

Problem 78 In any tic-tac-toe game (played by the ordinary rules) useldRyrm77 to prove that player | has a strategy that must
end in either a win or a draw. Answer O

Problem 79 (Equivalent games)Here are the rules for the Game of 18: From a deck of cards ekimane cards numbered from
2-10 and place face up on the table. Each of two players intakes a card. The player wins who first obtains three cardsseho
sum is exactly 18. Show that this game is “the same” as a tietdé@ game. (This concept of two games being “equivalenti” wi
be important later.) Answer O

Problem 80 (Simple card game)Analyze the following card game. From a deck of cards extitaetlacks, Queens, and Kings
of hearts, diamonds and spades. These nine cards are placedup on the table. Each of two players in turn takes a card.
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The player wins who first obtains three cards of these typbgeetof-a-kind, JQK of the same suit, @i,Q#,KO), or
(IO, QM,KSO). Answer O

3.2 Combinatorial games

Mathematicians study games like tic-tac-toe, chess, @recknd many others by describing the features that ar&siimong
these similar features are that there are two players wilydyglaertain rules known to both players, taking turns onerathother,
continuing until a win or a draw is declared. Both players faily informed about the state of the game (there are no mdde
elements such as cards not turned over or dice yet to be thrdvirere is no element of chance. They describe such games a
combinatorial games

Of particular interest in any combinatorial game is whetbiginer player can force a win and, if so, by what strategy. As
we have long known, correct play by both players in tic-tae-inust end in a draw. In 2007 it was determinatigr years of
computer calculations, that the same is true for checkess.cless the situation is unknown; it is possible that one salld
force a win but we do not even know whether that would be whitelack.

The games we shall study are all combinatorial games, bytateevery special. They are said to ibgpartial in that both
players must playpy the same ruleand the player who makes the last legal move is declared theewdi There are no draws.
For example, Tic-tac-toe (like chess and checkers) is npaitial: one player plays the X’s and the other player pléngs@'s.

The last player to make a legal move may not necessarily wao(ld be a draw).

The most important impartial combinatorial game is Nims e first such game to receive a complete mathematicaiaulut
We would expect (by using the same argument as we used indhmab) that one of the two players in any game of this type
should have a winning strategy. But how could we determinehlvbne has the winning strategy? How could we determine what
that strategy should be? How would we go about finding out tisevars to these questions?

In order to motivate our development and to clarify what we i@ally looking for in a strategy, we shall begin with some
simpler games before attacking Nim. Some of the ideas whiltlswface here will be central to our development.

1Jonathan Schaeffer et aCheckers is solve®cience Vol. 317 no. 5844, pp. 1518-1522.
2This is called thaexormal play conditionWe will also, much later in the chapter, consider a difféténd of combinatorial game where the last player to
make a legal move loses.
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3.2.1 Two-marker games

Two markersA andB are placed above positive integers on the number line. KIdfithis as a long board with holes. The holes
are numbered.2.3,.... Pegs marked andB can be inserted in the holes.) For example, we might haveghkat hole number
4 andB at hole number 9 as indicated in Figl8e.

@ @ @ @ @ @ @ @ '

1 2 3 45 6 7 8 9 101112

Figure 3.3: A game with two markers at 4 and 9.

The two players move alternately. A move consists of movitigee one of the markers to the left as far as one wants with the
proviso thatB stays to the right of A. (Markers must be placed above an antedhe player who makes the last legal move wins.

4 ST

1 2 3 45 6 7 8 9101112

Figure 3.4: The ending position in a game with two markers.

Figure 3.4 illustrates the end position in any game of 2—markers. Thistroccur only wher is at position 1 andB is at
position 2. To win in a game of 2-markers you would be welliadg to keep the end position always in mind.
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Example 3.2.1 Let us play the two-marker game with markers at 4 and 9 (asgarEB.3). The player whose turn it is has seven
possible moves: he or she can ma@vi any one of the positions 1, 2 or 3 or can m@&/m® any of the positions 5, 6, 7 or 8. The
game ends when a player has no move available. This must oolyuwhenA is at position 1 and is at position 2. The player
who made the final legal move wins.

A bit of reflection shows that, for this game, we can guaraategn by the following procedure. We mo&to 5. Now,
according to the rules, our opponent cannot mBvéle or she must movA. Whatever move our opponent makes, we answer
by movingB right next toA. Following this procedure, we see that eventually our oppbmust moveA to 1 and we answer by
movingB to 2. We won. |

The strategy in the example would work no matter what theirmalgposition was, as long as it was possible for us to nidve
at our first turn. For two-marker games we can say that ther@rmciselytwo kinds of positionsones in which we can make a
good move and ones in which no good move can be made.

3.2.2 Three-marker games

Let us complicate the game by introducing a third ma&emn an integer to the right & andB. For example, we might start
with the position indicated in Figurg5with markers at 4, 9, and 12.

9.9 9.

*—©
1 2 3 45 6 7 8 9 101112 13

Figure 3.5: A game with three markers at 4, 9, and 12.

The rules are as before. When it is our turn, we may move anyeathiree markers as far as we wish to the left as long as the
relative order of the marker from left to right remains thensa—B must stay betweeA andC. The game ends when a player has
no move available.
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144 BT

1 2 3 45 6 7 8 9 101112 13

Figure 3.6: The ending position in a game with three markers.

Figure3.6illustrates the end position in any game of 3—markers. Thistraccur only wher\ is at position 1B is at position
2, andC is at position 3. Keep this end position in mind as your finalgo

Problem 81 Find a strategy for the three-marker game. Begin by expertmg with a marker board and the three markers A, B
and C. Answer O

3.2.3 Strategies?

Let us digress for a moment and consider a game like chessokets. What is it that distinguishes a strong chess plager f
a weak one? Obviously, that is not a question which can be emesleasily—a strong player knows the openings, has studiec
many combinations, knows the endings, and can look aheag maves.

But there is one feature we can focus on which will be centralur development of the marker games and Nim. A good
chess player will recognize many positions as desirableticeae. For example, very early in one’s learning of the gafhuhess,
one realizes that if one can achieve a position in which osdhlmking and the queen while the opponent has only the Kieg, t
game can be won quickly.

As one improves, one recognizes more and more of such despabitions. Thus, the good chess player can have many
many subgoals when playing chess. He does not have to seeohdvet¢kmate the opponent from the very beginning of the
game—he must only try to achieve one of these many desiraigitigns. The same is true of checkers and of other of these
two-person games of skill. Our device for discovering sigas for Nim and the marker games is to find a way of determinin
all of these sub-goals for the given game.
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Perfect strategies? Usually, by a strategy, we mean some method we can use tovmpir chances of winning. In Exam-
ple 3.2.1we did not merely improve our chances of winning. We can giary timeprovided we start first. And we will lose
every time that we start second if we are playing against famrired opponent.

There are many strategic advantages that a clever and iefbcimess player can use. An international grandmaster will w
any game he or she plays against a lesser player. But theseyet @ao known perfect strategy for chess. For the gamessn thi
chapter we are not content with just strategies. We wanepestrategies.

3.2.4 Formal strategy for the two-marker game

Let us formalize what we discovered in the two-marker game.ugé the suggestive notatiBr= A+ 1 to describe the fact that
B is adjacent to A. Observe three facts:

1. 2=1+1, thus the final position satisfies the equatia A+ 1.
2. If B= A+ 1, then any move whatsoever results in a position for whiehélguation is no longer satisfied.

3. If B#£ A+ 1, there is a move which results in the equation being satisfie

Let us say that a position [zalancedif it satisfies the equatioB = A+ 1 and that it isunbalancedf B # A+ 1. With this
language, the three observations above become:

3.2.2 (Balanced positions in marker gamesEvery position in the game is either balanced or unbalanced.

1. The final position is balanced.

2. If a position is balanced, then any move whatsoever ieguk position that is unbalanced.

3. If a position is unbalanced, there is a move which resalts position that is balanced.

Once we have articulated the situation in this balanced abdlanced language we can easily prove that we do in fact have
a strategy. We can always move from an unbalanced positiarbedanced position. Our opponent always receives a balance

position and must destroy the balance. The final positioalsired. Eventually, after some finite number of moves, ppooent
is faced with this final balanced position and has no move. \kié w
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Thebalanced positiongre the subgoals that we seek. This will be trualirthe games we shall look at in this chapter. It is
very important that one understands the notioba&ncedpositions before proceeding further, so we suggest thatgmmad the
preceding discussion and relate it to the two-marker garfadagoing on.

3.2.5 Formal strategy for the three-marker game

The three-marker game has been used by some teachers im&lgmechool as a device for motivating children to practice
addition and subtraction. The children usually discoverpugh playing the game repeatedly, that the balancedigrusiare
given by the equation

A+B=C.

They do not know anything about balanced positions, of ayuitsey just discover that they can win if they can obtain ¢hos
positions.

Following the strategy that the children discovered, letaisthat a position in the three-marker gamiggancedif it satisfies
the equatiorA+ B = C and that it isunbalancedf A+ B # C.

Problem 82 Verify that each of the three parts of Statemes2t 2apply to the three-marker game. Answer O

Problem 83 Discover the balancing positions for the four-marker gamd prove that the same three rules apply to them.
Answer O

Problem 84 What are the balancing positions for the five and six-markenegs? Answer O

3.2.6 Balanced and unbalanced positions

Generally we are seeing that, in games of this type, an a@salging the ideas of balanced and unbalanced posttieasls to
a strategic way of thinking about the game. Any end posit®halanced. A balanced position always leads to an unbalance
position. An unbalanced position always allows a move toesbalanced position. If this is so the strategy is clear.

3In the literature thainbalancedpositions are often calleN-positions (because theextplayer is to win), while thebalancedpositions are known as
P-positiong(because thpreviousplayer is to win).
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It might seem that determining which positions in a game atarited and which are unbalanced takes some considerabl
skill. It was easy for the two-marker game, rather hardettierthree and four-marker games, and apparently formidable
five-marker game. In fact, though, it need not take skill, ibdbes take patience. We can do this formally &mry game of the
kind we study in this chapter.

We assume, as always, that the players alternate turns agmakves according to the same rules. After a finite number of
moves the game ends and the last person to move is declarethtie.

Defining balance You might have noticed that in trying to determine the bag@hpositions in a game, there is a sense of
“working backwards.” The final position is balanced. We tlesek simple balanced positions that lead quickly to the final
position. (Think of our discussion about chess.) Then wé ssitions that lead to one of the positions we have already
determined to be balanced.

We can put these ideas into a formal setting. This matersdnisewhat abstract but not difficult. We merely define cakeful
what we mean bygtarting at the end of the gamand what we mean when we say a positiofasanced or unbalancedThe
definition rests on the principle of mathematical induction

A formal way of presenting these ideas and checking the acguwsf our intuitions is to introduce lealancing numbefor
any position in a game. I§ is one of our games anglis a position in that game we define Balafyeeby these rules:

1. If pis an end position in the gamg then Balancép) = 0.

2. If pis not an end position in the ganeg first find all the positiongs, po, .- ., P, that could be obtained from the position
p in one legal move. We use the notation
pM_> p17 p27'-'7pn
to indicate that any move that can follgwis in this list. Then compute the list of numbers

Balancép;), Balancép,),...,Balancépy).

3. Balancép) is defined to be zero if zero doast appear in the list and to be 1 if zedoes appeam the list.

A position with a balancing number of zero is said todaganced If the balancing number is 1 then itismbalanced
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Note how these rules will always require a position with aoziealancing number to lead to nothing but positions with a
balancing number of 1. Observe too that these rules will gdwaquire a position with a balancing number of 1 to lead teat
one position with a balancing number of 0. Our definition isigeed precisely around the rules that we devised in Staterie 2
for our marker game.

This is an example of a recursive definition; we have to bugddhe values of the function Balang® step by step starting
close to end of the game. In a way we would have to play the gawienards.

The way that we have defined the balancing number shows that

e Any end position has a balancing number of zero.
e If a position has a balancing number of zero then all posstiwhich follow it in the game have a balancing number of one.

e If a position has a balancing number of one then there is at tg@ position that follows it in the game that has a balancin
number of zero.

Thus balanced and unbalanced positions are defined now meang, and they behave precisely as we required for the marke
games in Statemet2.2 The strategy in any game is the same: always (if you canglgaur oppenent a balanced postition,
forcing him to unbalance it at his next move. Since the ganus ém a finite number of steps at a final balanced position, the
player who can follow this strategy must have made the lasterand is declared the winner.

Depth of a position In practise it is easy to see that this recursive definitiodhassign a value to each position in any game. To
make it more precise how this is done let us introduce theonaif depthof a position. This is just a measure of the maximum
number of moves left in the game. Any end position (there magdyweral) has no further moves possible and is said to be a
depth zero Such positions are always balanced. If a position can moleto a depth zero position, then it is said to belepth

one Such positions are always unbalanced.

If a position that is not at depth zero or depth one can mowe tonh depth zero or a depth one position, then it is said to be
atdepth two Such positions may be balanced or unbalanced. We wouldthasieeck. Generally a position that is not itself at
depth 0, 1, 2, ..., on— 1 and that can move only to such a position, is said to be ahdept depthn the game must end in at
mostn moves.
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All games solved! By this simple definition we have precisely defined, for anyngeaof this type, how a position may be
considered balanced or unbalanced and we have a methodhfiputiog that fact. Thus we can solve all games!

Well not all games, because not all games are of this typetatitoe, chess, and checkers have rules that are diffienetiie
two players (e.g., one player plays the X’s and the other th ®he game may end in a draw. The rule is not that the lagepla
who is able to make a move wins.

But, for finite games of the last-move type discussed sotiarsolution is exactly this. Compute all balanced positiomnd
play the game in such way (if possible) as to leave your oppoorly balanced positions. If you start play with an unbekh
position then you will surely win. If you start play with a laalced position then, provided your opponent makes just astelke,
you will win.

Is this practical? Recursive definitions like this one, however, are partiduldifficult and tedious to compute. On the other
hand they are particularly easy to program and run on a canpunless the game has billions and billions of possiblétipos
(like chess and checkers do), a short amount of time will nalfull computation of all the balanced positions. A human
computation by hand could be extremely slow and tedious.

The moral is do not play any of these games against a compyatenyill surely lose. It may be safe to play against a human,
unless she has figured out a cleverer way to find balancedgusivithout having to compute Balar(@® for all positions in the
game in the way the recursive definition prescribes.

For us the problem now is not finding all balanced positions,finding some elegant and simple way of describing them
without having to resort to brute force and compute Balépréor every position in the game.

Problem 85 In the game of 2—pile Nim, players in turn take matchstickse(or more) from one of two piles. The player to
take the last matchstick wins. Compute the depth and balgnmimbers for enough positions that you can make a reasenabl
conjecture about which positions are balanced and whichuaigalanced. Answer O

Problem 86 (Red and black argument) Suppose that all the positions in a game are described asrei¢il or black and that
these three statements are true:

1. Any end position is red.

2. Any red position can move only to a black.
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3. From any black position there is at least one move to a regitipo.

Show that the red postitions are balanced and that the blaskijpons are unbalanced. Answer O

Problem 87 In Problem85 you would have made a conjecture about the balanced and antedl positions in the game of
2—pile Nim. Use the red and black argument to prove this aiaje. Answer O

Problem 88 The game of 2—pile SNIM is played exactly as Nim but each plagthe option of adding one matchstick to a pile
or removing as many as he pleases from that pile. Show the, tmugh the balanced positions are the same as for Ning ther
is no winning strategy. What is wrong here? Answer O

Problem 89 In our four-marker game (in the answer to Probleéd) we said that a position was balanced if and only if the
equation D— C = B— A was satisfied. Use the red and black argument to prove tbis fa Answer O

Problem 90 In a game every move from a balanced position will producerdalanced position. In some games the reverse is
also true: every move from an unbalanced position will paala balanced position. How would you describe those games?
Answer O

Problem 91 If Player | faces an unbalanced position the challenge fon i to select a correct move (there must be at least
one) that rebalances and leaves a balanced position. Ifd?ldlyfaces a balanced position then every move she makes wil
(unfortunately) produce an unbalanced position. Is tharg strategic choice for Player Il in such a game? Answer O

3.2.7 Balanced positions in subtraction games

The analysis of the balanced and unbalanced positions iwthvenarker and three-marker games presented little difficiihe
four-marker game was a bit tougher, and the five and six-mademes of Probleri4 may well have defeated you.

For a little more practice with these ideas here are somelsirgpmes where the balanced and unbalanced positions are i
some cases easy to work out. Remember that every positionbmeither balanced or unbalanced: we are looking for a fast a
easy way of finding out which is the case for any position.
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Problem 92 In this game there is one pile of matchsticks and each plagmiores 1, 2, 3, or 4 sticks at a time. The winner is the
one removing the last matchstick. What are the balancediposifor this game? Answer O

Problem 93 In this game there is one pile of matchsticks and each plaraores 1, 4, 9, 16, ... sticks at a time, always restricted
to a perfect square. The winner is the one removing the lagthmtck. Find all the balanced positions less than 25 f@ game?
Answer O

Problem 94 Find all the balanced positions between 25 and 100 for theegafiProblend3. Answer O

Problem 95 Do you have a conjecture as to a formula that will produce ladl balanced positions for the game of Problggn
Answer O

Problem 96 In the most general one-heap subtraction game there is da®@pmatchsticks and each player removes an allowed
number of sticks at a time, always restricted to numbers fagiven subtraction set S. The winner is the one removingaiste |
matchstick. Thus ProbleBR is a one-heap subtraction game with=S{1,2,3,4}. Problem93is a one-heap subtraction game
with S= {1,4,9,16,25,36,... }. Find the balanced positions for a subtraction game givendihbtraction set

S={1,2,3,4,5,6,7,8,9,10}.
Try to experiment with other choices of S. Answer O

Problem 97 Give rules for a two-heap subtraction game and find some loaldupositions in the simplest cases. 0

Remarks For some of the one-pile subtraction games the analysisrly &asy. But, even when things prove difficult to
compute, the resolution always follows from our balancedlambalanced accounting. For the marker games the same.ifyu
the time we get to five and six-marker games (as in Proléémve ran into considerable trouble finding the balanced st
Equations defining balanced positions similar to thoseHertivo, three and four-marker games did not come to mind Iseadi
There is a reason for this and we will discover that reasar.létstead of pursuing the marker and subtraction gam#sefuat
this time, we will continue with some other games. But we vatlurn to the marker games later.
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3.3 Game of binary bits

The game of binary bits that we introduce in this section aimst much of the important structure of all of our games and is
fundamental to all of combinatorial game theory. We stathwaein equivalent game that provides our introduction to tite b
game.

3.3.1 Acoingame

This game is played with coins—pennies, nickels, dimes,carditers. Each position in the gamaigiles of 0—4 coins such that
each pile contains at most one coin of each type. The ruldgegjame are

1. Each play of the game requires a player to remove one or coime from one of the piles.

2. Optionally the player may also add one or more coins to d@ingespile provided the coins added in are of lower value than
the highest-value coin removed. (E.qg., a player removema dind a penny and can add a nickel (if there is not one there
already) but cannot add a quarter.

3. The player to take the last coin is the winner of the game.

The easiest way to display a position in the game, both foptimposes of writing about it and for the purposes of playfitse
is to arrange the coins in a rectangular display of 4 rowsracmlumns as in Figur&.7. Pennies are recorded on the bottom row,
nickels on the row above and so on until the quarters areadisgdlon the top row as FiguBe7 illustrates.

We do not yet see what positions in such a game would be balaraenbalanced, but a person aware of the strategy would
see immediately that the position in Figug€' is unbalanced. A balancing move is to take a dime from the fi¢hgpd toss in a
nickel. That takes only a couple of seconds to compute if oroevk the strategy. Moreover a strong player will notice thate
are exactly two other balancing moves that would have wotedDid you?

Problem 98 Play some simple coins games with one, two or three pilest ditigou observe? Answer O

Problem 99 Show that the coin game must end in a finite number of moves. Answer O
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Figure 3.7: Position in the coin game.

3.3.2 A better way of looking at the coin game

In analyzing this game one soon realizes that the notag®n®), (@, and(@ are completely unnecessary since the position in the
rectangular array already determines which coins appéet Mmeans we need record oMgS or NO in each case.

The traditional way to do this now, especially since the athe¢ computers, would be to use binary bits—the bit 1 is used f
YES and the bit 0 is used faMO. That means that Figui® 7 can be written out instead using the simpler FigBu&

Also we can simplify the moves in the game if we realize thataeing a coin simply changesY&Sto aNQ, i.e., it changes
a 1 bit to a 0 bit. Similarly adding a coin changeN@to aYES, i.e., it changes a 0 bit to a 1 bit. We are just flipping bitsjalih
is a good description of what computers do. Thus, if we teaghe coin game to binary bits, we arrive at the binary kiteeg
of Section3.3.3which is exactly identical to it.

Problem 100 (A card game) In this game a deck of cards is shuffled and fourteen cardseat dn the table face up. A play in
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Figure 3.8: The same position in the coin game with binary. bit

the game requires the player to remove one of the cards. Hehhs the option of removing more of the cards of the same suif
that have lesser face value, and/or adding (from the leffr@ile) any cards of the same suit that have lesser face vadiiaosy
would you analyze this game? Answer O

3.3.3 Binary bits game

In the game obinary bitswe start off with am x n rectangular array of zeros and ones. Therenarews andn columns and only
the numbers 0 and 1 can appear. As is often the case, the raiarbaralledits. A legal move of the game is described this way:

1. The player selects a 1 bit in some position and changesi0tbit.
2. The player may optionally change any or all of the bits m¢blumn below the selected bit 1.

Play evidently stops when all the bits have been changedTo®player who made the last legal move wins.

At first it seems obvious that the game eventually stops. A ertis reflection, however, may give us pause. As the game
progresses some moves may add 1 bits, so the total count & dd@s not always go down. In Probléidl you are asked to
show that the game is finite. This, we recall, is essentiatiifanalysis in terms of balanced and unbalanced positiottshie
successful.
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Example 3.3.1 A move in a 5x 3 game is illustrated in Figurd.9 Here the player elected to change one of the 1 bits in the
second column, and he also flipped two of the lower bits.

010

ROOO

RPORE

RPOOOO
OrR R ORr
OOrEFrO

OCORrPF

Figure 3.9: A move in a &% 3 game of binary bits.

Can you spot whether this was a good move? Was there a betef?mo |

The mx 1 game Here there is but one column and the strategy should be ahvidhe player to start simply chooses the
topmost 1 bit and changes that bit and all the ones below &1t kits. The game is over and he wins. A position with any 4 bit
is unbalanced.

The mx 2 game Here there are two columns and the strategy is obvious er.sdme thought. In ProbleD2you are asked
to solve the game. The strategy that works is caledmirror strategyand plays an important role in game theory.

Themx 3game Here there are three columns and the strategy is no long@abat all. At this point the game becomes rather
more interesting. We know that an analysis of balanced abdlanced positions will result in a completely solved gamevie
do not yet know how to do that in any simple way.

Problem 101 Show that every game of binary bits must end in a finite numi&eps. Answer O
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Problem 102 Find a complete strategy for the 2 game of binary bits.

Problem 103 Which, if any, of the positions in thex 3 games of Figure.10are balanced?

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1

Figure 3.10: Which positions are balanced?

Problem 104 Which, if any, of the positions in thex 3 games of Figure.11are balanced?

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 0 1
1 0 0 1 1 1 1 1 0 1 1 1 1

Figure 3.11: Which positions are balanced?

Problem 105 Which, if any, of the positions in tiex 3 games of Figure.12are balanced?

141

Answer O

Answer O

Answer O

Answer O
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0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 0 1
1 0 1 0 1 1 1 0 1

Figure 3.12: Which positions are balanced?

Problem 106 Do you have a conjecture? Answer O

Problem 107 Define a position in a mx 3 game to be even if there are an even numbdrhts in each row. Define a position in
a mx 3 game to be odd if there is at least one row containing an oddbauraf 1 bits. Check each of the following:

1. The end position of the game is even.
2. If a player makes a move from an even position it will suresult in an odd position.

3. If a player faces an odd position there is always a choicmo¥e that leaves an even position.

Answer O
Problem 108 Give a complete solution for the m3 game of binary bits. Answer O
Problem 109 Are you prepared to announce a solution for thexm game of binary bits? Answer O
Problem 110 Describe all the balancing moves in the coin game displagdegure 3.7. Answer O

Problem 111 In the coin game one can change the rules to allow more coieach pile. For example:



3.3. GAME OF BINARY BITS 143

1. Each play of the game requires a player to remove all thescof the same type from one of the piles.

2. Optionally the player may also add coins to or subtrachsdirom the same pile provided the coins added or subtracted
are of lower value than the coins initially removed. (E.gplayer removes all dimes and then can add or subtract as many
pennies and nickels as he pleases, but cannot add any gsiarter

3. The player to take the last coin is the winner of the game.

How does this change the game? Answer O

Problem 112 In the coin game one can change the rules to allow any play&eép the coins that he has removed. How does
this change the game? Answer O

Problem 113 (A number game) A game similar to binary bits starts with a rain rectangular array of arbitrary numbers. A
legal move of the game is to change any nonzero number to mdraationally, change any or all of the numbers in the column
below the selected number. The last player to move winsy2a#his game. Answer O

Problem 114 (A word game) This word game is also similar to the game of binary bits. Tlgegrs start with three or more
words. A player moves in this game by selecting a word ander ldtat appears in that word. He must remove all appearances
of that letter in the word chosen and may, optionally, add imeznove any other letters that are earlier in the alphabetr F

example if the six words are
[ Twas brillig and the slithy toves|

then a legal move would be to select the “I” bmillig and remove both of them. The “r” cannot be removed but therd#tters
can and any letters a—k could be added in, for example

brillig ~- abbrek

would be allowed. The last player to move wins. Analyze thisey Answer O

Problem 115 Are you prepared to announce a solution for the game of Nim? Answer O
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3.4 Nim

The classical game of Nim is played as follows. Fou
respectively, are placed on a table as indicated in the

sticks (or cards or coins) containing 1, 3, 5, and 7 stick

Figure 3.13: A game of Nim.

One of the players removes one or more sticks (as many asds &k from the same pile. Then the opponent does the same
from the remaining sticksThe player who takes the last stick wins.

We do not need match sticks to play the game, of course. Wel @ustiead consider the quadruple of numi@rS, 5, 7) and
lower one of those numbers to start the game. Then our opparard lower one of the remaining numbers. The game ends
when there are no positive numbers left; that is, when all fmumbers are zero. This corresponds to having no matcbdték
on the table.

The general Nim game There is nothing special about the numbgts3,5,7). We can play the same game with any number
of piles of matchsticks, and the number of sticks in eachgalebe chosen as we like. We can describe a Nim gamekvpitles
containingny, ny, ..., Nk sticks in the piles by writing

(N1,Ng,...,Nk).

Our objective is to find a winning strategy that will applyeeeryNim game, no matter how many piles there are and no matter
how many sticks are in each pile.

3.4.1 The mathematical theory of Nim

At this stage we know how to solve the game of Nim in a techréeake. We can simply describe all balanced and all unbalance
positions. Lacking any better ideas we just start at the éttteagame working backwards. Maybe the real structure \wikege.
Or perhaps the real structure will remain mysterious evear akeing all the balanced positions.
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The complete mathematical theory for the game of Nim wasgim®d by Charles L. Bouton who published his observations
in the research journa\nnals of Mathematics1 1901. Bouton’s paper marked the beginning of the theoryludt are called
combinatorial games.

