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Preface

heu-ris-tic [adjective]
1. serving to indicate or point out; stimulating interestaseans of further-
ing investigation.

2. encouraging a person to learn, discover, understandylee problems
on his or her own, as by experimenting, evaluating possibtevars or
solutions, or by trial and error: a heuristic teaching mdtho
[Source: Dictionary.com]

Introduction

This book is an outgrowth of classes given at the Univerdialifornia, Santa
Barbara, mainly for students who had little mathematicakigeound. Many of
the students indicated they never understood what matheveas all about
(beyond what they learned in algebra and geometry). Was #ver more math-
ematics to be discovered or created? How could one actualtper or create
new mathematics?

In order to give these students some sort of answers to swegtigos, we
designed a course in which the students could actuallygyzete in the discov-
ery of mathematics. The class was not presented in the usttaré fashion.
And it did not deal with topics that the students had seenrbef@rdinary al-
gebra, geometry, and arithmetic played minor roles in mbgteproblems we
addressed. Whatever algebra and geometry that did appsaelatively easy
and straightforward.

Our objective was to give the students an appreciation dfiemaatics, rather
than to provide tools they would need in some field that reglimathemat-
ics. In that sense, the course was like a course in music @ppon or art
appreciation. Such courses don’t attempt to train studenidecome pianists,
composers, or artists. Instead, they attempt to give tiagests a sense of the
subject.

Why do so many intelligent people have so little sense of #ld bf math-
ematics? A partial explanation involves the difficulty imomunicating math-
ematics to the general public. Without special trainingstranomy, medicine,
or other scientific areas, a person can still get a sense dfgdes on in those
areas just by reading newspapers. But this is much more uiffic mathe-
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matics. This may be so because much of modern mathematialyaswery
technical language that is difficult to express in ordinanglish. Even profes-
sional mathematicians often have difficulty communicatimgjr work to other
professional mathematicians who work in different areas.

This isn’t surprising when one realizes how many areas abhdsens there
are in mathematicdvlathematical ReviewdR) is a journal that provides short
reviews of mathematical papers that appear in over 2000@dsifrom around
the world. The subject classification used by MR has over b{estiareas, each
of which has several subareas. Each of these subareas hasuflasub areas.
A research mathematician might be an expert in several afithesub areas, be
conversant in several areas, and know very little about tiver@reas.

Objectives

Our objective is to impart some of the flavor of mathematicse &9 this in
several ways. First, by actively participating in the digexy process, a reader
will get a sense of how mathematicians discover new mathesat

A problem arises. Discovery often begins with some expentatéen to
help give a sense of what is involved in the problem. After devbne might
have enough understanding of the problem to be able to makausilple con-
jecture, which one then tries to prove. The attempt to prbeecbnjecture can
have several different outcomes. Sometimes the proof wotkber times it
doesn’t work, but in trying to prove it one learns much morewlihe problem
and identifies some stumbling blocks.

Sometimes these stumbling blocks seem insurmountable r@dri@s to
prove they actuallyre insurmountable—the conjecture is false. That may cre-
ate its own stumbling blocks. All the time one learns more aradle about the
problem. Finally one either proves the conjecture or diggsdt. (Or simply
gives up!).

We shall see all of this unfolding in the several chaptersienliook. Our
discovery process will be similar to that of a research matitecian’s, though
our problems will be much less technical.

The first part of each chapter deals with a problem we wish tsicler. We
then go into the discovery mode and eventually obtain sore@ars. After this
we turn to other aspects of mathematics related to the rahtdrthe chapter.
What is the history of the problem? Who solved it? What areesoatated
problems? How can other areas of mathematics be broughatmbehe prob-
lem? Do computers have any role in solving the problemsdaid&'hat about
conjectures that seemed to be true, but were eventuallgpralse? Or remain
unsolved?

We have tried to find some balance between discovery andiat&tn. This
is not always possible: it is impossible to resist the marsasmns when some
idea leads naturally to another wonderful idea. The readénat discover the
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connection, even with prodding, so we drop our heuristic@g@gh and explain
the new ideas. This is probably in the nature of things. Whernawk back

on everything we have learned, certainly it is all a comborabf stuff we

figured out for ourselves and other stuff that we learned fothers. It is the
combination of the two that makes learning rewarding andlpctve. It is

likely the stress on just the instruction part that explaiesmany people in this
world who claim to dislike or fear mathematics.

Prerequisites

The main prerequisite for getting much from this book is asity and a will-
ingness to attempt the problems we present. These problemadlyiset things
up for the next stage in the discovery process. This is diffefrom most text
books, where the problems at the end of a section are inteéod&ch the read-
ers’ knowledge of the material just presented.

Almost all problems have answers supplied at the end of thpteh The
word ANSWER following a problem indicates that an answer is supplied: Fo
readers using a PDF file on a computer or laptop screen, thdtigbyperlinked
to the answer. Readers working on a paperback version wi# kascan the
end of the chapter to find the appropriate answer.

When the book is read in a self-study manner, rather than iassmmom
setting with an instructor to set the pace, there may be atsiop to move
ahead quickly, to get to the end of the process to learn thdtrefDid the
butler commit the crime?). We urge that one resist the tetiptal he students
who got the most out of the class were the ones who partidpatévely in
the discovery process. This included working the problesthay arose. They
said that understanding this process was of more value o tinen learning the
answer.

In order to understand the material in most of the chapters,needs a bit
of algebra (just enough to be able to manipulate some sinigddEaic expres-
sions, though such manipulations play only a very minonral®it of geometry,
and a little arithmetic.

One topic that is not usually covered in a first course in algebmath-
ematical induction This tool appears in several places. Readers not familiar
with mathematical induction can reasonably work throughagpter that has an
induction argument until that argument is needed. At thaitpone can consult
the Appendix where induction is discussed and inductiomfsrare given that
are relevant to various problems we discuss. Induction doetake part in the
discovery process—it is used only to verify that certaitestents are true.
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Rigor versus intuition

Professional mathematicians must be rigorous in their wbhks involves giv-
ing careful definitions, even of apparently familiar obgecthis often involves
a great deal of “technical machinery.” A mathematician rsedknow such
things asexactlywhat a “curve” is, what it means to “go around a curve so that
the inside is to the left,” how to mathematically describe tlumber of “holes”
in a pretzel and the meaning of area.

It should be understood, however, that this is not the sdnarhen a math-
ematician first starts thinking of a problem and working ogbéution. Things
are rather vague and intuitive in the early stages. Thelpalisl rigor appear in
full force only in the final drafts.

Since this book is not intended for mathematicians, who doedjuire for-
mal definitions and proofs, we can relax these requirementsiderably. Ev-
erything we say in an informal wagan be said in a mathematically rigorous
way, but that is not our purpose. Our purpose is to provideesohthe flavor
of mathematics and introduce the reader to topics that studersts were sur-
prised to find involved mathematics. Thus we can take fortgaathat readers
intuitively understand concepts such as curves, insifte Heles, and area. We
will occasionally describe a concept with which the readaymot be familiar,
but our overall style is primarily a leisurely, informal ane
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To the Instructor

One might notice that, on occasion, one or more problemsvioéifter only
a short discussion. This occurs when we believe this shecudsion already
presents an opportunity for the reader to get a sense of hawigtg continue.
When we taught the class, we often found it convenient to raadall amount
of progress on each of two chapters in one class session. Hewvbrked in
practice varied with what happened in class discussion.efoms the material
we list as problems actually became part of the class dismussither than as
problems to be discussed at the next class session. It wbdstdo be flexible
and see where the discussion took us in determining whetbeshauld solve
some of the problems in lecture form, or leave them as prabterbe discussed
in the next class meeting.

In a typical one-quarter term we would have covered four tdrapin a
leisurely fashion, at least through the discovery of thetsoh to the main prob-
lems of the chapter. We also were able to cover some of theriaatethe end
of the chapters. Available time, class interests, and lelvdifficulty relative to
the students’ backgrounds determined what we covered.

We provide answers to most of the problems, in particulanosé that point
the way to further progress. We leave a few unanswered. Sbthese we used
as quizzes or homework to be collected.
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“Perhaps | can best describe my experience of doing mathemat
ics in terms of a journey through a dark unexplored mansiau Y
enter the first room of the mansion and it's completely darku Y
stumble around bumping into the furniture, but gradually jearn
where each piece of furniture is. Finally, after six monthso,
you find the light switch, you turn it on, and suddenly it’s iéli-
minated. You can see exactly where you were. Then you mowe int
the next room and spend another six months in the dark. Soodach
these breakthroughs, while sometimes they’re momentaryes
times over a period of a day or two, they are the culminaties- of
and couldn’t exist without—the many months of stumblinguard

in the dark that preceed them.”

“l used to come up to my study, and start trying to find patterns
| tried doing calculations which explain some little piedenmath-
ematics. | tried to fit it in with some previous broad conceptu
understanding of some part of mathematics that would gl&inié
particular problem | was thinking about. Sometimes that ivaur
volve going and looking it up in a book to see how it's done ¢her
Sometimes it was a question of modifying things a bit, doititla
extra calculation. And sometimes | realized that nothireg tihad
ever been done before was any use at all. Then | just had to find
something completely new; it's a mystery where that comes fr

| carried this problem around in my head basically the whiohet

| would wake up with it first thing in the morning, | would be tik-

ing about it all day, and | would be thinking about it when | wen
to sleep. Without distraction, | would have the same thinmpgo
round and round in my mind. The only way I could relax was when
| was with my children. Young children simply aren't inteted in
Fermat. They just want to hear a story and they’re not goirigtto
you do anything else.”

— Andrew Wiles
In an interview for PBS TV program Nova on the oc
casion of his solving Fermat’s Last Theorem.

Figure 1: Andrew
Wiles



LIST OF FIGURES

1Z£



Chapter 1
Tilings

It is easy to imagine a rectangle tiled with squares. Thelfamiheckerboard
in Figurel.1is a tiling of a square by sixty-four smaller squares.

Figure 1.1: Checkerboard.

A little more artistically, the tiling in Figuréd..2 shows a rectangle that has
been tiled into a number of smaller squares arranged in eachve design.

"} mumz [ mmnm § mmne B nme
=)

llllll=llllll=llllll=llllll=
Figure 1.2: Greek mosaic made with square tiles.

In both these cases all the squares are of equal size. Thamibdr in the
pattern we see for checkerboards or for many ceramic tilridggtchen floors.
But what if the squares are not all of the same size?

Figurel.3 has tiles of unequal size but many of them are of the same size.
What if we insist thaino two of the squares can be of the same.si&kdew
moments of thought shows that this problem is much, muchenard

How does one begin to discover such constructions? Perffigpsrging to
find one you will give up in frustration and suspect that nanstiling can exist.

1
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Figure 1.3: Tiling a rectangle with squares

We don’t recognize this as a problem that we can attack by &thecstan-
dard methods of arithmetic, algebra or geometry. This igumgon that often
arises in creative mathematics. We are faced with a problenare at a loss
about what tools to bring to bear on the problem. What to daed&avith this
type of problem, the creative mathematician would probalelyin by trying to
get afeelfor the problem by experimenting with a few examples.

1.1 Squaring the rectangle

The problem of tiling a rectangle with unequal sized squbhessbeen described
by some as the problem sfjuaring the rectangleWe do not know in advance
on starting to look at such a problem whether there is a swluéind if there is
a solution how we should go about finding one.

Perhaps we should begin by seeing whether we can put togatfews
squares (no two of the same size) in such a way that they centbiform a
rectangle. (At this stage, it's almost like working a jigaspuzzle.)

Let's start with a small number of squares. A moment’s refbecteveals
that it is impossible to achieve our desired result with dnly or three squares.
With four squares, there are quite a few ways in which the iguean be com-
bined. Figurel.4 shows two possibilities that you might have tried.

Problem 1 Experiment with four, five, and six squares. That is, try tmbme
the squares in such a way that the resulting figure is a redangemember
thatno two squares can be the same size Answer O
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Figure 1.4: Tiling a rectangle with four squares?

1.1.1 Continue experimenting

Did you find a tiling of a rectangle by four, five, or six squarak of different

sizes? If so, check again. Are two of the squares the sam®e &aa do not
need a ruler to check this. Simply put in the numbers which thank repre-

sent the lengths of the sides of the squares and see if ewgrgtids up right.
For example, we might think that the configurations in Figl#eare possible
after all. Maybe our drawing program does not quite get thedone, but the
configuration there is possible with the right choice of disiens.

The chances are that you did not arrive at a solution to thiel@no. It must
also have become clear that as the number of squares we use @xeri-
menting increases, the number of essentially differenfigorations we can
put together increases rapidly. Even with six squares, timeter of configura-
tions we can try is very large—and it gets much worse if waltt@euse seven
or eight tiles.

How should we proceed? Our experimenting has not broughtsatuéion
to the problem. But that does not mean it was a waste of timemaje have
learned something.

1.1.2 Focus on the smallest square

For example, we may have noticed that many of our attemptsol@dcertain
difficulty. Perhaps we can find a way to overcome this difficu@r, perhaps it
is impossible to overcome, thereby making the problem ortle mo solution.
What is this difficulty? Consider again, for a moment, thefpumations that
you tried out while working on Problerh For each of these look to see where
you placed the smallest square.

In each case there appeared a small space neighboring thestrila. Per-
haps you noticed a similar state of affairs in some of yowgrafits with four,
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Figure 1.5: Where is the smallest square?

five or six tiles. If we were able to complete these attemptsadhging more
tiles, these small spaces could accommodate only tileshvdre small enough
to fit into the space. And this would create even smaller spdode filled with
even smaller tiles. We can certainly continue to add smalher smaller tiles,
but at some point the process must stop if we are to arrive aluéi@n to our
problem. At this point it may look hopeless. Perhaps we cawlsat we have
learned to prove that there is no solution to the problemubkas only four, five
or six squares.

1.1.3 Where is the smallest square

Let us focus on the difficulty we encountered. If thesa solution, there must
be a smallest squat® And that smallest squar® must fit into the picture
somewhere. Where? Maybe we can show that there is no pladeddit.

This is what our experimenting showed — whenever the smaltpgre was
in one of our trials, there was a space neighboring it whialldcaccommodate
only still smaller squares. (This might not have been trualbbur trials, but
it probably was true of most of those trials that offered anpéof success.)
Where could the smallest square fit? Could it be in a corner kggurel.6?

Figure 1.6: Where is the smallest square? (In a corner?)
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Is the smallest square in a corner? A moment’s reflection shows it can't be.
SinceSis the smallest square, its neighbors must be larger as urd=1g7.

-

Figure 1.7: The smallest square has a larger neighbor.

But that creates exactly the kind of space we've been talalmgut. Only
squares smaller theicould fit into that space.

Is the smallest square on a side? Similarly, we see tha& cannot be on one
of the sides of the rectangle as Figur&illustrates.

Figure 1.8: The smallest square has two larger neighbors.

It's two neighbors on that side must be larger than S; oncénagamall
space is created. So, if there is a solution to the problentl,aha smallest
square must lie somewhere inside the rectangle, i.e.déssiannot touch the
border of the rectangle.

Problem 2 Do you think it is possible to find a tiling using exactly foquares
of unequal size? 0

Problem 3 Do you think it is possible to find a tiling using exactly fivesot
squares of unequal size? 0

1.1.4 What are the neighbors of the smallest square?

Did you find a tiling with five or six squares? If so, you'd bettdeck that it
really works. Did you find a proof that there is no solution3df you'd better
make sure you really have a proof.
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Let's analyze a bit more. Suppose there is a solution&isdthe smallest
square. We knov must be inside the rectangle. What possibilities are there
for the relationship betweeBand its neighbors?

Figure 1.9: Possible Neighbor of the smallest square? (No.)

A possible case? A neighbor of S might extend beyon& on both sideas
Figurel.9illustrates. This, we see is not possible because two ottighhors
(the ones below and abo®&in the diagram) would then create a small space.

Another possible case? The smallest squar@may have a side bordering on
two neighbors as Figurk 10illustrates. This is impossible for the same reason.

Figure 1.10: Two possible neighbors of smallest square?) (No

The only possible case! Each neighbor of the smallest squ&éas a side
which fully contains one side &, but extends on one side 8bnly. Figurel.11
illustrates this. Is this possible? At least no small spaalieen created. This
is the only case we cannot rule out immediately.

What does a solution look like? We now know that if there is a solution,
the only possible placement of the smallest squ&re thatS be somewhere
inside the rectangle and be surrounded by its neighbors imammill fashion.
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Figure 1.11: Four possible neighbors of smallest square/iil.)

We have not determined that a solution exists. But we havedeasomething
about what a solution must look like (if there is a solutiomléit

This leaves us with two options: we could continue to try towglthere is
no solution. How might we try? Perhaps we can still show thate is no
place to putS. Or maybe the second smallest square creates a problem. Our
alternative is to switch gears again and try to show theresslation. If we
take this positive option, we are far better off than we wertha beginning.
We need try only such constructions which have the smaliggtre surrounded
by its neighbors in a windmill fashion. Let’s try that for ailhand see what it
leads to.

Problem 4 Experiment with four, five, and six squares trying to comtires
squares in such a way that the resulting figure is a rectan@&me as Prob-
lem1, but use newly learned information.)

Answer O

1.1.5 Isthere afive square tiling?

It is clear that we need not try to find a solution with four sgasa One thing
we've already learned is that a solution (if one exists) nexguat least five
squares, namelgand its four neighbors. Let’s try a solution with five squares
Such a solution must involv@surrounded by its neighbors in a windmill fash-
ion. Figurel.12illustrates an attempt at this. In the figukeB, C andD are
squares surrounding a central square

Careful measurements of the sides of the squares in thiggcoafion will
reveal that they are not exactly squares. (And we want theauotlyxsquares.)
But that may mean no more than that we weren’t careful withdoawing. And,
after all, no one can draw a perfect square! One would halidyadd the idea
of a circle just because no one can draw a perfect circle.

If we think the diagram above represents a solution, we shtylto find
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Figure 1.12: We try for a five square tiling.

numbers representing the sides of the squares so that aligh#ements of our
problem are satisfied.

An algebraic method To check that a proposed solution is correct or to prove
that a proposed solution is impossible, we can use some sialgébra. Sup-
pose the diagram represented a solution. Denote the leffigtie side ofS

by s and the length of the side & by the lettera. The labeling is shown in
Figurel.13

mv Tile

Figure 1.13:a, b, ¢, d, and ands are the lengths of the sides of the “squares.”

Then,B has side lengts+ a (why?) soC has side length
S+ (s+a)=2s+a

andD has side length
s+ (2s+a) =3s+a.
But, looking atA, S, andD, we see tha = d+s. Thusa = 4s-+ a, that is,

s= 0. This shows that our configuration is impossible. The sgBaeduces to
a point, and the other four squares are all of the same size.



1.1. SQUARING THE RECTANGLE 9

The only other possible five-square configuration using oadwmill idea
would look similar to this and would check out negatively.tdi this point,
then, we have proved that it is impossible to solve our probkgth five or
fewer squares.

1.1.6 Isthere asix, seven, or nine square tiling?

In the problems below determine whether the suggested cwafigns can
work. Don't go by the accuracy of the drawing. Just becauseesof the tiles
don’t look like squares doesn’t mean that one can’t distoet picture some,
keeping each tile in its same relationship to its neighbansl making all the
tiles squares. In some cases you may need to use the algemtancque of this
section.

Problem 5 Does this configuration in Figuré.14of six “squares” work?

Figure 1.14: A tiling with six squares?
Answer O

Problem 6 Does the configuration of seven “squares” in Figure. 5work?
Answer O

Problem 7 Does the configuration of nine “squares” in Figuiiel5work?
Answer O

Problem 8 Experiment some more. Construct diagrams like those in Prob
lem5, Problem6 and Probleny.
Answer O
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Figure 1.15: A tiling with seven squares? With nine squares?

1.2 A solution?

While working on Problen8 you may have succeeded in arriving at a diagram
such as the one that appears in Figlreége We don't have to sketch it accu-
rately; the figure suggests another possible configurahiahrhight look like
this. As usual, for our method, the smallest square is lalests and its neigh-
bor asa. The rest of the side lengths would then be determined asgheefi
shows.

da+4s Sa-s
a-s
a+s
3a+2s a 4a
2a+Ss

Figure 1.16: Will this nine square tiling work?

Can this configuration be made into a solution? That is, caregaofs and
a be found so that all the rectangles are squares? Since titeand left sides
of the rectangle must have the same length, we calculate

7a+6s=9a—s
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or
7s=2a.

If, for example. we tak@ = 7 ands = 2 we would have §= 2a and we would
arrive at the following diagram in Figurke 17, the tiny square having side 2.

2
h 5
9 ﬁ
o5 28
16

Elements: 2,5, 7, 9, 16, 25, 28, 33,
Figure 1.17: A tiling with nine squares!

Thus, we see there is a solution to the nine square problemadft And, to
be sure, the diagram that we and you used for this solutiondymat have had
tiles thatlooked like square@unlike the final neat graphics here) but the algebra
verified that we can create a tiling meeting all our condgion

Problem 9 Here is the algebraic method of this section as describedibhiakiv
T. Tutte (1917-2002), one of the founders of this theory:

“The construction of perfect rectangles proved to be quigye The method
used was as follows. First we sketch a rectangle cut up irdamgles, as in
[Figurel.1§. We then think of the diagram a bad drawing of a squared necta
gle, the small rectangles being really squares, and we watrky elementary
algebra what the relative sizes of the squares must be oaghkisnption. Thus
in [Figurel.18 we have denoted the sides of two adjacent small squaresibg

y and then that the side of the square next on the lefttiy, and so on. Pro-
ceeding in this way we get the formulae . .. for the sides ofithemall squares.
These formulae make the squares fit together exactly .. s gihés the perfect
rectangle . ..the one first found by [Arthur] Stone>—W. T. Tutte12].

Carry out all the arithmetic needed to construct Figurel§ the initial
sketch for Stone’s tiling. Then do the necessary algebrantb the sides of
the eleven squares. Answer O
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14y - 3x

11y 4

3x-3y
3X+y
X+ 3y
2X+5y X
y 2X+Yy
X+ 2y

X+y

Figure 1.18: Initial sketch for Arthur Stone’s eleven-seping.

1.2.1 Bouwkamp codes

Our solution of the rectangle in Figutel7tiled with nine squares is something
we might want to keep a record of and communicate to othersvelsend
someone a picture they can easily check that we have it &t €gd can see
exactly what our solution is. Suppose we communicate ordysilze of the
smaller squares:

2,5 7,9 16 25 28 33, 36.

A little more helpful would be to indicate also the size of thege rectangle, in
this case

61 x 69.

In theory that should be enough for someone who likes fienglistzles, but
these numbers alone don't tell the story in any adequate Wag/ picture does,
but that is an inefficient way to communicate our ideas.

The Dutch mathematician Christoffel Jacob Bouwkamp (12083) de-
vised a simple code that is much used nowadays. Probleasks you to de-
vise your own code, but the answer (found at the end of theteHagives the
Bouwkamp code and a brief description of how it works.

Problem 10 There are 21 squatre tiles in Figutel9 How could you send a text
message to a friend (no pictures allowed) that would allom ko reconstruct
this tiling?
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35 27
50
8
19
15 | 17 |11
2 [6
917
24
25 18
29 16
4=
42
33 37

Figure 1.19: Can you reconstruct this figure from the nuntbers
Answer O

Problem 11 Give the Bouwkamp code for Figutel?. Answer O

Problem 12 Here are the Bouwkamp codes for the only ninth order squared
rectangles. Construct the one that is not in the text already

Order 9, 33 by 32: (18,15)(7,
Order 9, 69 by 61: (36,33)(5,

N oo

) (14, 4) (10, 1) (9)
8) (25,9, 2

~—
—
~
~
—
[EEN
D
~

Answer O

1.2.2 Summary

Let us reflect on where we have been so far in this chapter. #veedtwith
an interesting (but puzzling) geometric problem. It waskenthe usual high-
school geometry problems in that none of the usual techeigiggeometry
could be brought to bear on the problem.

At first, the problem wasn’t one for which we had any ideas hfala
solution. So we played around with it in the hopes of learsiogething. What
we learned by experimenting enough was that there was autlijfficaused by
the small space adjoining the smallest square in most of bemats. Maybe
that was the key to the problem. Perhaps there was no saolatioperhaps we
could prove that by showing there’s no place for the smadigatre.

We succeeded in eliminating certain placements for the Isstadquare,
seeing that such placements always creatsohall spacehat needed an even
smaller square. But one such placement did not seem to leaalytproblem.
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We returned to the drawing boards, armed with our new inftiona Eventu-
ally we were able to use a bit of algebra together with whateaerled to arrive
at a solution.

So we've solved our problem. Now what? A creative mathenaatimight
ask a lot of questions suggested by this problem. Whichmgtta can one tile
with squares? Are there any squares that can be tiled witquatesquares?
What other tilings are possible or impossible?

For additional examples of tilings, see Ste@j. [In that reference one can
find a leisurely development of a number of questions relatéiting. In partic-
ular, a surprising way in which tiling and electrical theamg related is devel-
oped there and leads to the theorem that if a rectangle caletyevith squares
in any manner whatsoever, then it can also be tiled by sqwdire$ the same
size.

We will continue with some related material for those readeino want to
purse these ideas further. For mathematicians no problemsteps cleanly:
there are always some more questions to address, more Idgasit investiga-
tion suggests.

1.3 Tiling by cubes

What about tilings with other types of figures? One can aslogas questions
in higher dimensions. Is it possible to fill a rectangular both cubes no two
of which are the same size (as suggested in Figu?€? This is the three
dimensional version of the problem we just solved. At firsingle it appears to
be much more difficult. But, perhaps some of the insights we&eqa up from
the two-dimensional case can be of use to us in this threerdiimeal version.

Figure 1.20: Tiling a box with cubes.

Problem 13 Determine whether or not it is possible to fill a three-dimenal
rectangular box with cubes, no two of which are the same size. Answer O
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1.4 Tilings by equilateral triangles

Figurel.21shows a tiling of an equilateral triangle with other equfat trian-
gles, but notice that there are several duplications of sapneel triangles in the
figure.

Figure 1.21: Equilateral triangle tiling.

Similar ideas to those developed so far in the chapter arfeliseshowing
that it is impossible to tile an equilateral triangle witlhet equilateral triangles
no two of which are the same size. Problé#dasks you to do this.

1.4.1 (Tutte, 1948)If an equilateral triangle is tiled with other equilateraian-
gles then there must be two of the smaller triangles of theessine.

This was first proved by W. T. Tutte in 1948 (see iteli][in our bibliogra-
phy). An accessible account of this problem appears as tygeh

W. T. Tutte,Dissections into equilateral trianglgpp. 127—139)

in the book by David Klarner that is references] in our bibliography. A 1981
article by Edwin Buchman in the American Math. Monthly (sé&&]] shows,
using Tutte’s methods, that there is no convex figure at atl¢buld be tiled by
equilateral triangles unless at least two of those triasgte the same size.

For further discussion of these topics see the book of SheBtein P] that
appears in our bibliography.

Problem 14 Show that it is not possible to tile an equilateral trianglétw
smaller equilateral triangles, no two of which are the samzes AnswernO
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1.5 Supplementary material

We conclude our chapter with some supplementary mategsttie reader may
find of interest in connection with the problem of squaring tectangle.

1.5.1 Squaring the square

We have succeeded in tiling some rectangles with unequakeguout none of
our rectangles was a square itself. Is it possible to assesuohe collection of
unequal squares intosguare

The description of the problem asgjuaring the squareriginates with one
of the four Cambridge University students Tutte, Brooksjt8npand Stone who
attacked the problem in 1935. It was intended humorouslgesinseems to
allude to the famous problem sfjuaring the circlevhich means something
totally different and was well-known to be impossible.

Tutte in his autobiographical meméidescribes Arthur H. Stone (1916-
2000) as the one of the four who proposed the problem. He hautifan old
puzzle in a book of Victorian puzzles written by Henry Dudgren English
puzzler and writer of recreational mathematics.

Figure 1.22: Tutte and Stone.

See Figurel.23for Dudeney’s statement of his problem. The “solution” of
the problem in the book is given by Dudeney in Figar24 where the inlaid
strip of gold is the black rectangle in the middle. The prabls calledLady
Isabel's Casket (In Victorian England a casket was not necessarily just for
containing corpses, but could be “a small box or chest, ditenand beautiful,
used to hold jewels, letters or other valuables” [as defimetthé World Book
Dictionary].)

'Graph Theory As | Have Known, Iby W. T. Tutte (item L13] in our bibliography).
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40.—Lady [sabel's Caskel.

Sir Hugh's voung kinswoman and ward, Lady [sabel de
Fitzarnulph, was known far and wide as “ lsabel the Fair.”
Amongst her treasures was a casket, the top of which was perfectly
square in shape. It was inlaid with pieces of wood and a strip of
E-Did, ten inches [ung IJ}F a guarter of an inch wide.

When young men sued for the hand of Lady Isabel, Sir Hugh

promised his consent to the one who would tell him the dimensions

of the top of the box from these facts alone ;: that there was a
rectangular strip of gold, ten inches by }-inch ; and the rest of the
surface was exactly inlaid with pieces of wood, each piece being a
perfeci sCjuare, and no two pi{:ﬂﬁs of the same size. Many young
men failed, but one at length succeeded. The puzzle is not an easy
one, but the dimensions of that strip of gold, combined with those
other conditions, absolutely determines the size of the top of the
casket.

Figure 1.23: Lady Isabel's Casket (from a 1902 English bdgbuazles).
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Figure 1.24: The “solution” to Lady Isabel's Casket.

Stone realized that the problem was tougher than Dudenethbadht, for,
if this figure were indeed thaniquesolution of the problem, that could only
mean that none of the squares in the figure could be dividedsimaller un-
equal squares. They learned that the great Russian mathemaétikolai Niko-
laievich Lusin (1883—-1950) had conjectured that no squatédcbe squared.
Thus the four of them decided that they could make their et by solving
this Lusin Conjectureno square can be subdivided into a collection of squares
no two of the same size.

In fact they not only succeeded in squaring the square buhding deep
connections to the problem with graph theory and electrielvorks.

The smallest squared-square Did you notice that Figurd.19is a squared-
square? Problerh0 asked for the Bouwkamp code for this tiling by twenty-one
unequal squares. This is the lowest order example of squtrensquare.
Observe that every squa& whether the length of its sides is an integer,
a rational number or even an irrational number, can be tilgd squares of
unequal size. Just shrink or stretch the square in Figuk@to the size ofS.
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This gives a tiling ofS.

A final word. The problem that began this chapter was to determine whether
itis everpossible to tile a rectangle with squares of unequal sizesagwered

this question in the affirmative. The question remaimsch rectangles can be
tiled in this manner. The answer to this question is givelowahg the answer

to Problem19.

1.5.2 Additional problems

For those readers who did not get enough problems to work mndre some
more. We also have added some more Bouwkamp codes probleimsyaegp-
pear to be popular entertainments (much like Suduko prafleNote that with
these codes one can design jig-saw puzzles consisting qiiahgquares which
must be assembled to form a large rectangle. The Bouwkangsdbdmselves
then are quick descriptions of how to assemble the pieceslte the puzzle.

Problem 15 Here are the Bouwkamp codes for all of the tenth order squared
rectangles. Sketch the tiling figures for as many of thesea$iyd entertaining.

Order 10, 105 by 104: (60, 45) (19, 26) (44, 16) (12, 7) (33) (28)
Order 10, 111 by 98: (57,54) (3,7, 44) (41, 15, 4) (11) ( 26)
Order 10, 115 by 94: (60, 55) (16, 39) (34, 15, 11) (4, 23) (19)
Order 10, 130 by 79: (45,44, 41)(3, 38) (12, 35) (34, 11) (23)
Order 10, 57 by 55: (30,27) (3,11, 13) (25, 8) (17, 2) ( 15)
Order 10, 65 by 47: (25,17, 23) (11, 6)(5, 24) (22, 3) (19)

O

Problem 16 Here are the Bouwkamp codes for all of the eleventh orderregua
rectangles. If this still amuses you, sketch some more Bgure

Order 11, 112 by 81: (43,29,40)(19,10)(9, 1) (41) (38, 5)(33)
Order 11, 177 by 176: (99, 78)(21,57) (77, 43) (16, 41) (34, 9) (25)
Order 11, 185 by 151: (95,90)(5, 24, 61) (56, 25, 19) (6, 37) (31)
Order 11, 185 by 168: (100, 85) (43, 42) (68, 32) (1, 41) (4, 40) (36)
Order 11, 185 by 183: (105, 80) (33, 47) (78, 27) (19, 14) (5, 56) (51)
Order 11, 187 by 166: (99, 88) (10, 78)(1,9) (67, 25, 8) (17) (42)
Order 11, 191 by 162: (97, 94)(26, 68) (65, 32) (9, 17) (33, 8) (25)
Order 11, 191 by 177: (102, 89) (40, 49) (75, 27) (48, 19) ( 10, 39) ( 29)
Order 11, 194 by 159: (100, 94) (29, 65) (59, 25, 16) (9, 7) (36) (34)
Order 11, 194 by 183: (102, 92)(31, 23, 38) (81, 21) (8, 15) (60) (53)
Order 11, 195 by 191: (105, 90) (15, 31, 44) (86, 34) (18, 13) (57) (52)
Order 11, 199 by 169: (105, 94) (19, 75) (64, 33, 8) (27) (31, 2) (29)
Order 11, 199 by 178: (102, 97) (16, 81)(76, 15, 11) (4, 23) (19) (42)
Order 11, 205 by 181: (105, 100)(6, 13, 81) (76, 28, 1) (7) (20) ( 48)
Order 11, 209 by 127: (72,71,66)(5, 61) (1, 19, 56) (55, 18) (37)
Order 11, 209 by 144: (85,57, 67) (47, 10)(77) (59, 26) (7, 40)(33)
Order 11, 209 by 159: (89,49, 71) (27, 22) (5, 88) (32) ( 70, 19) (51)
Order 11, 209 by 168: (92, 64,53) (11, 42) (44, 31) (76, 16) (73) (60)
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Order 11, 209 by 177: (96,56, 57) (55, 1) (58) (81, 15) (66, 4) (62)
Order 11, 97 by 96: (56, 41) (17, 24) (40, 14, 2) (12, 7) (31) (26)
Order 11, 98 by 86: (51,47)(8,39) (35, 11,5) (1, 7)(6)(24)
Order 11, 98 by 95: (50, 48)(7, 19, 22) (45, 5) (12) (28, 3) ( 25)

O

Problem 17 If a rectangle is tiled by squares, all of different sizeg second
smallest square cannot touch the border of the rectanglevéthis statement.-
O

Problem 18 Suppose we are given a rectangle of dimensiorda Can this
rectangle be subdivided into equal sized squares? Answer O

Problem 19 Suppose we are given a rectangle of dimensionb aUnder what
circumstances can you be sure that this rectaraglenotbe subdivided into a
finite number of (not necessarily equal) squares? Answer O

1.6 Answers to problems

Problem 1, page 2

Figurel.25shows some possibilities with four unequal squares thatnyigunt
have tried. These two are unsuccessful.

Figure 1.25: More experiments with four squares.

Problem 4, page 7

A four square configuration can’t have a windmill and so we pass over
the possibility of a four square arrangement. Your first tryhe five square
configuration (using the windmill idea around the smallegtase) might look
like that in Figurel.26 Does this, indeed, represent a possible solufiove
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get the dimensions rigitOur drawing program won’t produce accurate squares
but the layout looks promising.

Before reading on in the text, try to see if you can find dimensihat would
make this configuration work. Label the side lengths of theasgs and see if
there are numbers that work. If you can show that there cévestich numbers
then you will have succeeded in showing that this particateeingement does
not work.

A

C

Figure 1.26: We try for a five square tiling.

Problem 5, page 9

In the figure of Problend, we see that two of the tiles have a common side. If
they are to be squares, they must be the same size, violatiogdation of our
problem. Thus we do not need to do the algebra. A tiling thaksdike this
does not solve our primary problem: find a tiling with all scpsofdifferent
sizes

Problem 6, page 9

In the figure for Problent, we see a plausible configuration. None of the
squares (if indeed they could be squares) is the same sizeyasf ghe oth-
ers. We need to find exact numbers that would make this work.

If the diagram could be a solution, we can spot which of thesegicould be
the smallest. Denote the side of that squars &gd denote the side of its right-
hand neighbor bp. We then compute the (sizes of) the sides of the remaining
squares arriving at the diagram in Figur@?7.
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Figure 1.27: Lengths in terms of sides of 2 adjacent squardsifurel.15

Since the top and bottom of a rectangle are of equal length,
3s+2a=5a—3s

so that 2= a. Thus two of the rectangles would have to have sides equal to
3s. Again this violates our primary objective: find a tiling witll squares of
different sizesDid you notice that other requirements are violated?

Problem 7, page 9

Again we see no immediate objection to this configuratiomight work. Let’s

do our algebraic computations. There are several ways thisloHere’s one in
Figurel1.28 that gives us the sizes of some of the squares. We now compute
that the darkest square in the figure has side

(a—3s)—a—s=—4s.

This is again impossible, now because we have produced éiveegamber for
the length of a side.

a—3s

Figure 1.28: Some square lengths labeled for Figuié&
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Remark Note that our arguments never involved a statement suchhés “t
tile is much too thin to be a square.” Even if we had been coméh such a
statement, this would not rule out a similar configurationvimich all the tiles
were squares.

Such a configuration could possibly have been achieved lpepneertical
and horizontal stretchings of the entire configuration. But arguments in
all three of the problems in this section showed that somgthias inherently
wrong with the ways some of the tiles related to their neighb®ne couldn’t
stretch the configurations and render all the tiles squdrddferent sizes.

Problem 8, page 9

0.K. We are now ready to take another crack at finding a saiutive have a
simple and easy to apply algebraic method for checking cypgwed solution.
We know in advance where to place the smallest square.

If our attempts fail, perhaps we can discover some unrebla\difficulty
inherent in the problem. If we can prove that there is suchnaerent unre-
solvable difficulty, then we will have proved the problem hassolution. Many
problems posed in mathematics have no solution and we mégidqibally proud
of showing that the problem is impossible as finding an answer

But first, experiment some more.