Research papers announce and publish results in a rejatioeipact form for the mathematical community. His complete
paper is reproduced in our appendix on p&fe Our interest here is not in the result or formal proofs of thsult, but in
discovery

If you are impatient to learn the strategy and beat all yoenfis at Nim go to the appendix and read Bouton’s paper. If you
wish, as we do, to go through the process of discovering a&cleathematical theory, begin instead by playing the gande an
looking for the underlying structures.

3.4.2 2-pile Nim

As an easy warm-up, let us begin with 2—pile Nim. Here we haxeqiiles of sticks and our objective tis take the last stickOur
analysis will use the usual ideas of balanced and unbalgmegitdons.

A position in two-pile Nim is described by a pair of numbéns, n) representing two piles of sticks, one containmgticks
and the other containing sticks.

Starting at the bottom, we know th@, 0) is balanced and can deduce that therefdr®) and(0,1) are unbalanced. Carry
on until you are able to spot the pattern.

Problem 116 Discover the strategy for 1—pile Nim. Answer O
Problem 117 Discover the strategy for 2—pile Nim. Answer O

Problem 118 The mirror strategy that we used in Problet7 works for 2—pile Nim, but is not much help with 3—pile Nim or
4—pile Nim. Even so, there are some situations where it cak.w8how that a mirror strategy will win a game of 4—pile Nim if
the opening position is of the forfm,n,m,n). Answer O

Problem 119 (Kayles) The mirror strategy works for a number of other games. Tryitlte game of Kayles. Line up a number
of coins in a row so that each coin touches its neighbors asgare 3.14.
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00000000000000,

Figure 3.14: Coins set up for a game of Kayles.

The rules of the game are that a player may remove a singleardino coins that touch each other. The last player to move
wins. Show how a mirror (Tweedledum-Tweedledee) stratgype used to solve this game. Answer O

Problem 120 (Circular Kayles) Find a strategy for the game of Kayles when the coins are @ednin a circle instead of a
straight line. Answer O

3.4.3 3—pile Nim

Let us proceed to 3—pile Nim. Here things are quite a bit moregdicated. The game has a rather complex structure andl it wi
take a while to discuss the balanced positions.

For 2—pile Nim we discovered in Problefri7 that the balanced positions afese which have the same numirereach
pile. These are games of the fofm n), indicating two piles so that each pile hasticks. Unfortunately knowing the complete
strategy for 2-pile Nim doesn'’t give us any clues as to thatatyy for 3-pile Nim.

We also could have expressed our solution of 2—pile Nim imssof the mirror strategy. Again this doesn’t help us in firgdin
a solution to 3—pile Nim. The only method we have that is galnemough to lead us in the right direction is to search foamhedd
and unbalanced positions.

You may wish to find an opponent with whom to play a few gamest,tiuget a feeling for the game. Start with games which
do not have many sticks in each pile.

The situation is a bit like chess or checkers. By playing adewes, one can learn how to play better, but to become a really
good player, one must also begin to learn something aboudttheture of the game. A difference is that in order to became
excellent chess player, we must devote a great deal of tirtteeteubject. And no one knows a perfect chess strategy. With N
we shall eventually see what the perfect strategy is. Anarilves only a few ideas.

Starting off at the bottom we can easily construct a few lddmositions. As usudD,0,0) is balanced and that shows us
that(1,0,0), (0,1,0), and(0,0,1) are unbalanced. At the next levdl, 1,0), (0,1,1), and(1,0,1) are balanced so thét, 1,1)
must be unbalanced. Carry on. Does a pattern emerge?
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Problem 121 Are the two position$l,2,2) and (1,1,2) balanced or unbalanced? Answer O

Problem 122 (The position(1,2,3) is balanced) Go through all the details necessary to check tfia®, 3) is balanced.
Answer O

3.4.4 More three-pile experiments

In solving a number of our problems we took advantage of tbetfeat we knew all the balanced positions in two-pile Nimu$h
we can easily spot whethém, n, 0) is balanced or not because this is identical to playing timesgan, n) in two-pile Nim. While
this was a bit of help, it proves to be a dead end for finding Hteepn that describes the three pile game.

This is disappointing since it means a familiar techniqueasgoing to work. Going from two-pile Nim to three-pile Nim
presents us with a different game. Mastery of the formergyieonly minimal assistance in playing the latter. The sarifle w
happen with 4-pile Nim: even if we compile a list of all baladcpositions in 1-pile, 2-pile, and 3-pile Nim, we will stilbve
trouble.

We need to find a new kind of pattern. If you have experimentigd amumber of small games, you have undoubtedly begun
to pick up certain patterns although, at this stage, it isrgit clear how to exploit those patterns.

Example 3.4.1 Did you notice that the games

(1,0,1), (2,0,2), (2,1,3), (3,0,3), and(3,1,2)
are all balanced? Compare that with the fact that the games

(1,1,2), (2,2,4), (2,3,5), (3,2,5) and(3,3,4)

are all unbalanced.

These two groups of games form a certain pattern obtainead tine first in each list. Thug2,0,2) is thedoubleof (1,0,1).
The other three games in the first group can be obtainedn@aedoublingfrom (1,0,1) or (2,0,2) by adding a stick to exactly
two of the piles. <

Examples such as these might suggest that doubling or oeatidg a game does not change its status — if the originakgam
is balanced, so are the resulting games obtained by doudtingar doubling. If that turns out to be true, it will give utaege
collection of positions whose status we will know.
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What about the other near doubles we obtain by doubling theoeu of sticks in each pile and adding one stick to exactly one
of the resulting piles? Or to all three of the resulting piér example, from the gani#, 0,1) we would get the gameg®,1,2),
(3,0,2), (2,0,3), and(3,1,3). What do you think happens? Work it out, make a conjecturd,then see if your conjecture is
valid for the examples in Probleni23-126.

Problem 123 Which of the games

(2,4,6), (2,5,7), (3,4,7), and(3,5,6)
are balanced and which are unbalanced? Answer O
Problem 124 Which of the games

(2,6,8), (2,7,9), (3,6,9), and(3,7,8)
are balanced and which are unbalanced? Answer O
Problem 125 Which of the games

(3,4,6), (2,5,6), (2,4,7), and(3,5,7)
are balanced and which are unbalanced? Answer O
Problem 126 Which of the games

(3,6,8), (3,7,8), (3,6,9), and(3,7,9)
are balanced and which are unbalanced? Answer O

Problem 127 Study the patterns of Problemi&3-126. How are they related to the gamék 2,3) and (1,3,4)? Do you see any
connection between the strategies for these gafie®,3) and(1,3,4), and the games in Problem23-126. Answer O

3.4.5 The near-doubling argument

Can we yet spot the structure of the balanced positions inl&MNim? A flash of insight would help and perhaps
you have had one. If not, then the line of reasoning we nowvolill lead us closer to the moment of recognition.
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The bright idea we need to progress further is apparent irxperiments we have so far performed, provided we look at
things from a new point of view. We noticed that all these poss were balanced:
(1,1,0) as well ag2,2,0), (1+2,1+2,0), (2,1+2,140), and(1+2,2,1+0).
This includes(3,2,1), so(1,2,3) would be balanced too.
The same kind of doubling produces yet more balanced positio
(1,2,3) as well ag2,4,6), (1+2,1+4,6), (2,1+4,1+6) and(1+2,4,1+6).
Starting at(2,2,0) and using the same pattern produces
(2,2,0) as well ag4,4,0), (1+4,1+4,0), (4,1+4,1+0) and(1+4,4,1+0).

A little checking shows that these too are balanced.

If we were to include in this list all the different permutais we would recognize that we have obtained all of the bathnc
positions close to the end of a 3—pile game just by doublirgradoubling(1, 1,0) and maybe adding a couple of 1's each time.
If we continue this process further perhaps we can geneltdialanced postions.

Examples such as these suggest that doubling a balanceddgasiaot change its status. Nor does doubling and adding 1 tc
two of the piles. If that turns out to be true, it will give usaade collection of positions whose status we will know. Hsreur
conjecture.

Near doubling Start with any Nim positiorix, y, z). Any of the four positions
(2x,2y,22), (2x+1,2y+1,22), (2x+ 1,2y,2z+ 1), or (2x,2y+ 1,22+ 1)
are said to baear-doublef (x,y,z). Note that a position cannot be a near double of more thantwieeof(x,y, z).

3.4.2 (Near doubling argument) A position (x,y,z) in 3—pile Nim is balanced if and only if it is a near-double afogher
balanced position.

To prove this statement we use an argument that should bédgrainius. We used it before in our even/odd analysis of the
game of binary bits. Let us call a positiomead positionif it is near-double of a balanced position. Every other fiosiis said to
be ablack position
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The end position is red The end position in a three pile game of Nim(&0,0). Since this is balanced and is its own near-
double the end position is red.

Any red position must move only to a black Start with any of these red positions:
(2x,2y,22), (2x+1,2y+1,22), (2x+ 1,2y,2z+ 1), or (2x,2y+ 1,22+ 1)

where we are assuming th@aty, z) is balanced.
It is enough for our argument to consider only moves that takay sticks from the first pile—the argument is the same for
the other cases. Taking away an even numkenf3ticks from the first pile results in

(2x,2y,22) ~ (2[x— K], 2y, 22),
(2x+1,2y+1,22) ~ (2[x— K] +1,2y+ 1,22),
(2x+1,2y,2z+ 1) ~~ (2[x— K] +1,2y,2z+ 1)
and
(2¢,2y+ 1,22+ 1) ~ (2[x—k]|,2y+ 1,22+ 1).

We recognize a doubling or near-doubling of the gite- k,y, z). But (x—k,y,z) must be unbalanced since it came from a move
out of the balanced positiaix, y, z). Consequently all of the resulting positions are black, ak of our red positions have moved
to black if we remove an even number of sticks.

Start again with any of these red positions:

(2¢,2y,22), (2x+1,2y+1,22), (2x+1,2y,2z+ 1), or (2x,2y+1,2z+ 1)
but this time remove an odd numbek-2 1 of sticks, again from the first pile:
(2x,2y,22) ~~ (2[x—k] + 1, 2y,22),
(2x+1,2y+1,27) ~ (2[x—k+1],2y+ 1,22),
(2x+1,2y,2z+ 1) ~~ (2[x— K|+ 2,2y,2z+ 1)

and
(2x,2y+ 1,22+ 1) ~ (2[x— k] +1,2y+ 1,22+ 1).
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Again we recognize all of these positions to be black, i.k.ofaour red positions have moved to black if we remove an odd
number of sticks.

Any black position can be moved to at least one red We need to consider several cases of black positions andatdr one,
determine how to make the correct move to a red position.

1. Suppose thaPx, 2y, 2z) is a black position. The(k,y, z) is unbalanced and so there is a balancing move which leags, s
the position(x—k,y, z). Since that position is balanced, the doubled position

(ZX - 2k7 2y7 ZZ)

is a red position. This gives us a way to move from the blackéored if we start at2x, 2y, 2z) assumed to be a black position.
Take away R sticks.

2. Suppose tha@x,2y+ 1,2z+ 1) is a black position. Thefx,y,z) is unbalanced and so there is a balancing move which
leaves, say, [Case 2a] the position- k.Y, z) or [Case 2b] the positiofx,y — k, z) or [Case 2c] the positiofx,y,z— k). We need
consider only the first two cases.

In Case 2a the positiofx — k,y, ) is balanced, hence the near-doubled position

(2x— K, 2y+ 1,22+ 1)

is a red position. This gives us a way to move from the blackéored if we start af2x, 2y + 1,2z+ 1) assumed to be a black
position. We removeRsticks from the first pile.
In Case 2b the positiofx,y — k, z) is balanced, hence the near-doubled position

(2x,2ly—kl+1,2z+1

is a red position. This gives us a way to move from the blackéored if we start af2x, 2y + 1,2z+ 1) assumed to be a black
position. We removel— 1 sticks from the second pile.

3. Suppose the starting position(Bx+ 1, 2y, 2z); this is always a black position since two of the entries aenelf (x,y, 2)
is balanced then there is an obvious move: take away 1 frorfirigile to produce the red positigi2x, 2y, 2z). If, however,
(x,Y,2) is unbalanced we can balance it to the positior k,y, z) or perhapgx,y—k, z) (the remaining case is similar). In the first
situation(2[x— k|, 2y,2z) is a red position which we obtain by removing-21 sticks. In the second situati¢@x+ 1, 2]y — k], 2z)
is a red position which we obtain by removing-2 1 sticks.
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4. The only case that we must finally consider is a positiomefform (2x+ 1,2y + 1,2z+ 1); this is always a black position
since each of the entries is odd. How can we move to a red @a3iti

If (x,y,2) is balanced then there is an obvious move: take away 1 fronfirgigpile to produce the red positiai2x, 2y +
1,2z+ 1). If, however,(x,Y,2) is unbalanced we can balance it to the positior k,y,z) (the remaining cases are similar). Then
(2[x—K],2y+1,2z+ 1) is a red position which we obtain by removinig-21 sticks.

Conclusion Our analysis shows that we can win the game, starting fronaeklgposition, since we can always find a way to
produce a red position and our opponenet must always pradbtzek position. Eventually we end up with the positi@n0, 0)
which is a red position and we win. This is exactly the samehasalanced and unbalanced argument and shows that the re
positions are simply the balanced positions and the blaskipos are the unbalanced one. So now we can drop the redauid b
language and go back to balanced and unbalanced.

We have not really solved the game, we have just found a cawveway of describing balanced positions in the language of
near-doubling. A little more thinking about this, howeveads to an elegant solution.

3.5 Nim solved by near-doubling

We can now easily generate all the balanced position in &thite Nim game using the near-doubling argument. For examp
starting with the balanced positidf, 0,0) we can construct all of its near-doubles

(1,1,0), (1,0,1), and(0,0,1)
and then all near-doubles of those three positions. All faditions must be also balanced. By continuing in this waysee
that all of these positions are balanced:
(1,1,0), (142,2,1),(1+2+2%1+2%2),
(14+24+224+2224+23142%),(14+2+22+28,14242323), ...
This is faster than starting at the bottom and directly caimgubalanced positions by our other method. But it is stithewhat

strange-looking.
At some point in these investigations, now or perhaps a diteave must begin to see that our perception of the proliiam
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been clouded by using the decimal arithmetic notation. &yt this pattern demandstanary interpretation These examples
suggest it. Near-doubling suggests it.
An elegant strategy for Nim will become transparent progide switch to a binary representation of the piles. For examp
the position
(1,2,5,7,11),

written in decimal notation, is far less informative to uarthwhen written in binary notation. Doubling or near-donglithis
position in decimal notation is a tedious exercise in arghimthat does not reveal much. Doubling or near-doubling gbsition
in binary is surprisingly simple and revealing. The reader is inviiedeview binary arithmetic (covered now in Secti®rb.1)
before returning to this in Exampk5.3

3.5.1 Review of binary arithmetic

We provide now a quick review of how numbers can be expressdidferent bases. This section may be omitted by any reader
who feels comfortable with base 2 arithmetic and is eageppiyat to the Nim game.

Suppose we have 147 eggs. What does the notation “147” maa@ién? One way of understanding the notation is as follows.
If we put our eggs into boxes of ten eggs each, we would hawtefern boxes and seven eggs left over. These seven eggs ficcol
for the numeral “7”.

We now put the fourteen boxes into crates which hold ten beaek. We fill up one full crate and have four boxes left over.
These four boxes account for the numeral “4”. Since therdeaver than ten crates, we need not do any further grouping. We
have one crate left over and this accounts for the numeral 1.

But egg boxes usually hold twelve eggs each. If a crate amntaielve boxes, we could easily check that we would have one
crate, no loose boxes, and three loose eggs; this wouldsamréhe number of eggs in base twelve. Our process of agratin
the numeral 103 can be looked upon as successive divisioneaodding remainders: if we divide 147 by 12 we get 12 with a
remainder of 3, thus accounting for the “3” in “I03”. If we thelivide 12 by 12, we get 1 with a remainder of zero, thus actiogn
for the “0” and the "1".

We can do the same computation relative to any positive énteg> 2, thus arriving at a base numeral for the (base ten)
number 147. We simply divide by and record the remainder, then divide the partial quotignt &nd record the remainder, etc.
We continue the process until the final partial quotient i®ze
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Example 3.5.1 We illustrate withn = 2 and we work again with the number 147 as our starting point.

147=2 =73 with remainder 1
73+2 =36 with remainder 1
36=-2 =18 with remainder O
18-2 =9 withremainder O

9+-2 =4  with remainder 1
42 =2  with remainder O
2+-2 =1  with remainder O
1+2 =0 with remainder 1

This all works out to the notation 10010011 meaning
1.2"40.2240-2°+1.-240.-22+0.22+1.2' 41

where the final remainder is the left-mdst and the first remainder is the right-mdst.
Thus 147 (base 10) equals 10010011 (base 2). Note that tieiglig similar to the meaning of 147 (base 10):

1-10°+4-104-7.
In fact we have verified an unusual looking statement, narelty
1-10°+4-10+7=1-2"4+0-2°4+0-2°+1.2+0-2240.22+ 1.2 + 1

Both of these are just ways of writing the number we know as 147
You may wish to check (just by ordinary arithmetic) that 14n also be written as

147=1-12+0-12+3.

Thus our number one-hundred and forty-seven can be wrigdd a (base 10), or as 10010011 (base 2) or even as 103 (base 1:
All of these are just different ways of writing the number aiiwe usually call one-hundred and forty-seven (and thesanci
Romans would have called CXLVII). <

Example 3.5.2 For practice, we do one more quick computation. To write timalmer twenty-six (i.e, 26 in the usual base 10) as
a base 2 numeral, we observe that
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26+-2 =13 withremainder O

13+-2 = with remainder 1
6+-2 = with remainder O
3+-2 = with remainder 1
1-2 = with remainder 1

Thus
26 (base 10y 11010 (base 2)

Note that we do not need the numbers 13, 6, 3, and 1 except timgerthe calculations. We need just the remainders 0, 1, 0, 1
and 1.When read from bottom to tpghis is just the base 2 numeral for 26. While we are accusdaimeeading numerals from
left to right, the convenience of doing the computationdiway we did results in our reading these binary representafrom
bottom to top.

Writing in columns  We shall need frequently to write our binary numbergatumnsrather than rows. Thus the number 26,
which in standard binary notation becomes 11010, will beesged as a column this way:

1
1
26 (base 10)= 11010 (base 2= O
1
0
Note that the column order is the exact reverse of the ordehioh we computed the bits in our computation above. We cdetbu
the bottom bit first and then all the other bits in order, froottdm to top. <

3.5.2 Simple solution for the game of Nim

The near-doubling argument allows us to generate quickllyeasily all the balanced positions in Nim. When we do thisgisi
binary notation the structure becomes almost obvious.
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Example 3.5.3 A position in the game of Nim written in decimal notation as
(1,2,5,7,11)
appears in binary notation as
(1,10,101111 1011
or, if we prefer to arrange the bits in columns, we can disgh@yposition as

0O 0 0 0 1
0 0 1 1 O
0 1 0 1 1
1 0 1 1 1

Near doubling is easy now. Multiplying by two simply raisés rows in the display:

0 0 0 0 1
0 01 1 0
01 0 1 1
1 0 1 1 1
0 0 0 0 O
To add a pair of 1's (or two pairs of 1's) add them to the bottom.r |

Example 3.5.4 We already know thatl, 2, 3) is a balanced position. We express this position in binary:

0 0 O

0 1 1

1 0 1
This position is a near-double of the position

0 0 O

0 0 O

0 1 1
which itself is a near-double of the end position

0 0 O

0 0 O

0 0 0
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Note that there are an even number of 1 bits in each row. Dogliotierely adds a row of zeros to the bottom. Near-doubling
does the same, but adds possibly two 1 bits to the bottom reen E we do this thousands of times, one thing is transparent
there will always be an even number of 1 bits in every row. <

In fact we can prove this fact in complete generality.
3.5.5 A position in 3-pile Nim is balanced if and only if there are@ren number df bits in each row.

All balanced positions can be generated by starting withblanced positiori0,0,0) and doing near-doubling repeatedly.
Every near-double has an even number of 1 bits in each row.ig h# there is to the proof.

This also gives us our game strategy. If a position is unleaidiit is because there is an odd number of bits in one or more
rows. At least one of the columns will allow a reduction o€k$ in its associated pile so as to produce an even numbetsahbi
each row. Binary arithmetic shows how.

3.5.3 Déjavu?

Haven't we seen this before? The game of binary bits in Seéti®looks identical to this. In the game of binary bits the bakhc
positions were exactly the same: even number of 1 bits in eaghls it possible? Why didn’t we notice this before?

3.5.6 The game of Nim is equivalent to the game of binary bits.

We need to check that the rules of Nim and the rules of bingsydie the same. Certainly the positions are the same.

In the game of Nim(ny, ny, ..., nk) the rules require us to select a pile and reduce the pile bpon®re sticks. If we convert
each of the numbers to binary and use them to play a game afytiita the rules require us to select a binary bit 1 in some
column to change to 0 and then change (as we please) all thhédaw it. If we remember how binary arithmetic works we
see that this is equivalent to reducing the Nim number thatesponds to that column. The Nim game ends with a position of
(0,0,...,0) while the binary bits game ends with no 1 bits just O bits. Td® player to move wins.

The two games are identical. Thus, since we have an easyosobftthe binary bits game, we have an obvious strategy for
Nim: convert every Nim game to a binary bits game
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Example 3.5.7 The position(1,2,5,7,11) in 5-pile Nim is unbalanced. (Not so easy to see.) The bataneiove is to take 10
sticks from the last pile. (Really not at all easy to see.)réhg only one balancing move. (Why?)

The answer to our difficulties is to play binary bits insteadeve everything is truly easy to see. Convért2,5,7,11) to
(1,10,101,111 10117) in binary. Now display this position as in Figusel5 Here we have entered each of the binary expressions

0O00O0O01

R O O
Or O
R O
o
R = O

Figure 3.15: The positio(,2,5,7,11) displayed in binary.

for the numbers 1, 2, 5, 7, and 11 as binary columns. Takiogsstrom any one of these five piles is the same as a legal binary
bits move on one of these five columns.
Figure3.16shows the correct balancing move in this game of binary bités corresponds to the move

(1,2,5,7,11) ~ (1,2,5,7,1)
in our 5—pile Nim game.
This makes it clear why the balancing move is to take 10 stick® the last pile. We can also see at once that this is the

only balancing move possible. A 5—pile game would have defeas before. Now the play in binary notation is straightfand
(depending on your skills with binary arithmetic). <

Problem 128 Under what conditions will it be possible to find more than taéancing move in a three—pile Nim game? How
many balancing moves will there then be? Answer O

Problem 129 Find all three ways in which the game (9,11,13) can be baldnce Answer O
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L O O O
o+ OO
R O kL O
P O
R P O K
R O O O
o+ OO
R O kL O
= = O
R O O O

Figure 3.16: The movél, 2,5,7,11) ~ (1,2,5,7,1) displayed in binary.

Problem 130 Can there be more than 3 balancing moves in a 3-pile Nim game? Answer O
Problem 131 In a 10—pile unbalanced Nim game, what is the largest passibmber of balancing moves? Answer O
Problem 132 In a 11—pile unbalanced Nim game, what is the largest passibmber of balancing moves? Answer O
Problem 133 How many different balancing moves are there for the Nim géh#5,7,9,11,13,1000007? Answer O

Problem 134 How can you tell immediately that the Nim ga(i&6 72 48 40) is unbalanced? Can you spot the pile that needs
adjusting without much computation? Answer O

Problem 135 (Opening strategy) You are invited to a game of Nim and you spot that the openisgipo is balanced. Your
opponent invites you to start. What do you do? Answer O

Problem 136 (Poker Nim) You are invited to a game of Nim played with coins and with a nde. The coins are placed in
three piles and each player, in turn, may take as many coirgedskes from a single pile and keep them aside. At any playeof t
game a player may decide to return coins from his collectist@wishes, and place them on a pile, instead of reducingea pil
The player who takes the last coin wins and seizes all thesawirthe table. Discuss. Answer O
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3.6 Return to marker games

Let us return now to the marker games. We have already edtadlithat the 2, 3 and 4—marker games have balanced positior
which can easily be described in terms of simple equations:

B=A+1

for the 2—marker game,
A+B=C

for the 3—marker game, and
D-C=B-A

for the 4—marker game. But we did not see what to do for the 5-oraker games. It appears to be obvious that we should searc
harder, much harder, to find the correct equations fontiearker games!

But that would be misguided. There is a pattern which geiz@slfrom 2, 3 and 4—marker games toralmarker games but
this is not it. Many times in mathematics the attempt to geli|s something requires a new way of looking at the simphses.

Let us pause and reflect on this for a moment. The strategy-fule2Nim is the mirror strategy (the Tweedledee-Tweedbedu
strategy). Had we insisted on finding some kind of mirrortstg for 3—pile Nim we would have surely failed. Instead wmea
up with the strategic device of converting the numbers tatyinThat allowed us to solve all Nim games. Had we looked &t th
2-pile Nim game in binary we might have noticed that the mistoategy was really all about ensuring an even number ofsl bi
in each row. We missed the chance to find the pattern that workall Nim games because we were looking too hard at the
wrong pattern.

The same is true for marker games. By looking too closely athilancing equations for 2, 3 and 4—marker games we
completely miss the perspective that will allow us to solNé/arker games.

3.6.1 Mind the gap

The perspective that we need for marker games involves ngewimove as alosing or openingof a gap. Agapis just the
number of holes—legal positions—between a pair of markerse we have expressed the objective of the game in the lgagua
of gaps and openings and closings, rather than equationsjlWd a pattern that works in general.
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Example 3.6.1 [Gaps in a 3—marker game] Place mark&y8 andC at 4, 9 and 13 as in Figui@17.

(0) A B C

123456 7 8 9101112131415

Figure 3.17: Gaps in the 3—marker game with markers &t 4and 13.

We know that the position is balancedAf- B = C, which we can rewrite as
A-0=C-B.
To interpret this in the language of gaps we would prefer tibewr
A-1=C-B-1

There are gaps between 0 alydbetweerA andB and betwee andC. Of these it is only the first and third gap that concern us.
Both gaps are equal to 3 as we see by counting (or, equivglégtcomputingA—0— 1 andC — B —1).

Thus we have a balanced position corresponding to the po$8i3) in Nim. If our opponent move4, this reduces a gap
and we answer by moving the same number of places. If the opponent m&;ehis widens a gap, and we answer by movihg

the same number of places. If our opponent mavedhis reduces a gap and we answer by movibe same number of places.
|

Example 3.6.2 [Gaps in a 4—marker game] Place mark&r8, C, andD at 5, 10, 20, and 30 (as in Figusel8. The balancing
move would be to mov® from 30 to 25, for in that case we would have

B-A=D-C=5,
a balanced position. Expressing this in terms of the two gap®/ould have
B-A-1=D-C-1=4,
so that the number of holes betweArand B is the same as the number of holes betwBeandC. We have closed the gap
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betweenC andD to the same size as the gap betwéeandB. Note that it is only these two gaps that matter; the othesgap
(between 0 and\ or betweerB andC) do not interest us.

JA\ B C D)
5 10 20 30

Figure 3.18: Gaps in the 4—marker game with markers 40520, and 30.

The balancing equation is really demanding that we developrar strategy (Tweedledee-Tweedledum strategy) thatdes
instead on the two gaps. That means, too, that there is aasityibetween the strategies for the 4—marker game and thie2—
Nim game. The games themselves are not identical. The sdimai a position in a 4—marker game can be balanced by camypari
it with a related position in a 2—pile Nim game. |

Problem 137 Explain the similarity between the strategies for the 4-k@agame and the 2—pile Nim game? Answer O
Problem 138 Formulate a similar analogy between the 3-marker game ae®@tkpile Nim game. Answer O
Problem 139 Formulate a similar analogy between the 2-marker game aedLtipile Nim game. Answer O
Problem 140 Use the strategy for 3—pile Nim to find strategies for the 5 &rcharker games. Note that these strategies do not

involve simple equations similar to those which arose inldleer order marker games. Answer O

3.6.2 Strategy for the 6-marker game

Once it occurs to us that we can use the gaps to compare otiopdsia Nim game the solution is simple. We do not even have
to do much more thinking about it.
Let us consider first the 6-marker game. Designate the ngrikem left to right, byA, B, C, D, E, andF. The gaps (number
of empty holes) betweeA andB, betweerC andD and betweert andF give us three numberg, y andz, which correspond to
a certain Nim gaméx, y,z) as indicated in Figur8.19
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AB » E G
X y Z

Figure 3.19: The three key gaps in the 6-marker game.

Since we are counting holes in between,

Xx=B—A-1,

y=D-C—1,
and

z=F —-E—1.

The argument Define a position in the 6—marker game to brec positionif the gaps(x,y, z) correspond to a balanced position
in 3—pile Nim. Call the positiotblackif this is not so. Then

1. The final position in the 6—marker game is a red positions Ebecaus€0,0,0) is a balanced position in Nim.

2. Any move from a red position will result in a black positiorhis is because any such move will change one of the marker
and so change exactly one of the gaps. S&,¥,2) is balanced in Nim, the new set of gaps must be unbalancechin Ni

3. Given a black position there is a move of markers that presla red position. A black position corresponds to a galetrip
(x,Y,2) that is unbalanced in Nim. Find a balancing move in Nim and theve the appropriate marker to produce a new
balanced set of gaps.

The final position is red, red always moves to a black, and fadstack one can find at least one move to a red. It follows that
the red positions are the balanced positions in the 6—mggkee and the black positions are all unbalanced.
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A small subtle point This argument shows that we have captured all of the balapesitions by comparing to Nim. But it
does not say that the two games are identical.

If a position corresponds to the gapsy,z) and one of the markeiB, D, or F is moved, then indeed the new gap position
does correspond to a move in Nim because one of the numpems z has been reduced. But if one of the mark&y€, or E is
moved the effect is that afideninga gap. This does not correspond to a move in the associateddiime. In Nim we change
numbers only by reducing them.

But this doesn’t impede our play. We just move the markeraother end of the gap to restore its previous size. This leads
to the same balanced Nim game that existed before our opporegte his move.

Example 3.6.3 Consider the marker game with markers at
5,7, 12 15, 20, and 24

QA Q Q = ?

S5 7 12 15 20 24

as in Figure3.20

Figure 3.20: The 6—marker game with markers,at,512, 15, 20, and 24.

The gaps are of sizes 1, 2 and 3 respectively. Thus, we lodleatssociated Nim ganié, 2,3). We remember that this as a
balanced Nim position. (If we do not, we could write the nunslb&ut in binary and check.)

Our opponent makes a move: say, he or she moves the markem 20 down to 18. This widens a gap, so doed
correspond to a Nim move. Even so, Nim helps us rebalance.

Our answer is to move mark&r from 24 to 22. The markers are now at 5, 7, 12, 15, 18, and 22X dsition once again
corresponds to the Nim gant&, 2,3) . Now, suppose, our opponent moves mategrom 15 down to 13. This reduces a gap,
so itdoescorrespond to a Nim move: the markers are now at 5, 7, 12, 1and&?2, and this corresponds to the Nim position
(1,0,3). This Nim position is unbalanced and we could balance it kinta2 sticks from the third pile, leaving the balanced Nim
position(1,0,1).
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This Nim move would correspond to the move in the marker ganvehich we move markeff from 22 to 20. The markers
are now at 5, 7, 12, 13, 18, and 20. This is a balanced posigoause it corresponds to the Nim gafte), 1), <

3.6.3 Strategy for the 5—-marker game

For the five marker game, the analysis is the same in all detadept that our gaps are determined by the number of hotke to
left of A, the number of holes betwe&wandC and the number of holes betweBrandE give us three numbers, y andz, which
correspond to a certain Nim ganey, z) as indicated in the sketch:.

0+ x—A+—B+y—>C+—D<+z—E.
Since we are counting holes in between,
x=A—-1y=C—-B-1, andz=E—-D -1

Example 3.6.4 Consider the marker game with markers at
5, 10, 14, 20 and 22
as in Figure3.21

0) A B DXE

5 10 14 20 22
Figure 3.21: The 5—-marker game with markers,at@ 14, 20 and 22.
This corresponds to the Nim ganié 3,1). This Nim position is unbalanced and could be balanced bngak sticks from

the first pile, leaving the positiof2, 3,1). This would correspond to moving mark&rfrom 5 to 3, leaving the markers at 3, 10,
14, 20, and 22. |
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3.6.4 Strategy for all marker games

With more than 6 markers, the analyses are similar. A mar&aregwith an even number of markers, say @rresponds to a
Nim game ofn piles. A marker game with an odd number of markers, say 2, also corresponds to a Nim gamenggiles. One
must only remember that the number of holes between the ssigeegairs of markers determines the associated Nim garde, a
that if the number of markers is odd, our first gap is that betw@ andA.

Problem 141 The marker game with markers at
10, 15, 20, 25, 40, 50, 60 and 80
as in Figure3.22corresponds to what Nim game?

B LA B A N

10 20 30 40 50 60 70 80 90

Figure 3.22: An 8—marker game.

Answer O
Problem 142 The marker game with markers at
10, 15, 20, 25, 40, 50 and60
corresponds to what Nim game? Answer O
Problem 143 Find all balancing moves in the game with markers at 5, 9, #1320 and 27. Answer O
Problem 144 Find all balancing moves in the game with markers at 5, 9, #3aid 20. Answer O

Problem 145 Find all balancing moves in the game with markers at 5, 9, #3220, 27, 33 and 100. Answer O
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Problem 146 Find all balancing moves in the game with markers at 5, 9, #3220, 27, 33, 100 and 200. Answer O

Problem 147 Is it possible that an 8—marker unbalanced game could have than 4 balancing moves? ExplainAnswer O

3.7 Misere Nim

In our two-player game of Nim the player who takes the laskstiins In theMisereversion of Nim, the player who is forced to
take the last stickoses It is the Misere version of the Nim game that plays a mysteriand recurring role in Alain Renais’s cult
1961 filmLast Year at Marienbagvhere the piles take the form of rows of cards.

Figure 3.23:Last Year at Marienbad

Problem 148 Find a winning strategy for the game of Misére Nim. Answer O
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3.8 Reverse Nim

A student in one of our classes suggested a variant of Ninmign/ariant there are several piles of match sticks. The taypeps
move alternately and the one who takes the last stick wins.difference is that in this game, a player may take as mackssti
as he or she wishes, but at most one from each pile. Thus, wiseyour move you may take a single stick from each of as many
piles as you like but you must take at least one stick.

There is also aniséreversion of this game. The rules for Reverse Misére Nim arednee except that the one who takes the
last stickloses

Problem 149 Find a strategy for this game of Reverse Nim. Answer O

Problem 150 Find a strategy for this game of Reverse Misére Nim.
Answer O

3.8.1 How to reverse Nim

We already know a simple strategy for Reverse Nim (Problds) but if we revisit this problem it will help in finding a straje
for the misére version of the game. We illustrate by congidest Reverse Nim gam@,5,3,1) as in Figure3.24.

Figure 3.24: A Reverse Nim game with 4 piles.

Arrange the piles in a more suggestive format as in Figu?& Here there are two perspectives on the same position as th
shading suggests. In the first perspective we see rows ahd setond we see columns.
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I
I
I
I

Figure 3.25: Two perspectives on Reverse Nim game with 4 pile

Let us take the viewpoint that eacblumnis a pile. We now have seven piles of sticks. The rules of Revilim translate
into allowing us to take as many sticks as we like as long asake them all from the same vertical pile. (We must take at leas
one stick, of course.) So our Reverse Nim gam®, 3,1) translates to the ordinary 7—pile Nim game

(4,3,3,2,2,1,1).

Figure3.26shows this position along with the necessary computatidoinary that allows us to recognize the position as unbal-
anced in 7—pile Nim.
There is one balancing move (in 7—pile Nim), namely to také&oal sticks in the first (column) pile leaving

(0,3,3,2,2,1,1).
The new display of sticks (in Reverse Nim) is
(6,4,2)

since we have taken one stick from each of the four piles obtlggnal Reverse Nim problem. This is illustrated in Fig@@7

We can continue in this way, going back and forth between tieRe Nim position and the corresponding Nim position,
making our move in Nim and interpreting it in reverse Nim. @fcse, we didn’t need to go to all this trouble to achieve a
balanced position because we had already observed (ingdPmddl9) that the balanced positions are those in which all pileg hav
an even number of sticks, so it was obvious that in the origReverse Nim problem all we had to do was take one stick from

each pile. But our perspective allows us to understand thetate of the game in a way that could be useful for detemgiri
strategy for the Reverse Miseére version of the game. Whhtdsstrategy?
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@, 3, 3, 2 2 1, 1
1 0 0 00 0 O
0O 1 1 1 1 0 O
0O 1 1 0 0 1 1

Figure 3.26: Playing the associated 7—pile Nim game.

Figure 3.27: After the balancing move.

3.8.2 How to play Reverse Misére Nim

While playing Reversdlisere Nim we simply shift our perspective as we just did for Reveéda®m. Consider each column as a
pile and use the strategy that we developed for Misere Nineati&n3.7 on the resulting Misére Nim game, repeatedly translating
our results back and forth between the Reverse Misére Nintignes and the corresponding Misére Nim positions.

Observe this offers another example of a case in which a simglution to a problem does not reveal enough to obtain
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solutions to closely related problems. Here the easy soliti Reverse Nim offered little help in solving Reverse MisBim.

We saw an additional example with our marker games. The simmglutions involving algebraic equations to identify the
balanced positions for such games with four or fewer markeag have suggested similar equations for games involvinge mo
than four markers. But that led us in the wrong direction. ©we understood Nim, however, it was easy to make the correc
connection to the marker games.

We see similar situations in many parts of mathematics. ¥am@le, in our chapter on Links, an easy solution to constrgc
certain configurations will not point the way to obtainingistructions of configurations that are slightly more compl&/e will
need another perspective for that. The key concept invahtesducing a new idea. Once the new idea has been formulgted
method of proceeding becomes clear.

3.9 Summary and Perspectives

We obtained complete strategies for two rather complicgtaues: Nim and the Marker Games. Several aspects of creativ
mathematics and discovery appeared in our developments.

1. We started with very simple versions of the games (the lankar games and 2—pile Nim). This gave useifor the game
and helped us “discover” the concepthaflanced positionsvhich was central to all of our games.

2. Our experience with some easy 3—pile Nim games was usefildtaining strategies for more complicated 3—pile games.
The big step was our recognizing that the strategies hadteameto do withdoubling or near-doublingof piles and
eventually we made the connection with base 2 arithmeticacmgnized Nim as equivalent to the binary bits game.

3. Once we understood 3—pile Nim, it was a small step to utateidNim with any number of piles. But, our understanding of
the 2, 3 and 4 marker games appeared to offer no help towaddsstanding marker games with more than 4 markers. This
was so because we focused on the wrong thing: the positidgreaharkers instead of the size of the gaps. Surprisingly, the
marker game turned out to be closely related to the game of-Nhm relationship was so close, in fact, that our strategy
for Nim allowed us to determine a strategy for the marker game

In these observations is an example of something that oftears in mathematics. Two seemingly unrelated problents len
themselves to similar mathematical analysis. What thistsigat course, is that the two problems really have a simiidedying
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structure, even though the two problems may superficialpeapto be unrelated. Another example is a surprising caimmec
that exists between our material on tiling in Chagtemnd electricity.

Some of the material in this section, and a very nice treatrmewarious other games, can be found in the b&oskursion
into Mathematicdy Beck, Bleicher and Crowe (iter][in our bibliography).

3.10 Supplementary material

We conclude our chapter with some supplementary mateaaliie reader may find of interest in connection with our stofdy
the game of Nim.

3.10.1 Another analysis of the game of Nim

Our analysis of the game of Nim is close to the original iddd®auton when he solved the game in 1902. The game was raVisite
in the 1930’s by R. P. Sprague and P. M. Grundy independebthematicians often revisit old problems trying to find new
perspectives and possible generalizations. Some callrteegssqueezing the lemorif you have ever squeezed a lemon you
well know that you can always find at least one more drop.

Let us go back to one-pile Nim and two-pile Nim. These gamagwery easy to solve but it is not tiselutionthat we want
to revisit, but thenature of the games. Curiously, two-pile Nim looks to be just two ganof one-pile Nim. You could describe
the rules as requiring each player at his turn to select orleeobne-pile games and play a move in that. The game ends whe
there are no moves to be made in either of the one-pile gamespile Nim is just the sum of two games of one-pile Nim.

Do notice, however, that adding two games produces sometiregy complexities. The strategy for one-pile Nim does no
help at all in determining the strategy for two games of oiedgdim added together.

Adding two games Suppose that we have two gamgsand g2 of our familiar type: in each game players take turns moving
and the winner is declared by the player who made the lask fegee. We can produce a new game+ G2 called thesum of
the two gamesy making this rule: each player at his turn is to select onta®two games and play a legal move in that game.
The game ends when there are no moves to be made in eithertefdlgmames and the player to make the last move wins.
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For example a two-pile Nim gam@,10) would be the sum of the one-pile Nim garfi® and the one-pile Nim gamg.0).
Similarly the classic Nim gamgl, 3,5,7) is the sum of the four one-pile Nim gamgs, (3), (5), and(7). Or, if you prefer, it is
the sum of the two two-pile Nim gamé¢s, 3) and(5,7).

Our goal in studying this game summing idea is to find out hdarmation about the separate ganggsand g, can be used
to find a strategy for the game; + G».

3.10.2 Grundy number

The first element of wishful thinking we can dispense withlgagven if we know all the balanced and unbalanced posstin
the games;; and g this in no way helps us find the balanced and unbalanced @usifor the game 1 + G,. We saw this in our
study of Nim. Even though a Nim game may be thought of as a susmafler-pile Nim games, we found that solving one-pile
Nim did not help solve two-pile Nim, nor did solving both o&te help in solving three-pile Nim.

In Section3.2.6 we described balanced positions in a game using the congutat the balancing number Balar{¢g.
That balancing number just computes as 0 or 1 depending otherhie positiorp in the game is balanced or unbalanced. The
computation loses all other information. The clever idegfague and Grundy was to adjust this to reflect just how fas#ipn
might be “distant” from a balanced position.

The definition Here is the definition. Note how closely it follows the way wefided the balancing number Balaipg for
positions in a game in Sectidh2.6

1. If pis an end position in the gamg then Grundyp) = 0.

2. If pis not an end position in the ganagethen find all the positions
P~ P1, P2;---,Pn
that follow from one legal move, and compute the list of nursbe
Grundy(py), Grundy(p2),...,Grundy(pn).
Then Grundyp) is defined to be the smallest of the numberk 2, 3,... that doesot appearin this list.
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Thus the Sprague-Grundy function Gruiigdy assigns a number to each positjpin the game. We start at the bottom. Any
ending position has a value of zero. Sopdfis an end position, then Grunfly) = 0. For any other positiop in the game we
look for all possible positiong that can followp by a single move. Then Grundp) is defined to be the smallest integer that is
not the same as one of the values Grufaglfor some positiorg that can followp. Thus write out

0,1,2,3,4,5,6,...
and strike out the ones that have appeared for a positioowfolty after p. Take the smallest that is left. You have to take
Grundy(p) = 0 if none of the next positions has a zero value. (This is wharimed positions will have Grundg) = 0.)

This is an example of a recursive definition; we have to bugdhe values of the function Grun@ly) step by step starting
close to end of the game.

Note that
Grundy(p) = 0 if and only if Balancép) =0
and
Grundy(p) > 1 if and only if Balancép) = 1.
Problem 151 Compute the values of the Sprague-Grundy function for &ipasin a one-pile game of Nim. Answer O

Problem 152 Let us play the Nim gam@, 2,3). Compute the Sprague-Grundy function for all the positions
(0,0,0), (0,0,1), (0,1,0), (1,0,0),(0,1,1), ...,(1,2,2), (1,2,3)
in the game. Answer O

Problem 153 See if you can discover the exact formula for the Spraguex@rdunction for a position in a two-pile game of
Nim. Write

Grundym,n) =maon

and find what this operation must be. This is called the Nim-amd is explained in detail in Sectiéh10.3below. You may
succeed in spotting how to compute this. [Hint: Look at thenbers in binary.] Answer O

Problem 154 If you succeeded in determing how the operatiom mworks then give a try at proving that the Grundy number
for a position(m,n) in 2—pile Nim is exactly the Nim-sumam. Use induction on the depth of the position. Answer O
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3.10.3 Nim-sums computed

Binary additionwithout carryis a special case of bitwise addition where

0+0=0

1+0=1
and

1+1=0.

That leads to the notion of a nim-sum. We define the sumn to be be the number obtained by summingndn (expressed in
binary) but adding the binary bits without carry.

Example 3.10.1Let us perform the computation
7®5=2.

In decimal it looks rather mysterious. If we write in binanstead
111¢101=10
the pattern is clearer. Not clear enough? How about

Problem 155 Do some of the computations in Figue28 O

3.10.4 Proof of the Sprague-Grundy theorem

Readers with more mathematical background could benefit feading the proof of the Sprague-Grundy theorem. It isidens
erably longer than any of the previous proofs in this chaetrit illustrates how a proof in a more advanced book migbk! It
reveals the structure of some of the types of games we studibi chapter.
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@l 1 2 3 4 5 6 7 8 9 10
1,0 3 2 5 4 7 6 9 8 11
2, 3 0 1 6 7 4 5 10 11 8§
31 2 1 0 7 6 5 4 11 10 9
4,5 6 7 0 1 2 3 12 13 14
5/ 4 7 6 1 0 3 2 13 12 15
6| 7 4 5 2 3 0 1 14 15 17
716 5 4 3 2 1 0 15 14 13
8/ 9 10 11 12 13 14 15 0 1 2
9/ 8 11 10 13 12 15 14 1 O 3
10{11 8 9 14 15 12 183 2 3 0

Figure 3.28: An addition table fap.
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We have already studied a special case of this. In ProlileBwe discovered that the 2-pile Nim gart@, n), which is the

sum of the two one-pile gamém) and(n), has the Grundy value equalte® n.

3.10.2 (Sprague-Grundy theorem)The Grundy numbers for the sum of two games can be writtereifotin
Grundy( p1, p2) = Grundy(p1) ® Grundy(pz).

where is the nim-sum operation.

Depth of a game How far are we from the bottom of the game? A game with no moassdepth 0. A game where all moves
lead immediately to the end position has depth 1. In this waycan define depth for any position in the game. (Depth of a
position is defined in Sectio®.2.6 but it is enough to see this intuitively for our proof.) Thilows us to use induction on the
depth of a game. Usually the statement we want to prove iabwat depth zero, so the induction starts off easily.

Proof of the theorem At depth zero the theorem is evidently true, since it amouontg to the fact that @0 = 0. Thus it is
only the induction step that takes us some trouble. Our grelafw uses the assumption that we already know the theorgoeis
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at any lower depth.
Let
b = Grundy(p;) & Grundy(pz)

In order for us to prove that Grundl,, p2) = b we must show that both of these statements are true:

1. For every non-negative integek b, there is a follower of p1, p2) in the sum game that has Grundy value

2. No follower of (p1, p2) has the Grundy value.

Then the Grundy value &ps, p2), being the smallest value not assumed by one of its followetst beb.

To show (1), led = a® b and letk be the number of digits in the binary expansiordp§o that

2k1l<d< 2K

andd has a 1 bit in the kth position in the binary expansion.

We have to remember now théit= a® b and remember too how the binary without carry operatioworks. Sincea < b, b
must have a 1 in the kth position aadnust have a 0 there. Since

b = Grundy(pz1) ®@ Grundy(py)

we see thap; [or perhapsp,] would have to have the property that the binary expansid@rahdy(p;) [or perhaps Grundyp,)]
has a 1 in the kth position.
Suppose for simplicity that it is the first case. Then

d @ Grundy(p1) < Grundy(pz).

Now we have to remember what it means for a number to be sntladlara Grundy number. We would know that there is a move
from p; to a positionp; with that smaller number as its Grundy number, i.e., that

Grundy(p}) = d @ Grundy(py).
Then the move fronfpy, p2) to (P}, p2) is a legal move in the sum game and
Grundy(p}) @ Grundy(p;) = d® Grundy(p;) & Grundy(p,) =d@b=a.
We have produced the move
(P2, P2) ~ (PL, P2)
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for which
Grundy(p}) @ Grundy(p;) = a.

Since this position is at a lower depth we know (by our induttiypothesis) that
Grundy(pj, p2) = Grundy(p;) © Grundy(p;) = a.

Thus the follower(p}, p2) in the sum game has a Grundy numbef his verifies our first statement.

Finally, to show (2), suppose to the contrary thpt, p2) has a follower with the same Grundy value. We can suppose tha
this involves a move in the first game. (The argument wouldréas if it involved a move in the second game.)

That is, we suppose thap), p;) is a follower of(p;, pz) and that

Grundy(p}, p2) = Grundy(p}) @ Grundy(pz) = Grundy(p1) & Grundy(py).
(Here we have again used our induction hypothesis sinceatsiggn (p, p2) is at a lower depth.) Just like in ordinary arithmetic
(using+ instead of as here) we can cancel the two identical terms and conclude that
Grundy(p;) = Grundy(py).
But this is impossible since
p1 ~ P

in the first game and no position can have a follower of the Samady value.

That completes the proof at the induction step and so thedhetllows.

3.10.5 Why does binary arithmetic keep coming up?

To explain the nim-sum requires an analysis using binathiraetic. Why does this binary beast come out every time weesdd
some problem about Nim and rest of the games that we haveedfudihere is an explanation that we can sketch here.

First of all there is an algebraic structure that we may nethwticed. IfA( is the null game (i.e., the game with no legal
moves) then it must have a Grundy number of 0. But for any ajaereg the sum game + A, and the sum gam& + g are
just the original game; . (The only legal moves in the sum game are the movesiiiself.) Consequently

0&n=04n=0
for any integem.
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The second element of algebraic structure is that the gamesg, and g, + G are identical. Consequently
me&n=mon
for any integersnandn.
The third element of algebraic structure is that the games
(G1+G2)+ g3
and
G1+(G2+G3)
are identical. Consequently
(Men) @ p=ma (nd p)
for any integersnm, n, andp.
The final element of algebraic structure is that any posifigm a gameg gives rise to a balanced positidp, p) in the sum
gameg + G . This is because we can always win from a positiprp) by playing the mirror strategy, Consequently

neon=20

for any integem.

That is a lot of algebraic structure. The words normally usedescribe this structure (some of them familiar) are commu
tative, associative group with every element its own ingei@Ve will see groups structures again elsewhere in this) téwe
describe this structure to an algebraist we will be toldangy that the group operation is simply 1-bit binary aduitiwithout
carry.

3.10.6 Another solution to Nim
We have solved Nim by converting it to a binary bits game. Wealdao solve Nim by using Nim-sums.

3.10.3 (Sprague-Grundy solves Nim)A position(ng,nz, Nz, ..., Nk) in a k-pile Nim game is balanced if and only if
MONRONG---Ong=_0.
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This follows directly from the Sprague-Grundy theorem sititce Grundy number for that position computed directly from
the sum ok one pile games

(n),(n2),...,(nK)

NNENDNID--- D Nk.
Problem 156 Use the Sprague-Grundy theorem to show that the Nim position) is balanced if and only if /=n.  Answer O

Problem 157 Use the Sprague-Grundy theorem and Taéb8to show that the Nim positiof, 2, 3) is balanced and2,3,4) is
not. Answer O

Problem 158 Use the Sprague-Grundy theorem and TebR8to find a balancing move fdi2,3,4). Answer O

3.10.7 Playing the Nim game with nim-sums

The easiest way to play the correct strategy in Nim is to cdradé piles to binary and then play the game of binary bitseTh
other rather elegant way of playing the game is to use thesoim-operation as the key. A positiom, ny, ns,...,nk) in the game
of Nim is balanced if and only if the nim-sum

Ne&nENd---dn=0.

The nim-sum operation then helps in computing the correatento make in the game. FiguBe28on pagel76is useful in
giving us the addition table that we would need to use (or nreaapif we wish to be skillful players.

We illustrate with a simple example. But be sure to try Problé&3and Problermi64to make sure you see a possible subtlety
in the method.

Example 3.10.4 The gamg8,10,12) is unbalanced. What are all the balancing moves? We compute
80100 12= (8010)p12=2012= 14

We note that
80100120 14=14914=0.
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Thus the only possible moves in the game that will producdanbad position are
(8,10,12) — (8@ 14,10,12) = (6,10,12),
(8,10,12) — (8,104 14,12) = (8,4,12),
and
(8,10,12) — (8,10,1214) = (8,10,2)
All of these are legal Nim moves. |

Example 3.10.5Here is the same example but with the arithmetic argued iffereint way. The gamé8, 10,12) is unbalanced.
What are all the balancing moves? We note that

(80100®83®10=0
and so we move
(8,10,12) — (8,10,[8® 10)) = (8,10,2).
Similarly
8 (8Bp12)®12=0
and so we move
(8,10,12) — (8,[8©12,12) = (8,4,12).
And finally
(10012)10012=0
and so we move
(8,10,12) — ([10412],10,12) = (6,10,12).

All of these are legal Nim moves. |
Problem 159 Computel3@ 126 8. Answer O
Problem 160 Solve for an integer x so th&8® x = 25. Answer O

Problem 161 Whatisnen®n&d ---&n? Answer O
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Problem 162 Is the collection of nonnegative numbers with the operatiora group? (The notion of a group is defined later on
in Sectiord.9.) Answer O
Problem 163 Try the method of ExampR10.40n the gamé3,10,12). Compute
30100 12= (3¢ 10)®12=9®12=>5.
So are these the balancing moves
(3,10,12) — (3®5,10,12)
(3,10,12) — (3,10 5,12)

and
(3,10,12) — (3,10,1265)?
Answer O
Problem 164 Try the method of Examp&10.50n the gamé&3,10,12). Are these the balancing moves:
(3,10,12) — (3,10,[3¢ 10))
(3,10,12) — (3,39 12,12
and
(3,10,12) — ([10612],10,12)?
Answer O

3.10.8 Obituary notice of Charles L. Bouton

The obituary notices of Bouton at the time of his death in 1p&#sed much of his academic work but made no mention of his
solution of Nim. A century later we can see that he should bdited as one of the founders of combinatorial game theangd A
Nim, at first seen as a particular example of an interestimgegaurned out to be fundamental to the whole theory. His naomne

is far more likely to be mentioned in the context of game tiigban the study of transformation groups that would have lhée
main interest during his career. As a tribute to him we inelbére this obituary notice (even though Nim does not ap@esr)

in our appendix, we include a copy of Bouton’s paper on Nim.
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CHARLES LEONARD BOUTON
Professor Charles Leonard Bouton died on February 20, 1% thiSULLETIN, vol. 28, p. 82 (Jan.—Feb., 1922).