Keep in mind that there must be more than five squares, thdeshalust
be surrounded by its neighbors in a windmill fashion, andrétgiirements of
the problem must be met. Apply our algebraic method for olngithe sizes
of the sides of the tiles (if they are to represent a soluteong see what that
leads to. Instead of proceeding almost blindly, try to mpdiigrams you have
already studied, such as those in this section. See whatweng with these
attempts and try to overcome the difficulty (or try to find someconcilable
difficulty).
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Problem 9, page 11

78
99

21

57
43

77

5116
41

Elements: 9, 16, 21, 25, 34, 41, 43,57, 77, 7€

Figure 1.29: Realization of Arthur Stone’s eleven-squairegt

The dimensions of Stone’s tiling are shown in Fig@ird9 Just do the elemen-
tary algebra using the same method that we used and you sheudttle to
discover all of the dimensions. You may wish to compare thgtle of the side
of the rectangle in the upper right hand corner with the leagif the sides of
the two rectangles below it to obtainyl& 9x.

Problem 10, page 12

A reasonable start at communicating the configuration imfelg19is to start
at the upper left corner and report the adjacent square dbghfrom left to
right:

50, 35, 27.

Then what to report next? You might decide to spiral arourdatlitside of the
square in a clockwise direction. But that would likely endingrouble. The

Bouwkamp method is just to keep reporting left to right ak tew squares
you see at each level. There are ten levels in the picturen{dbem) and so
you need a report at each of these levels. The level is defipatebtop of

the squares, starting with the very top level which we detidereport by the
numbers [50, 35, 27].



1.6. ANSWERS TO PROBLEMS 25
In the Bouwkamp code, brackets are used to group adjaceatesjwith
flush tops, and then the groups are sequentially placed ihigihest (and left-

most) possible slots. For this example of the 21-squarstititied in the problem
the code is

[50,35,27], [8,19], [15,17,11], [6,24], [29,25,9,2], [7,18), [16], [42], [4,37], [33.

Problem 11, page 13
(36,33, [5,28], [25,9,2], [7], [16].

Problem 12, page 13

33

18 15

32

-l

14
10 9

Figure 1.30: A 33 by 32 rectangle tiled with nine squares.

In Figure1.30is a picture that corresponds to the Bouwkamp code

Order 9, 33 by 32: (18,15)(7,8)(14,4)(10,1)(9).
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Problem 13, page 14

It is a bit more difficult to experiment with the three-diménrsl setting than it
was with the two-dimensional setting. The remark beforeptiablem suggests
that “some of the insights we picked up from the two dimensi@ase can be
of use to us in this three dimensional version.” The key in tivaensions was
the use of the smallest square argument. Try this:

Use the smallest cube argument!

Don’t read the rest of the answer without trying again. Yoy mésh to glance
at Figurel.31

Our proof is an indirect one. We assume that there is such strecmtion
and find that there is a contradiction.

Suppose a rectangular box were filled with cubes no two of vhiere of
the same size. Consider only those cubes which lie on therhatf the box.
The bottom faces of these cubes tile the floor of the box byreguao two of
the same size. The smallest of these tiles must be surrodnydedr other tiles
in a windmill fashion. LetK; be the smallest of the cubes lying on the floor of
the box. From what we just said, we see tKatis surrounded by four larger
cubes which form @aoweraroundK; as suggested in Figufe31

&,

Figure 1.31: A tower of cubes arouid.

Now consider those cubes whose bottoms lie on the top fa&g.oT heir
bottom faces tile the top face &f. As before, we conclude that the smallest of
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theseKy is surrounded by four larger cubes which form a tower arotind i
Continuing in this manner we see there can be no end to thtepso No
matter how many of these cubKs, Ko, K3, ...we have obtained, there must
still be smaller ones lying on top of the smallest obtaineth&t point.

Thus, we have proved this:

1.6.1 (No cubing the box)It is impossible to fill a rectangular box with cubes,
all of different sizes.

Our techniques in the tiling problem of studying the locata the small-
est square was useful to us in two ways: firstly, it gave usrmégion about
the structure of tilings of rectangles by squares of difierigzes—the small-
est square must be surrounded in a certain way by its neighbecondly. It
suggested an approach to solving the analogous problemea tiimensional
space.

Problem 14, page 15

The smallest cube argument that succeeded for Prolig@suggests that a
smallest triangle argumerdan be developed for this problem, and indeed very
similar ideas will work here.

Our proof is again an indirect one. We assume that there ls&gonstruc-
tion and find that there is a contradiction.

Assume that we have a tiling by smaller equilateral triasgdl of different
sizes. Start by looking for the smallest trian§#hat touches the bottom of the
triangle. Argue that it must look like Figurke32

Y

Figure 1.32:Sis the smallest triangle at the bottom of the tiling.

Then look for the smallest triangle that touches the top of the triandgte
Argue that it must look like Figur&.33 This argument keeps going indefinitely
and so we shall soon run out of triangles, just as in our swiut Problenl3
we ran out of cubes.



28 CHAPTER 1. TILINGS

¥

Figure 1.33:T is the smallest triangle that touch®s

Problem 18, page 20

To begin the problem check that, wharandb are integers then the rectangle
can be easily subdivided inth equal sized squares, all of side length 1.

Suppose or b is not an integer and/b can be expressed as a fractioyin,
wherem andn are positive integers. Then= cmandb = cn for some number
c. Thus take small squares of side lengtiand there are certainlynn such
squares fitting inside the rectangle.

If a/bis not a fraction (i.e., it is an irrational number) then therould be
no choice of side lengttfor the small squares to work out. In modern language
two real numbera andb arecommensurablg a/bis a rational number (i.e., a
fraction). Thus the answer to the problem is that we mustireguandb to be
commensurable.

Problem 19, page 20

We just saw in Probleri8 that a rectangl& cannot be tiled with equal squares
unless the sides of the rectangle are commensurable. siddralke for any tiling
by a collection of squares that this same condition must ke Aproof that a
rectangle can be so tiled if and onlyafandb are commensurable is given in

R. L. Brooks, C. A. B. Smith, A. H. Stone and W.T. TutfEhe
dissection of rectangles into squaré&ke Math. J. (1940) 7 (1):
312-340.

Probably the first proof of the theorem thatectangle can be squared if and
only if its sides are commensurab$eby Max Dehn,

Max Dehn, Uber Zerlegung von Rechtecken in Rechtecke, Mathe
matische Annalen, Volume 57, September 1903.

though it might be rather more inaccessible to most of owteea



Chapter 2
Pick’s Rule

Look at the polygon in Figur2.1 How long do you think it would take you to
calculate the area? One of us got itin 41 seconds. No congyuefancy cal-
culations, no advanced math, just truly simple arithmeédiow is this possible?

The projects in this chapter have as their centerpiece waskghed in 1899
by Georg A. Pick (1859-1942). His theorem supplies a rentdekand simple
solution to a problem in areas. Set up a square grid with tkeeatpally spaced
one inch apart and draw a polygon by connecting some of thevdti straight
lines. What is the area of the region inside the polygon?

Figure 2.1: What is the area of the region inside the polygon?

You will likely imagine counting up the number of one-inchusges inside
and then making some estimate for the partial squares neawutiside. Pick’s
Rule says that the area can be compw@eattlyandquickly: look at the dots!

As is always the case in this book, it is thscoverythat is our main goal.
Many mathematics students will learn this theorem in thditi@al way: the
theorem is presented, a few computations are checked, arshtnt inductive
proof is presented in class. We take our time to try to find aaw fick’s
formula might have been discovered, why it works, and howotoe up with a
method of proof.

29
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2.1 Polygons

In Figure2.1 we have constructed a square grid and placed a polygon on that
grid in such a way that each vertex is a grid point. The maiblgm we address
in this chapter is that of determining the area inside sucblygon. We need
to clarify our language a bit, although the reader will cattahave a good
intuitive idea already as to what all this means.

Familiar objects such as triangles, rectangles, and dasehdls are exam-
ples. Since we work always on a square grid the line segmeatddrm the
edges of these objects must join two dots in the grid.

2.1.1 Onthe grid

We can use graph paper or even just a crude sketch to vistlaéizgrid. For-
mally a mathematician would prefer to call the gridia#tice and insist that it
can be described by points in the plane with integer cootdgha

But we shall simply call itthe grid It will often be useful, however, to
describe points that are on the grid by specifying the coartéis.

Problem 20 A point (m,n) on the grid is said to be visible from the origin
(0,0) if the line segment joiningm, n) and (0,0) contains no other grid point.
Experiment with various choices of points that are or are vistble from the
origin. What can you conclude? Answer O

2.1.2 Polygons

It is obvious what we must mean by a triangle with its vertioaghe grid. Is
it also obvious what we must mean by a polygon with its vestioe the grid?
We certainly mean that there amgoints

Vi, Vo, V3, ..., W
on the grid and there arestraight line segments
ViVo, VoV3, VaVy, ..., Vi1 (n> 3)

joining these pairs of vertices that make up the edges ofalygpn. Figure2.2
illustrates. Need we say more?

Problem 21 Consider some examples of polygons and make a determination

Lt is usual for mathematicians to describe the integers
.,—4,-3,-2,-1,0,1,2 3, 4,...

by the symbolZ (the choice of letter Z here is for Zahlen, which is German“farmbers”).
Then the preferred notation for the grid consisting of altpem,n) wherem andn are integers
(positive, negative, or zero) would .
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Figure 2.2: A polygon on the grid.

as to whether the statement above adequately describesesaj@olygon on
the grid. Answer O

2.1.3 Inside and outside

A polygonP in the plane divides the plane into two regions, an insideand
outside. Points inside d®? can be joined by a curve that stays inside, while
points outside can be joined by a curve that stays outsidgouftravel in a
straight line from a point inside to a point outside then yall have crossed
the polygon. All these facts may seem quite obvious, but afpsmot easy.

Nor is it as obvious as simple pictures appear to suggesygiiraa polygon
with thousands of vertices shaped much like a maze or lathyrifake a point
somewhere deep in the maze and try to decide whether youside ior outside
of the polygon. We might be convinced that there is an insitkthere is an
outside but it need not be obvious which is which.

For these reasons we merely state this as a formal assunfgtiaur theory:

2.1.1 Every polygon P in the plane divides the plane into two regjdneinside

of P and theoutsideof P. Any two points inside (outside) of P can be joined by
a curve lying inside (outside) P. But if a line segment has emdpoint inside P
and the other outside P, then this line segment must intePsec

It is common to call the inside polygonal regionto refer to the polygon
itself as theboundaryof the polygonal region, and to refer to points inside but
not on the boundary asterior points For simplicity, we often refer simply to
theinsideof the polygon.
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Problem 22 If you are given the coordinates for the vertices of a polygjpec-

ified in order and the coordinates of some point that is notrengolygon, how

might you determine whether your point is inside or outsiaegolygon?
Answer O

2.1.4 Splitting a polygon

A polygon can be splitinto two smaller polygons if there is a line segment
L joining two of the vertices that is inside the polygon andsloet intersect
any edge of the polygon (except at the two vertices whichilitsjo Figure2.3

Figure 2.3: Finding a line segmelnthat splits the polygon.

illustrates one particular case. The large polygon witlhieigertices has been
split into two polygonsM andN. The polygonM has five vertices and the
polygonN also has five vertices.

This splitting property is fundamental to our ability to peothings about
polygons. If every polygon can be split into smaller polygome can prove
things about small polygons and use that fact to determimggsties that would
hold for larger polygons.

Problem 23 Figure 2.3shows one choice of line segment L that splits the poly-
gon. How many other choices of a line segment would do thedfphe large
polygon? Answer O

Problem 24 Experiment with different choices of polygons and deteemihich
can be split and which cannot. Make a conjecture. Answer O

Problem 25 Prove that, for every polygon with four or more verticesséhis a

pair of vertices that can be chosen so that the line segmembgthem is inside

the polygon, thus splitting the original polygon into twoadlar polygons.
Answer O

Problem 26 In Figure 2.3the large polygon has eight vertices. It splits into two
polygons M and N each of which has five vertices. Each of théesrpalygons
has fewer vertices than the original eight. Is this true imgel? Answer O
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2.1.5 Area of a polygonal region

A polygonal region (the inside of a polygon) hasamea This is rather more
straightforward than the statement about insides anddrgsif you can accept
the elementary geometry that you have learned (the areaestangle is given

by lengthx width, the area of a triangle is given by 1Rbasex height) then
polygonal area is simple to conceive. Break the polygon tgpsmall triangles
(as in Figure2.4 for example); then the area would be simply the sum of the
area of the triangles. Figué4is considered &iangulationof Figure2.1

Figure 2.4: A triangulation of the polygon in Figuzel

There are more sophisticated theories of area but we doed tleem for
our process of discovery here. Itis really quite clear in pasticular example
how to triangulate and therefore how to find the area. Bedtey show that any
polygon can be triangulated.

Problem 27 Figure 2.4 illustrates a triangulation of the polygon P. Can you
find a different triangulation? Answer O

Problem 28 Using the splitting argument of SectidriL.4show that every poly-
gon can be triangulated by joining appropriate pairs of vegs.
Answer O

2.1.6 Areaof atriangle

Let begin with an elementary geometry problem. We ask foratiea of a tri-
angle with its three vertices at the poir{&0), (s,t), and(a,b) on the grid.
Figure 2.5 illustrates one possible position for such a triangle. Tgrizblem
will not necessarily help solve our main problem (finding mgie method for
all polygons) but it will be an essential first step in thingiabout that problem.

What method to use? The first formula for the area of a triangle that all of
us learned is the familiar

1/2 x basex height
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0,0

Figure 2.5: Triangle with one vertex at the origin.

With that formula can we easily find the area of all trianglestioe grid? Yes
and no. Yes, we can do this. No, sometimes we wouldn’t wanbtib tthis way.

We can find (although not without some work) the length of adg ®f a
triangle since the corners are at grid points. But findinghtight would not be
so obvious unless one of the sides is horizontal or vertical.

Is there a formula for the area of a triangle knowing just #rggths of the
three sides. Should we pursue this?

Seem reasonable? Given a triangle on the grid we can use thageyean
theorem to compute all the sides of the triangle. Once yowkiine sides
of a triangle you know exactly what the triangle is and youudtidoe able to
determine its area.

Heron’s formula Search around a bit (e.g., on Wikipedia) and you will likely
find Heron’s formula. If a triangld@ has side lengtha, b, andc then

Area(T) = /s(s—a)(s—b)(s—c¢)

a+b+c
S= ———

2
is called the semiperimeter @f(since it is exactly half of the triangle’s perime-

ter). Wikipedia lists three equivalent ways of writing Hei®formula:

Adey:%VQ¥+bZ+@V—2m¢+w+cﬂ

where

Area(T) = 7/2(a2t? + a2c? 1 bPc2) — (a + b -

and

Area(T) = %\/(aer—c)(a— b+c)(—a+b+c)(a+b+c).

While all this is true and we could compute areas this waypésh't appear
likely to give us any insight. Well, these computations wilbrk, but after a
long series of tedious calculations we will not be any cldseseeing how to
find easier ways.
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So, in short, not a bad idea really, just one that doesn’terumseful to our
problem. This problem should encourage you to find a diffeveay of com-
puting the area of triangles on the grid.

Decomposition method to compute triangle areas A better and easier method
for our problem is to decompose a larger, easier triangledbiatains this tri-
angle. Then, since the pieces must add up to the area of thigdrigle (which
we can easily find) we can figure out the area of our triangleulraction.

Ob (s,b (@b
Opbe ST T

0,0

Figure 2.6: Decomposition for the triangle in Fig@&

In Figure 2.6 we show a larger triangle containifig that has vertices at
(0,0), (0,b), and(a,b). This triangle has baseand heighb and so areab/2.
The figure shows the situation for the poiistt) lying above the line joining
the origin and(a,b) andt < b. There are other cases. Probl@fasks you to
verify that the formula we obtain is valid in all cases.

In the figure we see, in addition b itself, two triangles and a rectangle.
The dimensions of the rectangle asdy b—t. The base and height of the
triangle below the rectangle assandt; the dimensions of the triangle to the
right of the rectangle arb—t by a—s. Thus this decomposition of the large

triangle must give
st (a—s)(b—t)

ab
> :Area(T)+s(b—t)+§+f.

The rest is now algebra, but fairly simple if a bit longer thyaru might prefer.
We see that

Area(T) = %{ab— 2(s(b—t) —st— (a—s)(b—1t)}

Tidy this up and find that
Area(T) = at ; bs

You should be able to verify that, in the cases we didn’t cdersfor the
location of the poin{s,t), we obtain the same formula, or the formula with the
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sign reversed, that is

Area(T) = bs; at
The simplest way to report our findings is to give the formula
t—
Area(T) = a > bs

which is valid in all cases. (This is Proble2s.)

This is likely more algebra that most of our readers woul@ ¢taisee. Noth-
ing here was all that difficult however. This formula is nahpie enough to be
a candidate for our “simple” area calculation formula.

Problem 29 Figure 2.6 shows how to compute the area of a triangle T that has
vertices at(0,0), (s,t), and(a,b) but only in the special case shown for which
(s,t) lies above the line joining0,0) and (a,b) with t < b. Draw pictures that
illustrate the remaining positions possible for the paigtt) and show that in
each of these cases the formula

at—Dbs
2
is valid. O

Area(T) =

Problem 30 (Area experiment) Try computing a number of areas of polygons
with vertices on the grids, record your results and make sobservations.
Answer O

Problem 31 Show that the area of every triangle on the grid is an integel-m
tiple of 1/2.
Answer O

Problem 32 Use Problen81to show that the area of every polygon on the grid
is an integer multiple ot/2. Answer O

2.2 Some methods of calculating areas

Before attacking our area problem let us take a short digrne$s consider some
possible methods of computing areas. How long do you thimloiild take to
calculate the area inside the polygewnf Figure2.7 that started this chapter by
any of the methods we have so far discussed?

The method we have already suggested for doing the computatuld
require us to break up into the three triangles displayed in Figutel, com-
pute the area of each, and then add up the three areas. Butordd motice
that none of the three triangles has a horizontal or versicld. It would take
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Figure 2.7: The polygoR and its triangulation

some calculating to determine the areas of these trianghesmethods of Sec-
tion 2.1.6would certainly work for each of these three triangles andis@
reasonable amount of time, we could indeed compute the &tha polygon.
This is not impressive, however, and takes far longer thad 1thseconds that
we claimed in our introduction. We should consider someratipproaches.

2.2.1 An ancient Greek method

Let's look at another method that dates back to the anciezekar They devised
a method for approximating the area of any shaped region.

Figure 2.8: Too big and too small approximations

Figure 2.8 shows the polygon with some grid squares highlighted. If we
count the grid squares that lie entirely insileand add up their areas, we have
an approximation to the area insiBeThis approximation is too small, because
we have not counted the contributions of the squares thanligpartially inside
P.

We could also obtain an approximation to the area that issi@elby includ-
ing the full areas of those squares that lie partially ingidd partially outside
P. The exact area is somewhere between these two approxireatiowe do

2The ancient Greeks would not have used this method for findiegs of polygons. It
would be used for circles and other figures that couldn’t lmdén into triangles.
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this for the polygon in Figur@.7, we find the two approximations are not that
close to each other. This is so because there are so manyggades, each of
area 1, that are only partially insid® the difference between counting them
and not counting them is relatively large.

The method of exhaustion The two approximations will improve if we used
smaller grid squares. They would improve again if we usech evealler grid
squares.

Suppose each grid square were subdivided into 4 smalleresjaad the
process were repeated. Do you see that the excess of cothipgrtial squares
is reduced, while the approximation obtained by not cogtiirem is increased.
In a more advanced course one could show that by using snaaiéesmaller
squares, one can obtain the exact area using the theoryitd.liiine approxi-
mations that are too small increase towards the area, wiglapproximations
that are too big decrease towards the actual area.

How long do you think it would take to find the area®tising this
method?

This method is sometimes called theethod of exhaustiowhich refers to the
fact that the area is exhausted by each step although, asayowedl imagine,
it might be the person doing the computations that is exleaust

One wouldn't actually have to compuédl those approximating areas. A
person well-versed with the limit process could obtain folas for the approx-
imating areas at an arbitrary stage of the subdividing m®ead could then
calculate the limit. Still—not a quick process, probablgveér than calculating
the area by our first method.

2.2.2 Grid point credit—a new fast method?

Now for our purposes, the sizes of our squares are fixed — thbg\ae area 1.
To get an exact area we would have to calculate the exact af¢las parts of
the partial squares that lie insiée

Is there a connection between the number of grid points amduimber of
grid squares inside a grid polygon? Perhaps we can find a wagsifning
“grid point credit” to grid points that mimics the approxitians we discussed.
Since we don’t have the option of reducing the size of gridases, we seek
a formula that gives an exact area, not one that requires somef limit.
Perhaps we can do this by giving credit to points dependintheim location
inside the polygon. Let’s see if we can formulate a methodssfgming full or
partial credit to grid points.

If we were dealing with the whole plane, rather than with theide of a
polygon, we would note that every grid point is a corner poirfour squares,
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and every grid square had four grid points as corners. Thaesounld count grid
squares by counting grid points. Of course, we are not dgalith the whole
plane, we are dealing with a polygon. But it does suggestra sta

Assigning credit When a grid pointp is “well inside” the polygon, all four
squares that have as a corner are insid@ Let’s try giving full credit of 1 to
such points.

What about other points? When only a certain part of the fquases that
have the point as a corner lies insiBewe try giving that point proportional
credit.

Figure 2.9: Polygor® with 5 special points and their associated squares

Notice there are several grid points, such as the pminin an edge oP,
many grid points likep “well inside” P, points likew that are insidé> but near
an edge, vertices likeand points likeu that are outside d? but near an edge.

In this simple figure, we see that only half of the area of the &muares that
haveq as a corner lies inside. Let’s try half credit forg. You can check that
the same is true of all grid points that are on an edge, axcept the vertices
where a similar picture would suggest credit different frof.

We have already determined that the pgirdeserves credit equal to 1 be-
cause the four squares associated \pitie insideP.

At w the 4 associated squares appear to be more than half fillagwints
of P, sow should get more than 1/2 credit. The verteghould receive more
than 1/2 credit. Even points like that are outside but ne& deserve some
credit. The exact amount of credit each of these grid poiesed/es has to be
calculated.

We can do this type of calculation for all grid points inside, or nearP,
add up all the credits and get the exact areB.of

Is this useful or practical? This would be useful if there were a way of as-
signing credit to grid points in a simple way, based only aarttocation. Points
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well insideP, like p would get full credit, and all other points whose associated
squares contain points insiée(like g, w, v andu) would get credit between O
and 1, based on the percentage of the area of the four asgbsiares that
lies insideP.

Will adding up all these credits give us the exact area? Yeglli

Is this practical? Is it easy? Would all grid points on an edfya polygon
(except vertices) deserve credit exactly 1/2? Look at EigutQ

Figure 2.10: A “skinny” triangle.

Here the pointp is located on the boundary of the triandleat (9,9). Our
earlier example suggested that such a boundary point shecgi/e credit 1/2.
But less than half of the area of the four squares having th# paas a corner
lies insideT. So this pointp doesn't deserve half credit after all: it deserve
less. We'd have to do a calculation to determine the creditgbint deserves,
even though it lies on an edge ©f That would defeat our purpose of finding a
simple and quick method of obtaining the area.

We see that just knowing the location of a point gives no imiatecclue as
to the proper credit, unless the point is well inside the goty, or well outside
it. A possibly messy calculation would be necessary to dates its proper
credit.

How long do you think it would take to find the area®tising this
method?

The answer is “Way too long.” The process would involve so imeatlcula-
tion that for practical purposes it is useless.

Some other kind of credit? What now? We can give up the idea of assigning
grid points credit. Or, we can keep that idea, but use what awe earned
from our earlier experiments to find a way that does lead tongle, practical
method of calculating the area.
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This sort of situation often occurs in mathematical discgvé plausible
approach looks promising at first, but does not achieve tlsgate outcome.
Instead of giving up, the researcher retains part of thatcgmb, but makes use
of earlier experimentation and earlier results to find a lsinmethod that has
the desired outcome. In this case, it involves discovehegbrrect simple and
quick way to assign credit to grid points.

2.3 Pick credit

The grid point credit idea based on area works certainlys éntirely general
since it offers a method to compute the area of any figure. Duedineed not
be a polygon nor need it have any points on the grid itselfie tio work. The
method assigns a value between 0 and 1 for every grid poirthbutature of
the point offers no help in guessing at the credit—it mustdmmputed in each
case. The only exception is that points well-inside the gofyclearly get a grid
point credit of 1 and points well-outside get a zero credit.

Because the method is so general we do not expect it to offehnmsight
into the current problem. Nor is this method easy or fast. \datva fast and
easy method for computing polygonal areas and we want a whettad ex-
plains transparently why the areas are invariably mukiplel/2 (as we saw in
Problem32).

We will still use the idea of assigning a value to each grichpbut, encour-
aged by our earlier experiments and observations, we wslgasonly values
of 0, 1/2, or 1. We will not attempt to assign values that imitate ttid goint
credit values. Points with a small grid point credit mightiwequire us to as-
sign 1 or 2 and points with a large area assignment might well requéreu
assign 0 or 12.

We can call thifPick creditwith the understanding that it will be in almost
no way related to the grid point credit method we have jusppsed. As we
have seen in working with grid point credit, the credit eacdmpgets simply
must be computed: there is no way of looking at a point anddilegithat some
feature of the point justifies more or less credit.

For the Pick count we want to do no computations, althoughmeevdling
to look for any features of the point that might require diffiet credits. We
cannot decide whether a poidéservegredit (in the same way that the area
credit computations did). We must simply experiment witfiedent possible
assignments until we find the one that works.

2.3.1 Experimentation and trial-and-error

In order to get some familiarity with our problem let us cortgpgsome areas
for a variety of polygonal regions constructed on grids. Sehproblems are
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essential training for our task and help reveal the truereaitithe problem we
are trying to solve. One goal we have, in addition just to fearization with
area problems, is that of finding the appropriate Pick ctbdit might work for
our area problem.

A good starting point is to investigate the area of primitiiangles. A
triangle on the grid must have all three vertices on the giidt contains no
other grid points then it is called@imitive triangle

Figure 2.11: Some primitive triangles.

Problem 33 (Primitive triangles) What can you report about the area of prim-
itive triangles?
Answer O

Problem 34 Find a number of triangles that have vertices on the grid aoi-c
tain only one other grid point, which is on the edges of thangle. What did
you observe for the areas? Answer O

Problem 35 Find a number of triangles that have vertices on the grid amial-c
tain only one other grid point, which is inside the edges eftiiangle. What
did you observe for the areas? Answer O

Problem 36 In Figure 2.12we see a collection of four polygons each of which
has 4 boundary points and 6 interior points. Compute the sisgad comment.
Answer O

Problem 37 Show that it is possible to construct a polygon on the grid Hes
as its area any one of the numbers

1 3 5 7
év 17 é? 2757 37 év 47

Answer O
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Figure 2.12: Polygons with 4 boundary points and 6 inter@n{s

Problem 38 What numbers can appear as the area of a square on the grid?
Experiment with various possibilities and then explainphéern you see.
Answer O

Problem 39 Look at Figure2.13 Compute the area of the rectangle R and the
triangle T. Try assigning a Pick credit dfto every point that is inside P and
a Pick credit of0 to every point that is not. Points on the boundary or outside
get O credit. Consider how the area of interest compares thiehtotal of the
credits. Try some other simple figures as well. Answer O

Figure 2.13: Compute areas.

Problem 40 Repeat the preceding exercise but this time try assigniedicof
1 to every point that is inside or on P. Points outside get zeedlit.
Answer O

Problem 41 Can you see a way to improve the approximation in Probf€m
by giving less credit for the grid points that lie on the palygi.e., on the edges
of the rectangle R or of the triangle T)? Answer O
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Problem 42 Repeat Problem1with a few more examples using rectangles and
triangles with corners on the grid. (It simplifies the cormadign if you choose
rectangles with horizontal and vertical sides and triargyigth one vertical side
and one horizontal side.) Answer O

2.3.2 Rectangles and triangles

Our exploration in Problem39-42 has suggested a first estimate of the form
. o # of gri ints onP
AreaP) ~ [# of grid points insideP] + [# of grid gom S OrF]
using our idea of full credit for the inside points and halédit for the boundary
points. We cannot say that the are@gialso we are using here the symbel
to suggest that this is an approximation or a crude first @sém

If we usel to denote the count for the interior grid points dtbr the count
of the boundary grid points thenRick count

B

| _
T3

gets close to the areas that we have considered so far.

Example 2.3.1 Here is another computation that suggests that half-ciseex-
actly right for the assignment of credit to the boundary gudhts. The rectan-
gle in Figure2.13can be split into two triangles as shown in Fig@ré4

. . . . . . .

. . . . . . .

Figure 2.14: Split the rectangle into two triangles.

There is one interior point inside the rectangle that becméoundary
point for the two triangles. In the estimate for the rectangiat interior point
gets full credit. For the triangles it has become a boundamtpand so gives
only half-credit to each of the triangles. This is approjgrisince the area of
each of the triangles is exactly half the area of the rectang|

The rectangle has 3 interior grid points, 12 grid points @nldbundary, and
area 8. Each triangle has 1 interior point, 8 points on thentlary, and area 4.
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So, as we found in the problems, the formula above gives aefitghate of 9
for the area of the rectangle and 5 for each of the rectantyidsoth cases this
is 1 more than the correct values. <

Problem 43 Determine an exact formula for the area of rectangles wittive
cal and horizontal sides and with vertices on the grid workn@are with the
actual area. Answer O

Problem 44 Determine an exact formula for the area of triangles with gae
tical side and one horizontal side and with vertices on thd grork. Compare
with the actual area. Answer O

2.3.3 Additivity

One of the key properties of areaadditivity. If two triangles, two rectangles,
or any two polygons that have no common interior points adeddogether the
resulting figure has an area that is equal to the sum of its.p@srtainly then,
Pick’s formula, if it is a correct way to compute area, mustléitive too in
some way.

Let us introduce some notation that will help our thinkingr Bny polygon
P we simply count the points in or on the polygon, assigninglitcref 1 for
points inside and A2 for points on the polygon. Call thRick’s countand write
it as

Pick(P) = I +§.

The valud simply counts interior points ari8lcounts boundary points. We are
nearly convinced, at this stage, that Pick’s count doesayedue that is 1 more
than the area. Is Pick’s count additive?

SupposeM andN are polygons with a common sidiebut no other points
inside or on the boundaries in common. ThdrandN can be added to give a
larger polygon with a larger area as in Fig@rés Call it P. The larger polygon
has all the edges &fl andN except for. which is now inside the large polygon
P.

Now we wish to show that we can determine RRkfrom

Pick(M) + Pick(N).
Then we want to use this fact to advantage in our computations

Problem 45 We know that
Area(P) = Area(M) + Area(N).
ComparePick(P) andPick(M) + Pick(N). In fact, show that
Pick(M) + Pick(N) = Pick(P) + 1.
Answer O
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M L

Figure 2.15: Adding together two polygonal regions.

Problem 46 Write a simpler and more elegant solution of Probldrhusing
the notation of this section. Answer O

Problem 47 Suppose that a polygon P has been split into three smallgr pol
gons R, P, and B by adding two lines joining vertices. Show that

Pick(Py) + Pick(P,) + Pick(P3) = Pick(P) + 2.

2.4 Pick’s formula

We have established the formula
AreaP) = Pick(P) —1=1+ g -1

for certain rectangles and for certain triangles. Any polygvhich we can
break up into parts comprised of such rectangles and swsigtas can then be
handled by the additivity of areas and the additive formolathe Pick count
using methods we have already illustrated. If you think gheanore compli-
cated polygons, you might find that they can be broken up ri@ogles, but not
necessarily triangles with one horizontal side and onecatigide.

Let's first experiment with a particular example of a triaaghat does not
meet those requirements.

Example 2.4.1 Let’s try our formula on the triangle in Figuiz16 The base
of this triangle has length 10 and its altitude is 8. Thusriéaas 40.
Our conjectured formula uses 33 interior points and 16 bagngoints,
giving an answer of
33+16/2—1=40

for the area, which is the same answer. <
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Figure 2.16: A triangle with a horizontal base.

The formula works but we have not seen why since we merely dioha
putation. We might try to check that this formula would wodk &ll triangles
with a horizontal base (this is Problef®). Then we could try a more ambi-
tious problem and determine that all triangles have the ganmgerty (this is
Problem49). Problem48is just a warm-up to the full case and is not needed.
Problem49 can be proved just by knowing that this formula is correctrémt-
angles and for triangles with both a horizontal and a vdrsicke.

Problem 48 Show that the area of any triangle T with vertices on the gnd a
with a horizontal base is given by the formula

Area(T) = Pick(T) — 1.
Answer O

Problem 49 Show that the area of any triangle T (in any orientation) with
vertices on the grid is given by the formula

Area(T) = Pick(T) — 1.
Answer O

2.4.1 Triangles solved

The figures that we saw in the answer for Probiénduplicated here as Fig-
ure2.17, are the most complicated ones that can arise if one wishiedloov
the method suggested. The key idea is that triangles in athpoentation can
be analyzed by looking at rectangles and triangles in a sinpientation. It
is the additivity properties of areas and of Pick counts firatzides the easy
solution.

Let us revisit Problerd9and provide a clear and leisurely proof. We need to
analyze the situation depicted in the right-hand pictur€igure2.17. Here we
have labeled the first triangle dg: this is the triangle in a strange orientation
for which we do not yet know that the Pick rule will work.
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A A
Tot i

T3 .

Figure 2.17: Triangles in general position.

The remaining triangle$;, T,, and T3 are all in a familiar orientation and
we can use Pick’s rule on each of them. Together they fit inextangleR for
which, again, we know Pick’s rule works.

The additivity of areas requires that

AreaR) = Area(Tp) + AreaTy) + Area(T,) + Area(Ts).
The additivity rule for the Pick count we have seen in the janes section:
Pick(R) + 3 = Pick(To) + Pick(T1) + Pick(T2) + Pick(T3).

The extra 3, we remember, comes from the fact that three pausrtices are
recounted when we do the sum.
Now we just have to put this together to obtain the formula aetynamely
that
Area(Tp) = Pick(Tp) — 1.

Problem 50 Do the algebra to check that
Area(Tp) = Pick(Tp) — 1.
Answer O

Problem 51 Consider once again the polygon P in Figuzel. What would
Pick’s formula give for the area of the P? Triangulate theymuin, use Pick’s
formula for each triangle, add up the areas, and compare thigharea that you
just found. Answer O

2.4.2 Proving Pick’s formula in general

We have so far verified that the formula works for triangleamy orientation.
We should be ready now for the final stage of the argument whsgs the
triangle case to start off an induction prédiiat solves the general case.

3See the Appendix for an explanation of mathematical inducii you are not yet suffi-
ciently familiar with that form of proof.
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The key stage in your induction proof will have to use $pétting argument
that we saw in Sectio@.1.4 Use mathematical induction on the number of
sides ofP and, at the critical moment in your proof, use the splittinguanent
to reduce a complicated polygon to two simpler ones.

Problem 52 Prove that the formula
Area(P) = Pick(P) — 1
works for every polygon P having vertices on the grid. Answer O

2.5 Summary

We have obtained a quick, easy, accurate formula for cdlngléhe area inside
any polygon having vertices on the grid.

Try this formula on the polygon in Figutz18where we have made the task
of spotting the appropriate grid points somewhat easiew log did it take?
Did you improve the record of 41 seconds?

Figure 2.18: Polygo® with border and interior points highlighted.

Let’s review our method of discovery. In Section2.1.6we revisited some
formulas for the area of a triangle that we might have leain@lementary ge-
ometry. These formulas did give the area of a triangle, butldvoften involve
some unpleasant computations. (We were seeking somethiok and easy.)
We were able to use such formulas to prove that every polygtimvwertices on
the grid has an area that is an integral multiple of 1/2. (lerol32)

We proceeded in Secticdh2 to discuss some other methods for computing
areas of polygons. None of these met our requirement of gagkand ease of
computation. One of these suggested a notion of giving f€remgrid points
inside, on, or near the polygon. To calculate an area by tethod would often
involve a huge amount of messy calculation, so it was an iotjma method.
But it did suggest a method of giving credit to grid points.r@uperiences in
solving the problems of Sectidh3.1suggested that only 0, 1/2 and 1 should
be considered as possible credits.
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So we did some more experimentation, in Secfid) based on our obser-
vations. We did some calculations for relatively simpleygains, and arrived
at a formula that actually gave the area for a variety of casagarticular for
rectangles and triangles that have at least two sides thatatical or horizon-
tal. By now it became natural to suspect that the formula weainéd would
actually apply to all polygons with vertices on the grid. Beg had some more
checking to do — we hadn't yet checked more complicated olggeven tri-
angles whose sides are not vertical or horizontal.

In Section2.4we put it all together. First, we established the result for a
triangles with vertices on the grid, regardless of theieotation. Then we used
mathematical induction to verify the formula for all polygowith vertices on
the grid. We had accomplished our goal.

The role of induction By the time we came to the actual proof by induction,
we were (almost) convinced that the formula is correct. Tiseavery part was
complete. We used induction only for verification purpodésvas not part of
the discovery process.

This will be true of every use of mathematical induction irstbook. By
the time we get to the induction step, we are almost convititatithe result we
obtained is correct. The induction step removes all doubts.

Other methods There are many other approaches to proving Pick’s formula.
Some of the material in Sectiors6.3 2.6.5 2.6.7, and 2.6.8discuss other
approaches that shed some additional light on the subject.ldter chapter in
Volume 2 we will use some graph theory and a theorem of Eulewvisit Pick’s
theorem.

2.6 Supplementary material

2.6.1 A bit of historical background

A bit more historical detail on Pick himself is given in the
article by M. Ram Murty and Nithum ThainXJ] in our
bibliography) from which the following quote is taken:
“Pick was born into a Jewish family in Vienna on August 10
1859. He received his Ph.D. from the University of Viennaamd
the supervision of Leo Koenigsberger in 1880. He spent nfost
his working life at the University of Prague, where his catiees
and students praised his excellence at both research ainga
In 1910, Albert Einstein applied to become a professor ofthe Frg
retical physics at the University of Prague. Pick found laths
on the appointments committee and was the driving forcetin gd
ting Einstein accepted. For the brief period that Einsteas at

Figure 2.19: Pick
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Prague, he and Pick were the closest friends. They were both

talented violinists and frequently played together. In9,9Rick

retired and moved back to his hometown of Vienna. Nine yeses,| Austria was an-
nexed by Germany. In an attempt to escape the Nazi regimler&iorned to Prague.
However, on July 13, 1942, he was captured and transportidw tbheresienstadt con-
centration camp. He passed away there thirteen days latbe age of 82.