A MINUTE READ BEFORE THE FACULTY OF HARVARD UNIVERSITY
March 28, 1922

Charles Leonard Bouton was born in St. Louis, Missouri, ApE, 1869. His father, William Bouton, was of
Huguenot descent, and the family was long established in Biegland. At the close of the Civil War, William
Bouton settled in St. Louis, where his regiment had beenadideéd. Charles’s mother, Mary Rothery Conklin,
was also of old American stock; her grandparents were Scdidifliam Bouton was an engineer by profession.
His grandfather is said to have been the projector of the Raidroad, and was the author of the first article on its
construction. Charles was the only one of the four sons whondt follow in his father’'s footsteps. The home
atmosphere was academic and intellectually stimulating.

Bouton received his early education in the public school$tof Louis, and took his first degree, that of Master
of Science, at Washington University in 1891. Here, he cangeuthe instruction of a highly skilled teacher of
descriptive geometry, Dr. Edmund Arthur Engler. The nexa tvears were given to teaching in Smith Academy,
St. Louis, and these were followed by a year as instructorastgton University, part of his work being to assist
Professor Henry S. Pritchett. His next, and as it turned lugtlast move was to Harvard. The years '94—'95 and
'95-'96 were spent in the Graduate School. He took the maslegree at the end of the first year, and at the end
of the second he was awarded a Parker Fellowship for stusyadbHis two years at Leipzig were most profitably
spent. He chose as his master that most original geometgnuSd.ie, then at the height of his fame. As a matter of
fact, Bouton was one of the great Norwegian’s last pupilsLfe returned to Norway in 1898 and died soon after.
All of Bouton’s subsequent scientific work bore the cleariegs of Lie’s genius. His two advanced courses, which
he originated soon after his return to Harvard, dealt rasmdg with the theory of geometrical transformations
and the application of transformation groups to the sotutid differential equations. The graduate students who
subsequently had the good fortune to prepare for the daetarader his care generally took up subjects connected
with the theory of transformations.

After receiving the doctorate at Leipzig in 1898 Bouton read to Harvard and began a long period of work, broken
only by occasional sabbatical absence. He threw himsdiftivé greatest zeal into his duties as a teacher. At one time
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or another, beside the alternating advanced courses medtibie taught nearly every one of the lower and middle
group courses in mathematics. No pains were too great fotdspend, either on the preparation of lectures or on
helping the individual student, whether a Freshman or aidatelfor the doctor’s degree. His characteristic quality
of scientific sanity was invaluable, for it led him always taghasize that which was permanently important, and to
avoid tinsel and sham. A fine example of his didactic senseen # a collection of problems on the construction of
Riemann’s surfaces, published in volume 12 (1898) ofARBIALS OF MATHEMATICS. He was equally successful
in arousing the interest of a beginner by showing him a moda diagram or an enlightening example of a new
theory, and in guiding a graduate with sure hand toward relea of permanent value and importance.

Those qualities which made Bouton an admirable teacher @@repicuous in his other professional activities. He
was an editor of thBULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY from 1900 to 1902, and an associate
editor of theTRANSACTIONSof the same society from 1902 to 1911. His power of keen yedlkiariticism, and

his unerring mathematical judgment made him an efficiersresf. His advice was prized by all who knew him, his
opinion was always heard with respect, and his sanity wags®remarkable than his unselfishness. All of these
qualities were drawn upon in full measure in the autumn oB1®hen, almost overnight, he was called to organize
the mathematical instruction of nearly a thousand men irStiaelents’ Army Training Corps. He carried this work
through with conspicuous success, and the leading teaohemathematics in the schools of this community, who
enthusiastically rallied to the support of Harvard and tagam in that crisis, found in him a helpful guide and an
efficient administrator.

His home life was beautifully quiet and peaceful. In 1907 hernied Mary Spencer of Baltimore, and she, with
their three daughters, Elizabeth, Margaret, and Chaylstierives him. Yet for some time before the end, long dark
shadows were crossing his life. The persistent after-&ffeta hurried operation for appendicitis seemed to sap his
strength. Family cares and anxieties multiplied, reachkimgisis in 1918 with the death of his youngest child. His
breakdown in 1921 seemed but the inevitable end toward wdiehts had long been tending. His death deprived
the university of a faithful servant, and the community ofreyke-minded and upright gentleman.

From the Bulletin of the American Mathematical Society, 292



3.11. ANSWERS TO PROBLEMS 185

3.11 Answers to problems

Problem 76, page 125

This is quite easy since we can find a winning strategy forgaldly In the first two moves there is a simple way of ensurire th
the end position can never be white. In this case we proveeiiséence of a winning strategy for one of the players byiégag
what it should be.

Problem 77, page 125

Suppose that player | does not have a winning strategy. Wialdthis mean? Player | moves. Since he has no winning girate
there is at least one move that player Il can make that doesnsofre a win for player I. So she should make that move. Then
Player | moves again. Since he has no winning strategy, theatleast one next move that player Il can make that does no
ensure a win for player I. So she should make that move. Thisreges until the game is over and player Il has won. That is
her strategy. We know only that at each stage there must here $pme correct strategic choice, but we do not know without
detailed analysis what that move is.

Problem 78, page 125

Define an end position to be white if it is a win for player | oitifs a draw. Define an end position to be black if it is a win for
player 1l. Then if we apply Problem7 we know immediately that either player | has a strategy thagtrend in either a win or a
draw or else player Il has a wining strategy.

We know from experience that player Il has no winning stratetherwise we would surely have found it before we were
eight years old. We also know that there is no possible adganin this game to going second. We can prove this, howeyer, b
a strategy stealing argumente imagine that player Il does have a winning strategy an@skeher to write it down. Then we
steal it. If that strategy did work we could use it to win olves. Make a first random move. Then follow the stolen styateif
you were player Il (placing X's where the strategy tells yoplace O's). If the strategy requires you to place a mark aquare
that you previously used, just make a new random move. Theéegly guarantees a win. But it can't because player Il should
always win with correct play. Thus there is no winning stggtéor player Il as we suspected.
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Problem 79, page 125

The fact of two games being “identical” is important to oweastigations. For this game arrange the nine numbers 2-d 613
square array so that the sum along any row or column or didgoegactly 18. Figure3.29illustrates this.

3110|5
8| 6 |4
71219

Figure 3.29: The game of 18 is identical to tic-tac-toe

Then a move in the game of 18 for a player consists essentiiiiioosing a position in the array and marking it with either
an X or an O depending on whether he is the first or second to .mMdetwo games are then easily checked to be identical.

After a child has mastered the game of tic-tac-toe it would geod exercise to have them play this game. At some point the)
will spot the strategy (assuming the arithmetic skills alatively strong) and perhaps even notice that the gameuisagnt to
tic-tac-toe.

Problem 80, page 125

This game too is the same as a tic-tac-toe game.
For this game arrange the nine cards inLa®8square array so that the rows, columns and diagonals asathe as the eight
winning card combinations. Figufe30illustrates this.

JO | QO | K&
J& | QA | K&
JO | QU | KO

Figure 3.30: The card game is identical to tic-tac-toe

The game has the appearance of being a typical card gameskeb@uwinning combinations are rather familiar ones, but it
is nothing more than the usual trivial game of tic-tac-tosatided in different language.
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Problem 81, page 129

The full strategy is described in Secti@2.5 At this stage you may not be able to articulate the stratediieé same language
that we will use, but you can experiment enough with the gantetise a way of winning. As before, you should discover that
there are precisely two kinds of positions: ones in which ae make a good move and ones in which no good move can be
made.

Start with the simplest positions and determine which oraes e classified as good (or winning) positions and which
positions are bad (or losing).

Problem 82, page 131

The final position is balanced because 1+2 = 3. For a balamasiiqn A+ B = C, then no matter what move is made, one side
of the equation is reduced while the other remains the satmgs, Bny move will destroy the balance.

For an unbalanced positioch+ B =£ C. There are two case8,+ B < C andA+B > C. If A+ B < C, we can reduc€ so that
A+B=C. If A+B> C, thenA > C — B so we can reducA to re-establish the balance. In either case, there will b&wenn
re-establish the balancing equatidr- B =C.

Problem 83, page 131

Call those positions in the four-marker game which satiséyaquatiorD —C = B— A, balancedand all other positions for which
D — C # B — A unbalanced Make sure to verify that the three conditions for balaneenaet.

For example, if a position is balanced, then we need to shawvetery immediately following position is unbalanced. A
move requires us to change the position of exactly one ofdberharkers. Clearly any such move will change one side of the
equation

D-C=B-A

and produce an unbalanced position.
On the other hand if a position is unbalanced then

D-C#B-A.



188 CHAPTER 3. NIM

In that case either
D-C>B—-A orelse D—-C<B-A

Which marker would you move in each of these two cases?

Problem 84, page 131

Not so easy. In fact the discussion so far might lead you tewethat you should search for just the right equation, lainid the
situation for the three and four-marker games. This doesvodt.

If you run out of ideas (as we fully expect you will) move on tetnext section and read about some other combinatorial
games. We will return to this problem later with some frestasl

Problem 85, page 134

This exercise is an essential one to perform in order to seethe balancing definition works. To study a game this way one
needs only to know, for any given position, all of the positiavhich follow from it by a single legal move. For 2—pile Nitig
is easy.

Describe a position in the game @, n) if there arem sticks in the first pile and sticks in the second. Try to compute the
balancing number fof2,1) for example. List all of the positions which follow directisom (2,1):

(2,1) ~ (1,1), (0,2), and (2,0).
That means you cannot compute the balancing numbei2fdy until you know the balancing number for each of these other
positions.

Start at the bottom (i.e., the end of the game). If you comfhédoalancing numbers in the order suggested in FigLiethe
definition is easy to apply. Here we start at the lowest detbid énd position) and work back to higher depths a step ate tim

Note that, if you have found all the balancing numbers at aptid you will be able to find all the balancing numbers at et n
higher depth.
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Position | Depth | Balancing Number | Position | Depth | Balancing Number
(0,0) 0 0 [balanced] (5,0 5 1 [unbalanced]
(1,0 1 1 [unbalanced] (0,5) 5 1 [unbalanced]
0,1 1 1 [unbalanced] (3,3) 6 0 [balanced]
(1,2) 2 0 [balanced] (4,2) 6 1 [unbalanced]
(2,0) 2 1 [unbalanced] (2,4) 6 1 [unbalanced]
0,2 2 1 [unbalanced] (5,1) 6 1 [unbalanced]
(2,1) 3 1 [unbalanced] (1,5) 6 1 [unbalanced]
1,2 3 1 [unbalanced] (0,6) 6 1 [unbalanced]
(3,0) 3 1 [unbalanced] (6,0) 6 1 [unbalanced]
(0,3) 3 1 [unbalanced] (6,1) 7 1 [unbalanced]
(2,2) 4 0 [balanced] (1,6) 7 1 [unbalanced]
3,1 4 1 [unbalanced] 5,2 7 1 [unbalanced]
1,3) 4 1 [unbalanced] (2,5) 7 1 [unbalanced]
(4,0) 4 1 [unbalanced] (4,3) 7 1 [unbalanced]
(0,4) 4 1 [unbalanced] (3,4) 7 1 [unbalanced]
(3,2) 5 1 [unbalanced] (4,4) 8 0 [balanced]
(2,3) 5 1 [unbalanced] (5,3) 8 1 [unbalanced]
4,1) 5 1 [unbalanced] (3,5) 8 1 [unbalanced]
1,4 5 1 [unbalanced] (6,2) 8 1 [unbalanced]

Figure 3.31: Balancing numbers for 2—pile Nim.

For example we can illustrate with the positi(8) 1) at depth 4. The possible moves from this position are:
(3,1) ~ (2,1), (1,1), (0,1), and (3,0).
From the table we already know the balancing numbers foetpesitions are
1,0 1, and 1
Consequently, since 0 appears in this list,
Balancg3,1) = 1.
You can continue much further if you are not yet bored. Apmlyihe definition, even in such a simple case as 2—pile Nim,
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can be quie tedious. At some point you can spot the pattercaméigure out a correct strategy for play.

How could we use such a table? Well, if we simply cannot spetaittern, then make a large table. While you are playing
consult the table. For example, you are at the posifi@) in the game and must decide to make a move. In the table you se
that it is unbalanced. Therefore there must be a move thatgoumake to rebalance it. Look for a balanced position abtove i
in the table and see if you can move to that position. Ab@v®) in the table are the balanced positiq@s2), (1,1), and(0,0).

The only one you can reach (g,2). Accordingly then you make your move: take two sticks from finst pile.

The other obvious way to use such a table is to spot pattetnis.ptetty clear from the table so far that the only balanced
positions are those of the fortm,m). Any position(m,n) with m+# n appears likely to be unbalanced. How would you go about
proving this?

Problem 86, page 135

We recognize these three statements as the same as those fartker games in Statemeh®.2 It is clear that a player can
always win from a black position by choosing to move to a resitigm. But if a black position is balanced, there is no syt
that will always win from that starting point because youpopent can always produce a balanced position. Thus blasitiqrs
must be unbalanced. For much the same reason red positigtdbenbalanced.

This red and black argument thus allows us to find all balarecetunbalanced positions without going through the com-
putations involved in finding the value of Balaripg for every position in the game. If we can spot a pattern thédvic this
red/black scheme we can immediately claim to have foundhalblanced positions.

Inductive proof You might also wish to prove that all red positions are badanby induction. Start at depth zero. These
positions are red and are balanced. At depth one all posidomunbalanced and these must be black since they movendhby t
depth zero positions that are red. Assume that red=balaarwadblack=unbalanced for all depths 0,1,2n.—.1 and show that
the same must be true at depth

Problem 87, page 135

The conjecture is that a positigm, n) is balanced in 2—pile Nim if and only ih= n. Define a position{m, n) to be red ifm=n
and to be black im # n. Just check that
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1. The end positiori0,0) is red.
2. Any red position(n,n) can move only to a black.
3. From any black positiofm, n) with m# n there is at least one move to a red position.

Then apply the red/black argument to conclude that redipositare balanced and black positions are unbalanced. Nate t
although we used the balancing numbers to guide us towardsoojecture, we do not need them for our proof that a position
(m,n) is balanced if and only ifn= n.

Problem 88, page 135

The name SNIM is meant to suggest “Stupid” Nim. If you play ¢faene with a friend you will see why. For example, start with
the position(3,5). A balancing move is to produd®,3). Your opponent will know where this is heading and add a stiaine
of the piles. The game play looks like this:
(3,5) ~ (3,3) ~ (3,4) ~ (3,3) ~ (4,3) ~ (3,3) ~~ (4,3) ~~ ...
and continues forever, with no end and no winner.

It is an essential part of our theory that the game we are stgdyust be finite. It is possible to study infinite games, bet t
strategy that is based on the balanced and unbalanced iarddpends on the game being finite.

Problem 89, page 135

Declare those positions in the four-marker game that gatisf equation
D-C=B-A

to be red and declare the others to be black. Now just chetkhibahree conditions hold. Note that this is precisely what
did before in Problen83. Now we have defined what balanced and unbalanced actualiy fioe any game. An appeal to the
red/black argument shows that, indeed, the positions faclwiine markers satisfy the equatién- C = B — A are the balanced
positions in the sense of our new definition of balanced.
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Problem 90, page 135

Such a game is not a game of strategy, although it might wekapto the players to involve some mysterious strategy. The
main feature of such a game is that no strategy or effort isled¢o play the game. No matter what the players do the winnelr
of the game is determined from the very first move. If Playdaits with a balanced position he loses. If Player | starth amn
unbalanced position he wins no matter how he chooses to nifeehave seen such a game already in Se@iér3when we
were studying triangulations of polygons.

Problem 91, page 135

The answer is no, if Player | is skilled at finding the balagcmoves. If Player Il suspects that Player | is not quite steski
then there is an obvious, but weak, strategy. She should/algglect a move that leaves the position as complicatedsssopm
in the hope that her opponent will make a mistake.

Problem 92, page 135
The balanced positions are 5, 10, 15, 20, ... (any multipk).of

Problem 93, page 135

One way to calculate balanced positions is to creaseeeefor this game. Here is how that works. First we note that O is a
balanced position—the player facing this position has neand hus for any numbesthat is a squares=1,4,16,25,..., the
position 0+ sis unbalanced.

The player facing such a position may take all the sticksifep@, which is a balanced position. The smallest number ebt y
shown to be unbalanced is 2. This number is balanced. (Ché&k Thus for any squarg the position 2+ sis unbalanced, so
3, 6,11, 18, ...are all unbalanced. The smallest numbereatathown to be unbalanced is 5. Thus 5 is balanced.

Continuing in this way we find many unbalanced positions &®ltkat the only balanced positions less than 25 are 0, 2, 5, 7
10, 12, 15, 17, 20, and 22.
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Does this inspire you to predfcall the unbalanced positions over 25? The pattern emergightrsuggest that we can obtain
all balanced positions by alternating adding a 2 and a 3 t@tbeious balanced position found. We can do #aisinfinitum
Does that work? (See Problesd and Problen®5 before jumping to any conclusions.)

Problem 94, page 136

The sieve method that we used in solving ProbfSed to the balanced positionsZ)5,7,10,12,15,17,20, and 22.

We can apply the sieve again and keep going to obtain all thaireng balanced positions less than 100. Or we can jushclai
to see the pattern: all balanced positions seem to obtaipedtdrnating adding a 2 and a 3 to the previous balancediposit
found.

Whoops! Continuing our sieve process we find, instead, tietémaining balanced positions less than 100 are 34, 39, 44
62, 65, 67, 72, 77, 82, 85, and 95. We no longer see this same 2 pattern, nor indeed any pattern. Do you?

Problem 95, page 136

We have no idea what type of formula might work. In fact, asusy 2010 no one had found one. Computers were put to work
generating balanced positions. They found that in the fdstdlion positive integers, about 180000 were balancedtipos.
They had a number of conjectures about how often balancedbensnad various numerals in the units position. Only oné suc
number, 11356, had a 6 in that position. How their conjesttmen out remains to be seen. Many references to this protéem
be found by checking Wikipedia. Look under “subtraction gath

This is an example of a problem that looked simple at first lbaved difficult. It is also an example of a process that after
many initial computations suggested patterns [as we fonrstlving Problen®3 up to 25], only to be proved false. We discuss
more extreme examples of this in a later chapter in Volume @reviwe discuss the famous (incorrect) conjectures of Paigla a
Mertens.

4If an 1.Q. test were to ask for the next terms in the sequenge®,7, 10, 12, 15, 17, 20, 22, ... what would most people meipo
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Problem 96, page 136

If the subtraction set is
S={1,2,3,4,5,6,7,8,9,10}
then the balanced positions are the multiples of 11.

Problem 98, page 137

The one pile and two pile games would likely have caused ndbtes. The three pile game is much more difficult, but maybe
you spotted exactly what the balanced and unbalanced gusiire. Later on we will find the exact strategy for the coimgy
comparing it to the binary bits game.

Problem 99, page 137

This observation is important to make. We cannot use ounbathand unbalanced arguments unless the game is finite.

It is not true that each move of the game reduces the numbegimg on the table. It is occasionally possible to add more
coins than are removed. But each move of the game does reukitetal value of all the coins in play (check this). Thus the
total value goes down with each move and eventually reacs®swhen there are no more coins in play and no further moves
possible.

Problem 100, page 138

Begin by displaying the cards on the table in ax18 rectangular array. The bottom row displays all the 2'sidre are any)
and so on up to the top row that displays the aces. Then rezgmt the display can be translated to binary bits with se tf
information.

As we did for the coin game we use the bit 1 §GES and the bit 0 folNO to indicate whether a card is or is not on the table.
Again we can simplify the moves in the game if we realize teatoving a card simply changesr&Sto aNO, i.e., it changes a
1 bit to a O bit. Similarly adding a card changesl@to aYES, i.e., it changes a 0 bit to a 1 bit. Once again we are just flippi
bits instead of playing with cards.
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Figure 3.32: A position in the card game.

Figure3.32shows such a display, along with the equivalent array ofrgibds, for a game in which the deal is
A®> Q©7 8®> 6©7 ‘]<>7 10<>> 6<>7 5<>> l%> 2*> AQ> ‘]‘7 1“, 7‘

The play of the game is exactly the same as the play of the gdrbmary bits so the game is completely analyzed by that
equivalent game.

If you do wish to play this game perhaps you might want to redhe size of the game by using only part of the full deck of
cards. Otherwise the play of the game may take a long timed8uitice that the game is easy to play.

For examplefter you have discovered the strategy for the ggmewould instantly recognize that the position in Fig8ré2
is unbalanced and that the only balancing move is to take &Wayand 8? and to add to the table the cardsSA40rQ, 5, and
2Q. This will take only seconds to spot.

Problem 101, page 140

Usually for our games this is obvious. Here you might havenbesthered by the fact that a play of the game removes one
binary bit but could well add many more. However, you mightéhaoticed that only finitely many positions are possiblel ao
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position can be repeated. (Why can none of the position keated?)

Another solution is don’t simply count binary bits, but devaightedcount. Each 1 bit on the bottom row receives a weight
of 1. Each 1 bit on the second row receives a weight of 2. Eadghdnlihe third row receives a weight of 4, and so on. Now we
see that every play of the game, while it may not reduce theahcbunt of 1 bits, it does reduce the weighted count. When th
weighted count is zero there are no more 1 bits and the garps. sto

Problem 102, page 140

You can start with a 2 2 game. There are only a few possibilities and you shoulccedtie pattern. By the time you have
mastered the 3 2 game the strategy is apparent.

The mirror strategy  If the two columns are identical then the position is balancehus a balanced position has either two 1
bits in each row or two 0 bits in each row. If player | makes a enwvsuch a position then player Il justirrors the same move
back at him in the other column. Eventually she wins.

If the two columns are not identical the position is unbatahdf a player can make a move in such a position he just besanc
the game by making the two columns identical. Then the neaygolis doomed since every move she makes unbalances th
position.

The mirror strategy plays an important, strategic role iumber of games that have this feature: the game can be gplit in
two identical pieces. Some authors prefer to call it Theeedledum-Tweedledee strategyhatever Tweedledum does in one of
the columns, Tweedledee does the same in the other coluneediadee wins.

Problem 103, page 141

The ones with an odd number of 1 bits are unbalanced. The dheawieven number of 1 bits is balanced. These positions are
very close to the end of the game and it is always easy to digtefimsuch cases which positions are balanced or unbalanced

Problem 104, page 141

Just play the games and see if you can force a win or not. Aledé are unbalanced.
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Problem 105, page 141

All of these are balanced.

Problem 106, page 141

In Problem104 all positions were unbalanced and all these positions hadomore odd rows, i.e., rows with an odd number
of 1 bits. In ProbleniO5all were balanced and all these positions had only even ravery row had an even number of 1 bits.
Now do you have a conjecture?

Problem 107, page 142

Note that this is the same scheme that we use in a red and blpokent, although we have expressed it in the even and odc
language. The first two statements are quite clear. In thepesition there are only zeros so certainly that is an eveitipos|f

the player starts with an even position he must select a hlsibine column to change. At that point he has already prodaced
row with an odd number of 1 bits and so an odd position.

Let us check the final statement. If the position is odd then there are one or more rows with an odd number of bits. Take
the topmost odd row and choose a 1 bit to change. That make®thaow even. But there are possibly other odd rows, each of
them lower than the one you chose. Each of those rows can bstedljby changing the bits as necessary. The result is an eve
position.
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R OR R
OR Rk
OR RrR K

010

Figure 3.33: An odd position.

For example, Figur&.33illustrates an odd position in @63 game. It is odd because four of the rows have an odd numbel
of 1 bits. To balance will require that we change all four addé rows (but leave the one even row alone). It is easy andwuvi
how to do this. Figur&.34shows one way, but there are two other ways in which you coaNe shanged this position to an even
one using a legal move in the binary bits game.

RPORR
ORRR
ORRR
RPOR R
ORRR
PR R OO

010 01

Figure 3.34: How to change an odd position to an even position
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Problem 108, page 142

It is clear that even and odd positions behave precisely dmtdmced and unbalanced positions. The strategy of the tahe
will work is to start (one hopes) with an odd position. These@imove that will change it to an even position. Your oppanent
move will undoubtedly change it back to an odd position. Tdustinues until the game stops and we know it stops at an ever
position. It must have been you that made the last move andwsavin. (Of course, if you must start with an even positiort jus
play modestly hoping that your opponent will make a mistake laave an odd position.)

Problem 109, page 142

It is not difficult to see that the argument of Problégv applies to any size game of binary bits. Thus the analysiseofjame in
terms of even and odd rows will solve the timex 4 game, then x 5 game and indeed tha x n game.

Problem 110, page 142

You shouldn’t have to convert to binary, but you should beablspot the correct strategy. There are an odd number osdiong
an even number of quarters). So you must remove one of the dimees. You have to balance the nickels too, but the penrges a
balanced.

Notice, that with this strategy, the game is easy to play. igiea player who does not know the correct strategy you win
every time and your game play is very rapid. Unfortunatehhm@ewd opponent might be able to spot what you are doing and
realize how doomed he is each time he faces a position withr@mmumber of coins of each type.

Problem 111, page 143

It makes it messier and, perhaps, more confusing for youorgpmt. But if you work on it for a while you will see that thisrge
is exactly equivalent to binary bits too and is played with #ame strategy.
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Problem 112, page 143

A winner would still be declared when the last coin is remqoumd any person playing the game would prefer to be a loser anc
walk away with the most money. Thus the right strategy is tecte¢he pile of largest value at each turn and take all theeypon
In the end you lose the game and leave richer.

In the language of game theory we have essentially changeddine to ascoring game Many card games do not end
with the winner the player making the last move, but the playleo accumulates the most points. Our theory of balanced anc
unbalanced positions does not apply to scoring games.

Problem 113, page 143

It is a good choice of game to impose on a friend who considensdif bad with arithmetic. It appears to require greatl skil
working with numbers, but this is deceptive. The structuréhe game play is simpler than it at first appears: some nonm-ze
numbers are merely replaced by zeros.

As soon as this occurs to us we realize that the game is ndsjusitar” to the game of binary bits; it is identical. Afterfaw
plays of the game we recognize that all that matters is whetmeimber is zero or non-zero. Replace all the non-zero nignbe
with the binary bit 1. Then the rules of the game are identicéhose for binary bits.

To play this game just convert any position to the equivgbesition in binary bits and play the strategy that we haveiilesd.
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10 -9 0
-3 11 -32
0 11 32
4 0 O
0 -140

Figure 3.35: A position in the numbers game.

For example, Figur8.35shows a position in & 3 numbers game. We must determine whether the position edamted or
balanced. If it is balanced then we must find at least one nf@atenill balance it.

Figure3.36illustrates how we can solve this problem by converting fiwation to a position in a binary bits game. We make
the correct balancing move in the bits game, and then retachk to an equivalent position in the numbers game.

10 -9 0 1 10 110 10 -9 0
-3 11-32 1 11 1 01 -3/ 0 32
0 11 32| =— |0 1 1 01 1 = |0 1132
4 0 0 1 00 110 4 1666 0
0 -14 0 010 000 00

Figure 3.36: Playing the numbers game.
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The choice of 666 is of course arbitrary here and intendeg toritritate an opponent; any nonzero number will do thektric
Here we see that, while the game had a different appearartice g@ame of binary bits, it has exactly the same structure-to
games are equivalent once we find how to match up positionsnawds. Sometimes this is easy to see, sometimes not.

Problem 114, page 143

It is a good choice of game for a child who needs some practideeorder of letters in the alphabet. The structure of thegga
suggests something tricky about words and letters but theegs.completely equivalent to the binary bits game.

Begin by displaying the letters in each of thevords in a 26< n rectangular array. The bottom row displays all the a’s (if
there are any) and so on up to the top row that displays theTkh'sn recognize that the display can be translated to binigsy b
with no loss of information.

As we did for the coin game and the card game we use the bitME8m@and the bit 0 foNO to indicate whether a letter is or
is not in the word that corresponds to a column. Again we capliiy the moves in the game if we realize that removing &lett
simply changes &ESto aNQ, i.e., it changes a 1 bit to a 0 bit. Similarly, adding a leti€that letter was not already there)
changes &lOto aYES, i.e., it changes a 0 bit to a 1 bit. Once again we are just flippits instead of playing with words.

For example the position

[ ebbde caecde cddc

in this game can be displayed as the 8 arrays of bits in Figur&.37,

O Fr O Rr B
P O R Rk
O O Fr L O

Figure 3.37: A position in the word game.
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Since no letters higher than “e” appear we do not need anyehigiws. This is an unbalanced position and can be easily
balanced in the manner shown in Fig®.€8

OFr OFr PR

P O FR kP

O OFr Fr O
l

O Fr O KR B

O|lrR|rRr| O|R

© O L P O

Figure 3.38: Balancing that same position in the word game.

Thus a correct response in this position would be the play
[ ebbde caecde cdde~ | ebbde cebe cddc
changing just the second word. While the game had a diffexppearance to the game of binary bits, it has exactly the sam
structure—the two games are equivalent once we find how tohmagi positions and moves. (Indeed, the position in this game
that gave rise to the scheme in Figlg&7is exactly the equivalent position that we saw before in thmlners game play of
Figure3.36) As always, sometimes this is easy to see, sometimes not.
Problem 115, page 143

Maybe so, maybe not.

Problem 116, page 145

Remove all sticks. You win. A balanced position containstitks; every pile that contains one or more sticks is unim=gdn
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Problem 117, page 145

This involves experimenting until you see what is involvEamulating a conjecture of what are the balanced positiand then
verifying that the three conditions required for the set afanced positions are met. In other words, you must showythat
conjectured set of balanced positions meets the threetgmmlof Statemenrs.2.2

1. The final position (no sticks remaining) is balanced.
2. If a position is balanced, then no matter what move our nppbmakes, the resulting position is unbalanced, and

3. If a position is unbalanced, then there is a move we can nvakeh results in a balanced position.

Define a position in the two-pile game as,n) if there arem sticks in the first pile and sticks in the second pile. If, near
the end of the game you leave your oppondnt), you will evidently win. If he leaves yodl,0), (2,0), (3,0) etc. you will win
immediately by taking all of the sticks in that pile.

You can easily verify that a positiofm,n) should be called balancednfi= n and unbalanced ifn # n. Check the three
conditions.

We have already seen this situation in our solution of Prakllé2in the game of binary bits. Let us repeat what we learned
there but modified now to discuss 2-pile Nim. This will save thader some flipping.

The mirror strategy  The balanced positiofm, m) in the 2-pile Nim game offers the player a chance to use theomstrategy.

If player | makes a move in such a position then player Il jagtors the same move back at him in the other pile. Eventually
she wins. The mirror strategy (or Tweedledum-Tweedledegesty) we have seen before. Whenever a game can be splivimto
identical “subgames” this strategy will be successful. Wher Tweedledum does in one of the piles, Tweedledee deesathe

in the other pile. Tweedledee wins.

Problem 118, page 145

Think of the gamé&m,n,m, n) as being two identical games of 2—pile Nim by placing a mimathe middle:
(m,n | mn).
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Now your opponent makes a move on one side of the mirror andugiuepeat it on the other side. Since you always leave a
position that has this mirror symmetry you must be the wiragethe final positiori0,0,0,0) has this same symmetry.

This shows that every positiofa, b,a,b) in the game is balanced, but it does not faidbalanced positions in 4—pile Nim.
This does not matter to us because the mirror strategy allevis control the game and avoid encountering positionswkato
not know how to balance.

Since the mirror strategy is so easy to apply, it is very ségzicYou might think for a while that it will help in all Nim gaes,
but this is not so. We will need some fresh ideas even for 8-piin.

Problem 119, page 146

For the first move of the game take away one or two coins so aste ftwo separated rows containing the same number of coins
For example (as illustrated in Figuel) if there are 14 coins and we would remove the two middle csinas to produce two
separate games of Kayles with 6 coins in each game.

00000000000000,
000000 N000000,
O OO0 OCOCOO
O OO O OO

Figure 3.39: A sequence of moves in a game of Kayles.

Apply the Tweedledum-Tweedledee strategy (i.e., the mgimategy) to all subsequent moves. Whatever your oppaieas
to one side you respond with the same thing on the other silewih.

There is an odd thing about this strategy, apart from thetfedtwe must have the first move in order to apply it. We do not
know all possible balanced and unbalanced positions ange/eain win by controlling the flow of the game to visit only gasis
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that allow us to apply the mirror strategy. The starting fosiis always unbalanced, every move we make is a balancowgem
and every move our opponent makes is necessarily an unbajamove.

If you wish to apply this in practice, note that you will syrekin every time you start first, and that you may well win
occasionally when you start second. That makes the game fquidbrable to you. But the strategy is always the same and you
opponent may spot what you are doing. To avoid this try tordgghe symmetry a bit by using a variety of coins. Fig@ré0
shows the same sequence of moves, but here the coins amaadi¢his little slight-of-hand trick helps obscure whaghtihave
been an obvious strategy.

QNeEQoEN QNP
Q@ oPQ OQNEoC
©

Figure 3.40: The same sequence of moves in a game of Kayles.

®
@

Problem 120, page 146

The opening position in a game of Kayles where the coins aam@ed in a straight line is always unbalanced. Thus Plagan |
always win. If the coins are arranged in a circle then the firste must break the circle and the coins are (essentialyk toa
being arranged in a straight line.

Thus the opening position in circular Kayles is always be¢ghand so Player Il will win simply by waiting until the secbn
move and playing the usual Kayles strategy.
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Problem 121, page 147

It is easy to see thdtl, 2, 2) is unbalanced, because it leads directly to the balancatiqnog, 2,2) (the same as the 2—pile game
(2,2) which we saw was balanced). The gaftel, 2) is unbalanced for the same reason.

Problem 122, page 147

One argument is the working-backwards one. The positio8,3) is not far from the bottom of the game. The positions that
follow from here are
(1,0,3),(0,2,3), (1,1,3),(1,2,2), (1,2,1), and(1,2,0).

If all of these are unbalanced théh 2,3) must be balanced. If one of these is balanced ffien 3) is unbalanced. If we don'’t
know the status of one of these then do the same thing to tls@tquoto find out what is the situation.

Another argument is to show how we could respond to every rhgwair opponent in a way to produce a balanced position.
That proves that all of the moves directly from tfie2, 3) position must themselves be unbalanced.

Let us give the details by this method to show that the géin2 3) is balanced. This will give us an indication of what one
might do in order to show that a position is balanced. Note tiwnittle bit of knowledge we have already obtained simgxfi
our task considerably.

We must show that no matter what move our opponent makes frempdsition(1, 2, 3), we can find an answer which leaves
a balanced position. The chart below shows our answer to@able six allowable moves for our opponent.

Position after opponent’s move Position after our answe
(0,2,3) (0,2,2)
(1,1,3) (1,1,0)
(1,0,3) (1,0,1)
(1,2,2) 0,2,2)
1,2,1) (1,0,1)
(1,2,0) (1,1,0)

Figure 3.41: Positions in the ganig 2,3).
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Thus, no matter what our opponent did, we were able to makeva mibich left our opponent with a balanced position. We know
each of these positions is balanced because they are ala&ntito 2—pile Nim games of the forfm,n), and we have already
seen that every such position is balanced.

Problem 123, page 148

All of the games are balanced.

Problem 124, page 148

All of the games are unbalanced.

Problem 125, page 148

All of the games are unbalanced.

Problem 126, page 148

All of the games are unbalanced.

Problem 127, page 148

Problem127 carries the key to the whole structure of Nim. It will cerigibe worthwhile to one’s understanding of Nim to put
in whatever time is necessary to discover this key!

Problem 128, page 158

If the highest row with an odd number of 1's in it has one 1, ¢hwill be exactly one balancing move, and that move must be
made from that pile which corresponds to that column. If & traee one’s in it, there will be three possible moves torizaahe
position. One such move will be possible from each column.
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Problem 129, page 158

This game can be balanced in these three ways. Remove 3 fediinstipile or remove 7 from the second pile or remove 11 from
the third pile. While these are not obvious when the probleexpressed in decimal notion you should have little troifbeu
express the problem in binary.

Problem 130, page 158

The answer isi0. This is so because there are only three piles and there tthemaore than one balancing move from each pile.
This statement is correct since, if it were not, there wowddvio positions(a,b,c) and(a,b,d), both balanced, with c and d
different. But this would imply that a move from a balancedifion could result in another balanced position, an imibags.

Problem 131, page 159

The largest number number of balancing moves is 9.

Problem 132, page 159

The largest number number of balancing moves is 11.

Problem 133, page 159

Without computing anything it is clear that the position idalanced and that the only move will be to take most or athefttig
pile that contains 100000. That answers the question butmight want also to find out exactly how many to take.
Problem 134, page 159

Why is the Nim game
(136,72,48,40)
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unbalanced? Note that 13627 > 72. Thus if we were to convert this to a position in a game o#hyjirbits the top row for this
game has only one 1, and the game is unbalanced. A balancivg mast come from the pile with 136 sticks.
Generally
(really big not so bigsmaller still...)

makes it easy to spot which pile to choose and why the posgianbalanced.

Problem 135, page 159

Decline. If your opponent knows the strategy then you witkebglose. If you think your opponent is naive then start tiirig
one stick from the largest pile. If she plays a balancing ntbee she knows the strategy.

Another opening gambit is to offer politely that she shoutartsinstead. This appears very courteous since, in almbst a
games, it is an advantage to start. If she insists that youldtstart you can test her out this way: agree to start, but'ldhay
start, but let’'s make it more interesting” and quickly adduadh of sticks to form a new pile. Think for awhile before nrakihe
move: then remove all the sticks from the new pile and say ('Yoave.”

This is really a great joke. If she is unamused then you knasvishiully aware of the strategy, for you have immediately
turned her into player one starting the original balancedeya

Problem 136, page 159

Nice game and more interesting than Nim since there is monaph@table. It also appears to add a new element of strateg)
which increases the strategic interest.

But the deadly Nim strategy cannot be defeated by a playengadins he has collected. Each time a player takes his coins
and adds them to a pile in a balanced position, take thoss baick and add to your own collection of coins, thus returming
balanced position.

The game is a bit unusual for us in that, if neither player baog to this strategy, the game could go on forever. But if one
player adheres to the take-back strategy the game ends iiteanfimber of steps with a winner.
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Problem 137, page 162

To balance an unbalanced 4—marker game requiregapsbe made equal. To balance an unbalanced 2—pile Nim ganpédise
must be made equal.

The similarity between the strategies for the 4—marker gantethe 2—pile Nim game is this: the strategy in the first is to
make the gap betweehandB the same as the gap betweemandD. The strategy in the second is to make number of sticks in
each pile the same.

Let us write the balanced positions for the 3-marker gamésariorm

A-0=C-B.
This is more conveniently written as
A-1=C-B-1
since these two expressions actually measure the gap tharigus translates into
the gap betweeA and 0 = the gap between C and B

or
# of empty holes to the left & = # of empty holes betweed andB.

For 2—pile Nim, we can formulate the balanced positions as
# of sticks in the first pile= # of sticks in the second pile.

Thus, we hope to be able to use the strategy for 2—pile Nimvi® g a strategy for the 4—marker games. Let us see how tha
works.

A move in a balanced 4—marker game might be to m®we D. If B is moved, the gap betweehandB is reduced. 1D
is moved, the gap betwe&handD is reduced. We can restore the balance by moidray B, respectively, the same number of
holes that our opponent mov&dor D.

This is in perfect correspondence to balancing an unbatb2eepile Nim game. In this game our opponent takes sticks from
one of the two equal piles. Our answer is to take the same nuaofisécks from the other pile, thus restoring the balance.

The other possible move in the 4—marker game consists ofmgévor C. If Ais moved the gap betwedandB is increased
If C is moved the gap betwed&handD is increased This does not correspond to a move in Nim, because in Nimiteeo$ a
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pile must bereduced not increased. In that case, however, we can nBweD to restore the gap to its original size.
Thus, our strategy has two parts to it: if our opponent reslacgap, we reduce the other gap the same amount; this cardsspo
to Nim. If the opponent increases a gap, we reduce it the samera.

Problem 138, page 162

The answer to Problerh37 (for the 4—marker game) will help. The main starting poirthis equatiorA + B = C, rewritten as
A-0=C-B.
This shows that the two gaps between 0 Arehd betwee andC are to be the focus of the strategy.

Problem 139, page 162

For a 2-marker game there are two gaps: the gap between®amiithe gap betweehandB. Only the second gap is of interest
to us. The equatioB = A+ 1, rewritten as

B-—A=1
reveals that the balanced positions are the ones with tipatlgaed and, indeed, we do remember that the correct stretég

balance the position by completely closing that gap. Thisgsivalent to a position in a 1—pile Nim game in which the only
balancing move is to take at once all of the sticks from the. pil

Problem 140, page 162

Reread the material in this section until you fully undemstdt, and then work on Probleri¥0 without reading ahead to Sec-
tion 3.6.2which gives a full solution.
We were guided in the case of the 3—marker and 4—marker gayrtbe lkequations

A—-0=C-B andB—A=D-C.
These told us exactly which gaps to work on and suggested parison with a 2—pile Nim game. Now we need to attempt to

apply the same principle to the 5 and 6—marker games and ssmkarison to a 3—pile Nim game. Start by deciding on three
gaps that you will use in your strategy.
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Problem 141, page 166

The marker game with markers at
10, 15, 20, 25, 40, 50, 60 and 80

corresponds to the Nim game (4, 4, 9, 19).

Problem 142, page 166

The marker game with markers at
10, 15, 20, 25, 40, 50 and 60

corresponds to the 4—pile Nim game with g&ps4,14,9).

Problem 143, page 166

This corresponds to a 3—pile Nim game with the gap positiof84l 6). The only balancing move is to move frof8, 0, 6) to
(3,0,3). This corresponds to moving the marker at 27 down to 24.

Problem 144, page 166

While most of the markers are at the same position in Proldléfithe gaps are completely different and the game has very
different play. This marker game corresponds to a 3—pile ime with the gap position é,3,5).

Problem 145, page 166

This corresponds to a 4—pile Nim game with the gap positiof8dL 6,76). Without much thinking you should immediately
move the marker at 100 down a long way. How long?

Problem 146, page 166

This corresponds to a 5—pile Nim game.
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Problem 147, page 166

Problem147asks if an 8—marker unbalanced game could have more thaaddiay moves. The 8-marker unbalanced game can
be analyzed via the 4-pile Nim game. This game has at mos thiakancing moves (Why?) so the same is true of the 8-markel
game.

Problem 148, page 167

To find a winning strategy you may wish to follow the approaélirst comparing the strategies for Nim with Misére Nim for
simple games. For example, proceed as follows:

(a) Determine the position that forces the next player to losthemext move.

(b) Which positions, if any, are balanced when every pile hasstiok?

(c) Which positions, if any, are balanced when exactly one @kerore than one stick?

(d) Which positions are balanced when more than one pile has tin@neone stick?
Hint: Note the results ofb) and(c) and use the results of Nim.

(e) Describe a winning strategy for Misére Nim.

Try to use this outline to discover the strategy before cmecthe answer which now follows:
Our winning strategy for Misére Nim follows this suggestedlioe.

(a) When there is only one stick left, the next player must talked lose.

(b) When the number of piles is odd, the position is balanced. What number is even, it is unbalanced. (Check this.) Note
that this is the opposite of the situation in Nim.

(c) None! The position is unbalanced, since by taking stickenftbe big pile, leaving either one or no sticks in that pile,
depending on whether the number of piles is even or odd, adedigposition can be created. See (b).
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(d) and(e). Suppose more than one pile has two or more sticks.

1. If we can find a position such that any move that is made leadgosition that is unbalanced because of (b) or (c),
that position is balanced.

2. If not, we can try to postpone things to arrive at such atjppseventually. We can achieve this by following the Nim
strategy until we get to such a position!

Suppose we begin with a position that is balanced (in Nim)y Aove our opponent makes creates an unbalanced positiol
(in Nim). This cannot be a position with no piles with morernhane stick (because the case we are considering assumes mo
than one such pile). If the opponent’s move results in exawte pile with more than one stick, we apply part (c).

If the position obtained still has more than one pile with twvanore sticks, we rebalance as in Nim. Continuing this pgsce
we eventually arrive at a situation in which (b) or (c) apgplie

Thus the Nim and Misére Nim games have exactly the same lmlgasitions except when case (b) applies.

Problem 149, page 168

Although Nim has a very subtle strategy that required usamléhe binary system and compute sums of binary digits tthtegy
for Reverse Nim is quite easy.

We observe quickly that the balanced positions are thodeamiteven number of sticks in each pile. The final position of no
sticks satisfies the condition since zero is an even numbey. move from such a position leaves at least one pile with ah od
number of sticks. And by taking one stick from each pile withoald number of sticks, we have restored a position with &bkpi
having an even number.

Problem 150, page 168

Don'’t jump to the conclusion that the balanced positiongttaose with all piles odd. Verify that that won’t work
Does the term “reverse” in the title of this section suggesttang? If you think about that, you might see the answenotf
see Sectior3.8.1



216 CHAPTER 3. NIM

Problem 151, page 174

If there aren sticks in the pile (there is only one pile) then the only gosi in the game are=0,1,2,...,n. Certainlyg(0) = 0
andg(1) = 1. You can use induction to prove thgix) = x.

Problem 152, page 174

Let us useg(a, b, c) to denote the value of the Sprague-Grundy function for atjposia, b, c) in the game. There are 24 possible
positions in all in this particular game and we need to comg(d, b, c) for each.
Certainlyg(0,0,0) = 0. These positions all lead directly and only(®0, 0):
(0,0,1),(0,1,0), (1,0,0)
and so each of these must be assigned a value of 1. The pd§itR) leads only to
(0,0,0) and(0,0,1)
and sog(0,0,2) = 2 (must be different from 0 and 1). The positith 0, 3) leads only to
(0,0,0),(0,0,1) and(0,0,2)

and sog(0,0,3) = 3 (must be different from 0 and 1 and 2).

The position(1,1,0) (which we happen to know is balanced) leads onlylt®, 0) and (0, 1,0) both of which have g value
of 1. Thusg(1,1,0) = 0.

Continue in this way working from the end of the game backwafdote that we cannot determigél, 2, 3) until we know
all Sprague-Grundy values of all the positions

(0,2,3), (1,1,3), (1,0,3), (1,2,2), (1,2,1), and(1,2,0).
(We don't yet.) Then we would pick fag(1,2,3) the smallest nonnegative number that hasn’t been assignélueie positions.

While we may lose patience with this procedure it is ideallitedd to computer programming. Thus, in practice, comgutin
the Sprague-Grundy function for all positions in a reastnatzed game takes no time at all.
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Problem 153, page 174

First begin by computing the Sprague-Grundy function foumhber of positions in the game. Start at the lowest depthsvanki
up. This is rather tedious but will lead to an understandihfow this works. Figure 3.42 shows Depth and Sprague-Grundy
numbers for various positions in 2—pile Nim. Depth is defime8ection3.2.6

Position(m,n) | Depth || m@&n Position(m,n) | Depth || m@&n
(0,0) 0 0 (2,4) 6 6
(1,0) 1 1 (5,1) 6 4
(0,1) 1 1 (1,5) 6 4
(1,1) 2 0 (6,0) 6 6
(2,0) 2 2 (0,6) 6 6
0,2) 2 2 (4,3) 7 7
(2,1) 3 3 (3,4) 7 7
(1,2) 3 3 (5.2) 7 7
(3,0) 3 3 (2,5) 7 7
(2,2) 4 0 (6,1) 7 7
(3,1) 4 2 (1,6) 7 7
(1,3) 4 2 (7,0) 7 7
(3,2) 5 1 0,7) 7 7
(4,1) 5 5 (4,9 8 0
(1,4) 5 5 (3,5) 8 6
(5,0) 5 5 (5,3) 8 6
(0,5) 5 5 (6,2) 8 4
(3,3) 6 0 (2,6) 8 4
(4,2) 6 6 (7,1) 8 6

Figure 3.42: Sprague-Grundy numbers for 2—pile Nim.

The table shows our computations for the Sprague-Grundybetsrup to a few at depth 8. Let us illustrate the method by
showing that
263=1
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The Grundy number fof2,3) is not completely easy to compute, but it is a straightfodMeomputation. Just look at all the
positions next afte(2, 3):
(2,3) ~ (2,2), (2,1), (2,0), (1,3), (0,3)
and the five Grundy numbers for these positions are
0322 3
as we have already computed since they are at lower deptle igame. The smallest number that does not appear is 1 s
Grundy(2,3) = 1 and consequently, as
Grundy(p1, p2) = 1D P2

holds in our notation, then we can writet23 = 1.
Such a “sum” may at first appear to be rather mysterious perlogp not in binary:

s (3)e((1)-(2)

Let us pick a few more mysterious sums from the table andaljsjplem in binary:

SERBHE
o (3)-(1)-()

Try a few more and you will doubtless see the pattern which\lime-sum section which follows now explains. Try to verbaliz
what you have observed before reading on to a full descripifavhat a Nim sum is.

and

Problem 154, page 174

The method we use is the same method that will work to proveSgrague-Grundy theorem in Sectidrl0.4 It is a good
warm-up to that theorem to try to see how this works here.
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At depth zero the statement is evidently true since it anonty to the fact that the Grundy number for the end position
(0,0) in 2—pile Nim is exactly @ 0 = 0. Thus it is only the induction step that takes us some teoubl

Suppose that the positidips, p2) is at a depth for which we know that, for all positiofrs, n) at any lower depth, the Grundy
number for(m,n) in Nim is exactlyma n where this is the Nim-sum (i.e., binary addition withoutrgar Our proof below uses
the assumption that we already know this is true at any lowpttd

Let

b= p1®p2
In order for us to prove that Grundgs, p2) = b we must show that both of these statements are true:
1. For every non-negative integek b, there is a follower of p1, p2) in Nim that has Grundy value.

2. No follower of(py, p2) has the Grundy value.

Then the Grundy value &ps, p2), being the smallest value not assumed by one of its followetst beb.
To show (1), led = a® b and letk be the number of digits in the binary expansiordp§o that

2l<d <2
andd has a 1 bit in the kth position in the binary expansion.

We have to remember now théi= a$ b and remember too how the binary without carry operatioworks. Sincea< b, b
must have a 1 in the kth position andnust have a 0 there. Since

b=p1®p2
we see thap; [or perhapsp,] would have to have the property that the binary expansiom ¢br perhapsp,] has a 1 in the kth

position.
Suppose for simplicity that it is the first case. Then

d® p1 < pr.
Define
pr=d®pr
The move from(ps, p2) to (pj, p2) is a legal move in 2—pile Nim and
piop=dopdp=ddb=(a®b)eb=asd (beb)=a
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We have produced the move
(P1, P2) ~~ (P1, P2)
for which
P P2 = a.
Since this position is at a lower depth we know (by our inductiypothesis) that
Grundy(py, p2) = p1 & p2=a
Thus the follower(p}, p2) in Nim has a Grundy numbex. This verifies our first statement.
Finally, to show (2), suppose to the contrary ttgg, p2) has a follower with the same Grundy valbeWe can suppose that
this involves removing sticks from the first pile. (The argmhwould be similar if it involved the second pile.)
That is, we suppose thap}, p2) is a follower of(py, p2) and that
Grundy(py, p2) = P1® P2 = P1® P2
(Here we have again used our induction hypothesis sinceaigqn (p, p2) is at a lower depth.) Just like in ordinary arithmetic
(using+ instead of as here@) we can cancel the two identical terms in the equation
PLO P2 = PpL® P2
and conclude that
P1L= P
But this is impossible since
p1> Py
since we have removed some sticks from the first pile. Thafpbetes the proof at the induction step and so the statemesit mu
be true at all depths.

Problem 156, page 180
We simply note tham& n= 0 if and only ifm=n.
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Problem 157, page 180

Since 1230 3= (192)®3=3®3 =0t follows that the positior{1, 2, 3) is balanced. The other computation,
20304=(263)®4=194=5#0,
shows that2,3,4) is not.

Problem 158, page 180

We have computed the Grundy number for this position to be
20304=(203)04=104="5.

We know that 555 =0 so

(562)®394=0
and

26 (305 ®4=0
and

2030 (495)=0.
Check each of these numbers in the table:

(5®2)=7and(3®5) =6 and(4$5) =1

The only one that helps is the last one which tells us to reduespile with 4 down to 1 to change this position to a balanced
position. We could also increase the pile with 2 up to 7 or tlkewith 3 up to 6 but the rules of Nim don't allow us to add stck
(That would be playing the game backwards, returning to @igue balanced position.)
Problem 159, page 181

13¢12¢8=09.
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Problem 160, page 181
Set up the problem this way:

38 = 1 0 0 1 1 O
& x = 2?2 2?2 2?2 2 2?2 ?
25 = 1 1 0 0 1

and remember to perform the binary addition without carfga@y x is 111111 in binary. (What'’s that in decimal notation?)

Problem 161, page 181

You can easily check thaite n= 0 and so
nendn=(n&n)é&n=0dn=n.
In general, them&ndnd --- dnis either 0 om depending on whether you are summing an even or odd numbemas$t

Problem 162, page 181
The associative rule
(men)&p=me (ne p)
is stated in the lemma. The zero element of the group is G,isate
(me0)=0e6m=0

and every element has an inverse for the operatiensince

nen=0.
Thus this is a group, a commutative group in fact simee n = n$ mis always true.



3.11. ANSWERS TO PROBLEMS 223

Problem 163, page 182
It is certainly true that
(3,10,12) — (3®5,10,12)
(3,10,12) — (3,104 5,12
and
(3,10,12) — (3,10,12%5).

produce balanced positions but only one of these is a vaiw iove. We have tsubtractsticks from one of the piles and two
of these suggestiorexdd sticks.

Problem 164, page 182
It is certainly true that
(3,10,12) — (3,10,[3®10))
(3,10,12) — (3,[3@12,12)
and
(3,10,12) — ([10412],10,12)

produce balanced positions but only one of these is a vaiw iove. We have tsubtractsticks from one of the piles and two
of these suggestiorexdd sticks.
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Chapter 4

Links

Figure4.1shows three interlinked circles arranged in such a way tiaild any one of the three circles be cut and removed, the
remaining two circles would become separated. This arraegéhas been known for many centuries and, because of theemum

3 and the special nature of the linking, has been used foowssymbolic representations.
Some suggest that an image of God as three interlaced rigggdd Dante Alighieri (1265-1321). In hidivina Commedia

he describes this visioh:

Ne la profonda e chiara sussistenza
de I'alto lume parvermi tre giri

i tre colori e d’'una contenenza,;

e I'un da l'altro come iri da iri

parea reflesso, €'l terzo parea foco
che quinci e quindi igualmente si spiri.
—[Dante,Paradisq 833, 115-120]

Iwithin the profound and shining subsistence of the lofthtigppeared to me three circles of three colors and one nualgniand one seemed reflected
by the other, as rainbow by rainbow and the third seemed feathed forth equally from the one and the other.

225
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Figure 4.1: Borromean rings (three interlinked circles).