Pick’s formula first came to popular attention in 1969 (séyen

years after Pick published it) in Steinhaus’s bdd&athematical

Snapshots

Pick’s theorem was originally published in 1899 in Germage(F] in our
bibliography). Recent proofs and extensions of Pick’s teeocan be found
in several American Math. Monthly articles by W. W. Funkestiu §], Dale
Varberg [L4], and Branko Grinbaum and G. C. Shepha&jl [

2.6.2 Can't be useful though

Is Pick’s theorem of any use? Not likely, you might say. Herexiremark
though that might change your mind:

“Some years ago, the Northwest Mathematics Conference eldsrhEu-

gene, Oregon. To add a bit of local flavor, a forester was dediuon the
program, and those who attended his session were introda@edariety
of nice examples which illustrated the important role thatmematics
plays in the forest industry. One of his problems was corexbmwith

the calculation of the area inside a polygonal region drawsctle from
field data obtained for a stand of timber by a timber cruisene $tan-
dard method is to overlay a scale drawing with a transparenayhich a
square dot pattern is printed. Except for a factor depenatettie relative
sizes of the drawing and the square grid, the area insidedlygqn is

computed by counting all of the dots fully inside the polygand then
adding half of the number of dots which fall on the boundingesdof
the polygon. Although the speaker was not aware that he veantaslly

using Pick’s formula, | was delighted to see that one of mpffie math-
ematical results was not only beautiful, but even useful.”

The quote is due to Duane W. Detemple and is cited in the eftigBranko
Grinbaum and G.C. Shepha#].[

2.6.3 Primitive triangulations

Primitive triangles play a key role in our investigationfi€Ee are the triangles
that contain no other grid points than their three verticége saw that each
primitive triangle had area/2 and Pick’s formula confirms this.

A primitive triangulationof a polygon on the grid is a triangulation with
the requirement that each triangle that appears must betipgmFigure2.20
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illustrates a polygon that contains two interior grid psilgading to a primitive
triangulation containing eight primitive triangles.

Figure 2.20: A primitive triangulation of a polygon.

How would one go about constructing such a triangulation?sthdme al-
ways exist? What other features are there?

The splitting game To study these questions let us introduce a sinsplé-
ting gamethat can be played on polygons. Mathematicians frequemtigaduce
games to assist in the analysis of certain problems. We e&tilirn to the inves-
tigation of games in other chapters.

Two players agree to start with a polygon on the grid and, &adhg turns,
to split it into smaller subpolygons on the grid. Player Artstavith the original
polygon and splits it into two (by adding one or two line segiseaccording to
rules given below). Player B now faces two polygons. She seésone of them
and splits it into two (by following the same rules). Playenéw faces three
polygons. He chooses one of them and splits it into two. PIByeow faces
four polygons. She chooses one of them and splits it into two.

And so on. The game stops when none of the polygons that oaeaede
split further. The last person to move is declared the winner

The rules The rule for each move is that the player is required to ch@ose
polygon in the figure that has arisen in the play of the gamelaaichas not, as
yet, been split. The player then splits that polygon in onéhese two ways:

Type 1 The player selects two grid points on the boundary efpiblygon. The
line segment joining them is constructed provided it isrehtiinside the
polygon, thus splitting the polygon into two smaller polygo
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Type 2 The player selects two grid points on the boundary efpblygon and
also a grid pointin the interior. The two line segments jogiihe interior
grid point to the two boundary points are constructed predithey are

entirely inside the polygon.

Note that each play of the game splits the original polygda more and
more pieces. More precisely, after the first move the origpoéygon has been
split into two polygons, after the second move there willtreé polygons, and
after thekth move there will bk 4+ 1 polygons. At some point we must run
out of grid points that can be joined and the game terminaids avwinner

declared.

Figure 2.21: A starting position for the game.

Problem 53 Play the splitting game using the polygon in Fig@de1 as the
starting polygon. What can you report? Answer O

Problem 54 Play the splitting game a few times with some simple choites o
polygons. What can you report? Answer O

Problem 55 Prove that any play of the splitting game always ends withipr

itive triangulation of the starting polygon.
Answer O

Problem 56 Use Pick’s formula to compute the area of all primitive triges.
Answer O

Problem 57 Suppose that the starting polygon has B grid points on th@a8dou
ary and | grid points in its interior. Using Pick’s theoremgtgrmine how many
triangles there are in the final position of the game and howymaoves of the
splitting game there must be. Answer O

Problem 58 Suppose that the starting polygon has B grid points on th@tou
ary and | grid points in its interior. Which player wins thema?
Answer O
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2.6.4 Reformulating Pick’s theorem

We can reformulate Pick’s theorem in terms of primitiverigalations using
what we have discovered by playing this splitting game.

We saw that primitive triangulations must exist. We saw thate was al-
ways the same number of triangles in any primitive triangoiha \We observed
that we could count the number of triangles by the formula

20 +B-2.

Pick’s theorem provided the area ofZLfor every primitive triangle. All these
facts add up to Pick’'s theorem and, had we known them, the fareaula

| +B/2— 1 would have followed immediately. Consequently the foliogv
statement is equivalent to Pick’s area formula and is a bety of thinking

about it and a better way of stating it.

2.6.1 (Pick’s Theorem) A primitive triangulation of any polygon P on the grid
exists, and moreover

1. The area of any primitive triangle /2.

2. The number of triangles in any primitive triangulationffs exactly
2l+B-2

where | is the number of grid points inside P and B is the nunabgrid points
onP.

Some people on first learning Pick’s area formula ask for ghegvation of
why such a simple formula works. They see that it does wory tinderstand
the proof, but it somehow eludes them intuitively. But if yask them instead
to explain why the primitive triangulation formula

20 +B-2

would work, they see that rather quickly. Of course coungirigangulation of
P depends on grid points in and & Of course interior points count twice as
much as boundary points in constructing a primitive tridagon.

Oddly enough then, thinking too much about areas makes desfionpnula
more mysterious. Stop thinking about why areas can be exgddy grid points
and realize that Pick’s formula is actually a simple methoddounting the
triangles in a triangulation. The area formula is merely aseguence of the
counting rule for primitive triangulations.

2.6.5 Gaming the proof of Pick’s theorem

We used our knowledge of Pick’s theorem to analyze compie¢hel splitting
game. Not surprisingly, we can use the splitting game iteeldnalyze com-
pletely Pick’s theorem.
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We know that any splitting game will always result in a pringttriangula-
tion of any starting polygon. We wish to establish that thenber of triangles
that appear at the end of the game is always given by the farmul

20+B-2

wherel is the number of grid points insid@andB is the number of grid points
onP.
Let us take that formula as a definition of what we meanhgycount

CountP)=21+B-2
for any polygonP. Note immediately that iT is a primitive triangle then
CountT)=2x0+3-2=1

We play the game on a polygdéhsplitting it by a Type 1 or 2 move into two

polygonsM andN. Simply verify that
Coun{P) = Coun{M) + Coun{N).

This is just a simple counting argument looking at the griwhglthe splitting
line. (Do this as Probler9).

That means that if we play the game one more step by splitfirigto two
subpolygondvi; andM, the same thing happens:

Coun{M) = Coun{Mj) + Coun{M)
and so
Coun{P) = Coun{M3) + Coun{M3) 4+ Coun{N).

So, if we play the game to its conclusidnis split inton primitive trianglesTy,
Ty, ... Ty in exactlyn — 1 plays of the game. Consequently

Coun{P) = Coun(T;) + Coun{T,) +--- +Coun(T) =1+1+---+1=n.

That completes the proof that CoulRj always gives exactly the correct number
of triangles in the primitive triangulation ¢f.

Problem 59 We play the game on a polygon P splitting it by a Type 1 or 2 move
into two polygons M and N. Verify that

Coun{P) = Coun{M) + Coun{N).
Answer O

Problem 60 Wait a minute! We promised to prove Pick’s theorem using the
game. We still want to show that for a primitive triangle T,

Area(T)=1/2.
Can you find a way? [Hint: triangulation works here t00.] Answer O

Problem 61 This proof is simpler, perhaps, than the first proof we gave of
Pick’s theorem. Why didn’t we start with it instead? Answer O
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2.6.6 Polygons with holes

We now allow our polygons to have a few holes. Again we askHerarea of
a polygon constructed on the grid but allowing a hole or pestseveral holes.
The problem itself is not so hard if we can compute the area@hbles since

Figure 2.22: What is the area of the polygon with a hole?

then the answer is found by subtracting the area of the hodes the area of
the polygon.

In Figure2.22the holeH is a rectangle with area 2; sinékis also on the
grid this is easy enough to compute. Indeed if the holes avayal polygons
with vertices on the grid we can use Pick’s Rule many timeotopute all the
areas and then subtract out the holes.

But let us find a more elegant solution. If we use Pick’s Ruldtiple times
we may end up counting many of the grid points several timégrd must be
a simple generalization of the Pick formula

AreaP)=1+B/2—-1
that will accommodate a few holes. Now countingve would ignore points

inside the holes. And countiri®) we would have to include any boundary points
that are on the edge of the holes.

Polygons with one polygonal hole

Figure2.23shows a rectangle with a hole created by removing a rectanble
from the inside ofP. All of the vertices ofR andH are on the grid. Her®
isa5x 12 rectangle an#ll is a 2 x 4 rectangle. Thus the area between them
is 60— 8 = 52 units. Our objective is to use our counting method diyet|
calculate the area between the polygBremndH.

Problem 62 Experiment with the polygons in Figuge23and others, if neces-
sary, to conjecture a formula for the area between two patggd\s always the
polygons under consideration are to have their verticeshengrid.

Answer O
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Figure 2.23: Rectangle with one rectangular hold.

Problem 63 Our previous method was (i) counting interior points at ftdlue
of 1, (ii) counting points on the boundary of the polygon &lf kalue of1/2,
and finally, (iii) subtractingl. What goes wrong if we try the same argument
for the figure with a hole? Answer O

Problem 64 (An algebraic argument) Let us do the entire calculation alge-
braically. Take P as the outer polygon, H as the hole polygord G as the
region defined as P take away H. We know from Pick’s Rule that

AreaP)=1(P)+B(P)/2—1

where by BP) we mean the number of boundary grid points on P, and(By |
we mean the number of interior grid points inside P. Simyarl

AreaH)=I1(H)+B(H)/2—-1
where by BH) we mean the number of boundary grid points on H, and(bly |
we mean the number of interior grid points inside H.

Find the correct formula for the subtracted argeeaP) — AreaH) in
terms of (G) and B(G). Answer O

Polygons withn holes

The algebraic argument we gave is quite general, it appl¢snly to any
polygonP with vertices on the grid and any other such hole polygoimside
P, but also applies (with obvious minor changes) wRemasn such polygonal
holes inside it. To complete the theory, then try to guesseafihal formula and
to verify it using the techniques seen so far.

Problem 65 Determine a formula for the area that remains inside a potygo
with n polygonal holes. Answer O
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2.6.7 Animproved Pick count

Our Pick-count policy was to assign a count value of 1 for godhts inside the
polygon and a count value of 1/2 for grid points on the polygeelf. This was
certainly successful since it gave us the formula

AreaP) = Pick(P) — 1
which works, as we now have proved, for all possible polygaitis vertices at
grid points.

There is another rather compelling and elegant way to do @boetc This
makes for a neater proof. This is not a new or different pra@fshould point
out. But it is a rather tidy way of expressing the same ideas.

The idea behind it is that the additive formula for the Pickmip

Pick(P) 4+ 1 = Pick(Py) + Pick(P,)

for the situation when the polygdpis split into two polygong? andP, with

a common edge is not quite as “additive” as we would prefenad this extra
1 that must be included. The additional 1 comes from the twboes that get
assigned 1/2 in both the counts. That destroys the adgijtivit only by a little
bit. To get true additivity we will use the idea that angles aaturally additive.

Angle of visibility We do a different Pick count. For each point in or on a
polygonP we decide what is itangle of visibility This is the perspective from
which standing at a point we see into the inside of the polygbar points
interior to P we see a full 360 degrees. For points on an edge but not at a
vertex we see only one side of the edge, so the angle of vigiisilL80 degrees.
Finally for points at a vertex the angle of visibility woul@ bhe interior angle

and it could be anything between 0 degrees and 360 degreesoWig have to
measure it in each case.

Modified Pick’s count Our modified Pick’s counis to take each grid point
into consideration, compute its angle of visibility, andide by 360 to get the
contribution. Points inside get 360/360=1. Points on thgeeblut not at a
vertex get 180/360=1/2. And, finally, points at the vertekay&860 wherea is
the degree measure of the angle. The new Pick count we wik\as

Pick' (P).

Add up the count for the vertices At first sight this seems terribly compli-
cated. How would we be prepared to measure all of the vertglead We
would never be able to perform this count. But that is not so.

Take a triangle for example. Except for the three verticescibunt is (as
usual) to use 1 for inside points and 1/2 for edge points. iteetvertices taken
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together then contribute
a+b+c
360
While we may have trouble measuring each of ang/ésandc, we know from
elementary geometry that the angles in any triangle add ag8@ddegrees. So
we see that the contribution at the vertices is
a+b+c 180 1
360 360 2
The old way of counting would have given us24-1/2+1/2 which is 1 larger
than this. Thus for any triangle
Pick’(T) = Pick(T) — 1= Area(T).

In general for a polygon with vertices it might appear that we would have

to compute the angles at each of the vertices to get the batitm
at+ag+---+an
360

But the angles inside any polygon wittvertices add up to 186 — 2) degrees.
This is because any such polygon can be triangulated in tigengadescribed
earlier in the chapter. For example, a quadrilateral candm®miposed into
two triangles by introducing a diagonal. Each of the trimsgtontributes 180
degrees, so the quadrilateral has a total of B0 degrees as the sum of its
interior angles at the vertices.

Thus we see that the contribution at the vertices of a polygtnn vertices

is
qtat- - +a _180n-2) n
360 - 30 2 7

Compare the old count to the new count The old way of counting would
have given us 1/2 for each of timevertices for a total oh/2 which is again 1
bigger. Thus we see that for any polygen

Pick*(P) = Pick(P) — 1= Area(P).
This also explains the mysteriousl that needed to occur in Pick’s formula.

Additivity  The ordinary Pick count using Pi@R) is not quite additive. Every
use of the additive rule required a bookkeeping for the aatdit in the formula

Pick(P) + 1 = Pick(Py) + Pick(P,).
That made our computations a bit messier and gave us a gligbitk-intuitive
formula

Area(P) = Pick(P) — 1.
Now that we have a better way of counting grid points we haveeaigely

additive formula

Pick*(P) = Pick’(Py) + Pick' (P,)
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and an intuitive area formula

Area(P) = Pick' (P).
That supplies a different way of writing our proof for Picksrmula that is
rather simpler in some of the details. See Proban

Problem 66 Prove the additive formula
Pick"(P) = PicK*(Py) 4 Pick"(P»)

for the modified Pick count for the situation when the polyBas split into two
polygons P and B with a common edge. Answer O

Problem 67 Reformulate the proof of Pick’s formula using now the modlifie
Pick count to show that
Area(P) = Pick' (P).

Answer O

Problem 68 Determine a formula for the area that remains inside a potygo
with n polygonal holes using the modified Pick count idea. Answer O

Problem 69 Does the formula you found in Probled8i help clarify the formula
we have found in Problemb5 for the area inside polygons with holes? Does it
explain why that formula needed us to count the number osHake, why the
formula had an n that appeared)? Answer O

2.6.8 Random grids

Instead of a square grid let us start off with a large coltettf points arranged
in any fashion, as for example in FiguPe24where the grid points have been
chosen at random.

Figure 2.24: Random lattice.

In Figure2.25we have constructed a triangle with vertices at grid poifts o
this random lattice. There are three boundary grid poiriis three vertices)
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and two interior grid points; in our usual notati@8n= 3 andl = 2. We do not
ask for an area computation, but we do ask (as before) whitbier must exist
a primitive triangulation? We ask too how many triangles lsdoappear in a
primitive triangulation of a polygon on this grid?

Figure 2.25: Triangle on a random lattice.

Try a few examples until you come to some realization aboesehprob-
lems. The situation is not merely similar to the problem diygons on square
grids: itisidentical. In Sectio8.6.3we proved that iP is a polygon on a square
grid there must exist a primitive triangulation. In Sectibp.5we proved that,
if P hasl interior grid points and3 boundary grid points, then the number of
primitive triangles that appear is always exactlyy2B — 2. Certainly the same
formula works here for the particular case of the trianglBigure2.25

Figure 2.26: Primitive triangulation of the triangle in Big2.25

An examination of our proofs in those sections shows thabaiant of the
argument did we use any features of a square grid: the pandd bave been
arranged in any fashion at all and the proofs would be unaténglence the
result is unchanged: there must always be a primitive tu&tgn and any such
triangulation contains exactly 2- B— 2 primitive triangles. The grid points can
assume any pattern at all.

When we were concerned about areas then the fact that thevgsidquare
and the points neatly arranged mattered a great deal. Whetmrwgust to
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counting the pieces of a primitive triangulation the geamat longer matters.
The answer must depend only on the number of boundary paidttha number
of interior points.

Figure 2.27: Sketch a primitive triangulation of the polypgo

Problem 70 Sketch a primitive triangulation of the polygon in Figire7that
is on a random grid. How many triangles are there in any privaitriangula-
tion?

Answer O

2.6.9 Additional problems

We conclude with some additional problems that are relaig¢te material of
this chapter.

Problem 71 Use Pick’s Rule to prove that it is impossible to construcegui-
lateral triangle with its vertices on the dots in a squaredyri
Answer O

Problem 72 (Stomachion) Find the areas of the polygons in Figu&28 by
using Pick’'s Theorem or a simpler method.
Answer O

Problem 73 A Reeve tetrahedrois a polyhedron in three-dimensional space
with vertices at(0,0,0), (1,0,0), (0,1,0) and (1,1,n) where n is a positive
integer. Explain how the Reeve tetrahedron shows that aeynat to prove a
simple version of Pick’s theorem in three dimensions muist fa

Answer O

Problem 74 (Bézout identity) Two positive integers are said to be relatively
prime if they have no factor in common. Given two relativaiyng positive
integers a and b, show that there exist positive or negatitegers ¢ and d such
that

ac+bd=1.

Answer O
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Figure 2.28: Archimedes’s puzzle, called the Stomachion.

Problem 75 Let T be a triangle with vertices &0, 0), (1,0) and (m,n), with
m and n positive integers and>n 1. Must there be a grid poinfa, b) in or on
T other than one of the three vertices of T? Answer O

2.7 Answers to problems

Problem 20, page 30

Figure2.29illustrates a number of points in the first quadrant that anel (@@are
not visible) from the origin. Clearlyl,1) is visible from the origin, but none
of these points
(2,2), (3,3), (4,4), (5,5),...

(marked with an X in the figure) are visible precisely beca(is&) is in the
way. Similarly (4,5) is visible from the origin but none of these points

(8,10), (12,15), (16,20), (20,25),...
are visible.
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Figure 2.29: First quadrant unobstructed view fr@r0).

The key observation here is the notioncoimmon factarYou can prove (if
you care to) that a poir{tn,n) on the grid is visible from the origin if and only
if mandn have no common factors. (For examp810) is not visible because
both 8 and 10 are divisible by 2. Similar{{L2, 15) is not visible because both
12 and 15 are divisible by 3. By#,5) is visible since no number larger than 1
divides both 4 and 5.)

In particular we see that some elementary number theorytésiag into the
picture quite naturally. That suggests that this invesitigais perhaps not as
frivolous and elementary as one might have thought. In Rral@l we will see
an application of Pick’s theorem to number theory.

Problem 21, page 30

If you take the three points
(0,0), (1,1),(2,2)
as
Vi, V2, V3

then you will see the trouble we get into. We could avoid thighwriangles by
insisting that the three points chosen as vertices carmotlihe same line.
Another example is taking

(0,0), (2,0), (1,1), (—1,1)
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as
Vi, Vo, V3, Vg

Certainly there is a square with these vertices but we woalet Ito specify a
different order since the line segmé&fl, and the line segmeiV, cross each
other. We don't intend these to be the edges.

Yet again, an example taking

(0,0), (2,2), (2,0), (1,0,), (2,2), (0,0)

as
Vi, Vo, V3, Vg, Vs, Ve

shows that we should have been more careful about specifyaghe vertices
are all different and the edges don’t cross or overlap.

Areasonable first guess at a definition would have to inclidieeelements
in the following statement:

2.7.1 A polygon can be described by its vertices and edges thatobegtthese
rules:

1. There are n distinct points
V17V27V37 ce :Vn-

2. There are n straight line segments
V1V27 V2V37V3V47 te 7VnV1

called edges. Two distinct edges intersect only if they ha@@mmon vertex,
and they intersect only at that common vertex.

Even that is not quite enough for a proper mathematical disimibut will
suffice for our studies. The reader might take this as a wgrkifinition that
can be used in the solutions to the problems.

Problem 22, page 31

First consult your list to identify a vertex that occurs atar (x,y) for which
y is as large as possible. Then walk, without touching an edigéo a vertex.
Go around the polygon in order consulting your list of vestidor directions,
staying close to the border, but without actually touchingeage or vertex.
Eventually you will arrive near a vertex you have identifischaving the largest
y value. Which side of that point are you on?

This could be written up as a computer algorithm to test amytpo find out
whether it is inside or outside. Certainly in a finite numbesteps (depending
on how many edges we must follow) we can determine whethereveapped
inside or free to travel to much higher places.
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Problem 23, page 32

There are five choices of splitting lines in addition to thmelsegment. Notice
that there are many other ways of joining pairs of vertice$ sSbme ways pro-
duce line segments that are entirely outside the polygomasscanother edge.
The six splitting choices are illustrated in Figt§.

-

-
-
-
-
-

-
-
-
-
-
-
-
-
-

Figure 2.30: The six line segments that split the polygon.

Problem 24, page 32

Certainly you would have discovered quickly that no triangan be split this
way. But in every other case that you considered there waané been at least
one lineL that splits the polygon.

Thus it appears to be the case that every polygon with four aneraer-
tices can be split by some line segment that joins two verticiéhout passing
through any other points on an edge of the polygon. That isdhgcture.

Problem 25, page 32

This may not be as obvious as it first appears, since we mustd=mmall pos-
sible cases. It is easy to draw a few figures where many choicpessible
vertices would not be allowed. It is clear in any particulgample which two
vertices can be used, but our argument must work for all cases

We assume that we have a polygon witkiertices wheren > 3 and we try
to determine why a line segment must exist that joins twasestand is inside
the polygon (without hitting another edge).
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Go around the polygon’s vertices in order until you find thceasecutive
verticesA, B andC such that the anglgABC in the interior of the polygon is
less than 180 degrees. (Why would this be possible?)

The proof is now not too hard to sketch. Suppose first thatrthegle ABC
has no other vertices of the polygon inside or on it. If so $yngin A andC.

The line segmer®C cannot be an edge of the polygon. We know tABt
andBC are edges. IAC were also an edge, then there are no further vertices
other than the three verticés B, andC. Since we have assumed that there
are more than 3 vertices this is not possible. (Statefdénion pagess has a
formal description of a polygon that we can use to make tlgaraent precise.)
Consequently this line segmei€ splits the polygon.

There may, however, be other vertices of the polygon in tlaagte. Sup-
pose that there is exactly one verdéxin the triangle. Then, whil&C cannot
be used to split the polygon, the line segmBM; can. Again we are done.
Suppose that there are exactly two vertiZgandX; in the triangle. Then one
or both of the two line segmenBX; or BX, can be used. To be safe choose the
point closest td.

Suppose that there are exactly three vertigsX,, andXs in the triangle.
Then one or more of the three line segmdB¥ or BXy or BX3 can be used.
Draw some figures showing possible situations to see howmbriks. Note that
the point closest t® is not necessarily the correct one to choose.

The general argument is a bit different. Suppose there aetlgx vertices
X1, Xo, ... %X, inside the triangleABC. Select a poin&’ on the lineAC that is
sufficiently close toA so that the trianglé&'BC contains none of the poind,

X2, ... Xn. Now move along the line to the first poid’ where the triangle
A’BC does contain one at least of these points. From among thesselthe
vertexX; that is closest t®. ThenBX; can be used to split the polygon since it
can cross no edge of the polygon.

Problem 26, page 32
If M hasm vertices,N hasn vertices and the large polygon (before it was split)
hasp vertices then a simple count shows that
m+n=p+2
since the two endpoints @fgot counted twice. But you can also observe that
m> 3 andn > 3.

Combining these facts shows finally that

Mm=p+2-n<p+2-3=p-1
and

nN=p+2-m<p+2-3=p-1
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So the two polygon# andN must have fewer vertices than the original poly-
gon.

This fact will be a key to our induction proof later on. If eyguolygon
(other than a triangle) can be split into subpolygons withieievertices, then
we have a strategy for proving statements about polygorst Bith triangles
(the casen = 3). Assume some property for polygons with 3, 4, ..., and
vertices. Use these facts to prove your statement abougposywithn+ 1
vertices. Take advantage of the splitting property: thegamtygon withn+ 1
vertices splits into two smaller polygons with fewer vegsc

Problem 27, page 33

Perhaps you answered that this was the only triangulatissible. If so you
didn’t look closely enough. There is one more triangulatbR that uses addi-
tional edges joining a pair of vertices as Figdr&illustrates.

Figure 2.31: Another triangulation &%

But, in fact, any decomposition @& into smaller triangles would also be
considered a triangulation and can be used to compute afeasmost inter-
esting triangulations for our study of polygons on a grid Imigequire us to
use grid points for vertices of the triangles. There are nguh triangulations
possible forP.

More generally still, we could ignore the grid points enfirand allow any
decomposition into smaller triangles. Once again, thezaraany such triangu-
lations possible foP; indeed there are infinitely many.

Problem 28, page 33

To start the problem try finding out why a polygon (of any shapgh four
vertices can always be triangulated. Then work on the paiygioh five ver-
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tices but use the splitting argument to ensure that thisgmoiycan be split into
smaller polygons, each of which is easy to handle.

A complete inductive proof for the general case is thenyastraightfor-
ward. Letn be the number of vertices of a polygBnIf n= 3 then the polygon
is already triangulated. H = 4 simply join an appropriate pair of opposite ver-
tices and it will be triangulated. = 5 use the splitting argument (which we
have now proved in Proble2b) to split P into smaller polygons. Those small
polygons have 3 or 4 vertices and we already know how to ttikatg them.
Andsoon....

Well “and so on” is not proper mathematical style. But thiuament is easy
to convert into a proper one by using the mathematical indncyou may need
to review the material in the appendix before writing this up

Problem 30, page 36

It is good practice in starting a topic in mathematics to expent on your own
with the ideas and try out some examples. All too often in ehexatatics course
the student is copying down extensive notes about defisitonl theorems well
before he is able to conceptualize what is happening.

In this case you will certainly have computed polygons wiims or all of

these areas:
1 3 5 7

Z 1. - 2= —

27 ) 27 727 37 27
But you will not have found any other area values. We cenyampected frac-
tions, but why such simple fractions? All areas appear toibengby some
formula

4,....

N

2
whereN is an integer. This, if it is true, is certainly a remarkabdatiire of
such figures. Few of us would have had any expectation thetmas going to
happen.

Our best guess is that, for polygons on square grids, songethibeing
counted and each thing counted has been assigned a valu ahvaultiple of
1/2. The natural thing we might consider counting is grid pginBut what
values should we assign to each grid point?

Problem 31, page 36

As we have already determined, a trianglavith vertices at(0,0), (s,t), and
(a,b) must have area given by

at—bs
2
The numerator is an integer so the area is clearly a multijle 2.
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Now, by drawing some pictures, try to find an argument thatedlyou to
conclude that all triangles anywhere on the grid can be coadp@® a triangle
like this. We must be able to claim that every triangle on thé i congruent
to one with a vertex at0,0) and of this type. Then, since we have determined
that this triangle has area an integer multiple g2 ithen every triangle on the
grid has this property.

Problem 32, page 36

In Problem28 we saw that all polygons on the grid can be triangulated by
triangles on the grid. Each such triangle has an area thatisli@ple of 1/2.
The polygon itself, being a sum of such numbers, also has ean that is a
multiple of 1/2.

Problem 33, page 42

You should be able to compute easily the area of any triahglettas one side
that is horizontal or one side that is vertical. In that cdseformula

1/2 x basex height

immediately supplies the answer. For primitive triangléshas type you will
observe that both base and height are 1 so the area is imelgdi&2.
If the triangle has no side that is horizontal or verticakthige formula

1/2 x basex height

while still valid, does not offer the easiest way to calceltte area. For these
triangles the methods of Secti@l.6should be used. For example compute
the area of the primitive triangle with vertices(@0), (2,1) and(3,2). Try a
few others.

You should have found that all of them that you considere laaga exactly
1/2. Again the number 1/2 emerges and seems (perhaps) tatedr the fact
that all of these figures have exactly three points on the gkido, we know
that every triangle on the grid has an area that is some reuttipl/2; since
primitive triangles are somehow “small” we shouldn’t bemised if all have
area exactly 12, the smallest area possible for a triangle on the grid.

Problem 34, page 42

You should have found that all of them have area exactly 1. #¥ecompare
with primitive triangles in a couple of ways. Proble88 shows that primitive
triangles must have ared4.

The extra grid point on the edge of these triangles appearsrwibute an
extra credit of 2. Or, perhaps, we could observe that the extra grid point
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allows us to split the triangle into two primitive triangleach of which has area
1/2. Both viewpoints are useful to us.

Problem 35, page 42

You should have found that all of them have area exactly 3l dingle grid
point in the interior of the triangle can be joined to the thwertices, dividing
the original triangle into three primitive triangles. Sneach of these has area
1/2 according to Probler®3, the total area is 3/2.

Problem 36, page 42

You should have found that all of them have area exactly 8.likely a mystery
to you, however, whether these two numbers 4 and 6 adequdiglgin an area
of 7. (Is there some formula for which, if you input 4 and 6, theult will be
7?)

Does this mean that all such polygons (with 4 boundary p@ints6 interior
points) must have area 7? Our choice of polygons was drivestiynioy a desire
to find figures whose area could be computed without much dificlt is not
clear at this stage whether much weirder figures would or évaok have this
property.

But, if this is so, then it appears (quite surprisingly) totbe case that the
area inside a polygon with vertices on the grid depends onligrmwing how
many grid points there are on the polygon itself and how maitypints there
are inside the polygon.

Problem 37, page 42

In Problem30you likely constructed a few of these. Just describe a praeed
that would construct one example for each of these. Stangpsrwith a trian-
gle with vertices at0,0), (0,1), and(1,0). Just keep adding simple primitive
triangles until you see a way to write up your recipe.

Problem 38, page 42

Your experiments should have produced squares with thess:ar
1,2 4,5 9 10 13 16, 17, 20, 25, 26, 29, 36, 37, 40, 45, 52....

If you didn’t find many of these keep looking before you try pmsthe pattern
or try to explain the pattern.

Certainly, for any integek, the squares with verticé®, 0), (0, k), (k,0) and
(k,k) is on the grid and has aré&. This explains all of these numbers:

1,4, 9, 16, 25, 36, 49, 64, 81, 100.....
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What about the other numbers in the list we found above?

But the square with vertice®,0), (1,1), (—1,1) and(2,0) also works and
has area 2 since each side length/B. That explains the number 2. More
generally, for any choice of poirfe, b), there is a square with one vertex at
(0,0) and the line joining0,0) to (a,b) as one of its sides. The side length is

by the Pythagorean theorem and so the area is
a’ + b2,
Consequently any number that is itself a square or is a sunw@fsguares

must be the area of a square on the grid. That statement lhesc¢he list of
possibilities that we saw.

Problem 39, page 42

The area of the rectangRis 8. The number of grid points inside the rectangle
is 3. Thus counting grid points inside is a considerable tegtanate in this
case. Perhaps, however, with much larger rectangles tlgistrine a useful first
estimate.

Similarly, the area of the trianglE is 4. The number of grid points inside
is 1. Again simply counting grid points inside gives too lowestimate.

You may wish to try some other examples and see if the samedfiodn-
clusion is reached. A simple counting of grid points insideduces estimates
that are poor for these relatively small polygons.

Problem 40, page 43

Once again the area of the rectanBles 8. The number of grid points inside
is 3 to which we are instructed to add the number of grid pantthe rectangle
itself. There are 12 such points and adding these gives3i2 15, considerably
larger than 8.

The area of the triangl€ is 4. The number of grid points insideis 1 and
the number of grid points on the triangle is 8. The additioh+4s8 = 9, rather
more than the area of the triangle.

It appears that, in order to reduce the total Pick credit abiths closer to
the actual areas we need to give less credit to some of thé&spoin

Problem 41, page 43

The grid points orR andT are neither inside the polygon nor outside. We can
try giving them less credit than 1. Our choices are 0 afil 1

Let’s try 1/2 for all of them which would be a reasonable first guess.Rror
we find 12 such points (counting the corners of R). Giving eaath point half
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credit we obtain
3+6=9
whereas the area &is 8. This is rather closer but is just an overestimate by 1.

Similarly, for the triangleT there are 8 grid points on the triangle. If we
give them half-credit, we obtain

1+4=5.

The area of the triangle is 4 and so, once again, we have faunsexestimate
by exactly 1.

Try some other figures to see if this is what will always hap@gmould we
change the credit (reduce some of these points to zero coedihould we try
to figure out why the extra 1 arises?

Problem 42, page 43

Your examples should show results similar to those we foundroblem41.
Trying for an estimate
[# of grid points onP]

2
using our idea of full credit 1 for the inside points and haiédit 1/2 for the
boundary points, in each case we found an overestimate byrheDid you?

AreaP) = [# of grid points insideP] +

Problem 43, page 45

We have already seen that the formula

, o # of grid points onP
Area(P) = [# of grid points insideP] + [# of gt gom SoF] 1
works in a few simple cases. Let us check that it must alway% ¥ao rectan-
gles with vertical and horizontal sides and with verticestngrid work.

If the rectangleR has dimensionsiandn the actual area is the produnn
We can count directly that

[# of grid points insideR] = (m—1)(n—1).

and
[# of grid points onR] = 2(m+-n).
(Check these.)
Thus our calculation using this formula would result in

—1=mn

(m—n)(n—1) + 2(m2+ N

Since this is the correct area of the rectangle, the fornswalid at least in this
special case.
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Problem 44, page 45

We have already seen that the formula

Area(P) = [# of grid points insideP] + [# of grid gomts oF] _ 1

works for all rectangles and, in a few simple cases, for saiaradles. Let us
show that it works iP =T is a triangle with one vertical side and one horizontal
side and with vertices on the grid work.

If the horizontal and vertical sides have lengthand n, the area of the
triangle ismn/2. Adjoining another triangld’ as we did in Figure2.14 we
arrive at a rectangl® whose area isnnthat is split into the two triangle$
andT’. The two triangles are identical (one is a reflection of tHeegtand so
they have the same areas and the same number of grid poiicks &l on the
boundary.

Let p be the number of grid points on the diagonal of the rectargpe,
cluding the two vertices. (There may be none.) We easily agefusing
Figure2.14as a guide)

[# of grid points insideT] + [# of grid points insideT’] + p
= [# of grid points insideR]
and
[# of grid points onT] + [# of grid points onT’]
= [# of grid points onR] + 2+ 2p.

This last identity is because the two vertices on the dialgameacounted twice,
once forT and once fofT’ as also are any of the othergrid points on the
diagonal. Thus we can check using simple algebra that

[# of grid points onT] 1}

2 x {[# of grid points insideT] + >

[# of grid points orR]
2

This last identity is clear since we already know that ounfola works to com-
pute the area of any rectangle, and hReiteas areann

Thus we have verified that the formula does produce exautj{2, which is
the correct area for the triangle This handles triangles, but only (so far) those
oriented in a simple way with a horizontal side and a versodé.

The algebra is not difficult but it does not transparentlywgindat is going
on. In Section2.3.3we explore this in a way that will help considerably in
seeing the argument and in generalizing it to more comgiteggions.

= [# of grid points insideR] + —1=mn
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Problem 45, page 45

The count is quite easy to do. Except for points on the limwery point in the
count for PickP) is handled correctly in the sum. The points lonhowever,
all get counted twice. The two vertices at the end$ gfet a count of 12+
1/2 in the count for PickP) but they get 12+ 1/2+1/2+1/2 for the count
Pick(M) + Pick(N). So that is 1 too much.

What about the remaining grid points, if any, b They are also counted
twice. But this takes care of itself. In the count for RigK + Pick(N) any such
point gets a count of 2+ 1/2. But that is exactly what it receives in the count
for Pick(P) since it is now an interior point and receives credit of 1. tors
then, without much trouble, we see that

Pick(M) + Pick(N) = Pick(P) +1

where the extra 1 is explained simply by the fact the endpafithe edgé. got
counted twice.

Problem 46, page 45
We want to prove that
Area(T) = Pick(T) —1

for any triangle with horizontal and vertical sides. As we @i our previous
solution we introducd”’ the mirror image ofl so thatT andT’ together form
arectanglér. Then

Pick(T) = Pick(T’),

Pick(T) + Pick(T’) = Pick(R) + 1,

and

2AreqT) = AreaR)
We are allowed to use the fact that A(Ba= Pick(R) — 1 that we proved earlier.
So

Area(T) — AreaR) _ Pick(R) —1 _ 2PickT)—-1-1
2 2 2

which is the formula we wanted.

= Pick(T) — 1

Problem 48, page 47

This is just a warm-up to the general case discussed in Rnotfe It is worth
trying to handle this one using the ideas developed so faessome thinking
on this problem helps understand better what is neededddrdider problem.
For example, if the triangle is obtuse angled like the triaidgn Figure2.32
then add a right-angled triangReso thatT andP together make another right-
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angled triangl€). We know already that
AreaP) = Pick(P) — 1
and
AreaQ) = Pick(Q) — 1
but we want to show that
Area(T) = Pick(T) —1
is also valid. Simply use Pi¢R) + Pick(P) = Pick(Q) +1 and AredT) +
AreaP) = Area(Q).

Figure 2.32: Obtuse-angled triandlewith a horizontal base.

If the triangle is acute-angled like the triandlein Figure2.33then it can
be split into two right-angled triangles and handled in ailsinway.

Figure 2.33: Acute-angled trianglewith a horizontal base.

Problem 49, page 47

Let R be the smallest rectangle with horizontal and verticalsitiat contains
T. ThenR is comprised ofT and some other polygons for which we have
already established the Pick formula. Figard4illustrates how the triangl&
plus some other simpler triangles, and possibly a rectangght make up the
whole of the rectangle.
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Figure 2.34: Triangles whose base is neither horizontaladrcal.

Note the similarity between Figur234 and Figure2.6. Apply reasoning
similar to that used in Proble&0 to determine whether the formula is valid for
an arbitrary triangle. This suggestion should enable yaotee the problem.
There is a detailed discussion, in any case, in Se&iéri.

Problem 50, page 48

The algebra is quite simple, just a lot of adding and sulitrgctHere is what
we know:

AreaR) = Area(Tp) + AreaTy) + Area(T,) + Area(Ts),

Pick(R) 4+ 3 = Pick(Tp) + Pick(Ty) + Pick(T2) + Pick(Ts),
Area(R) = Pick(R) — 1,
Area(T;) = Pick(Ty) — 1,
Area(T,) = Pick(Tz) — 1

bl

and
AreaT3) = Pick(Tz) — 1.
Thus
Area(Tp) = AreaR) — {Area T1) + Area(T) + Area(Tz) }
= Pick(R) — 1 — {Pick(Ty) + Pick(T) 4 Pick(Ts) — 3}
= {Pick(R) — Pick(Ty) — Pick(T,) — Pick(T3) } + 2.
But

Pick(R) 4+ 3 = Pick(Tp) + Pick(Ty) + Pick(T2) + Pick(Ts),
which is the same as
Pick(R) — Pick(Ty) — Pick(Tz) — Pick(Ts) = Pick(Tp) — 3.
Finally then
Area(Tp) = {Pick(Tp) — 3} + 2 = Pick(Tp) — 1.
The proof is complete.
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Problem 51, page 48

Figure2.35(which is just a repeat of Figut 1in the text) indicates rather well
which grid points to use. As you can see, there are six pomthe boundary
(in addition to the five vertices) that must be included inatzounting. For the
second half of the problem, triangulate into just three eoment triangles and
check the areas of each by counting according to the Pickuiarthat we have
now verified for triangles.

Figure 2.35: What is the area insig@

Problem 52, page 49

Let us set up an argument using mathematical induction. &ar mtegek > 3
let P(k) be the statement that for every polygon with k or fewer sitlesarmula
works. We already know(3) is valid (the formula is valid for all triangles)

Now suppose the formula is valid for all polygons witlor fewer sides.
(This is the induction hypothesis.) LBtbe any polygon witm+ 1 sides. We
must show the formula is valid fd?.

At this point we need the splitting argument. The essentigdadient in all
inductive proofs is to discover some way to use the inforamsitn the induction
hypothesis (in this case the area formula for smaller paigyto prove the next
step in the induction proof (the area formula for the largaygon).
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Figure 2.36: Finding the line segmdnt

As in Figure2.36 we use the splitting argument to find a line segmient
whose vertices are endpoints®fand the rest ok is insideP. In the figure the
line segment. has separateH into two polygonsM andN. Because we have
added., the total number of sides féd andN combined is now+ 2, but each
of the polygons separately has fewer threp 1 sides. Thus, by the induction
hypothesis, the formula is valid for each of the polygbhandN.

Thus we know that

AreaP) = Area(M) + Area(N),
while
Area(M) = Pick(M) —1
and
Area(N) = Pick(N) — 1.
By our additivity formula for the Pick count,
Pick(P) +1 = Pick(M) + Pick(N).
Simply putting these together gives us
AreaP) = Area(M) + Area(N) = Pick(M) — 1+ Pick(N) — 1
= Pick(P) + 1—2 = Pick(P) — 1.
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This verifies that the Pick formula works for our polygenvith n+ 1 sides.
This completes all the induction steps and so the formula brigrue for poly-
gons of any number of sides.

Problem 53, page 53

Figure2.37shows a possible ending position for this game. There arantiogr
moves possible.

Figure 2.37: A final position in this game.

One thing that is evident from this particular play of the gasthat the final
position is a primitive triangulation of the original polyg. Would all plays of
the game result in a primitive triangulation?

In playing this game there were exactly 8 moves and so it waséicond
player who made the last move and won the game. Would all pityss game
have the same result or was the second player particulatfubkfor lucky)?

Problem 54, page 53

Choose a polygon that is not too large and play a few gamesdalowith a
friend). You will certainly observe that the game ends witbrianitive triangu-
lation of the original polygon. You may also have observeat,tti you lost the
game, each time you repeated the game (with the same stpdsiigon) you
also lost, no matter what new strategy you tried.

Did you observe anything else? You could have, if you thoudlit, also
have counted the number of moves and counted the numbeangkess in the
final figure. But perhaps you didn’t notice anything abous ttount beyond the
fact that the number of moves and the number of triangleslasely related
and these numbers didn’t change when you replayed the gathéesqrolygon.
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Problem 55, page 53

The game ends after a certain number of moves. Call this numBéwus, after
n moves, the polygon has been split ime- 1 subpolygons.

Are they all triangles?

Let us suppose not, i.e., that there is a subpolygon in thegosition with 4 or
more vertices. According to the splitting argument of Swatf.1.4there must
be a line segment joining two of these vertices for which the kegment is
entirely inside the subpolygon. But that would allow a Typmadve to be made
and so the game is not over after all.

Since they are all triangles we can ask

“Are they all primitive triangles?”

SupposeT is a triangle in the final position. Doés have a grid point on the
boundary other than the three vertices? If it did, then tfearType 1 move
could have been made by joining that point to an oppositexefoesT have

an interior grid point? If it did, then clearly a Type 2 moveutsb have been
made by joining that point to two of the vertices. This sholat each triangle
in the final triangulation must be primitive.

Problem 56, page 53

Recall that a triangle with vertices on the grid is said to bmjtive if the only
grid points on or in the triangle are the three vertices tredves. What is the
area of a primitive triangle?

Not surprisingly the answer is/2. We know that all polygons on the grid
have an area that is a multiple of A These are the smallest such polygons.
We have also experimented in a few instances with primitraagles (e.g., in
Problem33) and in each case we found an area (2.1

The Pick formula supplies this immediatelyTlfis a primitive triangle, then
there are no interior grid point$ & 0) and there are only the three boundary
grid points B = 3). Consequently

AreaT)=1+4+B/2—-1=0+3/2—-1=1/2.
as we would have suspected.

Problem 57, page 53

Consider the final position. Aftarmoves the polygon has been split imtg- 1
subpolygons, each of which we now know (because of ProBl&ns a primi-
tive triangle.



82 CHAPTER 2. PICK’S RULE

Each primitive triangle has areg 2 (by Pick’s rule) and so the area of the
original polygonP must be
1
Area(P) = %
since there ara+ 1 primitive triangles. Pick’s theorem says, on the otherdhan
that
AreaP)=1+B/2—1.
Comparing these two expressions we see that
n+1 21+B-2
2 2
which shows that the number of primitive triangles in thelfc@nfiguration is
n+1=21+B—-2

This number is always the same even though there may be anggestdifferent
ways of ending up with a primitive triangulation.
The number of moves in the game is then always given by

n=21+B-3.

Problem 58, page 53

In Problem57 we determined that, no matter what strategy either playstl
to try, the number of moves in the game is always given by

n=21+B-3.

The first player wins if this is odd. The second player win$igtis even.
Looking again at that number it is evident that the first ptayms simply if
B is even and the second player win8ifs odd. The number of interior points
| is irrelevant to the question of who wins (although the gasmauch longer if
| is big).
So the game is rigged. The player in the know just offers toegosd in a
game if she spots th&tis odd.

Problem 59, page 55

Let us play the game on the polygésplitting it by a Type 1 move into two
polygonsM andN. For a Type 1 move there is a lihgjoining two grid points

on the boundary dP that becomes a new edge tdrandN. We consider both
sides of the equation

Coun{P) = Coun{M) + Coun{N)

that we wish to prove. Draw a picture or else what follows &t jwords that
may not convey what is happening.
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Now
Count{P)=21+B—-2,
Coun{M) =2l + By — 2,
and
Coun{N) =2Iy+Bp—2

We use a simple counting argument looking at the grid aloegsflitting line
L. The count works out perfectly for points that are not on thitsg line.
Every point in theB count appears in the counts 8§, or By; every point in
thel count appears in the counts figr or Iy.

For the grid points that are on the splitting line the two endpoints ok
are counted twice, once for f&, and once foBy. The extra—2 accounts for
that. Any interior grid points oih that appeared in the count fokwhere they
count double) now appear in the counts By andBy (where they count as 1).
That takes care of them too.

There remains only to do the same for a Type 2 move. But reladlysame
argument applies without any changes.

Problem 60, page 55

There are a number of ways to do this. One cute way is to userimitipe
triangulation result itself to do this. The idea is that weeatly know primitive
triangles have area at least2l (See Problen31.) A clever triangulation will
show that they cannot possibly have area more th@n 1

Take any rectangl® on the grid with horizontal and vertical sides. We
suppose the rectangle has dimensipnsg. Thus

AreaR) = pq.
We can easily count interior points and boundary pointstfichsa rectangle.
We triangulate the rectangle so as to find a primitive tridaigon of R. But
we know how many primitive triangles there must be Rrwe just need to
compute that
B=2p+2q
while
I =(p—1)(q—1).
So if nis the number of primitive triangles our formula gives us
n=CounfR)=2+B—-2=2(p—1)(q—1)+2p+2q—2=2pgq.
All of our triangles have area at least2Lso if any one of them has area more
than /2 the area of the rectangle would be bigger thanvhich is impossible.
Thus each has ared 4

Every primitive triangle can appear somewhere inside sugttangle and
be used in a primitive triangulation, so this argument &spto any and all
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primitive triangles.

Problem 61, page 55

Well many mathematicians would. But there is a huge inteiteap from a
problem about area to a problem about primitive triangateti We began early
on to sense a connection and finally came to a full realizatidy later on.

We could have simply announced the connection and then @dithis line
of argument. Plenty of mathematics textbooks and lecturehid kind of thing
all the time. The proofs are fast, slick, and the studentigition is left behind
to catch up later. For a book on Mathematical Discovery wetake our time
and try to convey some idea of how new mathematics might b=odesed in
the first place.

Problem 62, page 56

In Figure2.23we can measure the rectangles directly and sedPtisad 5x 12
rectangle andH is a 2 x 4 rectangle. Thus the area of the reg®metweenP
andH must be

AreaG) = Area(P) — AreaH) = 60— 8 =52.

[We could have used, instead, our old method of countingiotteoints at
full value of 1 and points on the polygon at half value g1 ForP we count
44 interior points and 34 points dh Thus our standard formula gives

Area(P) =44+34/2—-1=44+17-1=60
as expected. Fdfl we have 3 interior points and 12 points lnso
AreaH)=3+12/2—-1=3+6—-1=38

which is again correct.]

Let’s see what we get if we try to use our formula for the arethefregion
G betweenP andH. Here, once agairG has interior points and points on the
boundary; all the points that are on the boundarjHaiust be considered on
the boundary o6.

We note that the grid points of the interior of G consists afsén inside P
except the 15 that lie inside or on H. There are 29 such pomis=s29. The
boundary of the region in question consists of the polygdasdH. There are

B=34+12=46
grid points on this boundary. Trying our usual computatianG, we obtain
AreaG)=1+B/2—-1=
29+46/2—1=517

This is actually quite encouraging since our formula gave tesult that isoo
smallby only one unit.
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Try some other choices fét andH. Both should be polygons with vertices
at grid pointsH should be insid®, andG is the region formed from subtracting
H and its inside from the inside &f. Rectangles (as we used) make for the
simplest computations. Try triangles and a few others.

Problem 63, page 56

Let’s argue as we have several times previously. The gridtpansideP are of
three types: those that are inside those that are oHl, and those that are not
insideH nor onH. Our computation for the area insiegave zero credit for
the first type of point, half credit to the second type of poartd full credit to
the third type of point. It also gave half credit for the grioits onP.

Thus the total credit given t@ is provided by the area formula

Area(G) =1+B/2
whereas Pick’s formula (for polygomgthoutholes) would be
|+B/2—1
instead, resulting in too low a number for the area.

Problem 64, page 57

Simple algebra gives
Area(P) —AreaH) =1 (P)—1(H)+[B(P) —B(H)]/2. (2.1)
Now figure out what (G) and B(G) must be. Directly we can see thidiG)

includes the points counted fofP) excluding those counted ifH) as well as
those counted iB(H). Thus

1(G)=1(P)—1(H)—B(H).
Similarly we can see thd&(G) includes all of the points counted f&(P)
plus those counted iB(H). Thus

B(G) =B(P)+B(H).
Put this altogether using elementary algebra and find that
Area(G) = AreaP) — Area(H)
=1(P)—I(H)+[B(P)—B(H)]/2
=[I(P)—1(H)—B(H)]+[B(P)+B(H)]/2=1(G) + B(G)/2.
So finally the new formula for the regida (i.e., P with a holeH) is
AreaG) =1(G)+B(G)/2
which is exactly Pick’s formula without the extral. This is what we have

already observed for specific examples except that now we aawalgebraic
proof of this fact.
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We can think of this using the phrase “without the extrd” or we could
write our new one-hole formula as
B(G)
Area(G) = I(G)+T_1 +1

which might be more helpful since it asks us to add 1 to Piak'siula.

Problem 65, page 57

The formula for the are® that remains inside a polygon with exactiypolyg-
onal holes is

Area(G) = (I (G)+ @ — 1) +n.

Note thatn = O (i.e., no holes) is exactly the case for Pick’s Rule and o ou

new formula is a generalization of Pick’s original formula.
The proof can be argued via counting, as we have done oftenlger
braically as in our last proof. Herg(G) is the count we obtain for all points

lying on P as well as on any of tlmgpolygons that create the holes. (We assume

no two of the polygons have points in common).

We leave the details to the reader, but for those who areeistied, we pro-
vide a calculation for the case of two holes. Supp@s&a polygon with holes
created by two smaller polygoiggandR as in Figure2.38

Figure 2.38: Polygon with two holes.

We show that (G) + B(G)/2 is one less thaA(G). We have
1(G) =1(P)-1(Q)+B(Q) - 1(R) -B(R)
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and
B(G) =B(P)+B(Q) +B(R).
Thus
1(G)+B(G)/2=
1(P)—1(Q) —1(R) —B(Q) —B(R)+[B(P) + B(Q) + B(R)] /2=
I(P)—1(Q) —1(R)+B(P)/2—[B(Q) +B(R)] /2=
|(P)+B(P)/2—[1(Q—-B(Q)]/2—[I(R) +B(R)] /2=
Area(P) +1— [AreaQ) + 1] — [AreaR) + 1] = A(G) — 1.
Thus the correct formula for the area®fis
Area(G) = [I(G)+B(G)/2—1]+2

as was to be shown.

For those of our readers rather braver here is the proof éogémeral case.
It is exactly the same but just needs some extra attentionttion so that the
task of adding um different elements is not so messy.

Instead of labeling the smaller polygons@sR, ...let us call theni;, P,

..., Py and let us call the big polygoRy. Write A; = A(R), Bi = B(R), and
li =1(R). Then, for eacti=0,1,2,...,nwe know that Pick’s Rule provides

A(R)=1i+Bi/2-1
and so, ifG is the figurePy with all the holes removed, then

AG) = AR~ 3 A(R) =

Bo n B;
[ ——1- i+ —=—-1].
0+2 i;[ri-z }

But it is easy to check that
n

1(G) = |0—_Zi<|i+Bi)
and . i
B(G) = Bo-l-_ZBi.

Put these together to obtain the final formula
A(G)=[I(G)+B(G)/2—1]+n
as was to be shown.

Problem 66, page 60

This is almost obvious. For the points on the common edgeatigée of visi-
bility for P, and the angle of visibility foP, add together to give the angle of
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visibility for P. For every other point there is no problem since they canappe
only in the count foiP; or else in the count foP,.

Problem 67, page 60

Start with triangles exactly as before and show that
AreaT) = Pick'(T)
for every triangle. This takes a few steps as we have already & Sec-
tion2.4.1
Then, since the new Pick count is strictly additive (no ettta be added),

any figure that can be split into triangles allows the samméda for the area.
But any polygon can be triangulated.

Problem 68, page 60

For each point in or on a polygddwith a number of holesly, Ho, ...Hyx we
decide what is itangle of visibility This is the perspective from which standing
at a point we see into the inside of the region. For pointgimtéo the region
we see a full 360 degrees. For points on an outer eddreboft not at a vertex
we see only one side of the edge, so the angle of visibility83 degrees. The
same is true for points on an edge of a hole, but not a vertexedfidle.

For points at an outer vertex of the region the angle of Visybivould be
the interior angle and it could be anything between 0 degrads360 degrees.
Finally for points on the boundary of the region that areexeoints of one of
the holes we do the same thing. One side of the angle lookghetbole, the
other side looks into the region of concern.

As before oumodified Pick’s counis to take each possible grid point into
consideration, compute its angle of visibility, divide b§@to get the contri-
bution. Points inside get 360/360=1. Points on the edge @iL&ta vertex get
180/360=1/2. And, finally, points at the vertex g¢B60 wherea is the degree
measure of the angle. The new Pick count we will write as

Pick"(P).

Now, usingG to denote the region defined by removing the holes from inside

of P, simply verify that
Pick’ (G) 4 Pick'(H1) 4 Pick'(Hz) - - - 4+ Pick® (Hk) = Pick*(P).

This is far easier than it appears. The only points that getiEa twice in the
sum on the left side of the equation are points on the bounofa@ that are
also on a particular hole;. In computing Pick(H;) that point gets a count of
a/360 where tha is the angle interior té;. In computing Pick(G) that same
point gets a count of360— a]/360. The sum is 1 which the correct value for
this point since, considered iitself it is an interior point.
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The rest of the proof is obvious and requires only that we use
Area(G) = AreaP) — Area(H1) — Area(Hy) — - - - — Area(Hy) = Pick' (G).
This uses the fact that we know this formula for all polygorithaut holes.

Problem 69, page 60

Problem68 presented an easier and more intuitive proof of a formulatfer
area of a polygonal regio® with n holes. We need to relate it to the other
formula.

UseG to denote the region defined by removing a number of hidigs$,,
...Hp from inside ofP, and use Pick G) to represent the count that uses the
angle of visibility.

Use PicKG) to represent the simpler count

Pick(G) =1+B/2
wherein the number of boundary poirBsof G must include points on the
boundary ofP as well as on the boundary of one of the holes. The number
I, as usual, counts the number of interior points (here thespants insidd?
but not in one of the holes).
Now simply show that

Pick (G) = Pick(G) —1+n.

That explains Pick’s formula and illustrates where thegppears.

To verify this equation we need only focus on the verticesaf of the holes
Hi. Every other point is counted the same whether it appeatseircount for
Pick*(G) or the count for PiclG).

If there areh vertices on that holél; then we recall that the interior angles
(interior to the holeH;) would have a sum

apt+ax+---+a,=180h-2).
since the angles inside any polygon whtliertices add up to 186 — 2) degrees.

But in the computation for PicKG) the same angles at the vertices appear
but are complementary, i.e., the corresponding angles are

(360—ay), (360—ay), ..., (360—ay).

Thus we can compute the contributions of the vertices of tiheH to the count
for Pick’(G) to be

(360—ay) +(360—ap) +-- -+ (360—an)

360
~ 36h—[ag+ap+---+ay
B 360
~ 36(h—180(h—2)

360
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=h/2+1.

The count for the computation of PigR) using these same vertices is simply
h/2, which is one smaller. But that is one smafi@reach hole This verifies

Pick’(G) = Pick(G) —1+n
and explains the appearance of the

Problem 70, page 62

The formula

20+B-2
provides, as always, the number of primitive triangles. uFég2.39 shows a
number of different primitive triangulations, all of whichust have eight small
triangles inside.

Figure 2.39: Several primitive triangulations of the paing

Problem 71, page 62

If you started off by considering an equilateral triangléhna horizontal or ver-
tical base then you should have quickly dismissed that pisgieven without
Pick’s theorem).

Now let there be an equilateral triangle with side leng#nd with all three
vertices in the grid. Thea? is an integer (use the Pythagorean theorem). What
is the area of the triangle? But Pick’s Rule says that all gohs with vertices
in the grid have an area thatrig2 for some integen. Find the contradictich

Problem 72, page 62

Figure2.40shows the areas labeled. Most of the areas are easier to tompu
using familiar formulas. You might, however, have prefdriReck’s formula for
two of them.

4You may need to be reminded thdB is irrational
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Figure 2.40: Archimedes’s puzzle, called the Stomachion.

Problem 73, page 62

Each vertex lies on a the points of the grid while no other goahts lie on the
surface or in the interior of the tetrahedron. J. E. Reeve {&n [B] in our
bibliography) used this tetrahedron as a counterexamledw that there is no
simple version of Pick’s theorem in higher dimensions. Tikibecause these
tetrahedra have the same number of interior and boundanyspfoir any value
of n, but different volumes. Thus there is no possibility of ariata for the vol-
ume of a tetrahedron (or a polyhedron) that simply usesiartand boundary
grid points. There are still interesting problems to adslrdmit Pick’s theo-
rem itself does not generalize to higher dimensions as ogéatrhiave hoped.
Reeve’s paper discusses many such related problems buintersded for a
serious mathematical audience and is not an easy read.
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Problem 74, page 62

In number theory, Bézout’s identity or Bézout's lemma, ndraéer Etienne
BézouP states that ifx andb are positive integers with greatest common di-
visor p, then there exist integepsandy (called Bézout numbers or Bézout
coefficients) such that

ax+by=p.
Evidently we are being asked to prove only the cpse 1. After you have
succeeded, do try to use the same method to prove the monabieteatity

This is not difficult to prove, if you have some knowledge ofrrher theory
and divisibility. Pick’s theorem allows a different prodfet relies on geometry
rather than number properties.

Let a and b be relatively prime integers. In the grid, drawlitneL from the
origin through the pointa,b). Note that the line segment betweg)0) and
(a,b) does not pass through any other point on the grid.

If it did, say a different poin{x,y), then

y/x = b/a= slope of the lind..

Take the point(x,y) as the grid point on the line and closest to the origin. We
know thatay = bx can be written as a product of primes

ay=bx= p1pz2ps... Pk-
Then, sincea andb have no common prime factogsmust contain all the prime
factors ofb which is impossible sinck is supposed to be larger.

Now, keeping in parallel td, move the linel slowly upwards until it hits
another lattice point of integer coordinates. Thus we caosBL’ to be the
closest parallel line to L that intersects a lattice poirdt (s, t) be the point the
lattice point orL’ that is closest to the origin. Consider the triangldefined by
(0, 0), (a, b) and (s, t). This triangle has no interior poantd its only boundary
points lie at its vertices, for if it had others then L would/aait them before
it got to (s, t), which is a contradiction to how we defined Js,Ttherefore, by
Pick’s Theorem,

Area(T) =

But we have already seen in Probl@xi.6how to compute the area of such a
triangle algebraically:

NI =

t_
Area(T) = a > bS.
This means that
} _at— bs
2 2

SWikipedia informs us: “Etienne Bézout (1730-1783) provad tdentity for polynomials.
However, this statement for integers can be found alreathenvork of French mathematician
Claude Gaspard Bachet de Méziriac (1581-1638).”
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Thereforeat — bs= 1. Substitutingc =t andd = —swe get
ac+bd=1,
which is what we required.

Problem 75, page 62

Yes, there must be at least one such point. One might try totfilsdooint or
show that it exists using elementary algebra, but this wgeatda bit messy.
Much easier is to use Pick’s formula for triangles.

The triangleT has base 1 and heigiitfrom elementary geometry we know
the area off is exactlyn/2. Sincen > 1, the area ol must be at least 1. Using
Pick’s formula for triangles we see that if there were no gghts besides the
vertices on or i, the area would be only/2.

We recall from Sectior2.3.1that we call such triangles primitive and a
feature of our theory is that all primitive triangles havead/2. In short then
T, having area 1 or larger is not primitive: therefore therestine a grid point
(a,b) in or onT other than one of the three verticesTaf



94

1Z£

CHAPTER 2. PICK’S RULE



Chapter 3
Nim

Most of us have at one time or another played games in whiclaeezifa single
opponent: chess, checkers, monopoly, Chinese checkekggdramon, various
card games and the like. Some of these games invadflaace For example,
the outcome of a game of monopoly depends in part on the ralicef and on
cards drawn from a stack. Most card games depend in part athwhrds one
draws or is dealt.

Other such games do not depend on chance: the players meveaady
and each player has completely free choice of move subjégctothe rules of
the game. No move is dictated by the outcome of such thingslisgrdice,
selecting a card or spinning a dial.

In many of the games we play there are different rules for wWeeglayers
(which may mean only that they use different pieces). Fomptain chess one
side plays the white pieces and one side plays the blackgpi&ames in which
both sides play by precisely the same rules are said tmpartial.

In many games there isnperfect information for most card games the
players do not know what cards the opponent is holding.

In the type of games (called perfect information, imparta@mbinatorial
games) that we shall study there are two players, alteigatioves, who see
the entire positions and follow the same rules. The game afids a finite
number of moves. One such gaméNis.

Figure 3.1: A game of Nim.

95
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Set out matchsticks as in the figure. There are two playersh Bkayer,
in turn, removes one or more matchsticks from one of the folurons. The
player removing the last matchstick wins. You can play Nirthveiny number
of columns and any number of matchsticks in each column.

3.1 Care for a game of tic-tac-toe?

Figure 3.2: Care for a game?
Probably not. But why not? Perhaps it is because of this kredlwn fact.

3.1.1 (Tic-tac-toe) Player | in a game of tic-tac-toe has a strategy that will lead
in every case to either a win or a draw.

But, in fact, that cannot be the real reason why you, as ar,aatalno longer
willing to play this game. The game of checkers is identinghis respect: the
first player in a game of checkers has a strategy that will ieaVery case to
either a win or a draw. Moreover, the second player has aegldhat will in
every case force a draw. Thus two completely and perfectyrimed players
would play every checkers game through to a draw. Every tidost like tic-
tac-toe.

The difference, however, is that no one you meet knows tlegesty for
checkers even though we can prove that one exists. Everylstiid beyond
a certain age knows the strategy for tic-tac-toe. Consdtyugritac-toe retains
no interest for us while checkers remains challenging atr@yirng.

Prove that a strategy exists How does one go about proving that a strategy
exists without actually finding one? We shall think abous thioblem in the
context of tic-tac-toe. Unfortunately that game is so fanilo us that it inter-
feres with our reasoning. We adjust the rules of tic-tac-fbee game play in
new rules tic-tac-toés exactly the same as before: the players alternate placing
X’s and O’s in the squares stopping when all squares are tiledhen there is
aline of 3 X's or 3 O’s. We consider all the end positions of gfaene; there are
somewhat less than a hundred of these. We call some of theg@pswhite
positions and the restlack Figure3.2 shows an end position. We can call it
black or white as we please. The winner of the game is decfafieaving this
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rule: if the end position is white then player | wins, whilghie end position is
black then Player Il wins.

An analysis of this game leads to a proof that tic-tac-toeahsisategy and
we will not have to supply the strategy as part of the proof.

Problem 76 Let an end position be defined as white if there are three X’s on

one of the diagonals and let every other end position be definde black.

Show that one of the players has a winning strategy in neveidetac-toe.
Answer O

Problem 77 In any new rules tic-tac-toe game prove that either playeass b
winning strategy or else player Il has a winning strategy. Answer O

Problem 78 In any tic-tac-toe game (played by the ordinary rules) uselPr
lem 77 to prove that player | has a strategy that must end in eitheliraar a
draw. Answer O

Problem 79 (Equivalent games)Here are the rules for the Game of 18: From
a deck of cards extract nine cards numbered from 2—-10 andeffiace up on
the table. Each of two players in turn takes a card. The play@s who first
obtains three cards whose sum is exactly 18. Show that thie ¢gs“the same”
as a tic-tac-toe game. (This concept of two games being ‘edgmt” will be
important later.) Answer O

Problem 80 (Simple card game)Analyze the following card game. From a
deck of cards extract the Jacks, Queens, and Kings of hedietsjonds and
spades. These nine cards are placed face up on the table. &a&alo players
in turn takes a card. The player wins who first obtains threelsaf these types:
three-of-a-kind, JQK of the same suit, @, Q#,KQ), or (JO, Qd,K3O).
Answer O

3.2 Combinatorial games

Mathematicians study games like tic-tac-toe, chess, @recknd many others
by describing the features that are similar. Among theséairfeatures are
that there are two players who play by certain rules knowndth Iplayers,
taking turns one after another, continuing until a win or avdiis declared.
Both players are fully informed about the state of the gaimeré are no hidden
elements such as cards not turned over or dice yet to be throlirere is no
element of chance. They describe such gamesawinatorial games

Of particular interest in any combinatorial game is whethitirer player can
force a win and, if so, by what strategy. As we have long knaerect play by
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both players in tic-tac-toe must end in a draw. In 2007 it watedninedtafter
years of computer calculations, that the same is true fatkars. For chess the
situation is unknown; it is possible that one side could éoacwin but we do
not even know whether that would be white or black.

The games we shall study are all combinatorial games, bytahe very
special. They are said to lommpartial in that both players must pldyy the same
rules and the player who makes the last legal move is declared theerf
There are no draws. For example, Tic-tac-toe (like chesschedkers) is not
impartial: one player plays the X's and the other player pldne O’s. The last
player to make a legal move may not necessarily win (it coeld draw).

The most important impartial combinatorial game is Nimsithe first such
game to receive a complete mathematical solution. We woipdat (by using
the same argument as we used in Probf&irthat one of the two players in any
game of this type should have a winning strategy. But howatwud determine
which one has the winning strategy? How could we determired Wiat strategy
should be? How would we go about finding out the answers t@thesstions?

In order to motivate our development and to clarify what weeraally look-
ing for in a strategy, we shall begin with some simpler ganmefere attacking
Nim. Some of the ideas which will surface here will be centoabur develop-
ment.

3.2.1 Two-marker games

Two markersA andB are placed above positive integers on the number line.
(Think of this as a long board with holes. The holes are nuetér2.3,. ...
Pegs marked andB can be inserted in the holes.) For example, we might have
placedA at hole number 4 anB at hole number 9 as indicated in Figles.

@ @ @ @ @ @ @ @ '

1 2 3 456 7 8 9101112

Figure 3.3: A game with two markers at 4 and 9.

The two players move alternately. A move consists of movitigee one of
the markers to the left as far as one wants with the provisoBlstays to the
right of A. (Markers must be placed above an integer.) Thgeslavho makes
the last legal move wins.

LJonathan Schaeffer et aCheckers is solve®cience Vol. 317 no. 5844, pp. 1518-1522.
2This is called thenormal play condition We will also, much later in the chapter, consider
a different kind of combinatorial game where the last plagenake a legal move loses.



3.2. COMBINATORIAL GAMES 99

. . ...

1 2 3 45 6 7 8 9101112

Figure 3.4: The ending position in a game with two markers.

Figure3.4illustrates the end position in any game of 2—markers. Thistm
occur only wherA is at position 1 and is at position 2. To win in a game of
2-markers you would be well-advised to keep the end poséiaays in mind.

Example 3.2.1Let us play the two-marker game with markers at 4 and 9 (as
in Figure3.3). The player whose turn it is has seven possible moves: hieeor s
can moveA to any one of the positions 1, 2 or 3 or can md@/é& any of the
positions 5, 6, 7 or 8. The game ends when a player has no mailelde. This
must occur only wher is at position 1 andB is at position 2. The player who
made the final legal move wins.

A bit of reflection shows that, for this game, we can guaraate@n by
the following procedure. We movB to 5. Now, according to the rules, our
opponent cannot mo& He or she must mowk. Whatever move our opponent
makes, we answer by movirigjright next toA. Following this procedure, we
see that eventually our opponent must méuwe 1 and we answer by movirig)
to 2. We won. <

The strategy in the example would work no matter what themaigposition
was, as long as it was possible for us to mB\a our first turn. For two-marker
games we can say that there are precisgtykinds of positionsones in which
we can make a good move and ones in which no good move can be made

3.2.2 Three-marker games

Let us complicate the game by introducing a third maResn an integer to
the right ofA andB. For example, we might start with the position indicated in
Figure3.5with markers at 4, 9, and 12.

The rules are as before. When it is our turn, we may move anyeofitree
markers as far as we wish to the left as long as the relativer afthe marker
from left to right remains the sameB-must stay betweeA andC. The game
ends when a player has no move available.

Figure3.6illustrates the end position in any game of 3—markers. Thistm
occur only wherAis at position | B is at position 2, an@ is at position 3. Keep
this end position in mind as your final goal.
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1 2 3 456 7 8 9 1011 12 13

Figure 3.5: A game with three markers at 4, 9, and 12.

14 & SN

1 2 3 45 6 7 8 9 10111213

Figure 3.6: The ending position in a game with three markers.

Problem 81 Find a strategy for the three-marker game. Begin by expeartme
ing with a marker board and the three markers A, B and C.
Answer O

3.2.3 Strategies?

Let us digress for a moment and consider a game like chessokets. What
is it that distinguishes a strong chess player from a weak d@ieviously, that
is not a question which can be answered easily—a strong pkaye@vs the
openings, has studied many combinations, knows the endamgkcan look
ahead many moves.

But there is one feature we can focus on which will be centralur de-
velopment of the marker games and Nim. A good chess playératibgnize
many positions as desirable to achieve. For example, vely ieeone’s learn-
ing of the game of chess, one realizes that if one can achigesifion in which
one has the king and the queen while the opponent has onlyrtgetke game
can be won quickly.

As one improves, one recognizes more and more of such diespaditions.
Thus, the good chess player can have many, many subgoalgleyamg chess.
He does not have to see how to checkmate the opponent frorethbeginning
of the game—he must only try to achieve one of these manyat#sipositions.
The same is true of checkers and of other of these two-peraoesg of skill.
Our device for discovering strategies for Nim and the mageanes is to find a
way of determining all of these sub-goals for the given game.

Perfect strategies? Usually, by a strategy, we mean some method we can

use to improve our chances of winning. In Exampl2.1we did not merely
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improve our chances of winning. We can véwvery timegorovided we start first.
And we will lose every time that we start second if we are pigyagainst an
informed opponent.

There are many strategic advantages that a clever and iefbchress player
can use. An international grandmaster will win any game reherplays against
a lesser player. But there is as yet no known perfect strdtegshess. For the
games in this chapter we are not content with just strategMsswant perfect
strategies.

3.2.4 Formal strategy for the two-marker game

Let us formalize what we discovered in the two-marker game.ugé the sug-
gestive notatioB = A+ 1 to describe the fact th&is adjacent to A. Observe
three facts:

1. 2=1+1, thus the final position satisfies the equatiba A+ 1.

2. If B= A+ 1, then any move whatsoever results in a position for which
that equation is no longer satisfied.

3. If B# A+1, there is a move which results in the equation being satisfie

Let us say that a position lzalancedif it satisfies the equatioB = A+ 1
and that it isunbalancedf B # A+ 1. With this language, the three observations
above become:

3.2.2 (Balanced positions in marker gamesEvery position in the game is either bal-
anced or unbalanced.

1. The final position is balanced.

2. If a position is balanced, then any move whatsoever ®sula position that is
unbalanced.

3. If a position is unbalanced, there is a move which results iposition that is
balanced.

Once we have articulated the situation in this balanced abdlanced lan-
guage we can easily prove that we do in fact have a strategycaWalways
move from an unbalanced position to a balanced position.oPpponent always
receives a balanced position and must destroy the balahedfial position is
balanced. Eventually, after some finite number of movesppponent is faced
with this final balanced position and has no move. We win!

The balanced positionsire the subgoals that we seek. This will be true
in all the games we shall look at in this chapter. It is very impdrthat one
understands the notion balancedpositions before proceeding further, so we
suggest that you reread the preceding discussion and relatbe two-marker
game before going on.
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3.2.5 Formal strategy for the three-marker game

The three-marker game has been used by some teachers im&eyrsehool as
a device for motivating children to practice addition anttsaction. The chil-
dren usually discover, through playing the game repeatélly the balanced
positions are given by the equation

A+B=C.

They do not know anything about balanced positions, of aguteey just dis-
cover that they can win if they can obtain those positions.

Following the strategy that the children discovered, letaysthat a position
in the three-marker game mlancedif it satisfies the equatioA+ B = C and
that it isunbalancedf A+ B # C.

Problem 82 Verify that each of the three parts of Statem@rt2apply to the
three-marker game. Answer O

Problem 83 Discover the balancing positions for the four-marker ganmel a
prove that the same three rules apply to them. Answer O

Problem 84 What are the balancing positions for the five and six-marlkengs?
Answer O

3.2.6 Balanced and unbalanced positions

Generally we are seeing that, in games of this type, an asalgig the ideas
of balanced and unbalanced positidlesds to a strategic way of thinking about
the game. Any end position is balanced. A balanced positivays leads to
an unbalanced position. An unbalanced position alwaysvallbmove to some
balanced position. If this is so the strategy is clear.

It might seem that determining which positions in a game atarited and
which are unbalanced takes some considerable skill. It \wag for the two-
marker game, rather harder for the three and four-markeegaamd apparently
formidable for a five-marker game. In fact, though, it neetlitake skill, but it
does take patience. We can do this formallyday game of the kind we study
in this chapter.

We assume, as always, that the players alternate turns ahgnaioves
according to the same rules. After a finite number of movegé#me ends and
the last person to move is declared the winner.