On a more profane level the name that is most often attachtbe@$e three interlocked circles
arises from the Borromeo family of 16th century Milan, whallsich a figure on their coat-of- =
arms. Many of our readers might prefer to call thBsdlantine ringssince the three interlocked ' i
rings have appeared since 1879 as a company logo for BakkeAle. The famous Ballantine i
three ring symbol (Purity, Body, Flavor) was, according aonpany folklore, inspired by the wet ||
rings left on a table as Peter Ballantine consumed his beer.

In this chapter we consider a variety of problems relatetlitodonstruction. Itis easy enough |
to design three circles that interlink in the way the Borrameings do. Could one do the same
with four or five circles? Or could we arrange for other kindi$irking properties, say five rings | Hi8
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linked together that do not fully separate unless two (arp) tave cut away?

Our discovery process in this task is similar in many waysht frocess that we followed
in our Tiling chapter. As before we don’t see immediately hemy of the standard methods of
arithmetic, algebra, or geometry could be brought to beauah problems. Once again we need
to get afeelfor the problem by experimenting with a few examples.

4.1 Linking circles

Look at the two pairs of circles in Figure3. Our sketch is meant to suggest that they are curves in tlhmesndions.

A B C D

Figure 4.3: Four circles.

The picture displays the fact that the circleandB are not linked together while the circl€sandD are. This means th&t
andD cannot be separated (without cutting or tearing). We areggtm consider a certain class of problems involving the ways
in which three-dimensional curves can be linked. The cunezsi not be circles.
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4.1.1 Simple, closed curves

Before we state the first problem, we should make sure we agreéhat a curve is or, more precisely, on what kinds of curves

we shall be considering.
All of our curves are placed ithree dimensionand all aresimpleandclosedin the sense we now define.

Consider the five curves sketched in Figdré

23 8LN

Figure 4.4: Simple curves, closed curves or not?

A curve is calledsimpleif it does not cross itself. That means that in tracing outdtieve (starting at any point) no point
except, possibly, the beginning and end of the tracing is@mered more than once. It is calleldsedif it “ends where it starts.”

Thus A is simple but not closedB is neither simple nor closed; is closed but not simple anBd and E are simple and
closed. CurveC is depicted in two dimensions and has a crossing point. Chrigintended to be three-dimensional. Part of
the curve—the part that appears as a break—Ilies below therdaart that “appears to cross” the broken part. Cl\desnot
cross itself.

The curves that are suitable for the discussion that followst be both simple and closed. For that reason, we shalyalwa
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assume (in this chapter) that when we use the ®rmewe mean “simple, closed curve.” All of our curves are givelthiree-
dimensions.

4.1.2 Shoelace model

You might find it desirable to make a model with which to expemt. Such models will be of use throughout this chapter so i
is a good idea to make such a model now. This can be done inetyafiways. For example, using the outer edges of paper
plates or wire, construct several rings to represent theesurTwo or three of these rings should be pre-cut in such atkaty
they can be easily removed from a configuration without disig the rest of the configuration. We refer to this as “cgtaway

a curve.” You will also need something more flexible for youperimentation. A long shoelace or ribbon will do. Figuré&
showg some equipment that might be used.

4.1.3 Linking three curves

Do you think it is possible to construct three curves thatliaied in such a way that, if we cut away one of the three curves
the remaining two will remain linked? By this we mean thatmatter which of the three curvese cut away, the remaining two
cannotbe separated without cutting or tearing. (Pulling is alhtiy

Here is a different but related question:

Is it possible for three curves to be linked together in sualaythat no curve can be separated from the configuration
without cutting or tearing, but if one is cut away, the reniajntwo can be separated?

As before, we mean by this thab matter which of the threis cut away, the remaining twoan be separated. Thus, in a
sense, the “break point” is at two curves: the configuratioantys together” as originally constructed, but removal single
curve causes the remaining configuration to “fall apart.”

The Borromean rings of Figure 1 give a positive answer to the latter question. Check thatreid.1 does answer the second
guestion but not the first.

2Photo courtesy of Curry Sawyer.
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Figure 4.5: Equipment for making models.

Problem 165 Is it possible to construct three curves that are linked icksa way that if we cut away any one of the three curves,
the remaining two will remain linked? Answer O

Problem 166 Without looking again at Figurél.1, describe three curves linked together in such a way thatureeccan be

separated from the configuration without cutting or tearmgd, if one is cut away, the remaining two can be separated?
Answer O

4.1.4 3-1 and 3-2 configurations

Let us call the configuration that we constructed in Probled a 3-1 configuration. The “3” refers to the fact that there are
three curves; the “1” indicates that thesaking points at 1—the configuration can't be separated without cutbinggaring until
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we get down to one curve.

We call the second configuration (the Borromean rings) a &Aiguration because there are three curves linked in such ¢
way that the configuration hangs together, but removal ofagyof the three curves by cutting causes the other two ctoves
fall apart with no more than pull in the appropriate place. The breaking point is at 2.

4.1.5 A 4-3 configuration

What should we mean by a 4—3 configuration? Well, that would benfiguration of four curves linked together in such a way
that they hang together but cutting away one of the curvesesathe remaining three to fall apart. And this is true no enatt
which of the four curves is cut away. In short the breakingpi at three curves—any three.

Problem 167 Do you think it is possible to construct a 4-3 configuration? Answer O

4.1.6 Notso easy?

Experience has shown that many students have difficultyair flist attempts to construct a 4—-3 configuration. As befare
may as well begin by placing three separated curves nearataeh This represents the initial setup. We then try to weav
fourth curve (the shoelace) through them in order to consthe 4—-3 configuration. Then, no matter how this is done, aveat
least be assured that removal of the shoelace will causethaiming three curves to fall apart. (They are already sépdy)

But then the trouble begins. Unless we have a very usable lirmdéree or four hands, or a friend to hold part of the model
while we do our weaving, we wind up with knots in the shoeldlse,model falling on the floor or other such problems.

And to make things worse, when we finally get things togethaimost works. But then we try to cut away a curve to “check
it out” and see it does not quite work. A little change mightildut by now we forgot what we did to make it almost work.
Frustrating. We know. We tried and it happened to us.

There must be a better way. Even if we had a good model, foutshanfriend to help, and we solved this problem what will
we do when we get to more complicated linking problems?
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4.1.7 Finding the right notation

Let’s return to the 3—2 configuration. We might observe thatomnstruction method solved the problem. We could makedemo
that worked, but the language was awkward and communicataandifficult. We had to talk about the “curve on the right,dan
the “remaining curve.” And we drew a picture which suggestedds such as the following:

“go through the curve on the left from top to bottom, then theve on the right from top to bottom, then the curve
on the left from bottom to top, then the curve on the right frioottom to top and then return to the starting point.”

(We might add “Do not passo and do not collect $200.")
We could simplify things considerably with a bit nbtation If we label the curve on the lef and the curve on the rigl,
our description could be writteABA’BP.
Simple, isn’t it? After working a bit with the notation you Wind that it has made things quite easy. The notation caostai
all essential ingredients. The expression
ABABP
is read from left to right and translates into
“Go throughA, thenB, thenA backwards, theB backwards.”

(The fact that we ended where we started is understood arghtieathetical reference to the gamevisnopoly™ is of course
unnecessary.)

All we needed was a labeling of the curves (other than thelabepand our notation provides a “recipe” or a set of diceti
for the construction. There are, of course, two things weaaseiming tacitly: we are assuming the first curves havedlreaen
labeled and placed appropriately, and we are assumingrthgtsising through a given curve there are two directions wé&lco
use, one positive and one negative. Thus the notaiand A° represent passing througk) but in the first case the shoelace
passes througA in the direction we called positive and on the second it wakeéopposite direction.

Which direction we designate as positive (for each curvénisaterial, but once we have chosen it, it is essential theat w
remain consistent. We shall answer Proble#i soon. If you were unable to solve it, try it again, but first He problems below.

Pulling is allowed, but remember, the weaving meist where it started and the shoelace is assumed solidly attathes
“two ends.” (The quotation marks are there because the at®éd just a physical model of the concept of simple closedecu
and we are not really thinking of such a curve as haengsany more than we do of a rubber band or a circle.)
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Problem 168 Let A and B be separated curves. Weave your shoelace thrivegburves A and B according to each of the
descriptions below:

BABPAP, APBAR, AAPBB®, AAAPAP, and ABEBAP.
Provide a pencil sketch of the result (if you can) as well ds¥ang the instructions on your physical model. (This pesb and
the next two should be done together. Use your model.) Answer O
Problem 169 Which of the descriptions in Probleh®8lead to a 3—2 configuration? Answer O

Problem 170 Which of the descriptions in Problef®8lead to a configuration that can be separated without cuttntgearing.
Answer O

Problem 171 Study the results of Problefr68, Problem169, and Probleml70. What patterns do you notice in those which give
rise to 3—2 configurations? Do you notice any symmetries. @onotice anydelayed undoingsf things already done? Try to
articulate for yourself what makes the 3—2 configuration kvor Answer O

Figure 4.6: Cole and Eva with model.
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Problem 172 Figure 4.6shows Cole and Eva with a model of a configuration. |s this dtlesoconfigurations we have discussed?
Answer O

Problem 173 Construct a 4-3 configuration. Answer O

4.2 Algebraic systems

Perhaps you have noticed similarities between our notaiahthings you remember from arithmetic or algebra. Firsdlhf
an expression such &8 is reminiscent of the operation of multiplication. Of coeirén our settingA andB do not represent
numbers. Far from it. And writin@ next toA doesn’t mean wenultiply Aby B. That wouldn’t make sense in our setting.

To get a better idea of what we mean when we say that our noteticeminiscent of algebra, we shall undertake a rather
long-winded digression.

An algebraic systensonsists of a collection of objects (e.g., numbers), one areroperations (e.g., addition or multiplica-
tion), and some rules or axioms governing the ways in whieséhobjects can be combined. Familiar to us from the rules of
arithmetic are the commutative and associative laws fotiplightion: whatever number&, B andC we choose, it will always
be true thaAB = BA and that(AB)C = A(BC). For example % 3 = 3 x 2 since both equal 6 and

(2x3)x4=2x(3x4)

since both equal 24. This is a theorem: technically2and 3x 2 mean two different things, but they can be proved to be equal
Similarly (2 x 3) x 4 and 2x (3 x 4) mean two different things but they can be proved to be equaldmbers and the operation
of multiplication. It is rules similar to these that we aréeirested in when discussing algebraic systems. Indeedmie algebraic
systems, things look pretty much the same as they do in axdalgebra or arithmetic.

4.2.1 Some familiar algebraic systems
Here are some examples of algebraic systems with which ygquomaay not be familiar.

1. The objects arpolynomials They can be added or multiplied and the laws of combinati@ &pply to numbers apply
here as well. For example
DC4x+1+[3x—2] =x*+4x—1
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and
P+ x+1 x[3x—2 =3+ +x—2.

2. The objects ar@unctions They, too, can be added or multiplied and the laws apply.ekamplex? + sinx is obtained by
adding the function? to the function six. Furthermorex? + sinx = sinx+ x2.

3. The objects armatricesof fixed dimension. Addition and multiplication are definad the commutative law of multipli-
cation does not hold. For example

1 0O 0 1 1 1 11
1 2 3|+ z O =l | = 3 2 2
-1 0 5 -2 0 -1 -3 0 4

4. The objects areectors Again addition can be defined in a natural way and the usuel teold with respect to the operation
of addition. For example

(1,2,3) + (5,6,—3) = (6,8,0).

4.2.2 Linking and algebraic systems

In the setting of our linking problems, each configurationegirise to an algebraic system. The configuration issthging
set-up for example, two separated curvésindB. Eachshoelacagives rise to ambjectof this algebraic system via ifsrmula
The formula is just a string of the letters (in this casandB) that corresponds to the way the shoelace links the curvi®in
starting set-up. We discuss this in more detail later in¢hipter in Sectiod.9.2
For example, the expression
ABA’BB

would represent the curve that goes throdgtihenB, thenA backwards then twice throudB and then returns to the starting
point. Theoperationfor the system can be describeda object of the system following anothés an example, iX = AB
andY = APBB, thenXY = ABA’BB.

In order to create an algebraic system we must do several tmogs: we must decide what it means for two of our objects
to beequaland we must determine what the basiws of combinatiorare.
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4.2.3 When are two objects equal?

What should it mean for two objects to bgual? This does not mean that they are the exact same expressgpdihds on the
algebraic system to interpret equality. For example in tementary theory of fractions/2 and 24 and 1734 are defined to be
equal, even though they are not identical expressions.

Well, for our purposes in the linking problems, it would beural to define equality in such a way that two objects are lequa
if and only if they have exactly the same linking propertiesr example,

AAP. BBP, APA, BPB, AB°BA°, andAAAAAPAP
all are different expressions for the shoelace which linkisherA nor B. That is, an appropriate pull on the shoelace will set it
free from the curved andB. Similarly,
A, ABB’, AAPA, andBAA’BPA

all represent the same linking properties: a curve thatfféte goes through and returns home.

Problem 174 Interpret, for this problem, A and B as positive numbers antdrpret £ and B’ to be the reciprocald /A and
1/B. Compute each of the expressions

AAP. BBP, APA. BPB, AB°BAP, and AAARAPAP.
Answer O

Problem 175 Under the same interpretation as in Problém4 compute each of the expressions
A, ABP, AAA, and BAABPA.
Answer O

4.2.4 Inverse notation

For numbers we wouldn’t writé? for the reciprocal ofA. We would writeA—1. ThusAA 1 = A-1A =1 for numbers; e.g.,
5x51=51x5=1. This suggests that we should use the same notation foirdimg instruction to go backwards. This
suggests, too, that we should use the symbol 1, not for thévauwne, but for any curve that doesn't link eithenr B. Our
notation becomes even more reminiscent of algebra.
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We would see quickly, for example, that in our setting
AAL ABB AL or AlAAATL
are all equal to 1. It would also be true, just as in ordinarharetic, that
IA=Al=A

(If a curve doesn't link anything and then links in effect it has linked onhA).

Thus we shall decide on the more natural algebraic notaiiohto represent the instruction to go throughbackwards.
We can then use our elementary skills in algebra to help u& wot the effect of such complicated expressions as we saw in
Probleml174and Problenl75 Those expressions now assume the simpler and more fafoilar

AAL BB! AlA B7!B, AB!BAL, andAAAAIA AT

all of which reduce easily to 1 and
A, ABB !, AA"1A, andBAAB~IA

all of which reduce easily té.

4.2.5 The laws of combination
We can now easily verify that
e The commutative lavfails: ABandBAare, in general, different.
e The associative law is validA(BC) = (AB)C) is always true.
You can use your models to check these facts, or you can jestsgnple arguments to verify this. For example, since

ABA 1B

gives rise to the 3—2 configuration while
AA BB 1=1

we see the commutative law fails. On the other ha&C) represents going through then througiB andC, then home. That
has exactly the same effect as the link{#dB)C.
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Problem 176 Use your model to verify that
ABA B+ 1.

(The commutative law does not hold.) O

4.2.6 Applying our algebra to linking problems

Where does all this get us? For one thing, it allows us in sasesto check the linking effect algebraically without refee to
a picture or model. For example, we can reduce the expression

ABA BB 'AA1B
algebraically as follows
ABA BB !AA1B=ABA 111B = ABA 1B
Thus, in effect, our shoelace has gone through A, BigthenA backwards, theB. We can reduce this no further.

Cutting away But there is something even more useful contained in oubadge system. Our algebraic system is particularly
useful when it comes toutting awayone of the circles. Consider the expression

ABA B L,
which we saw gave rise to the 3—2 configuration when appliggvtoseparated circles. What happens when we cut away the

circle A? We saw that the shoelace d@Bevere not linked.
But we can tell thigust by inspectinghe expression

ABA 1B 1,
How is cutting awayA reflected in the expressiohBA 1B~1? If Ais cut away, then we in effect have a netarting set upthe
one circle,B. Where the shoelace originally went throujlis now an empty space.
Simply remove the symbd\ (andA—1) whenever it appears in the expressiBA 'B~1. We arrive at the expressidB !
which of course equals 1, a curve that links nothing.

What we have just seen is an essential step in our attemphstroot configurations exhibiting certain linking propest To
make sure we understand it, use your model to answer the rabem where one circle has been cut away.
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Problem 177 Start with three separated circles A, B and C. What happensnw is cut away from the expressions ABC,
ABCA 1B-1Cc-1 and ABA1B 1. Answer 0

4.3 Return to the 4-3 configuration

Now we return to the 4—-3 configuration. We begin with threeasaigd circleg\, B andC. We wish to wind our shoelace through
A, BandC in such a way that the configuration hangs together, but rehudwne of the curves causes the remaining three curves
to fall apart. This must be true no matter which of the curves@move.

Translated into our algebraic setting, we seek an expmeseimlving the lettersA, B, andC that does not reduce to an
expression with fewer letters, but removal of a single fatgises the expression to reduce to 1.

Before trying to achieve this, observe that for the 3—2 caméition, the expressioABA'B~! does not reduce, but indeed
removal of eitherA or B causes the resulting expression to collapse to 1.

4.3.1 Solving the 4-3 configuration

There are a number of ways of achieving the 4-3 configurati@mne is one of them, which you may have discovered
ABA B icBaB A Iic!?
Try it on your model, making sure to avolishots.Observe, removal oA results in the expression

BB cBBlcl=1cict=ccl=1
The same is true B is removed. IfC is removed, we obtain

ABA B 1BAB Al = ABA 11AB AT

=ABIB A l=ABB A l=AlAl=AAT=1

Undoing If we understand the algebraic model, this last computatam be greatly simplified. We must observe only that

removal ofC causes successieellapses from inside to outside.ook at the expression for the 4-3 configuration carefullgeae
what'’s involved. Each action isndonea little later. ForA andB, the undoing is postponed only one step, budtris postponed
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several steps. Let’s see why that works. Hidden in the exfmess anothetundoing. The entire expression
ABA 1B71
is undone by the expression
BAB A !
because
(ABA'B™1) (BAB'A ) = 1.
In our algebraic notation this means that
(ABA 1B 1) = (BAB A Y).
Observe that to achieve this, we have undone each lid8iA 1B~ but in the reverse order. It's like putting on your socks
and shoes. To undo that action, you undo each step but intbesesorder, you first take off your shoes and then your sdgks.

at least, we do. The same is true for any linking. To undo &t th to find an expression for the inverse, you undo each liutk b
in the reverse order.

Problem 178 Check each of these statements on your model:
1

(ABCB) "=BC !B Al and (ABY) '=BAL
0
Problem 179 Compare the expressions for the shoelace in the 3—2 and 4¥Rjomtions:
e The 3-2:ABA" 1B L.
e The 4-3:ABA'B~CBAB'A-lC! = (ABA'B-1)C(ABAB1)~ic L
Answer O

Problem 180 Construct a 5—-4 configuration. Answer O
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4.4 Constructing a 5—4 configuration

Once we understand what makes the construction of the 44{&yaomtion work, we find the problem of constructing a 5-4
configuration a bit less challenging. We begin with four safed circles and label the B, C, andD. We now wish to weave
the fifth curve through these circles in an appropriate wag.kbw by now that we must undo each action at a later time. Jus
how much later this should be might now be apparent.

4.4.1 The plan
In case it is not yet entirely clear, consider the followingrp

e For a 3-2 configuration, begin with two separated cirélesndB and this expression for the last curve

ABA 11

e For a 4-3 configuration, begin with three separated cimk|d andC and this expression for the last curve
ABA1B-cBAB A lc 1,
Noting, as we did before, that the expression for the foutttve in the 4-3 configuration can be written in the form

XCX-1c1, where
X =ABA 11

we are naturally led to try the formula
yDy D

for the fifth curve of the 5—4 configuration, with
Y =ABA B 'cBAB A IC?!

This becomes
ABA 1B-icBaB A cDcaBA B Ic1BAB A 1D L.
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4.4.2 \Verification

To verify that our proposed solution
ABA1B-cBAB A lc'DcABA B IC 1BAB A D! (4.1)
works we must check these two things:

e The entire configuration hangs together.
e The removal of any one of the five curves causes the remainings to fall apart.

That the configuration hangs together is probably clear by. néou can check it with a model, but you can see it more
easily from the algebraic model. No reduction is possiblth@algebraic expressiod.(). This is because the only admissible
simplifications allowable are to replace an expression ss¢hX ! by | and to therdrop the 1, and no such expression appears
in (4.1).

To check that removal of any one of the curves causes the mérgaiurves to fall apart, we must verify that removal of a
single letter whenever it appears causes the entire expnessreduce to 1. We do this for the let#&iand leave it to you to verify
that this happens when the lett&®r C or D are removed instead & Removal ofA leads to the expression

BB lcBe Ic bceB ic BB D!
—1cic pcic tibt=ccpccip?
—1D1D 1=DD 1=1.

Do you think you could have constructed the 5-4 configuratisimg only trial and error on your model? Note that the
shoelacehad to go through the curves 22 times in all. Or perhaps yond@usimpler solution.

4.4.3 How about a 6-5 configuration?

Suppose we now wanted to construct a 6-5 configuration. Daesotution of the 5—4 configuration lead us on to more compli-
cated problems?
The pattern is probably clear by now, but the notation ismgtiather out of hand. Note, for example, that the
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e 3-2 configuration required 4 winds by the shoelace.
e the 4-3 configuration required |0 winds by the shoelace.
e the 5—4 configuration required 22 winds by the shoelace.

A bit of reflection would show that the 6-5 configuration woudjuire 46 winds by the shoelace. Some simplification of
notation is necessary, or at least desirable, here.
We note that each of the three configurations we have comstrigo far is of the form

uvu-tvt
whereU is an expression involving, perhaps, several winds\anepresents a single wind. For example, in the 4—3 configurati
U=ABA 1B
and
V =C.

This suggests our new notation.

4.4.4 Improving our notation again

Let us introduce some short-hand notationJ landV are any expressions involving several letters (such, & C, D, E, etc.),
let us write(U,V) to represent the expression
(U,V)=Uvuv1
Thus forU = ABA1B~1 andV = C the expressioriU,V) becomes
(U,V) = (ABA B} C(ABA1BY) "C?
— ABA B~ IcBAaB A ICc L.
This gives us a compact notation.
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Problem 181 Verify that, in this notation, the fifth curve for the 5—4 cgofation becomes
(((A,B),C),D).

O
Problem 182 Write the sixth curve of the 6-5 configuration in the compaihf Answer O
Problem 183 Show that if A= 1in the expressioit(A,B),C), then
((AB),C)=1
Answer O
Problem 184 Show that if B= 1 in the expressioit(A,B),C), then
((AB),C)=1
O
Problem 185 Show that if C= 1 in the expressioti(A,B),C), then
((AB),C)=1
O

45 Commutators

The expressioriA, B) has a name in the study of algebra. It is calleddbmmutatorof A andB. More generally, iX andY are
any expressions in several letters, tti#nY) is called thecommutatorof X andY. For instance, if

X = ABA 181

andY = Cthen
(X,Y)=xyxy-t=aBa B cBAaB A iC?
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which we saw gives the fourth curve in the 4-3 configuratidnc&
ABA1B~1= (A B),

the expressiotiX,Y) above equal§(A,B),C). This is a commutator, one of whose terms is itself a comroutsYe call such an
expression @aompound commutatoBecause of what will follow shortly, it is important to undtand this commutator notation.
As practice with the notation, do each of the following conapions before proceeding further.

Problem 186 Show that
1. ((A B),A—l) = ABA 1B-1A-1BAB!
2. (AL AY),B)=1.

3. ((A)1),C),D) =1
Answer O

Problem 187 To see the importance of putting in all commas and parenthiesthe commutator notation, verify that in general
1. (AB) # (A,B).
2. (AB)"1#£ (A B)L.

3. (AB,C) # (A,B)C # ((A,B),C).
O

Problem 188 One reason thatX,Y) is called the commutator of X and Y is that XYY X if and only if(X,Y) = 1. Prove
this. Answer O
4.6 Moving on.

So far, we have seen how to construct the 3-2, 4-3, 5-4 and @ffyerations. All of these are configurations of the type
(n+1)-n; i.e., the breaking point occurs when a single curve is resddrom the configuration.
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What if we want the breaking point to occur somewhat later? éxample, how could we construct a 4-2 configuration?
First, we must be sure we understand what a 4—2 configuratidhdonsists of four curves linked together in such a way e
entire configuration hangs together, that removal of a sioglve causes the remaining three to hang together, butatmica
second curve causes the remaining two to fall apart.

Before embarking on the construction of a 4—2 configuratietns pause for a moment to take stock of where we are.

4.6.1 Where we are.

After some trial and error with our models we discovered hmadnstruct the 3—2 configuration. Perhaps we were also ssftte
in constructing the 4—3 configuration by this method. Peshag. In any case things quickly became too complex to relyiah
and error and on our simple model. We arrived very naturdlbnaalgebraic formulation of our problems.

It amounted to beginning with an appropriate placement offiost few curves and then writing down an expression for the
last curve. This expression had to link all the existing esrand had to have the property that removal of a single ledi¢sed
the entire expression to reduce to 1. After a while, we savath@ntage of compact notation, and we introduced the idea of
commutator. All this allowed us to see the structure of thefigoirations in an algebraic setting. There were severalamgwepts,
all of which evolved naturally:

e Algebraic expressions for the last curve.
e How to simplify such algebraic expressions, using ideagssigd from elementary algebra.
e The idea of a commutator and the natural extension to a contpcommutator.

By successive compoundings of the commutator, we were aldertstruct more complicated configurations.
We need only one more idea to show us the way to constructipgafiguration we wish. This idea will arise in connection
with the 4-2 configuration. It will become clear a bit later.

4.6.2 Constructing a 4-2 configuration.

Let’'s get started with the construction of a 4-2 configuratibirst of all, what do we start with? Since the breaking p@n2,”
we may as well begin with two separated circheandB. This way, when the two new curves that we shall add are redyave
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will end up with the two separated curvAsandB that we started with.

Now what? That is, how should the third curve be woven throligimdB?

Before attempting Problerh89 and Problenil90try to determine what concepts are involved. Whether or oot gbtain
solutions, check our answer. Much of the reasoning in thoserars will be needed in constructing the configurationsfiiw
the 4-2 configuration.

Problem 189 What expression should represent the third curve C? Answer O
Problem 190 What expression should represent the fourth curve, D, id##configuration? Answer O

Problem 191 Compare the two solutions

ABCA B IC?!
and

(AB)(A.C)(B,C).

How many winds does each require? Would either of these meti®useful for obtaining other configurations such as tte 5—
or 5-3 configuration? Answer O

4.6.3 Constructing 5-2 and 6—2 configurations.
Let us try to imitate the two methods we used for the 4—-2 conditipn to construct a 5—2 configuration.

Problem 192 Construct a 5-2 configuration. Begin with two separated esr® and B and determine formulae for the remaining
curvesC,Dand E. Answer O

Problem 193 Construct a 6—2 configuration. Use the method that startsvitff ABCD. . .. Answer O

Problem 194 Construct a 6—2 configuration. Use the method that startaviff (A, B)(A,C)(A,D).... Answer O
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4.7 Some more constructions.

What about the 5-3 configuration? How can we use what we hawedsl learned? How do we begin? The last question is, of
course, easy to answer. Since the break point is “3,” we lmeginwith three separated curve&; B andC.
Arguing as before, we want our fourth curve to wind througsththree curves in such a way as to form a 4—3 configuration

Problem 195 Now what? Answer O

4.8 The general construction

We are now ready to understand the general constructiorar@efoceeding to that, construct each of the configurati@hmw.
Do this by indicating how many separated curves start thegzand then giving the expression for the remaining custasng
what the result is after each curve is added.