3In the literature thainbalancedoositions are often calleN-positions (because theext
player is to win), while thévalancedpositions are known aB-positiongbecause thprevious
player is to win).
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Defining balance You might have noticed that in trying to determine the bal-
anced positions in a game, there is a sense of “working badesdiaThe final
position is balanced. We then seek simple balanced positiat lead quickly
to the final position. (Think of our discussion about chesshen we seek
positions that lead to one of the positions we have alreadgriaéned to be
balanced.

We can put these ideas into a formal setting. This materiabimewhat
abstract but not difficult. We merely define carefully whatmwean bystarting
at the end of the gamand what we mean when we say a positiobatanced
or unbalancedThe definition rests on the principle of mathematical irtauc

A formal way of presenting these ideas and checking the acygusf our
intuitions is to introduce &dalancing numbefor any position in a game. &
is one of our games anglis a position in that game we define Balafeby
these rules:

1. If pis an end position in the gamg then Balancép) = 0.

2. If pis not an end position in the gamg, first find all the positions
P1, P2, .-, Pn that could be obtained from the positignin one legal
move. We use the notation

pw p17 p27"'7pn
to indicate that any move that can follgwis in this list. Then compute
the list of numbers

Balancép;), Balancépy),...,Balancépy).

3. Balancép) is defined to be zero if zero doestappear in the list and to
be 1 if zerodoes appeam the list.

A position with a balancing number of zero is said toldeanced If the
balancing number is 1 then it imbalanced

Note how these rules will always require a position with aozZealancing
number to lead to nothing but positions with a balancing neinab 1. Observe
too that these rules will always require a position with aabhalng number of 1
to lead to at least one position with a balancing number of @ d&finition is
designed precisely around the rules that we devised inrSeatE3.2.2for our
marker game.

This is an example of a recursive definition; we have to buddhe values
of the function Balanog) step by step starting close to end of the game. In a
way we would have to play the game backwards.

The way that we have defined the balancing number shows that

e Any end position has a balancing number of zero.

e If a position has a balancing number of zero then all positisich
follow it in the game have a balancing number of one.
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e If a position has a balancing number of one then there is st leae
position that follows it in the game that has a balancing nemna zero.

Thus balanced and unbalanced positions are defined now igaang, and
they behave precisely as we required for the marker gametaiarfent3.2.2
The strategy in any game is the same: always (if you can) lganeoppenent
a balanced postition, forcing him to unbalance it at his megte. Since the
game ends in a finite number of steps at a final balanced positie player
who can follow this strategy must have made the last move siddélared the
winner.

Depth of a position In practise it is easy to see that this recursive definition
will assign a value to each position in any game. To make itenpoecise how
this is done let us introduce the notion d@épthof a position. This is just a
measure of the maximum number of moves left in the game. Adypesition
(there may be several) has no further moves possible andlisosbe atdepth
zera Such positions are always balanced. If a position can moleto a
depth zero position, then it is said to bedapth one Such positions are always
unbalanced.

If a position that is not at depth zero or depth one can mowe tord depth
zero or a depth one position, then it is said to bdegith two Such positions
may be balanced or unbalanced. We would have to check. Glgreeosition
that is not itself at depth 0, 1, 2, ..., o 1 and that can move only to such
a position, is said to be at depth At depthn the game must end in at mast
moves.

Allgames solved! By this simple definition we have precisely defined, for any
game of this type, how a position may be considered balancedlmlanced
and we have a method for computing that fact. Thus we can sdilgames!

Well not all games, because not all games are of this typetatit¢oe, chess,
and checkers have rules that are different for the two ptageg., one player
plays the X’s and the other the O’s). The game may end in a dfae.rule is
not that the last player who is able to make a move wins.

But, for finite games of the last-move type discussed so liarsblution is
exactly this. Compute all balanced positions and play tmeegim such way (if
possible) as to leave your opponent only balanced positibngu start play
with an unbalanced position then you will surely win. If yaars play with a
balanced position then, provided your opponent makes justroistake, you
will win.

Is this practical? Recursive definitions like this one, however, are partidula
difficult and tedious to compute. On the other hand they argcpdarly easy
to program and run on a computer. Unless the game has bibindillions
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of possible positions (like chess and checkers do), a shavtiat of time will
enable a full computation of all the balanced positions. Mmhn computation
by hand could be extremely slow and tedious.

The moral is do not play any of these games against a computeryvill
surely lose. It may be safe to play against a human, unledsashiggured out a
cleverer way to find balanced positions without having to pata Balancép)
for all positions in the game in the way the recursive defmifprescribes.

For us the problem now is not finding all balanced positions, flnding
some elegant and simple way of describing them without lgatanresort to
brute force and compute Balarige for every position in the game.

Problem 85 In the game of 2—pile Nim, players in turn take matchsticke (o
or more) from one of two piles. The player to take the last httck wins.
Compute the depth and balancing numbers for enough positiwat you can
make a reasonable conjecture about which positions arernuald and which
are unbalanced. Answer O

Problem 86 (Red and black argument) Suppose that all the positions in a game
are described as either red or black and that these threestants are true:

1. Any end position is red.
2. Any red position can move only to a black.

3. From any black position there is at least one move to a resition.

Show that the red postitions are balanced and that the blaskifpons are un-
balanced.
Answer O

Problem 87 In Problem85 you would have made a conjecture about the bal-
anced and unbalanced positions in the game of 2—pile Nim. thiseed and
black argument to prove this conjecture. Answer O

Problem 88 The game of 2—pile SNIM is played exactly as Nim but each playe
has the option of adding one matchstick to a pile or removisignany as he
pleases from that pile. Show that, even though the balanositigns are the
same as for Nim, there is no winning strategy. What is wromg’he Answer O

Problem 89 In our four-marker game (in the answer to Probl&®) we said
that a position was balanced if and only if the equatior-C = B — A was
satisfied. Use the red and black argument to prove this fact. =~ Answer O

Problem 90 In a game every move from a balanced position will produce an
unbalanced position. In some games the reverse is also évery move from
an unbalanced position will produce a balanced positionwHegould you de-
scribe those games?

Answer O
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Problem 91 If Player | faces an unbalanced position the challenge fon s
to select a correct move (there must be at least one) thataebas and leaves
a balanced position. If Player Il faces a balanced positibert every move
she makes will (unfortunately) produce an unbalanced wsitls there any
strategic choice for Player Il in such a game? Answer O

3.2.7 Balanced positions in subtraction games

The analysis of the balanced and unbalanced positions itwthvenarker and
three-marker games presented little difficulty. The fowarker game was a
bit tougher, and the five and six-marker games of Proldmay well have
defeated you.

For a little more practice with these ideas here are somelsingames
where the balanced and unbalanced positions are in somg easg to work
out. Remember that every position must be either balancedlmalanced: we
are looking for a fast and easy way of finding out which is theector any
position.

Problem 92 In this game there is one pile of matchsticks and each plagrer r
moves 1, 2, 3, or 4 sticks at a time. The winner is the one ramgdhie last
matchstick. What are the balanced positions for this game?  Answer O

Problem 93 In this game there is one pile of matchsticks and each plagrer r
moves 1, 4, 9, 16, ... sticks at a time, always restricted teréept square. The
winner is the one removing the last matchstick. Find all talabced positions
less than 25 for this game? Answer O

Problem 94 Find all the balanced positions between 25 and 100 for theegam
of Problem93. Answer O

Problem 95 Do you have a conjecture as to a formula that will producefad t
balanced positions for the game of Problé@) Answer O

Problem 96 In the most general one-heap subtraction game there is dee pi
of matchsticks and each player removes an allowed numbeicks st a time,
always restricted to numbers from a given subtraction séfit#® winner is the
one removing the last matchstick. Thus ProblEms a one-heap subtraction
game with S= {1,2,3,4}. Problem93is a one-heap subtraction game with
S=1{1,4,9,16,25,36,...}. Find the balanced positions for a subtraction game
given the subtraction set

S={1,2,3,4,5,6,7,8,9,10}.
Try to experiment with other choices of S. Answer O

Problem 97 Give rules for a two-heap subtraction game and find some bal-
anced positions in the simplest cases. 0
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Remarks For some of the one-pile subtraction games the analysidrlg fa
easy. But, even when things prove difficult to compute, tls®ldion always
follows from our balanced and unbalanced accounting. F@ntarker games
the same is true. By the time we get to five and six-marker gdases Prob-
lem 84) we ran into considerable trouble finding the balanced wrst Equa-
tions defining balanced positions similar to those for the, tthiree and four-
marker games did not come to mind readily. There is a reasoihifoand we
will discover that reason later. Instead of pursuing thek@aand subtraction
games further at this time, we will continue with some othamgs. But we
will return to the marker games later.

3.3 Game of binary bits

The game of binary bits that we introduce in this section amstmuch of the
important structure of all of our games and is fundamentalltof combinato-
rial game theory. We start with an equivalent game that pieiour introduc-
tion to the bits game.

3.3.1 A-coingame

This game is played with coins—pennies, nickels, dimes, quatters. Each
position in the game i piles of 0—4 coins such that each pile contains at most
one coin of each type. The rules of the game are

1. Each play of the game requires a player to remove one or coars from
one of the piles.

2. Optionally the player may also add one or more coins to dmeespile
provided the coins added in are of lower value than the higledse coin
removed. (E.g., a player removes a dime and a penny and canrackel
(if there is not one there already) but cannot add a quarter.

3. The player to take the last coin is the winner of the game.

The easiest way to display a position in the game, both foptimposes
of writing about it and for the purposes of play itself, is twaamge the coins
in a rectangular display of 4 rows amdcolumns as in Figur&.7. Pennies
are recorded on the bottom row, nickels on the row above amahsmtil the
guarters are displayed on the top row as Fidui@llustrates.

We do not yet see what positions in such a game would be balamce
unbalanced, but a person aware of the strategy would seedrataly that the
position in Figure3.7is unbalanced. A balancing move is to take a dime from
the 5th pile and toss in a nickel. That takes only a couple afisgés to compute
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Figure 3.7: Position in the coin game.

if one knows the strategy. Moreover a strong player will oetihat there are
exactly two other balancing moves that would have worked Bod you?

Problem 98 Play some simple coins games with one, two or three pilestWha
did you observe? Answer O

Problem 99 Show that the coin game must end in a finite number of moves.
Answer O

3.3.2 A better way of looking at the coin game

In analyzing this game one soon realizes that the notat@®ng), @, and©
are completely unnecessary since the position in the rgatanarray already
determines which coins appear. That means we need recor@¥B8lor NO in
each case.

The traditional way to do this now, especially since the adwécomputers,
would be to use binary bits—the bit 1 is used ¥&S and the bit O is used for
NO. That means that Figur@.7 can be written out instead using the simpler
Figure3.8.

Also we can simplify the moves in the game if we realize thatoeing a
coin simply changes ¥ESto aNO, i.e., it changes a 1 bit to a 0 bit. Similarly
adding a coin changesNO to aYES, i.e., it changes a 0 bit to a 1 bit. We are
just flipping bits, which is a good description of what congrstdo. Thus, if
we translate the coin game to binary bits, we arrive at thargibits game of
Section3.3.3which is exactly identical to it.

Problem 100 (A card game)In this game a deck of cards is shuffled and four-
teen cards are dealt on the table face up. A play in the gamanesjthe player
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to remove one of the cards. He then has the option of removorg of the
cards of the same suit that have lesser face value, and/angdfttom the left-
over pile) any cards of the same suit that have lesser faagevatow would
you analyze this game? Answer O

3.3.3 Binary bits game

In the game obinary bitswe start off with am x n rectangular array of zeros
and ones. There ara rows andn columns and only the numbers 0 and 1 can
appear. As is often the case, the numbers are chltsdA legal move of the
game is described this way:

1. The player selects a 1 bit in some position and changesi0tbit.

2. The player may optionally change any or all of the bits ia dolumn
below the selected bit 1.

Play evidently stops when all the bits have been changed Th@ player who
made the last legal move wins.

At first it seems obvious that the game eventually stops. A erdim reflec-
tion, however, may give us pause. As the game progresses eoves may
add 1 bits, so the total count of 1 bits does not always go dénvRroblem101
you are asked to show that the game is finite. This, we resadssential if our
analysis in terms of balanced and unbalanced positiongiis smccessful.

Example 3.3.1 A move in a 5x 3 game is illustrated in Figurd.9 Here the
player elected to change one of the 1 bits in the second cqlanuh he also
flipped two of the lower bits.

Can you spot whether this was a good move? Was there a betief?mes

The mx 1 game Here there is but one column and the strategy should be
obvious. The player to start simply chooses the topmost artdltchanges that
bit and all the ones below it to zero bits. The game is over andvims. A
position with any 1 bits is unbalanced.
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Figure 3.9: A move in a &% 3 game of binary bits.

The mx 2 game Here there are two columns and the strategy is obvious
... after some thought. In Probleb®2you are asked to solve the game. The
strategy that works is calleithe mirror strategyand plays an important role in
game theory.

The mx 3 game Here there are three columns and the strategy is no longer
obvious at all. At this pointthe game becomes rather moegasting. We know
that an analysis of balanced and unbalanced positionsesillitin a completely
solved game but we do not yet know how to do that in any simple wa

Problem 101 Show that every game of binary bits must end in a finite number
of steps. Answer O

Problem 102 Find a complete strategy for the »i2 game of binary bits.
Answer O

Problem 103 Which, if any, of the positions in tlex 3 games of Figure3.10

are balanced? Answer O
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 1

Figure 3.10: Which positions are balanced?

Problem 104 Which, if any, of the positions in tlex 3 games of Figure3.11
are balanced? Answer O



3.3. GAME OF BINARY BITS 111

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 1 1 1 1 1 0 1 1 1
1 0 0 1 1 1 1 1 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 0 1
1 0 1 0 1 1 1 0 1

Figure 3.12: Which positions are balanced?

Problem 105 Which, if any, of the positions in thex 3 games of Figure3.12
are balanced? Answer O

Problem 106 Do you have a conjecture? Answer O

Problem 107 Define a position in a mx 3 game to be even if there are an even
number ofl bits in each row. Define a position in a m3 game to be odd if
there is at least one row containing an odd numbet bfts. Check each of the
following:

1. The end position of the game is even.

2. If a player makes a move from an even position it will suresult in an
odd position.

3. If a player faces an odd position there is always a choicenoVe that
leaves an even position.
Answer O

Problem 108 Give a complete solution for the »13 game of binary bits.
Answer O

Problem 109 Are you prepared to announce a solution for thexm game of
binary bits? Answer O
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Problem 110 Describe all the balancing moves in the coin game displaged i
Figure 3.7. Answer O

Problem 111 In the coin game one can change the rules to allow more coins
in each pile. For example:

1. Each play of the game requires a player to remove all thesoi the
same type from one of the piles.

2. Optionally the player may also add coins to or subtracinsdirom the
same pile provided the coins added or subtracted are of laakre than
the coins initially removed. (E.g., a player removes allesrand then can
add or subtract as many pennies and nickels as he pleasesatibt add
any quarters.

3. The player to take the last coin is the winner of the game.

How does this change the game? Answer O

Problem 112 In the coin game one can change the rules to allow any player to

keep the coins that he has removed. How does this changetie?ga
Answer O

Problem 113 (A number game)A game similar to binary bits starts with a
m x n rectangular array of arbitrary numbers. A legal move of tieme is to
change any nonzero number to zero and, optionally, changeoall of the
numbers in the column below the selected number. The lagempta move
wins. Analyze this game. Answer O

Problem 114 (A word game) This word game is also similar to the game of
binary bits. The players start with three or more words. Ayglamoves in
this game by selecting a word and a letter that appears inW@atd. He must
remove all appearances of that letter in the word chosen aag, wptionally,
add in or remove any other letters that are earlier in the alpht. For example
if the six words are

[ Twas brillig and the slithy toves|
then a legal move would be to select the “I” bnillig and remove both of them.
The “r’ cannot be removed but the other letters can and antelsta—k could
be added in, for example

brillig ~ abbrek

would be allowed. The last player to move wins. Analyze thisey
Answer O

Problem 115 Are you prepared to announce a solution for the game of Nim?
Answer O
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3.4 Nim

The classical game of Nim is played as follows. Four piles atahsticks (or
cards or coins) containing 1, 3, 5, and 7 sticks respectiaeé/placed on a table
as indicated in the diagram.

Figure 3.13: A game of Nim.

One of the players removes one or more sticks (as many asdsy &k from
the same pile. Then the opponent does the same from the riegnaticks. The
player who takes the last stick wins.

We do not need match sticks to play the game, of course. Wel tostlead
consider the quadruple of numbéis3,5,7) and lower one of those numbers to
start the game. Then our opponent would lower one of the m@ngahumbers.
The game ends when there are no positive numbers left; thahisn all four
numbers are zero. This corresponds to having no matchsgittkan the table.

The general Nim game There is nothing special about the numbérs,5,7).

We can play the same game with any number of piles of matdsstand the
number of sticks in each pile can be chosen as we like. We czaridle a Nim
game withk piles containing, ng, ..., Nk sticks in the piles by writing

(ng,N2,...,NK).
Our objective is to find a winning strategy that will applya@eeryNim game,
no matter how many piles there are and no matter how manysstiekin each
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pile.

3.4.1 The mathematical theory of Nim

At this stage we know how to solve the game of Nim in a techrsealse. We
can simply describe all balanced and all unbalanced pasitid.acking any
better ideas we just start at the end of the game working baclsy Maybe the
real structure will emerge. Or perhaps the real structullg@nain mysterious
even after seeing all the balanced positions.

The complete mathematical theory for the game of Nim wasogEsed
by Charles L. Bouton who published his observations in tiseaech journal
Annals of Mathematicsr 1901. Bouton’s paper marked the beginning of the
theory of what are called combinatorial games.

Research papers announce and publish results in a reyatmelpact form
for the mathematical community. His complete paper is repced in our ap-
pendix on pag@39 Our interest here is not in the result or formal proofs of the
result, but indiscovery

If you are impatient to learn the strategy and beat all yoientis at Nim
go to the appendix and read Bouton’s paper. If you wish, as eyeta go
through the process of discovering a clever mathematiealrth begin instead
by playing the game and looking for the underlying structure

3.4.2 2—pile Nim

As an easy warm-up, let us begin with 2—pile Nim. Here we hexepiles of
sticks and our objective i® take the last stickOur analysis will use the usual
ideas of balanced and unbalanced positions.

A position in two-pile Nim is described by a pair of numbéns n) repre-
senting two piles of sticks, one containingsticks and the other containimg
sticks.

Starting at the bottom, we know th@, 0) is balanced and can deduce that
therefore(1,0) and(0,1) are unbalanced. Carry on until you are able to spot
the pattern.

Problem 116 Discover the strategy for 1—pile Nim. Answer O
Problem 117 Discover the strategy for 2—pile Nim. Answer O

Problem 118 The mirror strategy that we used in Problédr7works for 2—pile
Nim, but is not much help with 3—pile Nim or 4—pile Nim. Eventkere are
some situations where it can work. Show that a mirror stratedl win a game
of 4—pile Nim if the opening position is of the fofm,n,m n). Answer O
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Problem 119 (Kayles) The mirror strategy works for a number of other games.
Try it on the game of Kayles. Line up a number of coins in a rothabeach
coin touches its neighbors as in Figusel4

00000000000000,

Figure 3.14: Coins set up for a game of Kayles.

The rules of the game are that a player may remove a single aoiwo
coins that touch each other. The last player to move winswStaw a mirror
(Tweedledum-Tweedledee) strategy can be used to sohgathis.

Answer O

Problem 120 (Circular Kayles) Find a strategy for the game of Kayles when
the coins are arranged in a circle instead of a straight line. Answer O

3.4.3 3-pile Nim

Let us proceed to 3—pile Nim. Here things are quite a bit moramicated.
The game has a rather complex structure and it will take aewthilliscuss the
balanced positions.

For 2—pile Nim we discovered in Probleibi7 that the balanced positions
arethose which have the same numirereach pile. These are games of the
form (n,n), indicating two piles so that each pile hasticks. Unfortunately
knowing the complete strategy for 2-pile Nim doesn’t giveamy clues as to
the strategy for 3-pile Nim.

We also could have expressed our solution of 2—pile Nim imseof the
mirror strategy. Again this doesn't help us in finding a siontto 3—pile Nim.
The only method we have that is general enough to lead us ighedirection
is to search for balanced and unbalanced positions.

You may wish to find an opponent with whom to play a few games, tjol
get a feeling for the game. Start with games which do not haaeynsticks in
each pile.

The situation is a bit like chess or checkers. By playing a games, one
can learn how to play better, but to become a really good playe must also
begin to learn something about the structure of the gamefféreince is that in
order to become an excellent chess player, we must devotaadgal of time
to the subject. And no one knows a perfect chess strategyn Mih we shall
eventually see what the perfect strategy is. And it involvely a few ideas.

Starting off at the bottom we can easily construct a few b=ddnposi-
tions. As usual0,0,0) is balanced and that shows us tl&t0,0), (0,1,0),
and(0,0,1) are unbalanced. At the next levdl 1,0), (0,1,1), and(1,0,1) are
balanced so thdtl, 1, 1) must be unbalanced. Carry on. Does a pattern emerge?
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Problem 121 Are the two positiong§1,2,2) and (1,1,2) balanced or unbal-
anced?
Answer O

Problem 122 (The position(1,2, 3) is balanced) Go through all the details nec-
essary to check thdtl, 2, 3) is balanced.
Answer O

3.4.4 More three-pile experiments

In solving a number of our problems we took advantage of tbetfeat we knew
all the balanced positions in two-pile Nim. Thus we can gasdot whether
(m,n,0) is balanced or not because this is identical to playing tmeeyan, n)
in two-pile Nim. While this was a bit of help, it proves to be eadl end for
finding the pattern that describes the three pile game.

This is disappointing since it means a familiar techniqueas going to
work. Going from two-pile Nim to three-pile Nim presents ughna different
game. Mastery of the former gives us only minimal assistamgeaying the
latter. The same will happen with 4-pile Nim: even if we cola list of all
balanced positions in 1-pile, 2-pile, and 3-pile Nim, welwsilll have trouble.

We need to find a new kind of pattern. If you have experimented &
number of small games, you have undoubtedly begun to picletipio patterns
although, at this stage, it is still not clear how to explbid¢e patterns.

Example 3.4.1Did you notice that the games
(1,0,1), (2,0,2), (2,1,3), (3,0,3), and(3,1,2)
are all balanced? Compare that with the fact that the games
(1,1,2), (2,2,4), (2,3,5), (3,2,5) and(3,3,4)

are all unbalanced.

These two groups of games form a certain pattern obtained fhe first
in each list. Thus(2,0,2) is thedoubleof (1,0,1). The other three games in
the first group can be obtained byear-doublingfrom (1,0,1) or (2,0,2) by
adding a stick to exactly two of the piles. <

Examples such as these might suggest that doubling or oedtidg a
game does not change its status — if the original game is tadarso are the
resulting games obtained by doubling or near doubling. adf thrns out to be
true, it will give us a large collection of positions whosatst we will know.

What about the other near doubles we obtain by doubling timebeu of
sticks in each pile and adding one stick to exactly one of #éselting piles?
Or to all three of the resulting piles? For example, from theng(1,0,1) we
would get the game,1,2), (3,0,2), (2,0,3), and(3,1,3). What do you think
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happens? Work it out, make a conjecture, and then see if yanjecture is
valid for the examples in Probleni®3-126.

Problem 123 Which of the games
(2,4,6), (2,5,7), (3,4,7), and(3,5,6)
are balanced and which are unbalanced? Answer O

Problem 124 Which of the games
(2,6,8), (2,7,9), (3,6,9), and(3,7,8)
are balanced and which are unbalanced? Answer O

Problem 125 Which of the games
(3,4,6), (2,5,6), (2,4,7), and(3,5,7)
are balanced and which are unbalanced? Answer O

Problem 126 Which of the games
(3,6,8), (3,7,8), (3,6,9), and(3,7,9)
are balanced and which are unbalanced? Answer O

Problem 127 Study the patterns of Probleri&3-126. How are they related to

the gameg1,2, 3) and(1,3,4)? Do you see any connection between the strate-

gies for these gamel, 2, 3) and(1, 3,4), and the games in Probleri&3-126
Answer O

3.4.5 The near-doubling argument

Can we yet spot the structure of the balanced positions inl&—p
Nim? A flash of insight would help and perhaps you have had one.
If not, then the line of reasoning we now follow will lead ussar

to the moment of recognition.

The bright idea we need to progress further is apparent iexperiments
we have so far performed, provided we look at things from a peint of view.
We noticed that all these positions were balanced:

(1,1,0) as well as(2,2,0), (1+2,1+2,0), (2,1+2,1+0), and(1+2,2,1+0).

This includeq(3,2,1), so(1,2,3) would be balanced too.
The same kind of doubling produces yet more balanced paositio

(1,2,3) as well ag2,4,6), (1+2,1+4,6), (2,1+4,1+6) and(1+2,4,1+6).
Starting at(2,2,0) and using the same pattern produces
(2,2,0) as well ag4,4,0), (1+4,1+4,0), (4,1+4,1+0) and(1+4,4,1+0).
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A little checking shows that these too are balanced.

If we were to include in this list all the different permutats we would
recognize that we have obtained all of the balanced posititose to the end
of a 3—pile game just by doubling and redoublifig1,0) and maybe adding
a couple of 1's each time. If we continue this process furgfeghaps we can
generate all balanced postions.

Examples such as these suggest that doubling a balanceddyesenot
change its status. Nor does doubling and adding 1 to two opiles. If that
turns out to be true, it will give us a large collection of gasis whose status
we will know. Here is our conjecture.

Near doubling Start with any Nim positiornix, y, z). Any of the four positions
(2x,2y,22), (2x+1,2y+1,22), (2x+1,2y,2z+ 1), or (2x,2y+1,2z+ 1)

are said to baear-doublef (x,y,z). Note that a position cannot be a near
double of more than one choice &f Y, z).

3.4.2 (Near doubling argument) A position(x, Y, z) in 3—pile Nim is balanced if
and only if it is a near-double of another balanced position.

To prove this statement we use an argument that should bédaioi us.
We used it before in our even/odd analysis of the game of pib#s. Let us
call a position aed positionif it is near-double of a balanced position. Every
other position is said to beldack position

The end position is red The end position in a three pile game of Nim is
(0,0,0). Since this is balanced and is its own near-double the enitigross
red.

Any red position must move only to a black Start with any of these red
positions:
(2x,2y,22), (2x+1,2y+1,27), (2x+1,2y,2z+ 1), or (2x,2y+1,2z+ 1)
where we are assuming th@at y, z) is balanced.
It is enough for our argument to consider only moves that takay sticks
from the first pile—the argument is the same for the othersagaking away
an even numberk2of sticks from the first pile results in

(2x,2y,2z) ~~ (2[x—K], 2y,22),
(2x+1,2y+1,27) ~ (2[x— K|+ 1,2y + 1, 22),
(2x+1,2y,22+ 1) ~ (2[x— K] + 1,2y, 22+ 1)

and
(2x,2y+1,2z+1) ~ (2[x—K],2y+1,2z+1).
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We recognize a doubling or near-doubling of the pie-k,y,z). But (x—Kk,y, 2)
must be unbalanced since it came from a move out of the balgmesition
(x,,2). Consequently all of the resulting positions are black, ai of our red
positions have moved to black if we remove an even numberaksst

Start again with any of these red positions:

(2x,2y,22), (2x+1,2y+1,22), (2x+1,2y,2z+ 1), or (2x,2y+1,2z+ 1)
but this time remove an odd numbec-2 1 of sticks, again from the first pile:
(2x,2y,22) ~ (2[x— K] + 1,2y, 22),

(2x4+1,2y+1,22) ~ (2[x—k+1],2y+1,22),
(2x+1,2y,2z+1) ~ (2[x— K| +2,2y,2z+ 1)

and
(2%,2y+ 1,22+ 1) ~ (2[x— K +1,2y+1,2z+1).

Again we recognize all of these positions to be black, ileof@ur red positions
have moved to black if we remove an odd number of sticks.

Any black position can be moved to at least one red We need to consider
several cases of black positions and, for each one, deteraw to make the
correct move to a red position.

1. Suppose thai2x, 2y,2z) is a black position. The(x,y, z) is unbalanced
and so there is a balancing move which leaves, say, the @osgiti- k,y,z).
Since that position is balanced, the doubled position

(2x— 2k, 2y, 27)
is a red position. This gives us a way to move from the blackéored if we
start at(2x, 2y, 2z) assumed to be a black position. Take awkygcks.

2. Suppose tha2x, 2y + 1,2z+ 1) is a black position. Thefx,y,z) is un-
balanced and so there is a balancing move which leaves,Gase [2a] the po-
sition (x—Kk,y,z) or [Case 2b] the positiofx,y — k,z) or [Case 2c] the position
(x,y,z—K). We need consider only the first two cases.

In Case 2a the positiofx — k,y, z) is balanced, hence the near-doubled po-
sition

(2[x—K|,2y+1,2z+1)
is a red position. This gives us a way to move from the blackéored if we
start at(2x,2y+ 1,2z+ 1) assumed to be a black position. We remoketcks
from the first pile.

In Case 2b the positiofx,y — k, z) is balanced, hence the near-doubled po-
sition

(2x,2ly—k +1,2z+1
is a red position. This gives us a way to move from the blackéored if we
start at(2x,2y+ 1,2z+ 1) assumed to be a black position. We remoke-2
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sticks from the second pile.

3. Suppose the starting position (i8x + 1, 2y, 2z); this is always a black
position since two of the entries are even.(Afy, z) is balanced then there is
an obvious move: take away 1 from the first pile to produce #teposition
(2x,2y,22). If, however,(x,y, z) is unbalanced we can balance it to the position
(x—Kk,y,z) or perhapgx,y — k,z) (the remaining case is similar). In the first
situation(2[x— k], 2y, 2z) is a red position which we obtain by removinig-2 1
sticks. In the second situatid@x+ 1, 2]y — k|, 2z) is a red position which we
obtain by removing R— 1 sticks.

4. The only case that we must finally consider is a positionhefform
(2x+1,2y+1,2z+ 1); this is always a black position since each of the entries
is odd. How can we move to a red position?

If (x,y,2) is balanced then there is an obvious move: take away 1 from the
first pile to produce the red positid@x, 2y + 1,2z+ 1). If, however,(X,Y, z) is
unbalanced we can balance it to the positigr- k,y,z) (the remaining cases
are similar). Theri2[x—Kk],2y+1,2z+1) is a red position which we obtain by
removing X — 1 sticks.

Conclusion Our analysis shows that we can win the game, starting from a
black position, since we can always find a way to produce a ositipn and
our opponenet must always produce a black position. Evéntwa end up
with the position(0,0, 0) which is a red position and we win. This is exactly the
same as the balanced and unbalanced argument and showetreat positions
are simply the balanced positions and the black positioeagtee unbalanced
one. So now we can drop the red and black language and go baelkatoced
and unbalanced.

We have not really solved the game, we have just found a coeveway
of describing balanced positions in the language of neablileg. A little more
thinking about this, however, leads to an elegant solution.

3.5 Nim solved by near-doubling

We can now easily generate all the balanced position in @tpile Nim game
using the near-doubling argument. For example, startinky thie balanced po-
sition (0,0,0) we can construct all of its near-doubles

(1,1,0), (1,0,1), and(0,0,1)
and then all near-doubles of those three positions. All faaditions must be
also balanced. By continuing in this way we see that all o$é¢hgositions are
balanced:
(1,1,0), (1+2,2,1),(1+2+2%1+222),

(1+2+2°+2% 24+ 2% 14+ 2%),(1+2+2°+ 2%, 142+ 2% 2), ..
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This is faster than starting at the bottom and directly cotmgubalanced posi-
tions by our other method. But it is still somewhat strangeking.

At some point in these investigations, now or perhaps a blieeave must
begin to see that our perception of the problem has been etblog using the
decimal arithmetic notation. Certainly this pattern dedsabinary interpre-
tation. These examples suggest it. Near-doubling suggests it.

An elegant strategy for Nim will become transparent progides switch to
a binary representation of the piles. For example, the iposit

(1,2,5,7,11),

written in decimal notation, is far less informative to usthwhen written in
binary notation. Doubling or near-doubling this positiordiecimal notation is

a tedious exercise in arithmetic that does not reveal muaubbng or near-
doubling this position ibinaryis surprisingly simple and revealing. The reader
is invited to review binary arithmetic (covered now in SentB.5.1) before
returning to this in Exampl8.5.3

3.5.1 Review of binary arithmetic

We provide now a quick review of how numbers can be expressddferent
bases. This section may be omitted by any reader who feelfoctale with
base 2 arithmetic and is eager to apply it to the Nim game.

Suppose we have 147 eggs. What does the notation “147” reaiyn? One
way of understanding the notation is as follows. If we put eggs into boxes
of ten eggs each, we would have fourteen boxes and sevenefggedr. These
seven eggs account for the numeral “7”.

We now put the fourteen boxes into crates which hold ten begel. We
fill up one full crate and have four boxes left over. These fooxes account
for the numeral “4”. Since there are fewer than ten cratesneesl not do any
further grouping. We have one crate left over and this actsoian the numeral
1.

But egg boxes usually hold twelve eggs each. If a crate aostavelve
boxes, we could easily check that we would have one crat@oselboxes, and
three loose eggs; this would represent the number of eggasa twvelve. Our
process of arriving at the numeral 103 can be looked uponcgssive division
and recording remainders: if we divide 147 by 12 we get 12 witemainder of
3, thus accounting for the “3” in “l03”. If we then divide 12 B, we get 1 with
a remainder of zero, thus accounting for the “0” and the "1".

We can do the same computation relative to any positive @énteg 2, thus
arriving at a base numeral for the (base ten) number [47. We simply divide by
n and record the remainder, then divide the partial quotignt &nd record the
remainder, etc. We continue the process until the finalgagtiotient is zero.

Example 3.5.1 We illustrate withn = 2 and we work again with the number
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147 as our starting point.
147=2 =73 withremainder 1
73+2 =36 withremainder 1
36+-2 =18 withremainder O

18+-2 = with remainder O
92 = with remainder 1
42 = with remainder O
22 = with remainder O
12 = with remainder 1

This all works out to the notation 10010011 meaning
1.2"40-2°4+0-2°4+1.2*4+0.-2240.-22+1. 28 +1
where the final remainder is the left-mdst and the first remainder is the right-
mostbit.

Thus 147 (base 10) equals 10010011 (base 2). Note that thallg similar
to the meaning of 147 (base 10):

1.-10°+4-10+7.
In fact we have verified an unusual looking statement, narielty
1-10°4+4-10+7=1-2"40-2540-2°+1-2°+0-22+0-22+1-21 - 1.

Both of these are just ways of writing the number we know as 147

You may wish to check (just by ordinary arithmetic) that 14h @lso be
written as

147=1-12240-12+3.

Thus our number one-hundred and forty-seven can be wrigtd4a (base 10),
or as 10010011 (base 2) or even as 103 (base 12).

All of these are just different ways of writing the number waiiwe usually

call one-hundred and forty-seven (and the ancient Romanddwaave called
CXLVII). <

Example 3.5.2 For practice, we do one more quick computation. To write the
number twenty-six (i.e, 26 in the usual base 10) as a base 2mnalijve observe
that

26+-2 =13 withremainderO

13+-2 = with remainder 1
62 = with remainder 0
3+-2 = with remainder 1
1-2 = with remainder 1

Thus
26 (base 10y 11010 (base 2)

Note that we do not need the numbers 13, 6, 3, and 1 except tmeerihe
calculations. We need just the remainders 0, 1, 0, 1, and/ien read from
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bottom to topthis is just the base 2 numeral for 26. While we are accusiome
to reading numerals from left to right, the convenience ahddhe computa-
tions in the way we did results in our reading these binaryasgntations from
bottom to top.

Writing in columns  We shall need frequently to write our binary numbers
in columnsrather than rows. Thus the number 26, which in standard Yinar
notation becomes 11010, will be expressed as a column tlyis wa

1

1

26 (base 10)= 11010 (base 2= | O

1

0
Note that the column order is the exact reverse of the ordethich we com-
puted the bits in our computation above. We computed thefolit first and
then all the other bits in order, from bottom to top. <

3.5.2 Simple solution for the game of Nim

The near-doubling argument allows us to generate quickdy esasily all the
balanced positions in Nim. When we do this using binary noethe structure
becomes almost obvious.

Example 3.5.3 A position in the game of Nim written in decimal notation as
(1,2,5,7,11)
appears in binary notation as
(1,10,101, 111 1011)
or, if we prefer to arrange the bits in columns, we can disgi@&position as

0O 0 0 0 1
0O 01 1 0
0 1 0 1 1
1 01 1 1

Near doubling is easy now. Multiplying by two simply raisé trows in the
display:

N eNeoNe)
oOr oo
R OROo
k=)

ORr R OR

0 0 0O
To add a pair of 1's (or two pairs of 1's) add them to the bottom.r <

Example 3.5.4 We already know thatl,2, 3) is a balanced position. We ex-



124 CHAPTER 3. NIM

press this position in binary:

or o
=)

= |k OO

This position is a near-double of the position

oNeoNe]

D
c:D oo
o

which itself is a near-double of th osition

OOl T |kpOOo

o o

0
0
0 0 O

Note that there are an even number of 1 bits in each row. Dogiifierely
adds a row of zeros to the bottom. Near-doubling does the ,shoteadds
possibly two 1 bits to the bottom row. Even if we do this thowsof times,

one thing is transparent: there will always be an even numbgibits in every
row. <

In fact we can prove this fact in complete generality.

3.5.5 A position in 3-pile Nim is balanced if and only if there areearen number
of 1 bits in each row.

All balanced positions can be generated by starting withbdanced po-
sition (0,0,0) and doing near-doubling repeatedly. Every near-doubleahas
even number of 1 bits in each row. That is all there is to thefpro

This also gives us our game strategy. If a position is unloalait is because
there is an odd number of bits in one or more rows. At least dtleeccolumns
will allow a reduction of sticks in its associated pile so aptoduce an even
number of bits in each row. Binary arithmetic shows how.

3.5.3 Déjavu?

Haven't we seen this before? The game of binary bits in Se@i8 looks
identical to this. In the game of binary bits the balancedts were exactly
the same: even number of 1 bits in each row. Is it possible? Wyt we
notice this before?

3.5.6 The game of Nim is equivalent to the game of binary bits.

We need to check that the rules of Nim and the rules of binasyde the
same. Certainly the positions are the same.