For example, the following format for the 6—4 configurati@ncerve as a model. Begin with four separated ciréleB, C,
andD.

Add Formula Config-
uration
E (((Av B)aC)v D) 5—4
F_| ((AB),C),D)(((A.B),C),E)(((AB),D),E)((B,C),D),E) | 6-4
Problem 196 Construct a 6—3 configuration. Verify that your construoiavorks. O
Problem 197 Construct a 7—3 configuration. Verify that your construoiavorks. 0

Problem 198 Construct an 8—4 configuration. Verify that your constrons works. Answer O
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4.8.1 Introducing a subscript notation

The configurations that Problem86-198 ask for should offer no serious difficulty (except that thale increasing amounts of
space to write down).

Consider Problenmi98. It asked for eight curves linked together in such a way thatireak point occurs at 4 curves. The
eighth curveH, was added to a 7—4 configuration. The formula for the eighthecinvolves 35 compound commutators on four
letters, for examplé((A,B),C),D). Each such commutator has twenty-two winds. The eighthecthius had 3% 22 = 770
winds. Even the short-hand commutator notation would weelriting down 35 compound commutators. Note that repaéin
B, C or D with a 1 causes all commutators involving that letter toayadle, leaving a 7—4 configuration as required.

More notation The time has come, once again, to introduce some furthet-ehod notation. Let’s discuss this to see what
kind of notation might be useful.

First, let’s look ahead. The 8-4 configuration would be aange to write down in full commutator notation—but we could
still do it. What if, for example, we instead wanted to detiererthe 30th curve in a 30—20 configuration? We see that ohebkt,
with only 26 letters, is inadequate.

Of course, we could add the Greeak @, v, ...), Hebrew (0, 3, 7, J...), and Old-Germarg(, ‘B, ¢, ...) alphabets in order
to obtain more symbols to use. But then what would we do if wete@to construct a 300—-200 configuration? Or a 3,000—-2000
configuration?

There must be a better way! There is. Itis, in fact, quite &nfilvough it may appear complicated at first). First we cdveso
our dilemma of running out of letters of the alphabet by idtrcing subscripts. Thus, instead of writing the fourth eurva 4-3
configuration as

((A,B),C),
we call our first three curve&;, A, andAgz instead ofA, B andC. The fourth curved4 then has the formula

As= ((A1,A2),A3).
Then, for example, the fifth curve of the 5-3 configuration hélve the formula

As = ((A1,A2),A3)((A1,A2), A1) (A1, A3), Aa) ((A2,Az), As).
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4.8.2 Product notation

This hasn't saved us any work yet, but we see, for exampleittvauld save us introducing a new letter to our alphabetiitting
the 28th curve in a 28-3 configuration. Let’s see how we cae savselves some work. Consider, once again, the fifth cdgve
in the 5-3 configuration. There are several things we mayg@oti

e The formula forAs involves several commutators on three letters, a typicaltming((Ag, A2),As).
e The subscripts are in increasing order when we read frontdefght.

e The several terms that appear consist of all commutatotsediorm ((Ai,A;j),Ax), withi < j < k <5, wherei, j andk are
chosen from the integers 1, 2, 3 and 4.

If we look at other configurations, such as the 6-5 configomative would see a similar situation (when we use our suliscrip
notation).

How can we incorporate these three observations in a singfgescompact form? The notation below would follow stamtar
mathematical notational procedures for complicated prtsdWrite

As = |_L ((ALA)), A).
i<j<k<5
Let’s dissect the notation:
e ((Ai,A)),A) represents the typical term. For example, whenl, j = 2 andk = 4, we get((A1,A2),As).

e The Greek lettef1 (upper casen) indicates “product.” We are not actually “multiplying” e of course, but the notation
we have been using all along suggests “multiplicative mnmtdt

e Under the symboll we sed < j < k < 5. This indicates first that the subscripts that appear arecire@sing order, and
that all such subscripts with j, k integers greater or equal to 1 and less than 5 are includeticeNbe “5” tells us thak
is no larger than 4.

Example 4.8.1 How would this notation work for the construction of the 8-@hfiguration? Let’s do it in detail. We use our
customary format with our new notation.
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Begin with four separated curvég, Ay, Az andA4. Add to thisAs to get a 5—-4 configuration, thei to get a 6—4 configura-
tion, thenAy to get a 7—4 configuration and, finalkg to get a 8—4 configuration. The formulas are evidently:

As= (((A1,A2),A3),A)

i<j<k<l<6

o= [T ((AA)A)A).
i<j<k<l<7
i<j<k<l<8

<

Simple, isn't it? Note we needed a fourth subscriphere, because each commutator involved fetiers Note also that the
stopping poini(8 in our last formula) agrees with the subscript of the cumeeare representing. What would be the formula for
the eleventh curve of an -6 configuration built by our mels® The answer is simply

A11: !_l (((((A|7A1)7Ak)7A€)aAm)7An)
i<j<k<l<m<n<1l

Note that cutting away a single curve, &y causes all commutators involvidg to reduce to 1, so what remains is equivalent
to the tenth curve of a 10-6 configuration. When we have cuyaliédut 7 curves, we arrive at the 7—6 configuration, so ogtti
away one more curve, causes the remaining six to fall apart.

4.8.3 Subscripts on subscripts

Are we now, finally, finished with these linking problems? Alst, but not quite.

Once again, we are soon going to run out of letters—on thecsiptsl For example, the 11-6 configuration involved the
indices (i.e., letters or subscripts)j, k, ¢, m, andn. If we wanted the 100th curve in the 100-70 configuration, wela/ need
70 letters. How can we modify our notation one more time toagnodate to such a configuration. As before, we introduce
numerical subscripts on treibscriptsthemselves! Thus, in place fj, k, etc., we useéy, iy, i3, etc. We can then writéy; in
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the 11-6 configuration using as indidesi», i3, . ..ig in place of the more clumsy lettersj, k, £, m, n that we used previously:
A= I_l (((((Ail7Ai2)7Ai3)7Ai4)7Ai5)7Ai6)'
i1<izx<izg<lig<is<ig<ll
In practice we would prefer to omit some of the expressionsnieyely indicating with ellipses (i.e., three dots) thatthkse
parentheses and subscripts are needed:

A1l = I_l (("’((Ai17Ai2)7Ai3)7"')7Ai6)’

i1<ip<---<ig<1ll

Why all those dots? The first set of dots indicates that we haven'’t written in the parentheses: there should be five of them.
We can reduce the mess by eliminating some and use the dotditate that more are really intended. The second set of dots
those undef], indicates that we have omitted the part of the expression
i3 < i4 < i5
that should be included. Finally, the third set of dots, éhosside the parentheses, indicates that we have not wititéme
elementsh;, andA;,. The reader of such a formula is expected to understand winaissing and fill it in if necessary.
This convention saves us some writing once the pattern &lglanderstood. For example, the 100—70 configuration @voul
be almost impossibly complicated, but the dots help conalilg The 100th curve in that configuration is simply writis,
AlOO: |_| (("'((AilvAiz)vAia)v'-')vAim)'

i1<ip<---<i70<100

Problem 199 Write the 50th curve in a 87—33 configuration in our new natati (Assume the first 49 curves form a 49-33

configuration.) Answer O
Problem 200 How many winds are there in the eleventh curve in an 11-5 amafign? Answer O
4.9 Groups

One of the many aspects of modern mathematics that dissingsiiit from say, nineteenth-century mathematics, is teaetis
nowadays a good deal of emphasisatstract structures What this amounts to is that mathematicians will often gtsdme
abstract system defined axiomatically, which has, on thiaceirno connection with the real world.
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Why should one study such abstract systems? One reasos.idMhny real life situations to which mathematics has been
successfully applied appear to be quite different in natbut actually involve the same mathematical analysis ardstime
structure. We saw this many times in the chapter on Nim. Bgyshg the abstract structure, one reduces the analysis to it
essentials. Anything one proves within the abstract gettien applies to each realization of the abstraction.

One such abstract structure is that @raup We shall define the notion of a group and give a few examplegaips. We
won't develop any of the theory of groups (there are many letebooks on groups) but the several examples will suggest
a general abstract theory could be useful in studying iddii instances of the theory.

Definition of a group A groupis a setG together with an operation that satisfies the following fodiconditions:

1) If aandb are elements of thena- b also belongs t@. (We might writeab for a-b. Sometimes other notation
such asx or + is used for the operation to suggest multiplication or acdliy

2) There is an element 1 belonging@such that-1=1-a=afor all ain G. The element 1 is called the identity.
(Some times, when “+” is the notation for the operation, tientity is denoted by 0.)

3) If ais an element o6 then there is an elemeat?! called the inverse of such thata-a ! =1 anda 1-a=1.
(When+ is the symbol for the operation, one writesin place ofa™?1.)

4) If a, b, andc are elements d& then(a-b)-c=a- (b-c). This is called theassociative law
At this point, the definition of a group is, of course, abstraet’s look at some examples.

Example 4.9.1 Let G consist of the positive real numbers, and létdenote usual multiplication (i.e., the operation that we
would have written asX” in elementary school). Then

1. If aandb are positive real numbers, soasb.

SNote that there is no fifth condition requiring theatb = b-a. While many groups do have this property (t@mmutative properjywe have seen that
our group does not.
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2. The usual number 1 satisfiasl =aand 1. a= a.

3. If ais a positive real number, ther! is denoted commonly as/a anda*-a=1 anda-a ! =1. (@ !is, of course, a
real positive number i&is.)

4. This is just the usual associative law for the multipimatof real numbers.

How we group the numbers does not affect the outcome. Forgeam
4.(5-6) =4-30=120
and
(4-5)-6=20-6=120
<

Example 4.9.2 Let G denote the integers (including the negative integeig) + for the operation. It is easy to see that this
gives us a group. |

4.9.1 Rigid Motions

For those with a bit more background in mathematics, we roertkiat the examples that appeared in Seecti@nl (polynomials,
functions, matrices, vectors) can all be endowed with amgsitucture by choosing some appropriate group operatigcherO
important groups involve symmetries, permutations, &t or rigid motions in a plane.

To illustrate, we can describe the appropriate group ojerased in studying the group of rigid motions. It is similarour
operation in linking.

If A andB are rigid motions in a plane, thekB is just the the motion achieved by applyiBghenA. SupposeA consists of
translating every point 2 units to the right, aBdotates a point 90 degrees about the origin. TA8tonsists of first rotating,
then translating, whil®A consists of first translating, then rotating. In Figdr& we showAB applied to a triangld with one
point at the origin.
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Figure 4.7: AB: First rotate the trianglg, then translate.

Figure4.8 showsBA applied to the triangld . (We see that the group of rigid motions is not commutative.)

-

--..~~
~

~

Figure 4.8: BA: First translate the triangle then rotate.
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Note Itis customary to read from right to left in describing rigitbtions. ThusAB indicates doind3 first.

4.9.2 The group of linking operations

Our algebraic work in this chapter can be viewed as part aigtbeory. We give an intuitive and mathematically incortgle
description of this view now.

Suppose we begin, as we have many times, with three fixedaegarirclesA, B, andC in space. We view this as a starting
set-up. Each starting set-up leads to its own linking gr¢8ee Sectiod.2.2)

We consider all possible ways of weaving a fourth curve tghod, B, andC and write down what we called ofwrmula for
the fourth curve.For example ABC ! would mean this: our curve goes throughthenB and then backwards throughand
finally returns to its starting point. Thactiondescribed byABC 1 is an element of our group. So is any similar action.

What is our group operation that corresponds to tke we used in our definition of a group? It is simpiping one action
then the other. For example, if we fidd ABC* and therdo BAC A we get

ABC BAC 'A
as
(ABC ). (BAC1A).
In this case, there are no simplifications possible. Sonastiras we saw, there are simplifications possible. For exampl
(ABA 1B 1). (BAB 1A Y
reduces to 1. This follows from the associative law in therdédin of a group. We leave it to the reader to verify that wivat
have been doing with links will satisfy the four stated caiotis defining a group.
If we look at our first two examples of groups, involving oraliy numbers, we see that those groupscaremutative groups,
(e.9.,a-b=b-aanda+ b= b+ ain the two examples). We have already observed that the griowplved with our linking

problems are not always commutative. For examplé,ahdB are separated circles, thé&lB £ BA. We can check this by using
our model and verifying thaABA B! £ 1, i.e., it does not reduce to a curve that links neither B.

Problem 201 Begin with twolinked circles A and B. Wind a third curve through A and B accordinghe formula ABAB 1.
Show that the third curve can be pulled free from A and B, theshowing that AB= BA. (See Probleril88in Sectiord.5.) O
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Problem201illustrates one simple situation of a linking problem theg rise to a commutative group. More generally, our
groups are noncommutative, although a group might havaapgetations in it that do commutate. For exampleAidndB are
linked, butC is separated frorA andB, then the relatio®B = BAis valid on the resulting group, but we can’t write, for exdeap
AC = CA (Make a model.) Thus, for example, we can wABC = BAC, but we can’t writeABC = ACBIif we want to make a
correct assertion in this group.

Problem 202 Suppose that the circles A and B are linked, but C is separfabed A and B. Simplify each of the following:

ABA 1B~!A and ABCABIA.
Where feasible, check with a model. O

4.10 Summary and perspectives

There are a number of things to be learned from this chapégis teview what we did.

1. We started with two simple configurations (the 3—2 and J+ffigurations) and then asked for the construction of a 4-3
configuration.

2. It became clear that pictures were inadequate for expetition. So we made models which helped experimentation.

3. But the models soon proved inadequate. We came natucadynethod of keeping track of our actions: a bookkeeping
system. This system soon began to look like ordinary algefitteough symbols such @$3 did not mean multiplication of
numbers.

4. We soon saw that this simple bookkeeping system was §ctuablgebraic system with very simple properties. And, enor
importantly,it related directly to our linking problems

Cutting away a curve corresponded to removing the correipgnetter. That little bit of algebraic structure helped
enormously in solving the simpler linking problems. Theyrevaimpler because of our algebraic methods. The 5-3
configuration, for example, may have been impossibly difffifmr us to construct without such a system.
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. The algebraic formulation actually helped pinpoint thigiitive idea of undoing everything we do, but to defer suota+

ings an appropriate length of time.

. Even our algebra became prohibitive once we got to morepticated figures. The expressions just got too long. So

we incorporated our intuition into the algebra and intrasicommutators and compound commutators. The two useful
notions involved “compounding” of commutators and “mulfing” commutators.

. Even here, our notation was inadequate when we discussdigiurations such as the 8-4 configurations. The notion of

commutator simplified things, but still there were just toany commutators to combine.

. So we finally obtained adequate notation in Secfighl

. Note that our final notation does more than just shortenwtittng of a formula. It contains the entire structure of any

of our configurations. When we began the linking problems,mey have had no idea where we were heading. As we
progressed we learned more and more about the structurek@onfigurations, and we incorporated what we learned in
our notation. Sectior.8.1developed the entire structure of such configurations aat nose constructed by our methods.

We also saw that some methods had the advantage of stjilid also had the disadvantage of not pointing us in tret be
direction for proceeding. For example, the fourth curvenm4—2 configuration could be taken as

D=ABCA B ct
This helped us obtain thath curve in then—-2 configuration, but gave no hint for constructing thé& configurations. Our

other method was less efficient, but did give us such a hinis pllenomenon often occurs in mathematics. One solves ¢
problem, but the particular solution does not help us respew related problerfis

Finally, we discussed groupsry briefly. Groups provide a general framework for studying anbar of mathematical
systems such as those associated with linking problems. o8l gaderstanding of groups can help one understand othe
linking problems that we have not considered. And other prab not at all associated with links. Are groups the final

4Recall that our solution for two, three, and four-marker gardid not lead to a general solution until we completely gedrour perspective and looked
only at the gaps.
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answer? Of course not. Some algebraists study systemsabsinact systems, of which the entire theory of groups s jus
a simple example! And so it goes.

4.11 A Final Word

In a certain sense we have solved the linking problems wewsdb@olve. In another sense, we haven't.

Let’s discuss this point, first in a broader context involvian aspect of evolution in mathematics and then in the specifi
context of what we have done with links. When a mathematiohjegt is in its infancy, it is not always entirely clear what
exactly, the subject under study is.

4.11.1 As mathematics develops

When earlier generations of mathematicians studied regiospace bounded by a surface, they might not have knowrlgxac
how regionsor surfacesor boundedwere to be interpreted. They had easy to visualize modeldnd.nfror exampleéhe region
bounded by a sphemakes sense (i.e., the inside of the sphere). So too doesside iof a bagel or pretzel. They also had no
difficulty in counting the number of holes in a pretzel, evieough the concept dfole may not have been well defined.

After all, if we look at a bagel we would agree that it has on&ehwithout our needing to know, in a strict mathematical
sense, what a hole is. But, when one proceeds to more coteplisarfaces, one needs to have a mathematically precisefway
dealing with the concepts.

Earlier generations of mathematicians often made significantributions to a subject even though some of their waaik w
mathematically imprecise. We would say their work was ngomous. One could say that their work contained errors. iBud,
sense, it would be more descriptive to say their work coetagraps their results were correct under somewhat more restgictiv
conditions than they supposed. For example, if one definegiarr in a certain way and thgmmovesa theorem about regions
which is valid only if the region meets some extra conditigmst mentioned in the definition), one has a gap in reasoning.

Imprecise work is by no means worthless—it just doesn'’t gapply without some sort of modification. For example, one
constantly applies plane geometry ideas in real life evendh the surface of our earth is more like a sphere than likarsep
Thus we think of a baseball infield as planar square withaatt¢heating any real problems. The error in doing this is grbat
would be great if the sides of our “square” were thousandsilefsmather than 90 feet. Similarly, Newtonian physics ig fivhen
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it applies, but became inadequate to deal with such thingdb@ets moving close to the speed of light or tiny objectshsas
atoms.

4.11.2 Agap?

After creating our algebraic structure, we assumed it fialih expressed the structure of our linkings. It seemeddgudt that.
Actually it didn’t!

Consider, for example, the expressi®BA L. As an element of our group, it is not equal to the elenBiecauséABA B2
is not equal to 1. But if our shoelace follows the instrucsigiiven byC : ABA™ applied to two separated circles, we find we can
“slip” A off C, leavingB, as shown in Figurd.9. Thus the formulaABA~* does have the same linking properties as the formula
B does. The algebra and the linking were at odds.

The same thing would happen any time we had a formula of tie J6Y X1, whereX andY are any elements of our group.
There would be a cancellation that takes place in the linkbag not in the group. In our group structufeandX —* can’t cancel
each other (ilXY X~1) unlessX andY commute. But, when applied to links, such a cancellationtake place.

How can we take this into account in our work? Actually, weégaken it into account, although we have not stated this
explicitly.

Our project was to construct— k configurations. We always had an initial set-upkafeparated curves. All the formulas
we have used for the shoelaces in our configurations are gidéicommutators or compound commutators. This problem of
cancellation does not take place with commutators. For gl@rthe shoelace for our 4-3 configuration had the formula

ABA B 'cBAB A ICL.
No cancellation here!

We successfully avoided all cancellations in our develaprbg restricting our group suitably to group elements tlcataly
do describe the linking structure ofk configurations. If we had tried to use the full group to represall possible linking
structures, we would have run into difficulties. As we sawhviiie curveABA ! applied to two separated curvésandB, the
group would not describe some of the linkings accurately.

Example 4.11.1 Let’s look at a rather artificial but clear example that ithases this perspective. Suppose we wanted to prove
that two squares in the plane are congruent if and only if thbjections vertically onto thg-axis have the same length. We
wouldn'’t be able to do that—the statement is false.
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)
C

Figure 4.9:A “slips off” C.

The group of rigid motions in the plane (see Sectiod.]) includes rotations, and the length of a projection of a sgean
change under a rotation. But if we restrict our focus to ohlyse squares that have horizontal and vertical sides, andngder
only the translations, the statement is true. It is cleardhah a square can be translated onto another such squackeahby if
the two squares have the same side length, and that hapertsanly if their projections onto theaxis have the same length.
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CkA

Figure 4.10: Projections of squares on xkaxis.

Note that in Figuret.10, A can be translated ont®, but a rotation would be required to moyeonto C. Here we have
restricted our attention to only certain squares, and hagd anly those rigid motions that are translations. Ratataidn’t enter
the picture. <

In our linking project, we didn’t discuss all possible linkictures; we restricted ourselves to separated curvesoamek
configurations. We used only the subgroup consisting ofystsdof commutators and compound commutators. Other elsmen
of the linking group played no role.

4.11.3 Is our linking language meaningful?

In our study of links, we used a number of terms that had intiicontent for all of us. Terms such asrve go through A
backwardswinds hangs togetheifalls apart, etc. were certainly meaningful to us for purposes of conmination, and even for
purposes of making models of various of our configurations.cdhstantly used expressions sucBesarated curve®rwe can
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pull the curve out of A without cutting or tearingr these two curves have the same linking properti#s also sometimes gave
warnings such abe careful not to create any knots in your shoelaéée did not, however, define these concepts in any precise
way.

For our purposes it may not have been necessary to defineeak tierms. We can construct (at least theoretically) any
configuration of the type we discussed. But we haven't solugdof these problems in a strict mathematical sense. The@mo
of mathematical machinery necessary even to discuss gjinkioblems rigorously is enormous.

4.11.4 Avoid knots and twists

Let’s illustrate the kinds of difficulties one encountersiife tries to mathematize our discussion.

Figure 4.11: This curve can be transformed into a circle.

1. We all know intuitively which direction ibackwardsvhenwe go through a curve C backwardSr do we? IfC is a circle,
we can all agree which direction fisrwardsand which direction idackwards But can we agree which direction is which
if Cis the 50th curve in an 80—20 configuration?
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2. One difficulty is that a curv€ may havewistsin it. Can we tolerate twists? Small twists, surely. But waiadut big twists?
Or multiple twists? What exactly is a twist and what makesiattemall big, or multiple? And are these distinctions really
important? And are twists important? If so, can they be aad

C

Figure 4.12: Curve with “ear-like” twists.

3. The curve in Figurd.11is not a circle, but can be transformed into a circlesbgtching bending pulling, etc. Nocutting,
tearing, or pastingis necessary (whatever the precise meanings of these tegns a

4. The same is true of the cur@in Figure4.12, although you may need to make a model to visualize it (simplyvist the
ears to begin).

5. Now, add a circléA to the configuration passing through the ears to obtain theedo Figure4.13

Make a model and check that the resulting configuration vatl come apart without cutting or tearing. But note that our
curve with earsC, went through A and then through A backwards.

In other words, our twisted curve has form#la . But it doesn’t reduce to 1. What went wrong? In terms of owsueh
language, we allowed twists, not paying attention to oulie¥avarning to avoid knots and twists. But we still don’t kmevhat
a twist is. If we remove the circlé, ourtwisted curvds not distinguishable from any other curve according tousage of the
term curve. But, in the presence Afits linking properties withA are quite different from the linking properties of an unt&d
curve with formulaAA.
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X~~~

Figure 4.13: IC = AA1?

The point to these remarks is to make it clear that somethimpadn’t really come to grips with enters here. Our work isn’t
wasted. We can still construct our configurations if we amnid knots and twiste/hatever that may mean. But, for a precise
mathematical development, one would have to know what tinestenean and also how to deal with them mathematically.

4.11.5 Now what?

For our purposes it was easier simply to ignore the troubtesissues we have identified and possibly other issues wednids
these can't be addressed, the status of our work is that we mnathusibility argument, but have not provided a rigorouwsp

Maybe we (or someone else) can make our proof rigorous or fiothar proof. Or show that our result is false, perhaps by
showing no configuration of some specific size is possible.
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What is the current status of the problem? The original work in this area dates back to paper by HermanmiB (1862—
1939), in 1892. Brunn constructee(n— 1) configurations. He acknowledged that his work was not rigerd he considerable
technical machinery necessary to handle such problemsorigly had not yet been created. But, because of his origeaér,
today ann—k configuration is called an—k Brunnian link

In 1961, Hans Debrunner did provide a rigorous proof or Bisinesult. And, he rigorously proved the existence ofnak
configurations! Phew!

Then, in 1969, David Penney (see ite@hih our bibliography) provided a much simpler rigorous drobthe existence of all
n—k configurations. Our chapter provides an intuitive, nomogis development leading to Penney’s formulation. Pesnegper
was only two pages long. It did not involve discovery of th&uson. It used mathematical induction to verify that théusion
via compound commutators works. He had to discover this koméperhaps along the lines of our development) but theactu
paper was only a verification of a formula he had discovered.

This progression is common in mathematics. Someone diss@vessult and proves it. Perhaps the proof is not rigorous.
Someone else provides a rigorous proof. Then yet anothéremmatician finds a much simpler proof.
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4.12 Answers to problems

Problem 165, page 229

You probably answered this without difficulty. You simplyratructed three curves with each of the three pairs linkeshaa/n
in Figure4.14.

Figure 4.14: The three curves are linked in pairs.

Compare Figuré.14with the Borromean rings of Figure 1. Observe that, in Figuré.1, the entire configuration is linked,
but no pair of curves is linked. Here, each pair of curvesisdd.

Figure4.15shows a different solution for this same problem made witsleelace” model. Comparing the solutions given in
Figure4.14and Figuret.15we see that, had we chosen to make the shoelace go “backwirdsyh the second circle (instead
of forwards as here) we would have constructed the same coafign in both. Should we have a language to describe badswa
and forwards? (See Sectidril.7for the answer to this question.)
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Figure 4.15: A shoelace model of a 3—1 configuration.

Problem 166, page 230

This is a bit harder than Problef65 without cheating and looking at the Borromean rings for goitk, but you may have
succeeded by reasoning more or less along the following.liée may as well begin with two separated circles (as inelitat

below).
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Figure 4.16: Start with two separated circles for Problestl

We now wish to “weave” a third curve through the two separatecles in such a way that the conditions of the problem
are satisfied. That is our third curve (the “shoelace” if welma model as suggested) must weave through the other twatso th
removal of one of the three curves causes the configuratitfalt@part.” This must be true no matter which of the threeves
is removed. It must also be true that the entire configuraifdhree curves “hangs together.”

Now it is clear that, no matter how we weave in the “shoelaperfioval of it will cause the other two curves to fall apart.
(They are already separated.) Our task is to do the weavisgdh a way that, if we removed either of the other two curves, t
remaining one and the shoelace can be separated withoimgcoitttearing.

Once we understood this much, we could experiment with coelglse and we might well arrive at a configuration such as
the one in Figurel.17.
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Figure 4.17: Weave the curve through the circles.

Let’'s see what happens with this configuration.
1. If we cut away the shoelace, the remaining two curves aea@dy separated.

2. If, instead, we cut away the curve on the right as in Figuf the shoelace is draped over the remaining curve near the
point X. If we hold the shoelace at and pull, voila, we have effected the separation.
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Figure 4.18: Cut away the circle on the right.

3. Similarly, if we cut away the curve on the left as shown igufe4.19 the shoelace is draped over the remaining curve in
such a way that if we hold the shoelace with one hand near tim Y@nd with the other hand near the poihand pull,
once again, voila!
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N

Figure 4.19: Cut away the circle on the left.

Can you visualize all that? Perhaps you need the model.

Problem 167, page 231

If you think it possible, look again at the reasoning that tedhe construction of the 3—2 configuration to see if therang
discernible pattern that could be of some help. And use yadeah

It is too hard to rely on a picture. It is much easier to expenirwith three rings and a shoelace. If, on the other hand, you
think it is not possible, try to discover some basic irreélaide difficulty (as you did with the tiling problems in Chizp 1).
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Problem 168, page 233
Figure4.20illustrate$ a curve (using the model) that is described by the expregSIBAR.