In the game of Nim(ny, ny,. .., ng) the rules require us to select a pile and
reduce the pile by one or more sticks. If we convert each ofmilmabers to
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binary and use them to play a game of binary bits the rulesiregs to select
a binary bit 1 in some column to change to 0 and then changedgdease) all
the bits below it. If we remember how binary arithmetic wowks see that this
is equivalent to reducing the Nim number that correspondssabcolumn. The
Nim game ends with a position 60,0, ...,0) while the binary bits game ends
with no 1 bits just 0 bits. The last player to move wins.

The two games are identical. Thus, since we have an easyosohftthe
binary bits game, we have an obvious strategy for Niomvert every Nim game
to a binary bits game

Example 3.5.7 The position1,2,5,7,11) in 5-pile Nim is unbalanced. (Not so
easy to see.) The balancing move is to take 10 sticks fromasiglle. (Really
not at all easy to see.) There is only one balancing move. @QVhy

The answer to our difficulties is to play binary bits insteduene everything
is truly easy to see. Conve(l,2,5,7,11) to (1,10,101,111 1011 in binary.
Now display this position as in Figuf15 Here we have entered each of the

00O0O01
00110
01011
10111

Figure 3.15: The positiof, 2,5, 7,11) displayed in binary.

binary expressions for the numbers 1, 2, 5, 7, and 11 as bomduynns. Taking
sticks from any one of these five piles is the same as a legahpbits move on
one of these five columns.

Figure 3.16 shows the correct balancing move in this game of binary bits.
This corresponds to the move

(1,2,5,7,11) ~ (1,2,5,7,1)

in our 5—pile Nim game.

This makes it clear why the balancing move is to take 10 sficka the last
pile. We can also see at once that this is the only balancingmossible. A

5—pile game would have defeated us before. Now the play imrpinotation is
straightforward (depending on your skills with binary antetic). <

Problem 128 Under what conditions will it be possible to find more than one
balancing move in a three—pile Nim game? How many balanciages will
there then be? Answer O

Problem 129 Find all three ways in which the game (9,11,13) can be baldnce
Answer O



126 CHAPTER 3. NIM

L O O O
o+ OO
R OBk O
= O
R~k O Bk
— O O O
o+ O O
R O kKL O
= - O
RO O 0O

Figure 3.16: The movél, 2,5,7,11) ~~ (1,2,5,7,1) displayed in binary.

Problem 130 Can there be more than 3 balancing moves in a 3-pile Nim game?
Answer O

Problem 131 In a 10—pile unbalanced Nim game, what is the largest possibl
number of balancing moves? Answer O

Problem 132 In a 11-pile unbalanced Nim game, what is the largest possibl
number of balancing moves? Answer O

Problem 133 How many different balancing moves are there for the Nim game
(1,3,5,7,9,11,13 1000097 Answer O

Problem 134 How can you tell immediately that the Nim ga(&6, 72,48, 40)
is unbalanced? Can you spot the pile that needs adjustingowitmuch com-
putation?

Answer O

Problem 135 (Opening strategy)You are invited to a game of Nim and you
spot that the opening position is balanced. Your opponeriteis you to start.
What do you do? Answer O

Problem 136 (Poker Nim) You are invited to a game of Nim played with coins

and with a new rule. The coins are placed in three piles anchegdayer, in

turn, may take as many coins as he likes from a single pile aed them aside.

At any play of the game a player may decide to return coins fiaeollection

as he wishes, and place them on a pile, instead of reducintga phe player

who takes the last coin wins and seizes all the coins on tHe.tBlscuss.
Answer O

3.6 Return to marker games

Let us return now to the marker games. We have already esttedlithat the 2,
3 and 4—-marker games have balanced positions which cay easilescribed
in terms of simple equations:

B=A+1
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for the 2—marker game,
A+B=C
for the 3—marker game, and
D-C=B-A
for the 4—marker game. But we did not see what to do for the 5-ara@ker
games. It appears to be obvious that we should search hardeh harder, to
find the correct equations for tllemarker games!

But that would be misguided. There is a pattern which gerzasifrom 2,
3 and 4—-marker games to altmarker games but this is not it. Many times in
mathematics the attempt to generalize something requitesavay of looking
at the simpler cases.

Let us pause and reflect on this for a moment. The strategy-jaife2Nim
is the mirror strategy (the Tweedledee-Tweedledum styatddad we insisted
on finding some kind of mirror strategy for 3—pile Nim we wouldve surely
failed. Instead we came up with the strategic device of cdimgethe numbers
to binary. That allowed us to solve all Nim games. Had we |lalokiethe 2-pile
Nim game in binary we might have noticed that the mirror sggtwas really
all about ensuring an even number of 1 bits in each row. Weeadigse chance
to find the pattern that works for all Nim games because we Ve&idng too
hard at the wrong pattern.

The same is true for marker games. By looking too closelyab#iancing
equations for 2, 3 and 4—marker games we completely missttsp@ctive that
will allow us to solve all Marker games.

3.6.1 Mind the gap

The perspective that we need for marker games involves rgg@imove as a
closingor openingof a gap. Agapis just the number of holes—legal positions—
between a pair of markers. Once we have expressed the objettihe game
in the language of gaps and openings and closings, ratheretipaations, we
will find a pattern that works in general.

Example 3.6.1[Gaps in a 3—marker game] Place mark&rdB andC at 4, 9
and 13 as in Figur8.17.

(0) A B C

123456 7 8 9101112131415

Figure 3.17: Gaps in the 3—marker game with markers 8t 4and 13.
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We know that the position is balancedAf B = C, which we can rewrite

as
A-0=C-B.
To interpret this in the language of gaps we would prefer tibewr
A-1=C-B-1

There are gaps between 0 aAdbetweenA andB and betweer8 andC. Of
these it is only the first and third gap that concern us. Bofisgae equal to 3
as we see by counting (or, equivalently, by compuig0— 1 andC — B—1).

Thus we have a balanced position corresponding to the pongisi 3) in
Nim. If our opponent movea, this reduces a gap and we answer by mogng
the same number of places. If the opponent m@;ekis widens a gap, and we
answer by moving the same number of places. If our opponent m&abis
reduces a gap and we answer by mowvnipe same number of places. <«

Example 3.6.2[Gaps in a 4—marker game] Place mark&y®8, C, andD at 5,
10, 20, and 30 (as in Figur18. The balancing move would be to moize
from 30 to 25, for in that case we would have

B-A=D-C=5,
a balanced position. Expressing this in terms of the two gap®ould have
B-A-1=D-C-1=4,
so that the number of holes betwegandB is the same as the number of holes
betweenD andC. We have closed the gap betweerandD to the same size

as the gap betweehandB. Note that it is only these two gaps that matter; the
other gaps (between 0 aidor betweerB andC) do not interest us.

A B C D
5 10 20 30
Figure 3.18: Gaps in the 4—marker game with markers 40520, and 30.

The balancing equation is really demanding that we develojrier strat-
egy (Tweedledee-Tweedledum strategy) that focuses thstedhe two gaps.
That means, too, that there is a similarity between theegjie$ for the 4—
marker game and the 2—pile Nim game. The games themselvestadentical.
The point is that a position in a 4—marker game can be balamgedmparing
it with a related position in a 2—pile Nim game. <

Problem 137 Explain the similarity between the strategies for the 4-kear
game and the 2—pile Nim game? Answer O
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Problem 138 Formulate a similar analogy between the 3-marker game aad th
2—pile Nim game. Answer O

Problem 139 Formulate a similar analogy between the 2-marker game aad th
1-pile Nim game. Answer O

Problem 140 Use the strategy for 3—pile Nim to find strategies for the 5 and
6—marker games. Note that these strategies do not involuplsiequations
similar to those which arose in the lower order marker games. Answer O

3.6.2 Strategy for the 6—marker game

Once it occurs to us that we can use the gaps to compare otiopdsia Nim
game the solution is simple. We do not even have to do much thorking
about it.

Let us consider first the 6-marker game. Designate the ngrkem left to
right, by A, B, C, D, E, andF. The gaps (number of empty holes) betwéen
andB, betweerC andD and betweert andF give us three numberg, y and
z, which correspond to a certain Nim garpey, z) as indicated in Figurd.19

@ A B » G F
X y Z
Figure 3.19: The three key gaps in the 6—marker game.

Since we are counting holes in between,

X=B—-A-1,

y=D-C-1,
and

z=F-E-1.

The argument Define a position in the 6—-marker game to beed position
if the gaps(x,y,z) correspond to a balanced position in 3—pile Nim. Call the
positionblackif this is not so. Then

1. The final position in the 6—marker game is a red positions Ebecause
(0,0,0) is a balanced position in Nim.

2. Any move from a red position will result in a black positiofhis is
because any such move will change one of the markers and sgeha
exactly one of the gaps. So(ik,y,z) is balanced in Nim, the new set of
gaps must be unbalanced in Nim.
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3. Given a black position there is a move of markers that preda red
position. A black position corresponds to a gap triptey, z) that is un-
balanced in Nim. Find a balancing move in Nim and then moveafie
propriate marker to produce a new balanced set of gaps.

The final position is red, red always moves to a black, and feobtack
one can find at least one move to a red. It follows that the regitipas are
the balanced positions in the 6—marker game and the bladkqmssare all
unbalanced.

A small subtle point This argument shows that we have captured all of the
balanced positions by comparing to Nim. But it does not sayttie two games
are identical.

If a position corresponds to the gapsy,z) and one of the markeiB, D,
or F is moved, then indeed the new gap position does correspaamdiave in
Nim because one of the numbe¢sy or z has been reduced. But if one of the
markersA, C, or E is moved the effect is that afideninga gap. This does not
correspond to a move in the associated Nim game. In Nim wegeghanmbers
only by reducing them.

But this doesn’t impede our play. We just move the markeraother end
of the gap to restore its previous size. This leads to the daatenced Nim
game that existed before our opponent made his move.

Example 3.6.3 Consider the marker game with markers at
5,7, 12 15 20, and 24
as in Figure3.20

QA 12 Q = ?

5 7 12 15 20 24
Figure 3.20: The 6—marker game with markers,af 512, 15, 20, and 24.

The gaps are of sizes 1, 2 and 3 respectively. Thus, we loble @ssociated
Nim game(1,2,3). We remember that this as a balanced Nim position. (If we
do not, we could write the numbers out in binary and check.)

Our opponent makes a move: say, he or she moves the ntarfkem 20
down to 18. This widens a gap, so doest correspond to a Nim move. Even
so, Nim helps us rebalance.

Our answer is to move mark&rfrom 24 to 22. The markers are now at 5,
7,12, 15, 18, and 22. This position once again correspontisetdlim game
(1,2,3) . Now, suppose, our opponent moves maifRerom 15 down to 13.
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This reduces a gap, sadbescorrespond to a Nim move: the markers are now at
5,7,12, 13, 18 and 22, and this corresponds to the Nim positid, 3). This
Nim position is unbalanced and we could balance it by takisticks from the
third pile, leaving the balanced Nim positioh 0, 1).

This Nim move would correspond to the move in the marker gaméhich
we move markeF from 22 to 20. The markers are now at 5, 7, 12, 13, 18, and
20. This is a balanced position because it corresponds fdithgame(1,0,1),
|

3.6.3 Strategy for the 5—-marker game

For the five marker game, the analysis is the same in all de¢aitept that
our gaps are determined by the number of holes to the left, dhe number
of holes betwee andC and the number of holes betweBnandE give us

three numbersg, y andz, which correspond to a certain Nim garpey, z) as

indicated in the sketch:.

O+X—-A+—B+y—->C+—D+2z—E
Since we are counting holes in between,
x=A-1y=C-B-1, andz=E-D-1.

Example 3.6.4 Consider the marker game with markers at
5, 10, 14, 20 and 22
as in Figure3.21

o A B DXE
5 10 14 20 22

Figure 3.21: The 5—marker game with markers,at@ 14, 20 and 22.

This corresponds to the Nim garf¥e 3,1). This Nim position is unbalanced
and could be balanced by taking 2 sticks from the first pilevileg the position
(2,3,1). This would correspond to moving mark&rfrom 5 to 3, leaving the
markers at 3, 10, 14, 20, and 22. <

3.6.4 Strategy for all marker games

With more than 6 markers, the analyses are similar. A markeregwith an even
number of markers, sayn2 corresponds to a Nim game ofpiles. A marker
game with an odd number of markers, say-21, also corresponds to a Nim
game ofn piles. One must only remember that the number of holes betiree
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successive pairs of markers determines the associated&ima,gnd that if the
number of markers is odd, our first gap is that between Q4and

Problem 141 The marker game with markers at
10, 15, 20, 25, 40, 50, 60and80
as in Figure3.22corresponds to what Nim game?

BB AAAN B A SN S

10 20 30 40 50 60 70 80 90

Figure 3.22: An 8—marker game.

Answer O
Problem 142 The marker game with markers at
10, 15, 20, 25, 40, 50and60
corresponds to what Nim game? Answer O

Problem 143 Find all balancing moves in the game with markers at 5, 9, 13,
14,20 and 27. Answer O

Problem 144 Find all balancing moves in the game with markers at 5, 9, 13,
14 and 20. Answer O

Problem 145 Find all balancing moves in the game with markers at 5, 9, 13,
14, 20, 27, 33 and 100. Answer O

Problem 146 Find all balancing moves in the game with markers at 5, 9, 13,
14, 20, 27, 33, 100 and 200. Answer O

Problem 147 Is it possible that an 8—marker unbalanced game could have
more than 4 balancing moves? Explain. Answer O

3.7 Misere Nim

In our two-player game of Nim the player who takes the laskstiins In the
Miséreversion of Nim, the player who is forced to take the last shides It is
the Misere version of the Nim game that plays a mysteriousracwkring role
in Alain Renais’s cult 1961 filnLast Year at Marienbadvhere the piles take
the form of rows of cards.
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Figure 3.23:Last Year at Marienbad

Problem 148 Find a winning strategy for the game of Misére NimAnswer O

3.8 Reverse Nim

A student in one of our classes suggested a variant of Ninhisnvariant there
are several piles of match sticks. The two players moverately and the one
who takes the last stick wins. The difference is that in tlzisg, a player may
take as many sticks as he or she wishes, but at most one frdnp#ac Thus,
when it is your move you may take a single stick from each of asynpiles as
you like but you must take at least one stick.

There is also aniséreversion of this game. The rules for Reverse Misére
Nim are the same except that the one who takes the lastistiek

Problem 149 Find a strategy for this game of Reverse Nim. Answer O

Problem 150 Find a strategy for this game of Reverse Misere Nim.
Answer O

3.8.1 How to reverse Nim

We already know a simple strategy for Reverse Nim (Probl€i® but if we
revisit this problem it will help in finding a strategy for tmeisere version of
the game. We illustrate by considering a Reverse Nim gém& 3,1) as in
Figure3.24

Arrange the piles in a more suggestive format as in Figu?& Here there
are two perspectives on the same position as the shadingsisgdn the first
perspective we see rows and in the second we see columns.
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I
I

Figure 3.24: A Reverse Nim game with 4 piles.
[ I

Figure 3.25: Two perspectives on Reverse Nim game with 4 pile

Let us take the viewpoint that eaclolumnis a pile. We now have seven
piles of sticks. The rules of Reverse Nim translate intovailhg us to take
as many sticks as we like as long as we take them all from the semtical
pile. (We must take at least one stick, of course.) So our Revidim game
(7,5,3,1) translates to the ordinary 7—pile Nim game

(4,3,3,2,2,1,1).

Figure3.26shows this position along with the necessary computatidiiniary
that allows us to recognize the position as unbalanced ife7Nmm.

4, 3, 3 2, 2 1, 1
1 0 0 0 0 0 O
0 1.1 1 1 0 O
0 1.1 0 0 1 1

Figure 3.26: Playing the associated 7—pile Nim game.

There is one balancing move (in 7—pile Nim), namely to takéoair sticks
in the first (column) pile leaving

(0,3,3,2,2,1,1).



3.8. REVERSE NIM 135

The new display of sticks (in Reverse Nim) is
(6,4,2)

since we have taken one stick from each of the four piles obtiggnal Reverse
Nim problem. This is illustrated in Figur&27

Figure 3.27: After the balancing move.

We can continue in this way, going back and forth between theeRe Nim
position and the corresponding Nim position, making our eniovNim and in-
terpreting it in reverse Nim. Of course, we didn’t need to@alt this trouble to
achieve a balanced position because we had already obgerr@blem149)
that the balanced positions are those in which all piles aaveven number of
sticks, so it was obvious that in the original Reverse Ninbpgm all we had to
do was take one stick from each pile. But our perspectivavallos to under-
stand the structure of the game in a way that could be usefadt@rmining a
strategy for the Reverse Misére version of the game. Whhtsstrategy?

3.8.2 How to play Reverse Misere Nim

While playing Reversdlisére Nim we simply shift our perspective as we just
did for Reverse Nim. Consider each column as a pile and usstithtegy that
we developed for Misere Nim in Secti@7 on the resulting Misére Nim game,
repeatedly translating our results back and forth betwherReverse Misére
Nim positions and the corresponding Miséere Nim positions.

Observe this offers another example of a case in which a sisgdlition to a
problem does not reveal enough to obtain solutions to glasédted problems.
Here the easy solution to Reverse Nim offered little helpalviag Reverse
Misere Nim.

We saw an additional example with our marker games. The sisgdutions
involving algebraic equations to identify the balancedifass for such games
with four or fewer markers may have suggested similar eqoatfor games
involving more than four markers. But that led us in the wrdirgction. Once
we understood Nim, however, it was easy to make the correcteion to the
marker games.

We see similar situations in many parts of mathematics. xamgle, in our
chapter on Links, an easy solution to constructing certainfigurations will
not point the way to obtaining constructions of configunasithat are slightly
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more complex. We will need another perspective for that. Héwe concept
involves introducing a new idea. Once the new idea has baemnufated, the
method of proceeding becomes clear.

3.9 Summary and Perspectives

We obtained complete strategies for two rather complicgéedes: Nim and the
Marker Games. Several aspects of creative mathematicsssavdry appeared
in our developments.

1. We started with very simple versions of the games (the |arker games
and 2—pile Nim). This gave usfaelfor the game and helped us “dis-
cover” the concept obalanced positionsvhich was central to all of our
games.

2. Our experience with some easy 3—pile Nim games was usefab+
taining strategies for more complicated 3—pile games. Tigestep was
our recognizing that the strategies had something to dodattblingor
near-doublingof piles and eventually we made the connection with base
2 arithmetic and recognized Nim as equivalent to the binégs/dame.

3. Once we understood 3—pile Nim, it was a small step to uitaieisNim
with any number of piles. But, our understanding of the 2, 4amarker
games appeared to offer no help towards understanding mgakees
with more than 4 markers. This was so because we focused avromg
thing: the position of the markers instead of the size of thpsg Sur-
prisingly, the marker game turned out to be closely relatethé game
of Nim—the relationship was so close, in fact, that our sggtfor Nim
allowed us to determine a strategy for the marker games.

In these observations is an example of something that oftears in math-
ematics. Two seemingly unrelated problems lend themsédvesnilar math-
ematical analysis. What this means, of course, is that tbepteblems really
have a similar underlying structure, even though the twiblgms may super-
ficially appear to be unrelated. Another example is a surgisonnection that
exists between our material on tiling in Chapteand electricity.

Some of the material in this section, and a very nice treatrokuarious
other games, can be found in the bdékcursion into Mathematicky Beck,
Bleicher and Crowe (iteml] in our bibliography).

3.10 Supplementary material

We conclude our chapter with some supplementary mategatlie reader may
find of interest in connection with our study of the game of Nim
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3.10.1 Another analysis of the game of Nim

Our analysis of the game of Nim is close to the original iddaBauton when
he solved the game in 1902. The game was revisited in the 4380R. P.
Sprague and P. M. Grundy independently. Mathematiciarenatvisit old
problems trying to find new perspectives and possible génatians. Some
call the processqueezing the lemorif you have ever squeezed a lemon you
well know that you can always find at least one more drop.

Let us go back to one-pile Nim and two-pile Nim. These game®wery
easy to solve but it is not theolutionthat we want to revisit, but theature of
the games. Curiously, two-pile Nim looks to be just two gawofemne-pile Nim.
You could describe the rules as requiring each player atinistd select one of
the one-pile games and play a move in that. The game ends Wwaendre no
moves to be made in either of the one-pile games. Two-pileiNljonst the sum
of two games of one-pile Nim.

Do notice, however, that adding two games produces sonresgtileg com-
plexities. The strategy for one-pile Nim does not help atratletermining the
strategy for two games of one-pile Nim added together.

Adding two games Suppose that we have two gamgsand G, of our famil-
iar type: in each game players take turns moving and the wisrdeclared by
the player who made the last legal move. We can produce a ne& Ga+ G»
called thesum of the two gamdxy making this rule: each player at his turn is to
select one of the two games and play a legal move in that gaheegdme ends
when there are no moves to be made in either of the two gamethaudayer
to make the last move wins.

For example a two-pile Nim gam&, 10) would be the sum of the one-pile
Nim game(7) and the one-pile Nim gam@0). Similarly the classic Nim game
(1,3,5,7) is the sum of the four one-pile Nim gamél, (3), (5), and(7). Or,
if you prefer, it is the sum of the two two-pile Nim gamgls 3) and (5, 7).

Our goal in studying this game summing idea is to find out hdarination
about the separate gam@sand G- can be used to find a strategy for the game

G1+ Go.

3.10.2 Grundy number

The first element of wishful thinking we can dispense withilgag&ven if we
know all the balanced and unbalanced positions for the gamesd G» this

in no way helps us find the balanced and unbalanced posit@nhé game
G1+ Go. We saw this in our study of Nim. Even though a Nim game may
be thought of as a sum of smaller-pile Nim games, we foundgblaing one-
pile Nim did not help solve two-pile Nim, nor did solving batiithese help in
solving three-pile Nim.
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In Section3.2.6we described balanced positions in a game using the com-
putation of the balancing number Balafpg That balancing number just com-
putes as 0 or 1 depending on whether the posipiamthe game is balanced or
unbalanced. The computation loses all other informatione @lever idea of
Sprague and Grundy was to adjust this to reflect just how faysaipn might
be “distant” from a balanced position.

The definition Here is the definition. Note how closely it follows the way
we defined the balancing number Balafjpefor positions in a game in Sec-
tion 3.2.6

1. If pis an end position in the gamg then Grundyp) = 0.

2. If pis not an end position in the ganggthen find all the positions

pw p17 p27"'7pn
that follow from one legal move, and compute the list of nursbe

Grundy(p1), Grundy(pz),...,Grundy p).

Then Grundyp) is defined to be the smallest of the numberk 2,3, ...
that doeshot appeairin this list.

Thus the Sprague-Grundy function Gruiigy assigns a number to each
position p in the game. We start at the bottom. Any ending position has a
value of zero. So, i is an end position, then Grun@y) = 0. For any other
positionp in the game we look for all possible positiogghat can followp by
a single move. Then Grundp) is defined to be the smallest integer that is not
the same as one of the values Grufgyfor some positiorg that can followp.
Thus write out

0,1,2,3,4,5,6,...
and strike out the ones that have appeared for a positioowiwiy after p.
Take the smallest that is left. You have to take Grumjy= O if none of
the next positions has a zero value. (This is why balancedigos will have
Grundy(p) =0.)

This is an example of a recursive definition; we have to buddhe values
of the function Grundyp) step by step starting close to end of the game.

Note that

Grundy(p) = 0 if and only if Balancép) = 0

and
Grundy(p) > 1 if and only if Balancép) = 1.

Problem 151 Compute the values of the Sprague-Grundy function for a posi

tion in a one-pile game of Nim.
Answer O
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Problem 152 Let us play the Nim gam@, 2, 3). Compute the Sprague-Grundy
function for all the positions

(0,0,0), (0,0,1), (0,1,0), (1,0,0),(0,1,1), ...,(1,2,2), (1,2,3)
in the game. Answer O

Problem 153 See if you can discover the exact formula for the Spraguex@ru
function for a position in a two-pile game of Nim. Write
Grundym,n) =m&n

and find what this operation must be. This is called the Nim-sund is ex-
plained in detail in Sectio3.10.3below. You may succeed in spotting how to
compute this. [Hint: Look at the numbers in binary.] Answer O

Problem 154 If you succeeded in determing how the operatiom mworks

then give a try at proving that the Grundy number for a posifim, n) in 2—pile

Nim is exactly the Nim-sumn. Use induction on the depth of the position.
Answer O

3.10.3 Nim-sums computed

Binary additionwithout carryis a special case of bitwise addition where

0+0=0

1+0=1
and

1+1=0.

That leads to the notion of a nim-sum. We define the samn to be be the
number obtained by summing and n (expressed in binary) but adding the
binary bits without carry.

Example 3.10.1Let us perform the computation
765=2
In decimal it looks rather mysterious. If we write in binanstead
1114 101=10
the pattern is clearer. Not clear enough? How about

Problem 155 Do some of the computations in FiguBe28 0
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@1 2 3 4 5 6 7 8 9 10
110 3 2 5 4 7 6 9 8 11
2/ 3 0 1 6 7 4 5 10 11 8
312 1 0 7 6 5 4 11 10 ¢
4,5 6 7 0 1 2 3 12 13 14
5(4 7 6 1 0 3 2 13 12 1%
6/ 7 4 5 2 3 0 1 14 15 12
7/ 6 5 4 3 2 1 0 15 14 13
8/ 9 10 11 12 13 14 15 O 1 2
9/ 8 11 10 13 12 15 14 1 O B
10{11 8 9 14 15 12 13 2 3 0

Figure 3.28: An addition table fap.

3.10.4 Proof of the Sprague-Grundy theorem

Readers with more mathematical background could benefit fieading the
proof of the Sprague-Grundy theorem. It is considerablgésrthan any of the
previous proofs in this chapter, but it illustrates how agbio a more advanced
book might look. It reveals the structure of some of the typegames we
studied in this chapter.

We have already studied a special case of this. In Proldlgégwe dis-
covered that the 2-pile Nim ganien, n), which is the sum of the two one-pile
gamegm) and(n), has the Grundy value equaltod n.

3.10.2 (Sprague-Grundy theorem)The Grundy numbers for the sum of two
games can be written in the form

Grundy(ps, p2) = Grundy(pz1) & Grundy( p2).
whered is the nim-sum operation.

Depth of a game How far are we from the bottom of the game? A game with
no moves has depth 0. A game where all moves lead immediat¢hetend
position has depth 1. In this way we can define depth for anjtipnsn the
game. (Depth of a position is defined in Sect®a.§ but it is enough to see
this intuitively for our proof.) This allows us to use indigt on the depth of a
game. Usually the statement we want to prove is obvious &hdego, so the
induction starts off easily.

Proof of the theorem At depth zero the theorem is evidently true, since it
amounts only to the fact that®®0 = 0. Thus it is only the induction step that
takes us some trouble. Our proof below uses the assumpinwih already
know the theorem is true at any lower depth.
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Let
b= Grundy(p;) ® Grundy(p)

In order for us to prove that Grundgy, p2) = b we must show that both of these
statements are true:

1. For every non-negative integegk b, there is a follower of p1, p2) in the
sum game that has Grundy valae

2. No follower of(ps, p2) has the Grundy valule.

Then the Grundy value &p1, p2), being the smallest value not assumed by
one of its followers, must bb.

To show (1), letd = a® b and letk be the number of digits in the binary
expansion ofl, so that

261 <d < 2

andd has a 1 bit in the kth position in the binary expansion.

We have to remember now thét= a® b and remember too how the binary
without carry operatiorns works. Sincea < b, b must have a 1 in the kth
position anda must have a 0 there. Since

b = Grundy(p1) © Grundy(pz)
we see thap; [or perhapsp,] would have to have the property that the binary
expansion of Grundyp;) [or perhaps Grundyp,)] has a 1 in the kth position.
Suppose for simplicity that it is the first case. Then
d @ Grundy(p1) < Grundy(py).
Now we have to remember what it means for a number to be snibbera
Grundy number. We would know that there is a move frpro a positionp;
with that smaller number as its Grundy number, i.e., that
Grundy(p}) = d® Grundy(ps).
Then the move fronipy, p2) to (pj, p2) is a legal move in the sum game
and
Grundy(p7) @ Grundy(pz) = d @ Grundy(p;) & Grundy(pz) =d®b=a.
We have produced the move

(P1, P2) ~ (P1, P2)
for which
Grundy(p}) ® Grundy(p) = a.
Since this position is at a lower depth we know (by our inductiypothesis)
that
Grundy(p3, p2) = Grundy(p}) ® Grundy(pz) = a.

Thus the follower(p}, p2) in the sum game has a Grundy numbefT his veri-
fies our first statement.
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Finally, to show (2), suppose to the contrary tlipt, p2) has a follower
with the same Grundy value. We can suppose that this invavesve in the
first game. (The argument would be similar if it involved a radaw the second
game.)

That is, we suppose thap/, p2) is a follower of(p1, p2) and that

Grundy(p1, p2) = Grundy(p}) @ Grundy(pz) = Grundy(p1) & Grundy(py).

(Here we have again used our induction hypothesis sincedsitign (p}, p2)
is at a lower depth.) Just like in ordinary arithmetic (usingnstead of as here
@) we can cancel the two identical terms and conclude that

Grundy(p7) = Grundy(pz).
But this is impossible since
p1~ Py
in the first game and no position can have a follower of the Sami@dy value.
That completes the proof at the induction step and so theehetollows.

3.10.5 Why does binary arithmetic keep coming up?

To explain the nim-sum requires an analysis using binatiimetic. Why does
this binary beast come out every time we address some praient Nim and
rest of the games that we have studied? There is an explarthab we can
sketch here.

First of all there is an algebraic structure that we may neéhmeticed. IfA’
is the null game (i.e., the game with no legal moves) then gtrhave a Grundy
number of 0. But for any other gantethe sum game; + A’ and the sum game
AN + G are just the original gamg. (The only legal moves in the sum game
are the moves i itself.) Consequently

0Oen=0®n=0

for any integemn.
The second element of algebraic structure is that the gappesg, and
G2+ G are identical. Consequently

mon=mon

for any integersn andn.
The third element of algebraic structure is that the games

(Gi+ G2)+ G3
and

G1+ (G2 + G3)

are identical. Consequently
(MeN)®p=md (ndp)
for any integersn, n, andp.
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The final element of algebraic structure is that any posipjan a game
G gives rise to a balanced positi@p, p) in the sum game; + G. This is
because we can always win from a positignp) by playing the mirror strategy,
Consequently

nen=0
for any integemn.

That is a lot of algebraic structure. The words normally usetescribe this
structure (some of them familiar) are commutative, assiweigroup with every
element its own inverse. (We will see groups structuresragigiewhere in this
text.) If we describe this structure to an algebraist we balttold instantly that
the group operation is simply 1-bit binary addition withcatry.

3.10.6 Another solution to Nim
We have solved Nim by converting it to a binary bits game. Weaao solve
Nim by using Nim-sums.

3.10.3 (Sprague-Grundy solves Nim)A position(ng, nz, N, ...,Nk) in a k-pile
Nim game is balanced if and only if
NLeNSN3P---Bng=0.

This follows directly from the Sprague-Grundy theorem sitice Grundy
number for that position computed directly from the sunk ohe pile games

(nl), (nz), ceey (nk)

NEN2BN3D--- D Ni.

Problem 156 Use the Sprague-Grundy theorem to show that the Nim position
(m,n) is balanced if and only if ma=n. Answer O

Problem 157 Use the Sprague-Grundy theorem and Tabl28to show that
the Nim positiorn(1,2, 3) is balanced and2,3,4) is not. Answer O

Problem 158 Use the Sprague-Grundy theorem and Tah28to find a bal-
ancing move fo(2,3,4).
Answer O

3.10.7 Playing the Nim game with nim-sums

The easiest way to play the correct strategy in Nim is to cadrai piles to
binary and then play the game of binary bits. The other raghegant way
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of playing the game is to use the nim-sum operation as the Reposition
(n1,Np, N3, ..., Nk) in the game of Nim is balanced if and only if the nim-sum

NE®NONZDH---Dng=0.

The nim-sum operation then helps in computing the correctento make
in the game. Figur8&.28on pagel40is useful in giving us the addition table
that we would need to use (or memorize) if we wish to be skipfayers.

We illustrate with a simple example. But be sure to try Proble3 and
Problem164to make sure you see a possible subtlety in the method.

Example 3.10.4The gamé8,10,12) is unbalanced. What are all the balancing
moves? We compute

8¢10¢12=(8410)¢12=2¢12=14

We note that
8010012914=14914=0.

Thus the only possible moves in the game that will producdanicad po-
sition are
(8,10,12) — (8914,10,12) = (6,10,12),
(8,10,12) — (8,10 14,12) = (8,4,12),

and
(8,10,12) — (8,10,12¢ 14) = (8,10,2)

All of these are legal Nim moves. <

Example 3.10.5Here is the same example but with the arithmetic argued in a
different way. The gamé8,10,12) is unbalanced. What are all the balancing
moves? We note that

(8®10)®8310=0

and so we move
(8,10,12) — (8,10,[8® 10])) = (8,10,2).
Similarly
8d (8912 @12=0

and so we move
(8,10,12) — (8,[812],12) = (8,4,12).
And finally
(10012) »1012=0

and so we move
(8,10,12) — ([1012],10,12) = (6,10,12).
All of these are legal Nim moves. <

Problem 159 Computel3$ 126 8. Answer O
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Problem 160 Solve for an integer x so th&88® x = 25. Answer O
Problem 161 Whatisnbn@&n®---@&n? Answer O

Problem 162 Is the collection of nonnegative numbers with the operatiom
group? (The notion of a group is defined later on in Sectidh) Answer O

Problem 163 Try the method of ExampR10.4on the gamé¢3,10,12). Com-
pute
3910012=(3®10)®12=9®12=>5.

So are these the balancing moves

(3,10,12) — (345,10,12)

(3,10,12) — (3,10 5,12)
and

(3,10,12) — (3,10,125)?

Answer O

Problem 164 Try the method of Exampl&10.50n the game3,10,12). Are
these the balancing moves:

(3,10,12) — (3,10,[3 10))
(3,10,12) — (3,[312],12)

and
(3,10,12) — ([10412],10,12)?
Answer O

3.10.8 Obituary notice of Charles L. Bouton

The obituary notices of Bouton at the time of his death in 1922sed much of
his academic work but made no mention of his solution of NinteAtury later
we can see that he should be credited as one of the foundeosnttfircatorial
game theory. And Nim, at first seen as a particular examplenoht@resting
game, turned out to be fundamental to the whole theory. Higsenaow is far
more likely to be mentioned in the context of game theory tthenstudy of
transformation groups that would have been his main intelg$ng his career.
As a tribute to him we include here this obituary notice (etreugh Nim does
not appear) and, in our appendix, we include a copy of Bostpaper on Nim.

CHARLES LEONARD BOUTON

Professor Charles Leonard Bouton died on February 20, 1&2
thisBULLETIN, vol. 28, p. 82 (Jan.—Feb., 1922).
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A MINUTE READ BEFORE THE FACULTY OF HARVARD
UNIVERSITY
March 28, 1922

Charles Leonard Bouton was born in St. Louis, Missouri, A5}
1869. His father, William Bouton, was of Huguenot descent] a
the family was long established in New England. At the clddb®
Civil War, William Bouton settled in St. Louis, where his megent
had been disbanded. Charles’s mother, Mary Rothery Cankéa
also of old American stock; her grandparents were ScotcHiawii
Bouton was an engineer by profession. His grandfather & tsai
have been the projector of the Erie Railroad, and was theoaoth
the first article on its construction. Charles was the only ohthe
four sons who did not follow in his father’s footsteps. There
atmosphere was academic and intellectually stimulating.

Bouton received his early education in the public schoolSf
Louis, and took his first degree, that of Master of Scienceé/agh-
ington University in 1891. Here, he came under the instouncti
of a highly skilled teacher of descriptive geometry, Dr. Eohd
Arthur Engler. The next two years were given to teaching int&m
Academy, St. Louis, and these were followed by a year asicisir

in Washington University, part of his work being to assisifessor
Henry S. Pritchett. His next, and as it turned out, his lasteneas
to Harvard. The years '94—'95 and '95-'96 were spent in thadsr
uate School. He took the master’s degree at the end of thgdimst
and at the end of the second he was awarded a Parker Fellowship
for study abroad. His two years at Leipzig were most profjtabl
spent. He chose as his master that most original geometenuSo
Lie, then at the height of his fame. As a matter of fact, Bowas
one of the great Norwegian’s last pupils, for Lie returneltoway

in 1898 and died soon after. All of Bouton’s subsequent gigien
work bore the clear impress of Lie’s genius. His two advanced
courses, which he originated soon after his return to Hdpnaealt
respectively with the theory of geometrical transformasiand the
application of transformation groups to the solution ofetiéntial
equations. The graduate students who subsequently haadite g
fortune to prepare for the doctorate under his care gegexak
up subjects connected with the theory of transformations.

After receiving the doctorate at Leipzig in 1898 Bouton read

to Harvard and began a long period of work, broken only by ecca
sional sabbatical absence. He threw himself with the gseat=l
into his duties as a teacher. At one time or another, beselalth
ternating advanced courses mentioned, he taught neanly eme
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of the lower and middle group courses in mathematics. Nospain
were too great for him to spend, either on the preparatiorof |
tures or on helping the individual student, whether a Freshor

a candidate for the doctor’s degree. His characteristiditgjuat
scientific sanity was invaluable, for it led him always to drap
size that which was permanently important, and to avoicetiaed
sham. A fine example of his didactic sense is seen in a callecti
of problems on the construction of Riemann’s surfaces, iphét

in volume 12 (1898) of thNNALS OF MATHEMATICS. He was
equally successful in arousing the interest of a beginneshioyv-
ing him a model or a diagram or an enlightening example of a new
theory, and in guiding a graduate with sure hand toward reBea

of permanent value and importance.

Those qualities which made Bouton an admirable teachereeere
spicuous in his other professional activities. He was atoedf the
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY from
1900 to 1902, and an associate editor of TRANSACTIONS of
the same society from 1902 to 1911. His power of keen yet kindl
criticism, and his unerring mathematical judgment madedminef-
ficient referee. His advice was prized by all who knew him, his
opinion was always heard with respect, and his sanity wags® |
remarkable than his unselfishness. All of these qualities deawn
upon in full measure in the autumn of 1918 when, almost ogétni
he was called to organize the mathematical instruction aflpea
thousand men in the Students’ Army Training Corps. He cdrrie
this work through with conspicuous success, and the leadanh-
ers of mathematics in the schools of this community, who @enth
siastically rallied to the support of Harvard and the natiothat
crisis, found in him a helpful guide and an efficient admair.

His home life was beautifully quiet and peaceful. In 1907 ra-m
ried Mary Spencer of Baltimore, and she, with their threegthau
ters, Elizabeth, Margaret, and Charlotte, survives him.t fge
some time before the end, long dark shadows were crossing his
life. The persistent after-effects of a hurried operationdppen-
dicitis seemed to sap his strength. Family cares and aagietulti-
plied, reaching a crisis in 1918 with the death of his youhge#d.
His breakdown in 1921 seemed but the inevitable end towardhwh
events had long been tending. His death deprived the uitivefa
faithful servant, and the community of a single-minded apdght
gentleman.

From the Bulletin of the American Mathematical Society, 292
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3.11 Answers to problems

Problem 76, page 97

This is quite easy since we can find a winning strategy forgaldly In the first
two moves there is a simple way of ensuring that the end positan never be
white. In this case we proved the existence of a winningegsafor one of the
players by specifying what it should be.

Problem 77, page 97

Suppose that player | does not have a winning strategy. Whaldthis mean?
Player | moves. Since he has no winning strategy, there é&aat bne move that
player Il can make that does not ensure a win for player |. @osslould make
that move. Then Player | moves again. Since he has no wintiagggy, there
is at least one next move that player Il can make that doesnsoire a win for
player I. So she should make that move. This continues ungijame is over
and player Il has won. That is her strategy. We know only th&aah stage
there must have been some correct strategic choice, but wetdmow without
detailed analysis what that move is.

Problem 78, page 97

Define an end position to be white if it is a win for player | oiitifs a draw.
Define an end position to be black if it is a win for player Il.€rif we apply
Problem77 we know immediately that either player | has a strategy thastm
end in either a win or a draw or else player Il has a wining sgwat

We know from experience that player Il has no winning strateiiperwise
we would surely have found it before we were eight years olé. al§o know
that there is no possible advantage in this game to goinghgedle can prove
this, however, by atrategy stealing argumentWe imagine that player Il does
have a winning strategy and we ask her to write it down. Thesteal it. If that
strategy did work we could use it to win ourselves. Make a fasiom move.
Then follow the stolen strategy as if you were player Il (plgcX’s where the
strategy tells you to place O’s). If the strategy requires ymplace a mark on
a square that you previously used, just make a new random.riibeestrategy
guarantees a win. But it can’t because player Il should awan with correct
play. Thus there is no winning strategy for player Il as wepgased.
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Problem 79, page 97

The fact of two games being “identical” is important to ouwastigations. For
this game arrange the nine numbers 2—-10 irkeB3quare array so that the sum
along any row or column or diagonal is exactly 18. Fig8r&Qillustrates this.

3[10|5
8|6 |4
71219

Figure 3.29: The game of 18 is identical to tic-tac-toe

Then a move in the game of 18 for a player consists essentiatifoosing
a position in the array and marking it with either an X or an Qeteling on
whether he is the first or second to move. The two games aretsly checked
to be identical.

After a child has mastered the game of tic-tac-toe it would heod exercise
to have them play this game. At some point they will spot thegsgy (assuming
the arithmetic skills are relatively strong) and perhapsewtice that the game
is equivalent to tic-tac-toe.

Problem 80, page 97

This game too is the same as a tic-tac-toe game.

For this game arrange the nine cards in-a®8square array so that the rows,
columns and diagonals are the same as the eight winning cantications.
Figure3.30illustrates this.

JO | QO | KO
J& | Qb | Ka
JO | QU | KO

Figure 3.30: The card game is identical to tic-tac-toe

The game has the appearance of being a typical card gamesleebauvin-
ning combinations are rather familiar ones, but it is nagmmore than the usual
trivial game of tic-tac-toe described in different langaag

Problem 81, page 99

The full strategy is described in Secti@®2.5 At this stage you may not be
able to articulate the strategy in the same language thatilvess, but you can
experiment enough with the game to devise a way of winningbéfsre, you
should discover that there are precisely two kinds of pms#i ones in which
we can make a good move and ones in which no good move can be made
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Start with the simplest positions and determine which oaese classified
as good (or winning) positions and which positions are badb&ng).

Problem 82, page 102

The final position is balanced because 1+2 = 3. For a balarastignA+ B =
C, then no matter what move is made, one side of the equatiediged while
the other remains the same. Thus, any move will destroy tlamba

For an unbalanced positigk+- B £ C. There are two case8,+ B < C and
A+B>C. If A+B<C, we canreduc€ sothatA+B=C. If A+ B>C, then
A > C—B so we can reducA to re-establish the balance. In either case, there
will be a move to re-establish the balancing equaienB = C.

Problem 83, page 102

Call those positions in the four-marker game which satiséequatiold —C =
B — A, balancedand all other positions for whicB —C # B — A unbalanced
Make sure to verify that the three conditions for balancenaeé

For example, if a position is balanced, then we need to shaivehery
immediately following position is unbalanced. A move regsius to change
the position of exactly one of the four markers. Clearly anghsmove will
change one side of the equation

D-C=B-A
and produce an unbalanced position.
On the other hand if a position is unbalanced then
D-C#B-A
In that case either
D-C>B—A orelse D-C<B-A
Which marker would you move in each of these two cases?

Problem 84, page 102

Not so easy. In fact the discussion so far might lead you tewelthat you
should search for just the right equation, similar to thaagtibn for the three
and four-marker games. This does not work.

If you run out of ideas (as we fully expect you will) move on teetnext
section and read about some other combinatorial games. Weturn to this
problem later with some fresh ideas.
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Problem 85, page 105

This exercise is an essential one to perform in order to seethe balancing
definition works. To study a game this way one needs only towkiior any
given position, all of the positions which follow from it bysingle legal move.
For 2—pile Nim this is easy.

Describe a position in the game (@s, n) if there arem sticks in the first pile
andn sticks in the second. Try to compute the balancing numbefZdr) for
example. List all of the positions which follow directly fro(2,1):

(2,1) ~ (1,1), (0,1), and (2,0).

That means you cannot compute the balancing numbégfay until you know
the balancing number for each of these other positions.

Start at the bottom (i.e., the end of the game). If you comthédalancing
numbers in the order suggested in Fig@r81the definition is easy to apply.
Here we start at the lowest depth (the end position) and wadk Ibo higher
depths a step at a time. Note that, if you have found all thartw&thg numbers
at any depth, you will be able to find all the balancing numlétke next higher
depth.

Position | Depth | Balancing Numbern | Position | Depth | Balancing Number
(0,0) 0 0 [balanced] (5,0) 5 1 [unbalanced]
(1,0) 1 1 [unbalanced] (0,5) 5 1 [unbalanced]
0,1) 1 1 [unbalanced] (3,3) 6 0 [balanced]
1,1 2 0 [balanced] (4,2) 6 1 [unbalanced]
(2,0) 2 1 [unbalanced] (2,4) 6 1 [unbalanced]
0,2) 2 1 [unbalanced] (5,1) 6 1 [unbalanced]
(2,1) 3 1 [unbalanced] (1,5) 6 1 [unbalanced]
1,2 3 1 [unbalanced] (0,6) 6 1 [unbalanced]
(3,0) 3 1 [unbalanced] (6,0) 6 1 [unbalanced]
(0,3) 3 1 [unbalanced] (6,1) 7 1 [unbalanced]
(2,2) 4 0 [balanced] (1,6) 7 1 [unbalanced]
3,1) 4 1 [unbalanced] (5,2) 7 1 [unbalanced]
1,3) 4 1 [unbalanced] (2,5) 7 1 [unbalanced]
(4,0) 4 1 [unbalanced] (4,3) 7 1 [unbalanced]
(0,4) 4 1 [unbalanced] (3,4) 7 1 [unbalanced]
(3,2) 5 1 [unbalanced] (4,4) 8 0 [balanced]
(2,3) 5 1 [unbalanced] (5,3) 8 1 [unbalanced]
4,1) 5 1 [unbalanced] (3,5) 8 1 [unbalanced]
(1,4) 5 1 [unbalanced] (6,2) 8 1 [unbalanced]

Figure 3.31: Balancing numbers for 2—pile Nim.

For example we can illustrate with the positi@)1) at depth 4. The possi-
ble moves from this position are:

(3,1) ~ (2,1), (1,1), (0,1), and (3,0).
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From the table we already know the balancing numbers foetpesitions are
1,0, 1, and 1
Consequently, since 0 appears in this list,
Balancg3,1) = 1.

You can continue much further if you are not yet bored. Appdyihe defi-
nition, even in such a simple case as 2—pile Nim, can be gdieus. At some
point you can spot the pattern and can figure out a corredegirdor play.

How could we use such a table? Well, if we simply cannot spepthttern,
then make a large table. While you are playing consult thietdfor example,
you are at the positiof¥, 2) in the game and must decide to make a move. In
the table you see that it is unbalanced. Therefore there baust move that
you can make to rebalance it. Look for a balanced positiorvaliin the
table and see if you can move to that position. Ab4€) in the table are the
balanced position&, 2), (1,1), and(0,0). The only one you can reach(ig, 2).
Accordingly then you make your move: take two sticks fromfitst pile.

The other obvious way to use such a table is to spot pattetnis.pretty
clear from the table so far that the only balanced positioestese of the form
(m,m). Any position(m,n) with m# n appears likely to be unbalanced. How
would you go about proving this?

Problem 86, page 105

We recognize these three statements as the same as thdse rficairker games
in StatemenB.2.2 It is clear that a player can always win from a black position
by choosing to move to a red position. But if a black positierbalanced,
there is no strategy that will always win from that startirgn because your
opponent can always produce a balanced position. Thus plagikions must
be unbalanced. For much the same reason red positions moalareed.

This red and black argument thus allows us to find all balameebunbal-
anced positions without going through the computationslired in finding the
value of Balancgp) for every position in the game. If we can spot a pattern that
follows this red/black scheme we can immediately claim teehf@und all the
balanced positions.

Inductive proof You might also wish to prove that all red positions are bal-
anced by induction. Start at depth zero. These positionsegr@and are bal-
anced. At depth one all positions are unbalanced and theseg Imeublack
since they move only to the depth zero positions that are wssume that
red=balanced and black=unbalanced for all depths 0,12~ 1 and show that
the same must be true at depth
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Problem 87, page 105

The conjecture is that a positigm, n) is balanced in 2—pile Nim if and only if
m= n. Define a positiorim, n) to be red ifm= n and to be black im# n. Just
check that

1. The end positiof0, 0) is red.
2. Any red positior(n,n) can move only to a black.

3. From any black positiotm, n) with m# n there is at least one move to a
red position.

Then apply the red/black argument to conclude that redipasitire balanced
and black positions are unbalanced. Note that, althoughsed the balancing
numbers to guide us towards our conjecture, we do not needfibreour proof
that a position(m,n) is balanced if and only ifn=n.

Problem 88, page 105

The name SNIM is meant to suggest “Stupid” Nim. If you play glaene with a
friend you will see why. For example, start with the posit{@n5). A balancing
move is to producé3,3). Your opponent will know where this is heading and
add a stick to one of the piles. The game play looks like this:

(3,5) ~ (3,3) ~» (3,4) ~» (3,3) ~» (4,3) ~> (3,3) ~> (4,3) ~~ ...
and continues forever, with no end and no winner.
It is an essential part of our theory that the game we are sigdyust be

finite. It is possible to study infinite games, but the straténgt is based on the
balanced and unbalanced analysis depends on the game béiag fi

Problem 89, page 105

Declare those positions in the four-marker game that yatisf equation
D-C=B-A
to be red and declare the others to be black. Now just chedktlieathree
conditions hold. Note that this is precisely what we did lbefim Problem83.
Now we have defined what balanced and unbalanced actually foeany
game. An appeal to the red/black argument shows that, intleegositions for
which the markers satisfy the equationr- C = B— A are the balanced positions
in the sense of our new definition of balanced.
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Problem 90, page 105

Such a game is not a game of strategy, although it might weleapto the
players to involve some mysterious strategy. The main feaifisuch a game is
that no strategy or effort is needed to play the game. No mattat the players
do the winner of the game is determined from the very first mdiv@layer |
starts with a balanced position he loses. If Player | staitis an unbalanced
position he wins no matter how he chooses to move. We havessietra game
already in Sectio2.6.3when we were studying triangulations of polygons.

Problem 91, page 105

The answer is no, if Player | is skilled at finding the balagamoves. If Player
Il suspects that Player | is not quite so skilled then theransobvious, but
weak, strategy. She should always select a move that leheegasition as
complicated as possible in the hope that her opponent wkienaamistake.

Problem 92, page 106
The balanced positions are 5, 10, 15, 20, ... (any multipt of

Problem 93, page 106

One way to calculate balanced positions is to creatieefor this game. Here
is how that works. First we note that O is a balanced posititre—player
facing this position has no move. Thus for any numbéhat is a square,
s=1,4,16,25,..., the position O+ sis unbalanced.

The player facing such a position may take all the sticksitep0, which is
a balanced position. The smallest number not yet shown tmbalanced is 2.
This number is balanced. (Check this). Thus for any sgsiahes position 2+s
is unbalanced, so 3, 6, 11, 18, ... are all unbalanced. Théestaumber not
yet shown to be unbalanced is 5. Thus 5 is balanced.

Continuing in this way we find many unbalanced positions aeltkat the
only balanced positions less than 25 are 0, 2, 5, 7, 10, 12,720, and 22.

Does this inspire you to predftall the unbalanced positions over 25? The
pattern emerging might suggest that we can obtain all bathpositions by
alternating adding a 2 and a 3 to the previous balanced poddund. We can
do thisad infinitum Does that work? (See Probledd and Problen®5 before
jumping to any conclusions.)

4If an 1.Q. test were to ask for the next terms in the sequen@®, 7, 10, 12, 15, 17, 20,
22, ...what would most people respond?
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Problem 94, page 106

The sieve method that we used in solving Prob&Sted to the balanced posi-
tions 02,5,7,10,12,15,17,20, and 22.

We can apply the sieve again and keep going to obtain all thaireng
balanced positions less than 100. Or we can just claim tohsegdttern: all
balanced positions seem to obtained by alternating addidg=d a 3 to the
previous balanced position found.

Whoops! Continuing our sieve process we find, instead, tieateémaining
balanced positions less than 100 are 34, 39, 44, 62, 65, 67,//82, 85, and
95. We no longer see this same 2 and 3 pattern, nor indeed #&eyrpaDo
you?

Problem 95, page 106

We have no idea what type of formula might work. In fact, asuwy 2010 no
one had found one. Computers were put to work generating@adbpositions.
They found that in the first 40 million positive integers, abd80000 were
balanced positions. They had a number of conjectures abaubfien balanced
numbers had various numerals in the units position. Only sueh number,
11356, had a 6 in that position. How their conjectures turremains to be
seen. Many references to this problem can be found by chgdkikipedia.
Look under “subtraction games.”

This is an example of a problem that looked simple at first baved dif-
ficult. It is also an example of a process that after manyah@omputations
suggested patterns [as we found in solving Prob®wup to 25], only to be
proved false. We discuss more extreme examples of this iteadhapter in
Volume 2 where we discuss the famous (incorrect) conjestafePolya and
Mertens.

Problem 96, page 106

If the subtraction set is
S=1{1,2,3,4,5,6,7,8,9,10}
then the balanced positions are the multiples of 11.

Problem 98, page 108

The one pile and two pile games would likely have caused nabtes. The
three pile game is much more difficult, but maybe you spotiedtty what the
balanced and unbalanced positions are. Later on we will iegkact strategy
for the coin game by comparing it to the binary bits game.
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Problem 99, page 108

This observation is important to make. We cannot use ounbathand unbal-
anced arguments unless the game is finite.

It is not true that each move of the game reduces the numbeiirtg on the
table. It is occasionally possible to add more coins thanemreved. But each
move of the game does reduce the total value of all the coimain (check
this). Thus the total value goes down with each move and aadintreaches
zero when there are no more coins in play and no further movesilgle.

Problem 100, page 108

Begin by displaying the cards on the table in ax18 rectangular array. The
bottom row displays all the 2’s (if there are any) and so oroupé top row that
displays the aces. Then recognize that the display can bsldtad to binary
bits with no loss of information.

As we did for the coin game we use the bit 1 fES and the bit 0 foNO
to indicate whether a card is or is not on the table. Again westaplify the
moves in the game if we realize that removing a card simplygha arES to
aNo, i.e., it changes a 1 bit to a 0 bit. Similarly adding a cardngjes aNO
to aYES, i.e., it changes a 0 bit to a 1 bit. Once again we are just fligits
instead of playing with cards.

AQ - - Ad
Q- :
- X> - JA
-1 10% 104
80 - - - —>
- - - 74
60 60 - -
- 5 - -

O OoOPrPOOOFrEFRFOOO

- - 2% -

Figure 3.32: A position in the card game.

OO O0OO0OPFrPROFrRPOOORFrOoOPRr
P OOO0OO0OO0OO0OO0OPFrOOO0OOo
OO0 O0OO0OFrROORFRPFRFROOPR

o

Figure3.32shows such a display, along with the equivalent array ofrlgina
bits, for a game in which the deal is

AV, QU, 89, 60, 3O, 100, 6, 5¢, 10&k, 2&, Ak, Jh, 104, 74.

The play of the game is exactly the same as the play of the gabirary bits
so the game is completely analyzed by that equivalent game.
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If you do wish to play this game perhaps you might want to redhe size
of the game by using only part of the full deck of cards. Othsewhe play of
the game may take a long time. But do notice that the game ystegsay.

For exampleafter you have discovered the strategy for the ggmewould
instantly recognize that the position in Figu8e2is unbalanced and that the
only balancing move is to take awayXQand 8 and to add to the table the
cards 1@, 70, 50, and 2?. This will take only seconds to spot.

Problem 101, page 110

Usually for our games this is obvious. Here you might havenlde®thered by
the fact that a play of the game removes one binary bit budoaell add many
more. However, you might have noticed that only finitely m@ogitions are
possible, and no position can be repeated. (Why can noneegidkition be
repeated?)

Another solution is don’t simply count binary bits, but devaightedcount.
Each 1 bit on the bottom row receives a weight of 1. Each 1 bihersecond
row receives a weight of 2. Each 1 bit on the third row receav@geight of 4,
and so on. Now we see that every play of the game, while it mayedlice the
actual count of 1 bits, it does reduce the weighted count. Whe weighted
count is zero there are no more 1 bits and the game stops.

Problem 102, page 110

You can start with a % 2 game. There are only a few possibilities and you
should notice the pattern. By the time you have mastered th& §ame the
strategy is apparent.

The mirror strategy If the two columns are identical then the position
balanced. Thus a balanced position has either two 1 bitsdn eav or two 0
bits in each row. If player | makes a move in such a position thlayer II just
mirrors the same move back at him in the other column. Eventually she.w

If the two columns are not identical the position is unbag&hclf a player
can make a move in such a position he just balances the gamealkingrthe
two columns identical. Then the next player is doomed sivegyemove she
makes unbalances the position.

The mirror strategy plays an important, strategic role inenber of games
that have this feature: the game can be split into two idehpeces. Some
authors prefer to call it th&weedledum-Tweedledee strategyhatever Twee-
dledum does in one of the columns, Tweedledee does the sathe wther
column. Tweedledee wins.

S
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Problem 103, page 110

The ones with an odd number of 1 bits are unbalanced. The dheawieven
number of 1 bits is balanced. These positions are very cto#igetend of the
game and it is always easy to determine in such cases whidiopssare bal-
anced or unbalanced.

Problem 104, page 110

Just play the games and see if you can force a win or not. Alhe$e are
unbalanced.

Problem 105, page 110

All of these are balanced.

Problem 106, page 110

In Problem104 all positions were unbalanced and all these positions had
or more odd rows, i.e., rows with an odd number of 1 bits. InbRnm 105all
were balanced and all these positions had only even rowsr+eo® had an
even number of 1 bits. Now do you have a conjecture?

Problem 107, page 111

Note that this is the same scheme that we use in a red and higekant,
although we have expressed it in the even and odd language.firfh two
statements are quite clear. In the end position there agezenbs so certainly
that is an even position. If the player starts with an everitjposhe must select
a 1 bit in some column to change. At that point he has alreadgymed a row
with an odd number of 1 bits and so an odd position.

Let us check the final statement. If the position is odd them tihere are
one or more rows with an odd number of bits. Take the topmodtroa and
choose a 1 bit to change. That makes that row now even. B #nermpossibly
other odd rows, each of them lower than the one you chose. &dbbse rows
can be adjusted by changing the bits as necessary. Theisemukven position.

on



3.11. ANSWERS TO PROBLEMS 159

OFRrOR R
P OR PR
OORPRR

Figure 3.33: An odd position.

For example, Figur8.33illustrates an odd position in a>63 game. Itis
odd because four of the rows have an odd number of 1 bits. Enbalwill
require that we change all four of these rows (but leave tleeswen row alone).
It is easy and obvious how to do this. Figut&4shows one way, but there are
two other ways in which you could have changed this positioart even one
using a legal move in the binary bits game.

111 110
111 110
011—(011
100 101
010 011

Figure 3.34: How to change an odd position to an even position

Problem 108, page 111

It is clear that even and odd positions behave precisely dmtmced and un-
balanced positions. The strategy of the game that will werkoi start (one
hopes) with an odd position. There is a move that will chahggean even posi-
tion. Your opponents move will undoubtedly change it bac&riadd position.
This continues until the game stops and we know it stops avam gosition. It
must have been you that made the last move and so you win. (@eaf you
must start with an even position just play modestly hopirad ylour opponent
will make a mistake and leave an odd position.)
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Problem 109, page 111

It is not difficult to see that the argument of Problé@7 applies to any size
game of binary bits. Thus the analysis of the game in termvef and odd
rows will solve the then x 4 game, then x 5 game and indeed tlmex n game.

Problem 110, page 111

You shouldn’t have to convert to binary, but you should beedbl spot the
correct strategy. There are an odd number of dimes (but am mwyeber of
guarters). So you must remove one of the three dimes. Youtbawedance the
nickels too, but the pennies are balanced.

Notice, that with this strategy, the game is easy to play. idgjaa player
who does not know the correct strategy you win every time ana game play
is very rapid. Unfortunately a shrewd opponent might be &dbkpot what you
are doing and realize how doomed he is each time he faces t#oposith an
even number of coins of each type.

Problem 111, page 112

It makes it messier and, perhaps, more confusing for youow@mpt. But if you
work on it for a while you will see that this game is exactly eglent to binary
bits too and is played with the same strategy.

Problem 112, page 112

A winner would still be declared when the last coin is remqumd any person
playing the game would prefer to be a loser and walk away \wghntost money.
Thus the right strategy is to select the pile of largest valLeach turn and take
all the money. In the end you lose the game and leave richer.

In the language of game theory we have essentially changeglatime to a
scoring gameMany card games do not end with the winner the player making
the last move, but the player who accumulates the most paobiis theory of
balanced and unbalanced positions does not apply to scgaimgs.

Problem 113, page 112

Itis a good choice of game to impose on a friend who considersdif bad with
arithmetic. It appears to require great skill in working witumbers, but this
is deceptive. The structure of the game play is simpler thahfirst appears:
some non-zero numbers are merely replaced by zeros.

As soon as this occurs to us we realize that the game is notgusilar”
to the game of binary bits; it is identical. After a few playlstbe game we
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recognize that all that matters is whether a number is zenowizero. Replace
all the non-zero numbers with the binary bit 1. Then the rofethe game are
identical to those for binary bits.

To play this game just convert any position to the equivafsgition in
binary bits and play the strategy that we have described.

10 -9 O
-3 11 -32
0 11 32
4 0 O
0 -14 0

Figure 3.35: A position in the numbers game.

For example, Figur8.35shows a position in &% 3 numbers game. We must
determine whether the position is unbalanced or balantéds balanced then
we must find at least one move that will balance it.

Figure 3.36 illustrates how we can solve this problem by converting that
position to a position in a binary bits game. We make the cbrpalancing
move in the bits game, and then return back to an equivalesitipo in the
numbers game.

10 -9 0 1 10 110 10 -9 0
-3 11-32 1 11 1 01 -3/ 0 32
0 11 32| — |0 1 1 01 1 =-— |0 1132
4 0 0 1 00 1/1]0 4 666 0
0 -14 0 010 000 0,00

Figure 3.36: Playing the numbers game.

The choice of 666 is of course arbitrary here and intendeg toriftritate an
opponent; any nonzero number will do the trick. Here we sag tlhile the
game had a different appearance to the game of binary blasiexactly the
same structure—the two games are equivalent once we find diowatch up
positions and moves. Sometimes this is easy to see, sonsatiohe
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Problem 114, page 112

It is a good choice of game for a child who needs some practicth® order
of letters in the alphabet. The structure of the game sugg@eshething tricky
about words and letters but the game is completely equivvedeéhe binary bits
game.

Begin by displaying the letters in each of thevords in a 26< n rectangular
array. The bottom row displays all the a’s (if there are amg 8o on up to the
top row that displays the z’s. Then recognize that the dyspéa be translated
to binary bits with no loss of information.

As we did for the coin game and the card game we use the bit YESr
and the bit 0 forNO to indicate whether a letter is or is not in the word that
corresponds to a column. Again we can simplify the moves éengdime if we
realize that removing a letter simply changeggs to aNQ, i.e., it changes a
1 bit to a 0 bit. Similarly, adding a letter (if that letter waset already there)
changes &lOto aYES, i.e., it changes a 0 bit to a 1 bit. Once again we are just
flipping bits instead of playing with words.

For example the position

[ ebbde caecde cddc
in this game can be displayed as the 3 arrays of bits in Figur8&.37.

1 1 0
1 1 1
0 1 1
1 0 O
0O 1 0

Figure 3.37: A position in the word game.

Since no letters higher than “e” appear we do not need anyehigiws.
This is an unbalanced position and can be easily balancée iménner shown
in Figure3.38
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1 00
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Figure 3.38: Balancing that same position in the word game.

Thus a correct response in this position would be the play
[ ebbde caecde cdde~ | ebbde cebe cddc

changing just the second word. While the game had a diffeqgpgarance to the
game of binary bits, it has exactly the same structure—tloegames are equiv-
alent once we find how to match up positions and moves. (Indbegosition
in this game that gave rise to the scheme in FiguBY is exactly the equiva-
lent position that we saw before in the numbers game playgirei3.36) As
always, sometimes this is easy to see, sometimes not.

Problem 115, page 112

Maybe so, maybe not.

Problem 116, page 114

Remove all sticks. You win. A balanced position contains ticks; every pile
that contains one or more sticks is unbalanced.

Problem 117, page 114

This involves experimenting until you see what is involviatmulating a con-

jecture of what are the balanced positions, and then vagfyhat the three
conditions required for the set of balanced positions are fimeother words,

you must show that your conjectured set of balanced positioeets the three
conditions of Statemer®.2.2

1. The final position (no sticks remaining) is balanced.
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2. If a position is balanced, then no matter what move our oppbmakes,
the resulting position is unbalanced, and

3. If a position is unbalanced, then there is a move we can mdieh
results in a balanced position.

Define a position in the two-pile game @s, n) if there arem sticks in the
first pile andn sticks in the second pile. If, near the end of the game yoieleav
your opponeni1,1), you will evidently win. If he leaves yoy1,0), (2,0),
(3,0) etc. you will win immediately by taking all of the sticks inahpile.

You can easily verify that a positiotm,n) should be called balanced if
m= n and unbalanced ih # n. Check the three conditions.

We have already seen this situation in our solution of Probl@2 in the
game of binary bits. Let us repeat what we learned there bdifirad now to
discuss 2-pile Nim. This will save the reader some flipping.

The mirror strategy The balanced positiofm, m) in the 2-pile Nim game
offers the player a chance to use the mirror strategy. Ifgplaynakes a move in
such a position then player Il justirrors the same move back at him in the other
pile. Eventually she wins. The mirror strategy (or TweedladTweedledee
strategy) we have seen before. Whenever a game can be gptivimidentical
“subgames” this strategy will be successful. Whatever Thesgkum does in one
of the piles, Tweedledee does the same in the other pile. diegee wins.

Problem 118, page 114

Think of the gamgm,n, m,n) as being two identical games of 2—pile Nim by
placing a mirror in the middle:

(m;n| mn).
Now your opponent makes a move on one side of the mirror angugbuepeat
it on the other side. Since you always leave a position thatthes mirror
symmetry you must be the winner as the final positioy®, 0,0) has this same
symmetry.

This shows that every positiga, b, a, b) in the game is balanced, but it does
not findall balanced positions in 4—pile Nim. This does not matter toacsbse
the mirror strategy allows us to control the game and avo@entering posi-
tions that we do not know how to balance.

Since the mirror strategy is so easy to apply, it is very sedgeicYou might
think for a while that it will help in all Nim games, but this rot so. We will
need some fresh ideas even for 3—pile Nim.
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Problem 119, page 115

For the first move of the game take away one or two coins so asat@ ltwo
separated rows containing the same number of coins. For@gdas illustrated

in Figure3.14) if there are 14 coins and we would remove the two middle coins
S0 as to produce two separate games of Kayles with 6 coincingsame.

00000000000000
000000 N000000
O OO0 OO0
O OO O OO0

Figure 3.39: A sequence of moves in a game of Kayles.

Apply the Tweedledum-Tweedledee strategy (i.e., the mgt@tegy) to all
subsequent moves. Whatever your opponent does to one sidegmond with
the same thing on the other side. You win.

There is an odd thing about this strategy, apart from thetfeattwe must
have the first move in order to apply it. We do not know all pblesbalanced
and unbalanced positions and yet we can win by controlliadltw of the game
to visit only positions that allow us to apply the mirror ségy. The starting
position is always unbalanced, every move we make is a balgmeove, and
every move our opponent makes is necessarily an unbalamomg.

If you wish to apply this in practice, note that you will syredin every time
you start first, and that you may well win occasionally when gtart second.
That makes the game quite favorable to you. But the strategiyviays the same
and your opponent may spot what you are doing. To avoid thisotdestroy
the symmetry a bit by using a variety of coins. Fig#d0shows the same
sequence of moves, but here the coins are varied and thesslitght-of-hand
trick helps obscure what might have been an obvious strategy
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@ oe®
Q@ @ ®
Figure 3.40: The same sequence of moves in a game of Kayles.

Problem 120, page 115

The opening position in a game of Kayles where the coins aenged in a
straight line is always unbalanced. Thus Player | can always If the coins
are arranged in a circle then the first move must break theearad the coins
are (essentially) back to being arranged in a straight line.

Thus the opening position in circular Kayles is always be¢éghand so
Player II will win simply by waiting until the second move amaying the
usual Kayles strategy.

Problem 121, page 115

It is easy to see thdtl, 2,2) is unbalanced, because it leads directly to the bal-
anced positior{0, 2,2) (the same as the 2—pile gameZ2which we saw was
balanced). The gam@, 1, 2) is unbalanced for the same reason.

Problem 122, page 116

One argument is the working-backwards one. The positio8, 3) is not far
from the bottom of the game. The positions that follow fromehare
(1,0,3),(0,2,3), (1,1,3),(1,2,2), (1,2,1), and(1,2,0).
If all of these are unbalanced théh 2,3) must be balanced. If one of these
is balanced thefl,2, 3) is unbalanced. If we don’t know the status of one of
these then do the same thing to that position to find out wHaeisituation.
Another argument is to show how we could respond to every rbgveur
opponent in a way to produce a balanced position. That pringsall of the
moves directly from th¢l,2, 3) position must themselves be unbalanced.
Let us give the details by this method to show that the gaim2, 3) is
balanced. This will give us an indication of what one mightorder to show
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that a position is balanced. Note how the little bit of knadge we have already
obtained simplifies our task considerably.

We must show that no matter what move our opponent makes freipdsi-
tion (1,2, 3), we can find an answer which leaves a balanced position. Tdré ch
below shows our answer to each of the six allowable movesupbopponent.

Position after opponent’s move Position after our answer
0,2,3) (0,2,2)
(1,1,3) (1,1,0)
(1,0,3) (1,0,2)
(1,2,2) (0,2,2)
(1,2,2) (1,0,2)
(1,2,0) (1,1,0)

Figure 3.41: Positions in the ganig 2, 3).

Thus, no matter what our opponent did, we were able to makewe nvbich
left our opponent with a balanced position. We know each e$é¢positions is
balanced because they are all equivalent to 2—pile Nim gafites form(n,n),
and we have already seen that every such position is balanced

Problem 123, page 117

All of the games are balanced.

Problem 124, page 117

All of the games are unbalanced.

Problem 125, page 117

All of the games are unbalanced.

Problem 126, page 117

All of the games are unbalanced.

Problem 127, page 117

Problem127 carries the key to the whole structure of Nim. It will cerigibe
worthwhile to one’s understanding of Nim to put in whateverd is necessary
to discover this key!
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Problem 128, page 125

If the highest row with an odd number of 1’s in it has one 1, ¢heill be ex-
actly one balancing move, and that move must be made fronptleatvhich
corresponds to that column. If it has three one’s in it, thveitebe three possi-
ble moves to balance the position. One such move will be plesgiom each
column.

Problem 129, page 125

This game can be balanced in these three ways. Remove 3 feofinsthpile or
remove 7 from the second pile or remove 11 from the third piile these are
not obvious when the problem is expressed in decimal notoenshould have
little trouble if you express the problem in binary.

Problem 130, page 125

The answer isi0. This is so because there are only three piles and there tanno
be more than one balancing move from each pile.

This statement is correct since, if it were not, there wowdvo positions
(a,b,c) and(a,b,d), both balanced, with c and d different. But this would imply
that a move from a balanced position could result in anothkmzed position,
an impossibility.

Problem 131, page 126

The largest number number of balancing moves is 9.

Problem 132, page 126

The largest number number of balancing moves is 11.

Problem 133, page 126

Without computing anything it is clear that the position rdalanced and that
the only move will be to take most or all of the big pile that tains 100000.
That answers the question but you might want also to find cattexhow many
to take.

Problem 134, page 126

Why is the Nim game
(136,72,48,40)
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unbalanced? Note that 1362’ > 72. Thus if we were to convert this to a
position in a game of binary bits the top row for this game halg one 1, and
the game is unbalanced. A balancing move must come from taevih 136
sticks.
Generally
(really big not so bigsmaller still...)

makes it easy to spot which pile to choose and why the posgianbalanced.

Problem 135, page 126

Decline. If your opponent knows the strategy then you witiebgplose. If you
think your opponent is naive then start by taking one stiokfthe largest pile.
If she plays a balancing move then she knows the strategy.

Another opening gambit is to offer politely that she shouiartsinstead.
This appears very courteous since, in almost all games,aih iadvantage to
start. If she insists that you should start you can test hethos way: agree
to start, but say “I'll start, but let's make it more interiesf’ and quickly add a
bunch of sticks to form a new pile. Think for awhile before nmakthe move:
then remove all the sticks from the new pile and say “Your niove

This is really a great joke. If she is unamused then you knosvistiully
aware of the strategy, for you have immediately turned herprayer one start-
ing the original balanced game.

Problem 136, page 126

Nice game and more interesting than Nim since there is monejh® table.
It also appears to add a new element of strategy which ineseifi® strategic
interest.

But the deadly Nim strategy cannot be defeated by a playengdumbins
he has collected. Each time a player takes his coins and hddstb a pile in
a balanced position, take those coins back and add to yourcoliection of
coins, thus returning to a balanced position.

The game is a bit unusual for us in that, if neither player tawg to this
strategy, the game could go on forever. But if one player egth® the take-
back strategy the game ends in a finite number of steps witimaewi

Problem 137, page 128

To balance an unbalanced 4—marker game requireg&psbe made equal. To
balance an unbalanced 2—pile Nim gamepghes must be made equal.

The similarity between the strategies for the 4—marker gantkthe 2—pile
Nim game is this: the strategy in the first is to make the gapvben A andB
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the same as the gap betwgermandD. The strategy in the second is to make
number of sticks in each pile the same.
Let us write the balanced positions for the 3-marker gamésariorm

A-0=C-B.
This is more conveniently written as
A-1=C-B-1
since these two expressions actually measure the gap tterrEleis translates
into
the gap betweeA and 0 = the gap between C and B
or
# of empty holes to the left ok = # of empty holes betwedd andB.
For 2—pile Nim, we can formulate the balanced positions as
# of sticks in the first pile= # of sticks in the second pile.

Thus, we hope to be able to use the strategy for 2—pile Nimue gs a
strategy for the 4—marker games. Let us see how that works.

A move in a balanced 4—marker game might be to mBwa D. If B is
moved, the gap betweekandB is reduced. ID is moved, the gap betweé&h
andD is reduced. We can restore the balance by moliray B, respectively,
the same number of holes that our opponent md@&/edD.

This is in perfect correspondence to balancing an unbatbBeepile Nim
game. In this game our opponent takes sticks from one of thestyual piles.
Our answer is to take the same number of sticks from the otlegitipus restor-
ing the balance.

The other possible move in the 4—marker game consists ofnga@vor C.

If Ais moved the gap betweehandB is increased If C is moved the gap
betweenC andD is increased This does not correspond to a move in Nim,
because in Nim the size of a pile mustieeluced not increased. In that case,
however, we can mov@ or D to restore the gap to its original size.

Thus, our strategy has two parts to it: if our opponent redwcgap, we
reduce the other gap the same amount; this corresponds tdiNira opponent
increases a gap, we reduce it the same amount.

Problem 138, page 128
The answer to Problem37 (for the 4—marker game) will help. The main start-
ing point is the equatioA+ B = C, rewritten as

A-0=C-B.

This shows that the two gaps between 0 &nahd betweerB andC are to be
the focus of the strategy.
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Problem 139, page 129

For a 2-marker game there are two gaps: the gap between @ and the
gap betweed andB. Only the second gap is of interest to us. The equation
B=A+1, rewritten as

B-A=1
reveals that the balanced positions are the ones with tipatigaed and, in-
deed, we do remember that the correct strategy is to baléecpdsition by
completely closing that gap. This is equivalent to a posiiioa 1—pile Nim
game in which the only balancing move is to take at once ahefsticks from
the pile.