Figure 4.20:A°BAPB°.

SPhotos courtesy of Curry Sawyer.
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Figure4.21illustrates a curve described by the expresA@E°AP.

Figure 4.21:ABBAP

Problem 169, page 233

The first two expressiorBABPAP? and APBAB® from Problem168give rise to 3—2 configurations. These are really essentiadl
same as the description we gave before with the rolésasfdB reversed or the directions we chose as positive changed.

Problem 170, page 233

The last three expressioAgBB°, AAAPAP, andABBPAP result in configurations that can be separated with no mareattpull.”
(No cutting or tearing necessary.)

Problem 171, page 233

When an action is undone immediately (ashA’BB°, AAAPA?, and ABBPAD) it is as if the action had not been accomplished
in the first place. Note how this can happen in stages. For pbearin ABBPAP the elemenf is not undone until later, b is
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undone at the first opportunity and that allov$o be undone too. This is necessarily vague (at this stage) oPwhat we shall
be doing is to make it more precise.

Problem 172, page 234

Yes. Taking the left ring ad and the right ring a8, the shoelace has the formMBAPBP. So it is a 3—2 configuration.

Problem 173, page 234

If you have not constructed the 4—3 configuration yet, trjimglry to use what you have learned from Probl&iii)

Problem 174, page 236

Check, using the ordinary rules of arithmetic, that eacthefdaxpressions
AAP, BBP, APA, BPB, AB°BA°, andAAAAAPAP
is equal to 1.

Problem 175, page 236

Check, using the ordinary rules of arithmetic, that eacthefdaxpressions
A, ABB’, AAPA, andBAA’B°A
is the same a&.

Problem 177, page 238

Check that
ABC=— AC

ABCA B lcl— AcAalc?
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ABAB =1
both algebraically and by thinking about what is really gpon.

Problem 179, page 240

If, in the 4-3 configuration, we leX represent the curve
X =ABA B!
then the 4—-3 configuration takes the form
xcxct,
It's just like the 3—2 configuration except thétrepresents more than just a single link.

Problem 180, page 240

A construction is given in Sectiof.4, but you should try before reading on. To do this constructiou must first indicate the
starting set-up, and then give an expression for the acfitimedifth curve (the shoelace).

You will have to verify that no matter which of the five curvescut away, the result is 1. Also, you should check that if no
curve is cut away, the entire configuration hangs togethatess you have a very good model, you will find it difficult sadty
to construct it physically.

Problem 182, page 244

The 6-5 configuration is constructed by beginning with 5 ssed curved\, B, C, D, andE and winding the sixth curve through
the given five according to the expression

((((A,B),C),D),E).
Note, as before, that replacing any of the leti#&r8, C, D or E by | causes the entire expression to reduce to |. Note alsahtba
shoelace must go through 46 winds to complete its task.
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Problem 183, page 244
That((1,B),C) = 1 follows from the reduction
((1,B),C) = (1,B)C(1,B)'c?
=181 B 'cBiB 11 ict=BBcBBIC =1
Here we have used the fact that'= 1. Make sure you follow the above computations and fill in \elat steps are missing.

Problem 186, page 245
Problem186and Probleni87 are straightforward computations, but you may need to watktee details for Problerh88.

Problem 188, page 245
SupposeXY =Y X. By definition
(X,Y)=XYXx 1yt

and this is the same &6XX 1Y~ because we are assuming for the problem ¥t=Y X. Thus, putting this all together, we
have

X,Y)=XYXlyl=yxxly1=1
On the other hand, ifX,Y) = 1, thenXY X"Y~1 = 1. Thus
(XYXY 1) (YX) =LY X) =Y X
while, it is also true that
(XY XY ) (YX) = XY XYy X = XY.
HenceXY =Y X. Make sure you understand each step of the argument above.

Problem 189, page 247

To answer this problem, we need to know what we are looking \/ée will eventually have four curves, B, C, andD. The
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breaking point for the 4—2 configuration is 2. Thus each phouoves must be separated, but each group of three curves mu
hang together. Another way to say this is that each groupreétburves must form a 3—2 configuration. For in that casehtiee
curves will hang together, but removal of one more curve @dlise the two remaining curves to fall apart. Thus, the thirge

C should form a 3-2 configuration withandB. This gives rise to the formul@A, B) for C.

Problem 190, page 247

We first observe that the formula must have the quality thabral of a single letter leaves a 3—-2 configuration. For in thse,
removal of a second letter will cause the expression togsdiaThus, you may expect there to be some symmetry in theable
A, B, andC in the expression. Some students in the class suggag&ead *B~1C~ for the fourth curve D. Let us verify that this
gives the desired result.

If we remove| We arrive at
A BCB Ic!
B ACA 1c1
C ABA 11

Each of these three resulting configurations is a 3—2 cordigur. If we removeD, the curve we have just added, we arrive
at the 3—-2 configuration formed & B, andC. And that’s just what we wanted.
Here is another expression you may have tried for D:

(AB)(AC)(B,C).
Why is that a natural expression to try? Well, we want remo¥al single curve to result in a 3—2 configuration for the rerimaj

curves. Algebraically, this is tantamount to the conditioat removal of a single letter (more precisely, replachgletter by 1),
results in an expression for a 3—2 configuration. Let’s check

e If we replaceA by 1:
(A,B)(A,C)(B,C) = (1,B)(1,C)(B,C) = 11(B,C) = (B,C).
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o If we replaceB by 1: (A,B)(A,C)(B,C) = (A,C).
o If we replaceC by 1: (A,B)(A,C)(B,C) = (A,B).

Make sure you understand these computations.

Problem 191, page 247

The first solution,
ABCA'B1c!

has six winds. The secorid,B)(A,C)(B,C) has twelve winds. So the first is simpler and more efficientd Arat’s certainly a
desirable quality.

Another desirable quality is that the construction giveghts that are useful to further construction. For examibie,3—2
configuration gave insights to the 4—3 configuration whicluim helped us see how to construct the 5-4 configuration.s Doe
either of the constructions of the 4—2 configuration helpaestsow to construct, for example, a 5-2 configuration? To firtd o
the answer to this question, look at Problé&2-Problem194in Section4.6.3

Problem 192, page 247

Since the break-point of a 5—2 configuration is at “2” we begéth two separated curves andB. Following the reasoning of
Section4.6.2we see tha€ should be added so thAt B, andC together form a 3—-2 configuration. Thénshould be added so
thatA, B, C, andD form a 4—-2 configuration. Finally we adgl Let us see what our two solutions to the 4—2 configuratiore hav
to offer.

It is convenient to use a chart that gives complete direstfonthe construction. These directions should be suchatbkilled
worker who understands our notation would be able (at leagtinciple) to make a model. Begin with two separated cymes
andB. First attempt:
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Add Formula Resulting Configuration
C (A,B) 3-2
D ABCA1B-1Cc! 4-2
E | ABCDA1B-ICc D! ?

Does the addition dE give rise to a 5—2 configuration? We need only check that rairaha single letter gives rise to a 4-2
configuration. For example, removal Afgives rise to the expression

BCcDB Ic1p?

so that the curveB, C, D, andE form a 4-2 configuration. Similar computations show thataeah of any other single letter
gives rise to a 4-2 configuration so the construction workise durveE has only eight winds. Pretty efficient—we couldn’t
possibly get by with fewer. (Why?) What about our other cardion of the 4—2 configuration? Does that give any insights
Let's try to see what is involved.
The expression for D in that construction was
(A,B)(A,C)(B,C).

This construction succeeded because removal of any of the tattersA, B, or C (more precisely, replacing the letter with 1)
gave rise to a simple commutator. This represents a 3—2 coafign. We should observe that the expression was obtdiyed
combining the three letters, B, andC in pairs in all possible waysA with B, A with C, andB with C. If we extended this idea,
we would arrive at the following description of a configuoati Begin with two separated curvesandB.

Add Formula Resulting Configuration
© (A/B) 3-2
D (A,B)(A,C)(B,C) 4-2
E | (A,B)(A,C)(A,D)(B,C)(B,D)(C,D) ?

Is this a 5—2 configuration? As before, we must show that capdaa single letter with | causes the expression to reduee to
4-2 configuration. If, for example, we replace the lefievith |, we arrive at

(1,B)(1,C)(1,D)(B,C)(B,D)(C,D),



4.12. ANSWERS TO PROBLEMS 281

which reduces t¢B,C)(B,D)(C,D), a 4—2 configuration formed by the remaining four curBe€, D andE. A similar analysis
shows that the same is true if we replace any of the otherdeitih 1: we always arrive at a 4—2 configuration for the rerimea
curves.

This solution is less efficient than the preceding one. |s tase, the curve E has twenty-four winds. The last solution
required only eight winds foE.

Problem 193, page 247

The 6-2 configuration involves no new ideas. We can extehererhethod that we have already used. For the first method, we
would wind the sixth curve F through the 5-2 configuratioreatty constructed according to the formula
ABCDEA B Ic D E~L

Ten winds in all.

Problem 194, page 247

The second method gives rise to this formulaFor
(A,B)(A.C)(A,D)(A,E)(B,C)(B,D)(B,E)(C,D)(C,E)(D,E).
Forty winds in all.

Problem 195, page 248

If you did the reasonable thing and tried to extend the efitaeethod described in Probleb®9 and Probleml90 for the 4-2,
5-2, and 6-2 configurations, you probably ran into difficulty

Basically, what allowed that method to be so efficient is thatformula for the 3—2 configuration involves only simplends
and inverses: we don’t have to undo anything more complictitan a single wind. For example, in the expression

ABA B,
A1 undoesA, B~tundoesB. Thus, the expression
ABCA B 'C?!
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allows removal of a single letter to result in a 3—2 configorgtas required in a is 4—2 configuration.

Now, with the 5-3 configuration, we are faced with somethirgyercomplicated. Removal of a single curve must give rise
to a 4-3 configuration. And in the 4-3 configuration some of“tieloings” undo commutators, not just simple winds. For
example, in the expression

ABA'B~cBAB A IC?,
to undoC is simple, but to undéABA 1B~ requires the more complicated expressBAB A1,

Perhaps you found a way of doing it. But does it offer any ingghat will be useful in constructing more complicated
configurations? Our second method was less efficient thafirstim constructing configurations which had the breakingp
at “2.” But it did offer a clearer pattern for further congttion.

For example, to construct the 5-2 configuration, the fifttveuE followed a formula which played no favorites with respe
to the lettersA, B, C andD. It simply took all pairs of those four letters, formed thenpie commutators on them, and followed
one-after-another:

E: (AB)(AC)(AD)(B,C)(B,D)(C,D).
Removal of a single curve resulted in a 4—-2 configuration aseth

This suggests that the fifth curve of the 5—3 configurationdccéllow a formula which played no favorites with respect to

the lettersA, B, C andD, takes all triples of those letters, forms compound comtotgaon them, and follows one-after-another.

E: ((AB).C)((AB),D)((AC),D)(B.C),D).

Let's check. Removal of a single curve should result in a 4ei¥iguration. If we remove\, for example, we arrive at
((B,C),D), which does represent a 4—3 configuration using the ciBy€sD andE.

The same result occurs, of course, if any other curve is rechowe shall not carry out a full computation here. We merely
observe that, for examplég(1,B),C) = 1 (see Problem83).

Problem 198, page 248

The answer is given in Examp{e8.1
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Problem 199, page 252
Asp: I_l (("'((AilvAiz)vAis)a"')vAiss)~

i1<ip<:+-<izgz<50
Problem 200, page 252

There are 11,592 winds in the eleventh curve in an 11-5 calfiign. There are 252 commutators on 5 letters chosen frem th
10 lettersAq, ..., Ajg. Each such commutator has 46 winds, as we saw in Settiba



Appendix A

Induction

The story is told that when the great mathematician Karl Friedrich Gauss7&/B8B5) was a child, his teacher asked the pupils

to add up all the integers from | to 100, (perhaps as punishriogralking in class). Within a few seconds, Gauss came up wi
the answer, 5050.

Here is how Gauss achieved this so quickly. He reasonedlaw/flSet up the sum

S = 1 + 2 + 3 + ... + 99 + 100
S = 100 + 99 + 98 + ... + 2 + 1
2S = 101 + 101 + 101 + ... + 101 + 101

So twice the sum is 100 101 and the sum must be 5050.
The same technique could be used to show that for every\msiteger

n(n+1)
> (A.1)

Suppose, now, that we hadn't spotted this clever proof boetiwless had begun to suspect some kind of formula would be
true. We might experiment (with small valuesrjfas we did in all the problems we attacked, and guess the far(aAul). We

1+24+34...+n=

1The same story has been told about many different mathearaticBut it may be true in the case of Gauss.

285
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can then easily check the formula foe= 1,2,3,... up to quite large values. How far should we go in this proceds we are
convinced the formula is indeed true?

The answer is that no amount of checking constitutes a povdlFvalues oin. A mathematical proof requires a verification
for everyvalue ofn, and checking a few million special cases does not provestte r

One way to verify that the formula works for all valuesrofises the notion ahathematical inductiarnwhich we discuss in
this Appendix. We shall see that this technique is useful amyrnparts of mathematics. In fact, mathematical inductigorés
frequently in our problems dealing with Pick, Nim, and Links

A.1 Quitting smoking by the inductive method

Before applying induction to proving some mathematicaksteents let us try to get a sense of the method in an everyedtiygs
Suppose a person who wished to stop smoking knew that if heh@r could stop for just one whole day, he could be sure to
avoid smoking for the very next day. If that were true, therfact, he could certainly stop smokifgrever, if only he could stop
for a single day This would get him started: each day that he did not smokddiead to the next smoke-free day.

In connection with our formulaX.1) we could argue similarly. Suppose one can verify tlai) is valid forn= 1. (That's
like being able to stop smoking for that one day). And suppeseould prove thaf the formula is truefor any particular positive
integern, then it must be true for the next integes- 1. (That's the analog dfnowingthat if he can go any full day without
smoking, he can certainly go one more). If we can do that, #ewill have proved the validity ofA.1) for all positive integers.

A.2 Proving a formula by induction

Let us return to the task of proving the formula that Gaussadisred on his own.
n(n+1)
2
An easydirect proof of this would follow Gauss’s idea. L&be the sum so that

S=1+2+3+4--+(n—1)+n

1+2+3+--+(N—1)+n=
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or, expressed in the other order,
S=n+(n-1)+(n-2)+---+2+1.
Adding these two equations gives
25=(+1)+(n+1)+(n+1)+---+(n+ 1)+ (n+ 1)

and hence
2S=n(n+1)
or ( )
n(n+1
S—
2 M

which is the formula we require.

Suppose instead that we had been unable to construct thuf juacking any better ideas we could just test it outrice 1,
n=2,n=3,...foras long as we had the patience. Eventually we mighinto a counterexample (proving the theorem is false)
or have an inspiration as to why it is true. Indeed we find
1(1+1)

2
2(2+1)

2
3(3+1)

2
and we could go on for some time. On a computer we could rajitck for several million values, each time finding that the
formula is valid.

If the computer ever finds a counterexample (justinstance where the formula fails) then that would be a proaf it is a
false formula..

But what if the computer never finds a counterexample, if tmefila proves to be correct after hours of checking? Is this a
proof? If a formula works this well for untold millions of vas ofn, how can we conceive that it is false? We would certainly
have strong emotional reasons for believing the formulagfhave checked it for this many different values, but this ot
be a mathematical proof.

il=

1+2=

1+2+3=
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Instead, here is a proof that uses the same method of indubtid we had the smoker use to quit his habit.

Suppose that the formula does fail for some valu@.offhen there must be a first occurrence of the failure, saydores
integerN. We knowN =+ 1 (since we already checked that) and so the previous inigel does allow a valid formula. It is the
next oneN, that fails. But if we can show that this never happens (ibere is never a situation with — 1 valid andN invalid),
then we will have proved our formula.

For example, if the formula

1+2+3+~~Hﬂ—ﬁy%t9
is valid, then
1+2+3+~~+m+(m+1%:T@g59+(m+n
_ m(m+1) +2(m+1) _ (m+1)(m+2)
2 2 '

which is indeed the correct formula far= m-+ 1. Thus there never can be a situation in which the formula@isect at some
stage and fails at the next stage. It follows that the fornsidways true. This is a proof by induction.

A first occurence of the failure? Our discussion in this section appealed to an idea that nieeds made precise. If our
smoker (using induction to quit) had failed in the attempen there must be a first day where he had a smoke. That seen
obvious enough. If we apply (as we did) the same reasonirgetéormula

m(m+1)

5

then it again seems obvious that either the formula is valical m or else there is a first value af for which it fails.

There is a subtle difference between the two situations. shingker will not live forever (especially if he resumes snmogi
But the formula might have an infinite number of valuesrofor which it is or is not true. Claiming that there is a first easd
failure among the infinite possibilities is a deeper statemaed is not as obvious as it appears or as we made it appear.

In fact the principle of induction is equivalent to this rastiof a “first failure” and in more advanced mathematics cesirs
these principles need to be proved. In Prob&M below we ask the reader to prove that the two ideas are equiydiut we
cannot, in an elementary course, ask the reader to provéhthaare true.

14+243+--+m=
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A.3 Setting up an induction proof

This may be used to try to prove any statenfeft) about an integen. We wish to prove that the statements
P(1),P(2),P(3),...,P(n),...

(all of them)are true.
Here are the steps:

Step 1 Verify the statemen®(n) for n= 1.

Step 2 (The induction step) Show that whenever the statementeésftnuany positive integem it is necessarily also true for the
next integem-+ 1.

Step 3 Claim that the formula holds for all integens> 1 by the principle of induction.

A.3.1 Starting the induction somewhere else

An inductive argument is, on occasion, somewhat more coereif the statements are labeled differently. Thus irgtea
wanting to prove the statements

we might want to prove the statements

or even,
P(3),P(4),P(5),....

There is nothing new here, just a different use of labelsudtidn proceeds in the same way. For example here is the schem
that we would use to prove that each of the statements

P(0),P(1),P(2),P(3),...
is true.

Step 1 Verify the statemen®(n) for n=0.
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Step 2 (The induction step) Show that whenever the statementaesftnruany integem > 0 it is necessarily also true for the next
integerm+-1.

Step 3 Claim that the formula holds for ati > 0 by the principle of induction.

A.3.2 Setting up an induction proof (alternative method)

An alternative format may also be used to try to prove angstantP(n) made about an integer In this version we do not go
from stepm to stepm+ 1. Instead we may rely upaall of the stepdrom 1, 2, ..., up tanitself to help verify stegn+ 1. As
before, we wish to prove that the statements

(all of them)are true.
Here are the steps:

Step 1 Verify the statemeniP(n) for n= 1.

Step 2 (The induction step) Show that whenever the statement ésftnuall positive integers 1, 2, .. mit is necessarily also
true for the next integem+ 1.

Step 3 Claim that the formula holds for afl > 1 by the principle of induction.
Note that the induction step is different in this method. Vélas before we assumed tiiRdm) was true and fashioned a proof
thatP(m+ 1) should then be true, here we assumed more. We assumed thiathallstatements
P(1),P(2),P(3),....P(m)
are true, and then we found a proof tRdtn+ 1) should be true.

Example A.3.1 There were many possible uses of induction in Nim. For exafipl2—pile Nim we asserted that positions of
the form(n,n) were all balanced. We shall prove this now using the altematethod of induction.

For each integen=0,1,2,3,... we letP(n) be the statement that the positiomn) is balanced in a 2—pile Nim game. The
induction starts at = 0 and the needed steps are:
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1. We proveP(0) is true.

2. We prove that iP(K) is true whenever & k < m, thenP(m+ 1) is true.

Then we know, by induction, th&(n) is true for all integers > 0.

Here we begin our induction at= 0. Now, P(0) is the statement that the positi¢d,0) is balanced. This is true since the
final position in a Nim game is always balanced.

To verify the induction step, suppose thk) is true whenever & k < m. Consider the gamgn+ 1,m+ 1). Any move
from this position results in a gam& m+ 1) or (m+ 1,k) where 0< k < m+ 1. By removing sticks from the remaining pile
containingm+ 1 sticks we can obtain the positigk, k). This position is balanced (by the assumption ) is true for all
0 < k <m). We have shown that whatever move our opponent makes irathe(@n+ 1, m+ 1), we can respond with a balancing
move. Thugm+ 1, m+ 1) is balanced,; i.e. n+ 1) is true, as was to be proved.

You may have noticed that we needed the full Induction HygsiththatP(k) is truefor all 0 < k < min order to verify that
P(m+1) is true. In many of the other applications of an inductiveuangnt it was enough to assume only tRét) was true in
order to prove that @n+ 1) is true. |

In the exercises you are asked for induction proofs of vargiatements. You might try to give direct (noninductive)qis
as well. Which method do you prefer?

Problem 203 Prove by induction that for every positive integer2f > n. O

Problem 204 Formulate the example of the person who wished to give upismokthe language of Mathematical Induction.
That is, what are the statementéripforn=1,2,3,...? 0

Problem 205 Prove by induction that for every-a 1,2 3,...,

n(n+1)(2n+1)

12+22_|_32+.___|_n2: S

Answer O

Problem 206 Compute for n=1, 2, 3, 4 and5 the value of
1+3+5+---4+(2n-1).
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This should be enough values to suggest a correct formutify by induction. 0

Problem 207 Prove by induction that for every-a 1,2, 3,... the number
7n o 4n
is divisible by3. 0

Problem 208 Prove by induction that for every-a1,2 3, ...
(14+x)">1+nx
for any x> 0. O

Problem 209 Prove by induction that for every-21,2 3, ...
1— rn+l
1-—r
for any real number g~ 1. 0

I+r+ri4. +r"=

Problem 210 Prove by induction that for every-a1,2 3, ...
PB+B8+3B+.. 4+ =(1+2+3+---+n)2
0

Problem 211 Show that the following two principles are equivalent (isssuming the validity of either one of them, prove the
other).

(Principle of Induction) Let S be any set of positive integers such that:

1. 1belongsto S.
2. For all integers n, if nis in S, then so istl.

Then S contains every positive integer.
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and

(Well Ordering of N) If S is a set of positive integers and contains at least onmete, then S has a first element
(i.e., a minimal element).
Answer O

Problem 212 (Birds of a feather flock together) Any collection of n birds must be all of the same species.

Proof. This is certainly true ifh= 1. Suppose it is true for some valae Take a collection om+ 1 birds. Remove one bird and
keep him in your hand. The remaining birds are all of the sgmeeiss. What about the one in your hand? Take a differentane o
and replace the one in your hand. Since he now is in a collection birds he must be the same species too. Thus all birds in the
collection ofm+ 1 birds are of the same species. The statement is now proviediostion. [Criticize this “proof’]  Answer O

Problem 213 In ExampleA.3.1we proved that all Nim games of the fofmn) are balanced. Use that fact and induction to
prove that a 3-pile Nim game of the forfh b, c) is balanced if b is even andc b+ 1. |

Problem 214 The inequality
2l ongon-t 42l 0
has been used in our analysis of the game of Nim. Verify it dydtion. Answer O

Problem 215 Prove using induction: For every positive integer n,
2"l ="y 2144241
(Thus, for examplé* —1=23+224+241)
The problem shows that the largest binary numeral with a fixetiber of bits is one less than the smallest having one more
bit, e.g.,
10000- 1= 1111(base 2)

Problem 216 What is the corresponding statement for base ten of thenstatitin Problen215? O
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Problem 217 In Problemsl83 183and185in the Chapter on Links we showed that if A (or B or C ) = 1, then

Use induction to prove that if a single letter in a commutatborder n (that is, a commutator on n letters) is replacedveit
1, the entire commutator reduces to 1. Answer O
A.4 Answers to problems
Problem 205, page 291
Check forn= 1. For Step 2 assume that
m(m+1)(2m+1)

P2+224+ 2+ 4=

6
is true for some fixed value oh. Using this assumption (called the induction hypothesitis kind of proof), try to find an
expression for
1P +224+ 3+ +nP+ (m+1)%
It should turn out to be exactly the correct formula for thensef the firstm+ 1 squares. Then claim the formula is now proved
for all n by induction.

Problem 211, page 293

To prove that these two principles are equivalent we musivghat we can prove each of them if we are allowed to assume the
other. For example, here is a proof that the principle of atidu is valid on the assumption that the Beis well-ordered.
Suppose thabis a set of positive integers such that:

1. 1 belongs t&.

2. For all integers, if nis in S then so i+ 1.
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Then we wish to prove th& contains every positive integer. Suppose that it does nbgoevery positive integer and [€tbe
the set of positive integers that are not containefl iBy our assumption] is a nonempty set. Therefore by the well ordering of
N we know that it has a first element, say

Doesx = 1? No, because we know by Statement (1) that 1 & mot inT. Thereforex— 1 is a positive integer that does not
belong toT and so must belong t8. Statement (2) above then assures us hatl) + 1 must belong t& This is impossible
becauséx— 1)+ 1 = x s the first element of . From that contradiction we see ti#mnust indeed contain every positive integer.

Now try proving the opposite direction: assume that theggpie of induction is valid and show that every nonempty det o
positive integers must have a first element.

Problem 212, page 293

The induction step (Step 2) requires us to show that if thHeistant formis true, then so is the statement for- 1. This induction
step must be true ih=1 and ifm=2 and ifm=3 ..., in short, for alim. Check the induction step fon= 3 and you will find
that it does work; there is no flaw. Check the induction stemfe- 4 and again you will find that it does work.

But does it work for alim> 1? Well yes and no. Yes fon=3, m=4,m=>5, ..., but no fom= 1 andm= 2.

Problem 214, page 293
To do this, letP(n) be the statement:
P(n): 2Misonypon-ty... 42ty 00
Ouir first step is to show that
P(1): 22>2142°
is true. But this amounts only to checking that-4.
Suppose now — the induction hypothesis — @) is true. Thus (withm some fixed positive integer) we are assuming that
P(m): 2m™lsomyom-ti, ... 42t 20
is a true statement.
We wish to show that the statemd®mn+ 1) is true, i.e., our goal is to prove that
P(m+1): olm+1+1 o olm+1] +2[m+1]—1+ v by 00
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is a true statement. We can do this by using our induction tgsis.
Check that

22 — 2™y > p(2M 4 ... 4214 20y,
because of the induction hypothesis. Note that both siddsedhequality are even numbers. It follows that
M2 ol 44224914 20
This is exactly the statemeR{m+ 1) and so that statement is true. The inequality now followsrauction for all values of
n=123,....
Problem 217, page 293

P(n) now becomes the statement:
P(n): A commutator om letters of which one (letter) is 1 reduces to 1.

We used this result in Example8.1without proving it.
We start withn = 2, since simple commutators involve 2 letters.

P(2): (1,B)=1B1 1B l=1and(A1)=A1A11"1=1.

so Step 1 is verified.
SupposeéP(m) is true, withm > 2. A commutator orm+ 1 letters has the form

(oo (A1, A2),A3), - -, Am), Ami1).-

If any of the lettersA;, (i = 1,...,m) is replaced by a 1, this collapses to the fafmAny, 1) = 1, sinceP(m) is true andP(2) is
true.
If Am.1 is replaced with 1, we arrive at

(" o ((A17A2)7A3)7'- . 7Am)7l) =
(o (AL A2),A3), ., An)L(. .. (AL, A2),A3), ..., Am) 1171 =1
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sinceP(m) is assumed true.

Thus, no matter which of the lettefg, A, ...,An.1 iS replaced by a 1, the entire configuration reduces to 1. ddnigpletes
Step 2.

It follows thatP(n) is true for all positive integers > 2.
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