Problem 140, page 129

Reread the material in this section until you fully undemst#, and then work
on Probleml40without reading ahead to Secti@r6.2which gives a full solu-
tion.
We were guided in the case of the 3—marker and 4—marker gayndseb
equations
A-0=C-B andB-A=D-C.

These told us exactly which gaps to work on and suggested parison with
a 2—pile Nim game. Now we need to attempt to apply the sameiptato the
5 and 6—marker games and seek a comparison to a 3—pile Nim datare by
deciding on three gaps that you will use in your strategy.

Problem 141, page 132

The marker game with markers at
10, 15, 20, 25, 40, 50, 60 and 80
corresponds to the Nim game (4, 4, 9, 19).

Problem 142, page 132

The marker game with markers at
10, 15, 20, 25, 40, 50 and 60
corresponds to the 4—pile Nim game with g&ps4,14.,9).

Problem 143, page 132

This corresponds to a 3—pile Nim game with the gap positiai34L 6). The
only balancing move is to move fro(3,0,6) to (3,0,3). This corresponds to
moving the marker at 27 down to 24.
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Problem 144, page 132

While most of the markers are at the same position in Prolilé8the gaps are
completely different and the game has very different plalgisTnarker game
corresponds to a 3—pile Nim game with the gap positig@#,5).

Problem 145, page 132

This corresponds to a 4—pile Nim game with the gap positiof8Al, 6,76).
Without much thinking you should immediately move the makiel 00 down
a long way. How long?

Problem 146, page 132

This corresponds to a 5—pile Nim game.

Problem 147, page 132

Problem147 asks if an 8-marker unbalanced game could have more than 4
balancing moves. The 8-marker unbalanced game can be adahea the 4-

pile Nim game. This game has at most three balancing movey?YW$o the
same is true of the 8-marker game.

Problem 148, page 133

To find a winning strategy you may wish to follow the approatHirst com-
paring the strategies for Nim with Misére Nim for simple ganEor example,
proceed as follows:

(a) Determine the position that forces the next player to losthemext move.
(b) Which positions, if any, are balanced when every pile hasstiok?

(c) Which positions, if any, are balanced when exactly one plemore than
one stick?

(d) Which positions are balanced when more than one pile has thaneone
stick?

Hint: Note the results ofb) and(c) and use the results of Nim.

(e) Describe a winning strategy for Misére Nim.

Try to use this outline to discover the strategy before cimerthe answer which
now follows:
Our winning strategy for Misére Nim follows this suggestediioe.
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(a) When there is only one stick left, the next player must taleed lose.

(b) When the number of piles is odd, the position is balanced. What num-
ber is even, it is unbalanced. (Check this.) Note that thikesopposite
of the situation in Nim.

(c) None! The position is unbalanced, since by taking sticksftbe big pile,
leaving either one or no sticks in that pile, depending on tivrethe
number of piles is even or odd, a balanced position can beéette&ee

(b).

(d) and(e). Suppose more than one pile has two or more sticks.

1. If we can find a position such that any move that is made leads
a position that is unbalanced because of (b) or (c), thatipass
balanced.

2. If not, we can try to postpone things to arrive at such atmosi
eventually. We can achieve this by following the Nim strgtagtil
we get to such a position!

Suppose we begin with a position that is balanced (in Nim).y Arove
our opponent makes creates an unbalanced position (in Nifiy cannot be
a position with no piles with more than one stick (becausecidmse we are
considering assumes more than one such pile). If the oppenmeave results
in exactly one pile with more than one stick, we apply part (c)

If the position obtained still has more than one pile with wvanore sticks,
we rebalance as in Nim. Continuing this process we eventaalive at a situ-
ation in which (b) or (c) applies.

Thus the Nim and Misere Nim games have exactly the same ledgrasi-
tions except when case (b) applies.

Problem 149, page 133

Although Nim has a very subtle strategy that required us aonléhe binary
system and compute sums of binary digits, the strategy feeRRe Nim is quite
easy.

We observe quickly that the balanced positions are thogeamiteven num-
ber of sticks in each pile. The final position of no sticks Sf&s the condition
since zero is an even number. Any move from such a positioreteat least
one pile with an odd number of sticks. And by taking one strckf each pile
with an odd number of sticks, we have restored a position allthiles having
an even number.



174 CHAPTER 3. NIM
Problem 150, page 133

Don't jump to the conclusion that the balanced positiondlamee with all piles
odd. Verify that that won't work

Does the term “reverse” in the title of this section suggestlang? If you
think about that, you might see the answer. If not, see Seéstid. 1

Problem 151, page 138

If there aren sticks in the pile (there is only one pile) then the only posi$ in
the game ara& = 0,1,2,...,n. Certainlyg(0) = 0 andg(1) = 1. You can use
induction to prove thag(x) = x.

Problem 152, page 139

Let us useg(a,b,c) to denote the value of the Sprague-Grundy function for
a position(a, b, c) in the game. There are 24 possible positions in all in this
particular game and we need to compgta, b, c) for each.

Certainlyg(0,0,0) = 0. These positions all lead directly and only @0, 0):

(0,0,1),(0,1,0), (1,0,0)
and so each of these must be assigned a value of 1. The pd§ii®hR) leads
only to
(0,0,0) and(0,0,1)
and sog(0,0,2) = 2 (must be different from 0 and 1). The positigh 0, 3)
leads only to
(0,0,0),(0,0,1) and(0,0,2)

and sag(0,0,3) = 3 (must be different from 0 and 1 and 2).

The position(1,1,0) (which we happen to know is balanced) leads only to
(1,0,0) and(0,1,0) both of which have g value of 1. Thug(1,1,0) = 0.

Continue in this way working from the end of the game backwanfdote
that we cannot determirgg 1, 2, 3) until we know all Sprague-Grundy values of
all the positions

(0,2,3), (1,1,3), (1,0,3), (1,2,2), (1,2,1), and(1,2,0).
(We don't yet.) Then we would pick fog(1,2,3) the smallest nonnegative
number that hasn’t been assigned for these positions.
While we may lose patience with this procedure it is ideallitesd to com-
puter programming. Thus, in practice, computing the Spea@tundy function
for all positions in a reasonably sized game takes no timé.at a
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Problem 153, page 139

First begin by computing the Sprague-Grundy function fouanher of posi-
tions in the game. Start at the lowest depths and work up.i$haher tedious
but will lead to an understanding of how this works. Figuré23shows Depth
and Sprague-Grundy numbers for various positions in 2-fgile. Depth is
defined in Sectiol.2.6

Position(m,n) | Depth || m@&n Position(m,n) | Depth || m&n
(0,0) 0 0 (2,4 6 6
(1,0) 1 1 (5,1) 6 4
(0,2) 1 1 (1,5) 6 4
(1,2) 2 0 (6,0) 6 6
(2,0) 2 2 (0,6) 6 6
0,2) 2 2 (4,3) 7 7
(2,2) 3 3 (3,4) 7 7
(1,2) 3 3 (5,2 7 7
(3,0) 3 3 (2,5) 7 7
(2,2) 4 0 (6,1) 7 7
(3,2) 4 2 (1,6) 7 7
(1,3) 4 2 (7,0) 7 7
(3,2) 5 1 (0,7) 7 7
4,1) 5 5 4,4) 8 0
(1,4) 5 5 (3,5) 8 6
(5,0) 5 5 (5,3) 8 6
(0,5) 5 5 (6,2) 8 4
(3,3) 6 0 (2,6) 8 4
4,2) 6 6 (7,1) 8 6

Figure 3.42: Sprague-Grundy numbers for 2—pile Nim.

The table shows our computations for the Sprague-Grundybeusrup to a
few at depth 8. Let us illustrate the method by showing that

203=1
The Grundy number fof2, 3) is not completely easy to compute, but it is a
straightforward computation. Just look at all the posiioext after(2, 3):
(2,3)~(2,2), (2,1), (2,0), (1,3), (0,3)
and the five Grundy numbers for these positions are
0,322 3
as we have already computed since they are at lower depths igaime. The

smallest number that does not appear is 1 so Gr{#i8y= 1 and consequently,
as

Grundy(p1, p2) = p1® P2
holds in our notation, then we can writet23 = 1.
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Such a “sum” may at first appear to be rather mysterious perloap not in

T e (1)) ()

Let us pick a few more mysterious sums from the table and alsghlem in

)
e (3)e(3)-(3) -

Try a few more and you will doubtless see the pattern whictNine-sum sec-
tion which follows now explains. Try to verbalize what youveaobserved
before reading on to a full description of what a Nim sum is.

and

Problem 154, page 139

The method we use is the same method that will work to proveSgrague-
Grundy theorem in Sectio®.10.4 It is a good warm-up to that theorem to try
to see how this works here.

At depth zero the statement is evidently true since it anmsonty to the
fact that the Grundy number for the end posit{@n0) in 2—pile Nim is exactly
04 0=0. Thus itis only the induction step that takes us some teubl

Suppose that the positidip;, p2) is at a depth for which we know that, for
all positions(m, n) at any lower depth, the Grundy number fon, n) in Nim is
exactlym® n where this is the Nim-sum (i.e., binary addition withoutrggr
Our proof below uses the assumption that we already knowgtirsie at any
lower depth.

Let

b= p1®p2
In order for us to prove that Gruntly:, p2) = b we must show that both of
these statements are true:

1. For every non-negative integar< b, there is a follower of p1, p2) in
Nim that has Grundy valua.

2. No follower of (p1, p2) has the Grundy valuke.

Then the Grundy value &p1, p2), being the smallest value not assumed by one
of its followers, must b.
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To show (1), led = a® b and letk be the number of digits in the binary
expansion ofl, so that
2 <d < 2K

andd has a 1 bit in the kth position in the binary expansion.

We have to remember now thét= a® b and remember too how the binary
without carry operatiors works. Sincea < b, b must have a 1 in the kth
position anda must have a 0 there. Since

b= p1®p2
we see thap; [or perhapsp,] would have to have the property that the binary
expansion of [or perhapsp,] has a 1 in the kth position.

Suppose for simplicity that it is the first case. Then

ded p1 < pr1.
Define
pp=dop.
The move from(py, p2) to (p}, p2) is a legal move in 2—pile Nim and
PLop=dopop=dob=(adb)db=ad (bob)=a
We have produced the move

(P1, P2) ~ (P, P2)
for which
pLopz=a
Since this position is at a lower depth we know (by our inducthypothesis)
that
Grundy(p, p2) = Py & p2=a
Thus the followex p/, p2) in Nim has a Grundy numbex This verifies our first
statement.

Finally, to show (2), suppose to the contrary tlipt, p2) has a follower
with the same Grundy value. We can suppose that this involves removing
sticks from the first pile. (The argument would be similartiinvolved the
second pile.)

That is, we suppose thap;, p2) is a follower of(p1, p2) and that

Grundy(py, p2) = p1 S P2 = P1® P2
(Here we have again used our induction hypothesis sincedsiéiqn (p/, p2)
is at a lower depth.) Just like in ordinary arithmetic (usthgnstead of as here
@) we can cancel the two identical terms in the equation
P& P2 = P1® P2
and conclude that
P1 = P1.
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But this is impossible since

p1> Py
since we have removed some sticks from the first pile. Thapbetes the proof
at the induction step and so the statement must be true ahsl

Problem 156, page 143
We simply note tham@ n =0 if and only ifm=n.

Problem 157, page 143
Since 15234 3= (142)®3=333=0it follows that the positiori1,2,3) is
balanced. The other computation,
20304=(203)®4=104=5#0,
shows that2, 3,4) is not.

Problem 158, page 143

We have computed the Grundy number for this position to be
20304=203)p4=104="5.
We know that 565 =0 so
502)®304=0
and
20 (3®5) @4=0
and
2033 (405)=0.
Check each of these numbers in the table:
(5®2)=7and(3®5) =6 and(4®&5) =1.

The only one that helps is the last one which tells us to reduegile with 4
down to 1 to change this position to a balanced position. Wédcalso increase
the pile with 2 up to 7 or the pile with 3 up to 6 but the rules of\don’t allow
us to add sticks. (That would be playing the game backwagedsrming to a
previous balanced position.)

Problem 159, page 144
139 12®8=09.
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Problem 160, page 144
Set up the problem this way:
38

@ X
25

I
N

R0 O
Pl O
oOl.9
Ol.grF

0
?
1

and remember to perform the binary addition without carfga@yxis 111111
in binary. (What'’s that in decimal notation?)

Problem 161, page 145

You can easily check that® n= 0 and so
nenén=(n®&n)&n=0&n=n.

In general, thenpn®neéna --- @ nis either 0 om depending on whether you
are summing an even or odd number of terms.

Problem 162, page 145

The associative rule
(m&n)dp=ma (NG p)
is stated in the lemma. The zero element of the group is G,itBte
(me0)=0em=0
and every element has an inverse for the operatiansince
nen=0.

Thus this is a group, a commutative group in fact simeen = n& mis always
true.

Problem 163, page 145

It is certainly true that
(3,10,12) — (39 5,10,12)
(3,10,12) — (3,104 5,12)
and
(3,10,12) — (3,10,1295).

produce balanced positions but only one of these is a vahadiNove. We have
to subtractsticks from one of the piles and two of these suggestamiusticks.
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Problem 164, page 145

It is certainly true that
(3,10,12) — (3,10,[3® 10])
(3,10,12) — (3,[3¢12],12)

and
(3,10,12) — ([1012],10,12)

produce balanced positions but only one of these is a vahdiNove. We have
to subtractsticks from one of the piles and two of these suggestamiussticks.



Chapter 4
Links

Figure4.1 shows three interlinked circles arranged in such a way thails
any one of the three circles be cut and removed, the remawmgircles would
become separated. This arrangement has been known for reatyries and,
because of the number 3 and the special nature of the linkasgbeen used for
various symbolic representations.

Figure 4.1: Borromean rings (three interlinked circles).

Some suggest that an image of God as three interlaced risgsad Dante
Alighieri (1265-1321). In hiDivina Commedide describes this visioh:

Ne la profonda e chiara sussistenza
de I'alto lume parvermi tre giri

i tre colori e d’'una contenenza,;

e 'un da I'altro come iri da iri

parea reflesso, €'l terzo parea foco
che quinci e quindi igualmente si spiri.
—[Dante,Paradisq 833, 115-120]

lwithin the profound and shining subsistence of the lofthiigppeared to me three circles
of three colors and one magnitude; and one seemed reflectbd bther, as rainbow by rainbow
and the third seemed fire breathed forth equally from the aoddfze other.

181
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On a more profane level the name that is most often
attached to these three interlocked circles arises from ‘T-

Borromeo family of 16th century Milan, who had such
figure on their coat-of-arms. Many of our readers migh
prefer to call thes@allantine ringssince the three inter- :'
locked rings have appeared since 1879 as a company |§§!
for Ballantine Ale. The famous Ballantine three ring sym®
bol (Purity, Body, Flavor) was, according to company folk-
lore, inspired by the wet rings left on a table as Peter Bal-

lantine consumed his beer. Figure 4.2: Bal-

In this chapter we consider a variety of problems relattgtine Ale
to this construction. Itis easy enough to design threeesrcl
that interlink in the way the Borromean rings do. Could ondltmsame with
four or five circles? Or could we arrange for other kinds oKilng properties,
say five rings linked together that do not fully separate sstevo (any two) are
cut away?

Our discovery process in this task is similar in many wayséogdrocess that
we followed in our Tiling chapter. As before we don’t see intiately how any
of the standard methods of arithmetic, algebra, or geonwetmyd be brought
to bear on such problems. Once again we need to tgtlfor the problem by
experimenting with a few examples.

4.1 Linking circles

Look at the two pairs of circles in Figu#e3. Our sketch is meant to suggest
that they are curves in three dimensions.

A B C D

Figure 4.3: Four circles.

The picture displays the fact that the circandB are not linked together
while the circlesC andD are. This means th& andD cannot be separated
(without cutting or tearing). We are going to consider aaiertlass of problems
involving the ways in which three-dimensional curves catirided. The curves
need not be circles.



4.1. LINKING CIRCLES 183

4.1.1 Simple, closed curves

Before we state the first problem, we should make sure we agreghat a
curve is or, more precisely, on what kinds of curves we stattdnsidering.
All of our curves are placed ithree dimensionand all aresimpleandclosed
in the sense we now define.
Consider the five curves sketched in Figdré

Y3 8L

Figure 4.4: Simple curves, closed curves or not?

A curve is callecsimpleif it does not cross itself. That means that in tracing
out the curve (starting at any point) no point except, pdgdie beginning and
end of the tracing is encountered more than once. It is calleskdif it “ends
where it starts.”

ThusA is simple but not closed is neither simple nor closeg, is closed
but not simple and and E are simple and closed. Curis depicted in
two dimensions and has a crossing point. Cugves intended to be three-
dimensional. Part of the curve—the part that appears asak-bries below
the darker part that “appears to cross” the broken part. €drdoesnot cross
itself.

The curves that are suitable for the discussion that followst be both
simple and closed. For that reason, we shall always assumthigi chapter)
that when we use the terourvewe mean “simple, closed curve.” All of our
curves are given in three-dimensions.

4.1.2 Shoelace model

You might find it desirable to make a model with which to expesnt. Such
models will be of use throughout this chapter, so it is a gatehito make
such a model now. This can be done in a variety of ways. For pkgrasing
the outer edges of paper plates or wire, construct seveigd tb represent the
curves. Two or three of these rings should be pre-cut in sughyathat they
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can be easily removed from a configuration without distugliime rest of the
configuration. We refer to this as “cutting away a curve.” Yuill also need
something more flexible for your experimentation. A longelaoe or ribbon
will do. Figure4.5shows some equipment that might be used.

Figure 4.5: Equipment for making models.

4.1.3 Linking three curves

Do you think it is possible to construct three curves thatliamesd in such a
way that, if we cut away one of the three curves, the remaitvirmgwill remain
linked? By this we mean thaio matter which of the three curvege cut away,
the remaining twaannotbe separated without cutting or tearing. (Pulling is all
right.)

Here is a different but related question:

Is it possible for three curves to be linked together in sushathat
no curve can be separated from the configuration withouingudir
tearing, but if one is cut away, the remaining two can be sdpd?

As before, we mean by this thab matter which of the threis cut away,
the remaining twacan be separated. Thus, in a sense, the “break point” is at
two curves: the configuration “hangs together” as originathnstructed, but
removal of a single curve causes the remaining configuradiéfall apart.”

The Borromean rings of Figure1 give a positive answer to the latter ques-
tion. Check that Figurd.1does answer the second question but not the first.

2Photo courtesy of Curry Sawyer.
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Problem 165 Is it possible to construct three curves that are linked inhsa
way that if we cut away any one of the three curves, the remgitwo will
remain linked? Answer O

Problem 166 Without looking again at Figuré.1, describe three curves linked
together in such a way that no curve can be separated fromdhéguration
without cutting or tearing but, if one is cut away, the remagtwo can be
separated? Answer O

4.1.4 3-1 and 3-2 configurations

Let us call the configuration that we constructed in Problé&® a 3—1 config-
uration. The “3” refers to the fact that there are three csirtlee “1” indicates
that thebreaking pointis at 1—the configuration can't be separated without
cutting or tearing until we get down to one curve.

We call the second configuration (the Borromean rings) a ®afiguration
because there are three curves linked in such a way that tifigaation hangs
together, but removal of any one of the three curves by @utauses the other
two curves to fall apart with no more thamall in the appropriate place. The
breaking point is at 2.

4.1.5 A 4-3 configuration

What should we mean by a 4-3 configuration? Well, that would benfigu-

ration of four curves linked together in such a way that thagditogether but
cutting away one of the curves causes the remaining threalltagart. And

this is true no matter which of the four curves is cut away.Harsthe breaking
point is at three curves—any three.

Problem 167 Do you think it is possible to construct a 4—3 configuration?
Answer O

4.1.6 Notso easy?

Experience has shown that many students have difficultyain fhist attempts
to construct a 4-3 configuration. As before, we may as welirblkyg placing
three separated curves near each other. This represemgitisetup. We then
try to weave a fourth curve (the shoelace) through them ier@construct the
4-3 configuration. Then, no matter how this is done, we caeast Ibe assured
that removal of the shoelace will cause the remaining thueees to fall apart.
(They are already separated.)

But then the trouble begins. Unless we have a very usable lmadree
or four hands, or a friend to hold part of the model while we do weaving,
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we wind up with knots in the shoelace, the model falling onfther or other
such problems.

And to make things worse, when we finally get things togethatrmost
works. But then we try to cut away a curve to “check it out” ard & does not
quite work. A little change might do it, but by now we forgot athwe did to
make it almost work. Frustrating. We know. We tried and itjeped to us.

There must be a better way. Even if we had a good model, fouldyan
friend to help, and we solved this problem what will we do when get to
more complicated linking problems?

4.1.7 Finding the right notation

Let's return to the 3—2 configuration. We might observe thatanstruction
method solved the problem. We could make a model that wolkgtdhe lan-
guage was awkward and communication was difficult. We hadlkcetbout the
“curve on the right,” and the “remaining curve.” And we drewiature which
suggested words such as the following:

“go through the curve on the left from top to bottom, then these

on the right from top to bottom, then the curve on the left from
bottom to top, then the curve on the right from bottom to tod an
then return to the starting point.”

(We might add “Do not passo and do not collect $200.”)

We could simplify things considerably with a bit nbtation If we label the
curve on the lefA and the curve on the rigi®, our description could be written
ABAPBP,

Simple, isn't it? After working a bit with the notation you Mfind that it
has made things quite easy. The notation contains all eakegfredients. The
expression

ABABP
is read from left to right and translates into
“Go throughA, thenB, thenA backwards, theB backwards.”

(The fact that we ended where we started is understood angatieathetical
reference to the game dMonopolyM is of course unnecessary.)

All we needed was a labeling of the curves (other than thelabegand our
notation provides a “recipe” or a set of directions for thestouction. There
are, of course, two things we are assuming tacitly: we arenaisg) the first
curves have already been labeled and placed appropriatelyye are assuming
that in passing through a given curve there are two direstwomcould use, one
positive and one negative. Thus the nota#oandAP represent passing through
A, but in the first case the shoelace passes thr@duighthe direction we called
positive and on the second it was in the opposite direction.
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Which direction we designate as positive (for each curvemisiaterial,
but once we have chosen it, it is essential that we remainstens. We shall
answer Problemi67 soon. If you were unable to solve it, try it again, but first
do the problems below.

Pulling is allowed, but remember, the weaving merstiwhere it started and
the shoelace is assumed solidly attached at its “two en@leé quotation marks
are there because the shoelace is just a physical model obtivept of simple
closed curve and we are not really thinking of such a curveaagendsany
more than we do of a rubber band or a circle.)

Problem 168 Let A and B be separated curves. Weave your shoelace through
the curves A and B according to each of the descriptions helow

BABPAP, APBAR, AAPBR®, AAAPAP and ABEA.
Provide a pencil sketch of the result (if you can) as well ds¥ang the instruc-

tions on your physical model. (This problem and the next twoukl be done
together. Use your model.) Answer O

Problem 169 Which of the descriptions in Probleh®8lead to a 3—-2 configu-
ration?
Answer O

Problem 170 Which of the descriptions in Probleh®8lead to a configuration
that can be separated without cutting or tearing. Answer O

Problem 171 Study the results of Probleh®8 Problem169, and Probleni70.
What patterns do you notice in those which give rise to 3—Zigorations?
Do you notice any symmetries. Do you notice dejayed undoingsf things
already done? Try to articulate for yourself what makes th2 8onfiguration
work. Answer O

Figure 4.6: Cole and Eva with model.
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Problem 172 Figure 4.6 shows Cole and Eva with a model of a configuration.
Is this one of the configurations we have discussed? Answer O

Problem 173 Construct a 4-3 configuration. Answer O

4.2 Algebraic systems

Perhaps you have noticed similarities between our notatm@hthings you re-
member from arithmetic or algebra. First of all, an expm@ssuch asA\B is
reminiscent of the operation of multiplication. Of coursepur settingA and
B do not represent numbers. Far from it. And writiBgext toA doesn’t mean
we multiply Aby B. That wouldn’t make sense in our setting.

To get a better idea of what we mean when we say that our notaio
reminiscent of algebra, we shall undertake a rather longded digression.

An algebraic systensonsists of a collection of objects (e.g., numbers), one
or more operations (e.g., addition or multiplication), aane rules or axioms
governing the ways in which these objects can be combinediliga to us
from the rules of arithmetic are the commutative and asswei&aws for mul-
tiplication: whatever numbew, B andC we choose, it will always be true that
AB = BAand thatlAB)C = A(BC). For example Z 3 = 3 x 2 since both equal
6 and

(2x3)x4=2x%x(3x4)

since both equal 24. This is a theorem: technically2and 3x 2 mean two
different things, but they can be proved to be equal. Sitgilé2 x 3) x 4 and

2 x (3 x 4) mean two different things but they can be proved to be equal fo
numbers and the operation of multiplication. It is rulesitanto these that we
are interested in when discussing algebraic systems. dndesome algebraic
systems, things look pretty much the same as they do in axdadgebra or
arithmetic.

4.2.1 Some familiar algebraic systems

Here are some examples of algebraic systems with which yguomanay not
be familiar.

1. The objects arpolynomials They can be added or multiplied and the
laws of combination that apply to numbers apply here as Wwelt.exam-
ple

DC4x+1+[3x—2] =x%+4x—1
and
Px+1 x[3x—2] =3+ X2+ x—2.
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2. The objects ar&unctions They, too, can be added or multiplied and the
laws apply. For examplg? + sinx is obtained by adding the functiod
to the function six. Furthermorex? + sinx = sinx -+ x2.

3. The objects armatricesof fixed dimension. Addition and multiplication
are defined but the commutative law of multiplication doeshadd. For
example

1 0O 0 1 1 1 11
1 2 3|+ 2 0 -1 |= 3 2 2
-1 05 -2 0 -1 -3 0 4

4. The objects argectors Again addition can be defined in a natural way
and the usual laws hold with respect to the operation of emtditFor
example

(1,2,3)+ (5,6,—3) = (6,8,0).

4.2.2 Linking and algebraic systems

In the setting of our linking problems, each configuratiovegirise to an alge-
braic system. The configuration is te&arting set-upfor example, two sepa-
rated curvesA andB. Eachshoelacegives rise to arobjectof this algebraic
system via itdormula The formula is just a string of the letters (in this cése
andB) that corresponds to the way the shoelace links the curvibeiatarting
set-up. We discuss this in more detail later in this chapt&dctiorn4.9.2

For example, the expression

ABA’BB

would represent the curve that goes throdgithenB, thenA backwards then
twice throughB and then returns to the starting point. Téygerationfor the
system can be described @se object of the system following anothés an
example, ifX = ABandY = APBB, thenXY = ABA’BB.

In order to create an algebraic system we must do several thioigs: we
must decide what it means for two of our objects todopialand we must
determine what the basliaws of combinatiorare.

4.2.3 When are two objects equal?

What should it mean for two objects to bgual?This does not mean that they
are the exact same expression. It depends on the algebsagsio interpret
equality. For example in the elementary theory of fracti¢2 and 24 and
17/34 are defined to be equal, even though they are not identipeggsions.
Well, for our purposes in the linking problems, it would beural to define
equality in such a way that two objects are equal if and ortlyaly have exactly
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the same linking properties. For example,

AAP BBP, APA, BB, ABPBA?, andAAAAAPAP
all are different expressions for the shoelace which linkigher A nor B. That
is, an appropriate pull on the shoelace will set it free friwa ¢urvesA andB.
Similarly,

A, ABB®, AAPA, andBAAPBPA

all represent the same linking properties: a curve thatifate goes througi
and returns home.

Problem 174 Interpret, for this problem, A and B as positive numbers and i
terpret £ and B to be the reciprocald/A and1/B. Compute each of the
expressions

AAP BB®, APA, BB, ABPBAP, and AAARAPAP.
Answer O

Problem 175 Under the same interpretation as in Probldm4 compute each
of the expressions
A, ABR, AAPA  and BAABPA.

Answer O

4.2.4 Inverse notation

For numbers we wouldn’t writd? for the reciprocal ofA. We would write
AL ThusAA1=A"1A=1 for numbers; e.g., 55 t=5"1x5=1. This
suggests that we should use the same notation for our linkstguction to go
backwards. This suggests, too, that we should use the symbmit for the
number one, but for any curve that doesn’t link eitldeor B. Our notation
becomes even more reminiscent of algebra.

We would see quickly, for example, that in our setting

AAL ABB AL or AlaAAT
are all equal to 1. It would also be true, just as in ordinaitharetic, that
IA=Al=A
(If a curve doesn't link anything and then links in effect it has linked only).
Thus we shall decide on the more natural algebraic notatidrio represent
the instruction to go throughA backwards. We can then use our elementary
skills in algebra to help us work out the effect of such corgikd expressions

as we saw in Probleri74 and Problenml75 Those expressions now assume
the simpler and more familiar form

AA1 BB L A~lA BB, AB1BA L, andAAAAIAIA
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all of which reduce easily to 1 and
A, ABB 1, AA"lA andBAA1B~'A
all of which reduce easily té.

4.2.5 The laws of combination

We can now easily verify that
e The commutative laviails: ABandBAare, in general, different.
e The associative law is validA(BC) = (AB)C) is always true.

You can use your models to check these facts, or you can pessgnple argu-
ments to verify this. For example, since

ABA1B1
gives rise to the 3—-2 configuration while
AA BB 1=1
we see the commutative law fails. On the other hak{@&C) represents going

throughA, then througiB andC, then home. That has exactly the same effect
as the linking(AB)C.

Problem 176 Use your model to verify that
ABA 1B+ 1.
(The commutative law does not hold.) 0

4.2.6 Applying our algebra to linking problems

Where does all this get us? For one thing, it allows us in soasesto check
the linking effect algebraically without reference to atpre or model. For
example, we can reduce the expression
ABA BB lAA1B
algebraically as follows
ABA BB lAA"lB=ABA 111B=ABA !B

Thus, in effect, our shoelace has gone through A, BighenA backwards,

thenB. We can reduce this no further.

Cutting away But there is something even more useful contained in our al-
gebraic system. Our algebraic system is particularly usefien it comes to
cutting awayone of the circles. Consider the expression

ABA 1B
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which we saw gave rise to the 3—-2 configuration when appli¢ddcseparated
circles. What happens when we cut away the cidééNe saw that the shoelace
andB were not linked.

But we can tell thigust by inspectinghe expression

ABA 1B,
How is cutting awayA reflected in the expressigkBA 1B~1? If Ais cut away,
then we in effect have a newstarting set up the one circleB. Where the
shoelace originally went throughis now an empty space.

Simply remove the symbd\ (andA~1) whenever it appears in the expres-
sionABA"1B~1. We arrive at the expressi@B~! which of course equals 1, a
curve that links nothing.

What we have just seen is an essential step in our attemptsiract con-
figurations exhibiting certain linking properties. To makee we understand it,
use your model to answer the next problem where one circledas cut away.

Problem 177 Start with three separated circles A, B and C. What happens
when B is cut away from the expressions ABC, ABBAIC1, and ABA1B 1,
Answer O

4.3 Return to the 4-3 configuration

Now we return to the 4-3 configuration. We begin with threeasafed circles
A, B andC. We wish to wind our shoelace through B andC in such a way
that the configuration hangs together, but removal of oné@fcurves causes
the remaining three curves to fall apart. This must be truenatier which of
the curves we remove.

Translated into our algebraic setting, we seek an expressiolving the
lettersA, B, andC that does not reduce to an expression with fewer letters, but
removal of a single letter causes the expression to redute to

Before trying to achieve this, observe that for the 3—2 caméigon, the
expressioPABA 1B~1 does not reduce, but indeed removal of eitAeor B
causes the resulting expression to collapse to 1.

4.3.1 Solving the 4-3 configuration
There are a number of ways of achieving the 4-3 configuratitame is one of
them, which you may have discovered
ABA'B~cBaB A ic!
Try it on your model, making sure to avokiots. Observe, removal of\
results in the expression
BB 'cBBlcl=1cicl=ccl=1
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The same is true B is removed. IfC is removed, we obtain
ABA 1B 1BAB 1Al = ABA 11aB 1A
=ABIB A l-pBB A l-_pAl_AA 11

Undoing If we understand the algebraic model, this last computatanbe
greatly simplified. We must observe only that removaCofauses successive
collapses from inside to outsidd.ook at the expression for the 4—-3 configura-
tion carefully to see what'’s involved. Each actiorursdonea little later. ForA
andB, the undoing is postponed only one step, buidadris postponed several
steps. Let’'s see why that works. Hidden in the expressionash&rundoing.
The entire expression
ABA 1B1
is undone by the expression
BAB A1
because
(ABAB™Y) (BAB AT = 1.
In our algebraic notation this means that
(ABA B ) = (BABIA Y.

Observe that to achieve this, we have undone each lidgitr :B—1 but in
the reverse order. It’s like putting on your socks and sh@esindo that action,
you undo each step but in the reverse order, you first takeoff ghoes and
then your socks. Or, at least, we do. The same is true for akinly. To undo

it, that is to find an expression for the inverse, you undo dahbut in the
reverse order.

Problem 178 Check each of these statements on your model:
(ABCB ) '=BC B A ! and (ABY) T=BAL
0

Problem 179 Compare the expressions for the shoelace in the 3-2 and 4-3
configurations:

e The 3-2:ABA 1B 1.

e The 4-3:ABA 1B~ 1ICBAB A IC 1= (ABA*lel)C(ABAlefl)*1C*1.
Answer O

Problem 180 Construct a 5-4 configuration. Answer O
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4.4 Constructing a 5—4 configuration

Once we understand what makes the construction of the 4-§acation work,
we find the problem of constructing a 5—4 configuration a lsis lehallenging.
We begin with four separated circles and label th&nB, C, andD. We now
wish to weave the fifth curve through these circles in an gmate way. We
know by now that we must undo each action at a later time. &wsihuch later
this should be might now be apparent.

4.4.1 The plan
In case it is not yet entirely clear, consider the followirgmp

e For a 3-2 configuration, begin with two separated cirélendB and this
expression for the last curve

ABA 1B,
e For a 4-3 configuration, begin with three separated ciraleB, andC
and this expression for the last curve
ABA B 'cBaB A ICL.

Noting, as we did before, that the expression for the fowntiwe in the 4-3

configuration can be written in the forkiCX~1C~1, where
X =ABA B!
we are naturally led to try the formula
ypy D!
for the fifth curve of the 5—4 configuration, with
Y =ABA B icBAB A IC!
This becomes
ABAB'cBaB!A-icDCcABA B lcBABlATID L.

4.4.2 \erification

To verify that our proposed solution
ABA'B-cBAB!A-lcDcABA B lc1BAB A ID? (4.1)
works we must check these two things:

e The entire configuration hangs together.

e The removal of any one of the five curves causes the remainings to
fall apart.
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That the configuration hangs together is probably clear hy. Ndou can
check it with a model, but you can see it more easily from tigelataic model.
No reduction is possible in the algebraic expressibi)( This is because the
only admissible simplifications allowable are to replacesapression such as
XX~1 byl and to therdropthe 1, and no such expression appearg i) (

To check that removal of any one of the curves causes the mérgaiurves
to fall apart, we must verify that removal of a single lettdremever it appears
causes the entire expression to reduce to 1. We do this féetteeA and leave
it to you to verify that this happens when the lett&rsr C or D are removed
instead ofA. Removal ofA leads to the expression

BB lcBe icbcee ic BB 1D
—1cicpbciclibt=ccipcc ip?
—1D1D 1=DD 1=1.

Do you think you could have constructed the 5—4 configuratising only
trial and error on your model? Note that tekoelacehad to go through the
curves 22 times in all. Or perhaps you found a simpler satutio

4.4.3 How about a 6-5 configuration?

Suppose we now wanted to construct a 65 configuration. Daresotution of
the 5—4 configuration lead us on to more complicated proli?ems

The pattern is probably clear by now, but the notation isiggttather out
of hand. Note, for example, that the

e 3-2 configuration required 4 winds by the shoelace.
¢ the 4-3 configuration required |0 winds by the shoelace.
e the 5-4 configuration required 22 winds by the shoelace.

A bit of reflection would show that the 6—5 configuration wouddjuire 46
winds by the shoelace. Some simplification of notation isessary, or at least
desirable, here.

We note that each of the three configurations we have consttso far is
of the form

uvu-tv-1t
whereU is an expression involving, perhaps, several winds\amepresents a
single wind. For example, in the 4-3 configuration,

U=ABA !B
and
V =C.
This suggests our new notation.



196 CHAPTER 4. LINKS

4.4.4 Improving our notation again

Let us introduce some short-hand notation.UlfandV are any expressions
involving several letters (such as B, C, D, E, etc.), let us writgU,V) to
represent the expression

(U,V)=uUvu-tv-1
Thus forU = ABA 1B~ andV = C the expressiofU,V) becomes
(U,V) = (ABA'B"Y)C(ABA 1B1) 'Cct
— ABA B~ cBaB A IcL.

This gives us a compact notation.
Problem 181 Verify that, in this notation, the fifth curve for the 5-4 cgnofia-
tion becomes

(((A,B),C),D).
0

Problem 182 Write the sixth curve of the 6-5 configuration in the compact
form. Answer O

Problem 183 Show that if A= 1 in the expressiofi(A, B),C), then
((A,B),C)=1.
Answer O

Problem 184 Show that if B= 1 in the expressiofi(A, B),C), then

((A/B),C)=1.
O
Problem 185 Show that if C= 1 in the expressio(A, B),C), then
((A,B),C)=1.
O

4.5 Commutators

The expressiolfA, B) has a name in the study of algebra. It is calleddbm-
mutatorof A andB. More generally, ifX andY are any expressions in several
letters, ther(X,Y) is called thecommutatorof X andY. For instance, if

X =ABA 1B71
andY = C then
(X,Y)=XYx vyt =aBalB-icBaB A iC!
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which we saw gives the fourth curve in the 4-3 configuratianc&
ABA1B1=(AB),

the expressioriX,Y) above equal$(A,B),C). This is a commutator, one of

whose terms is itself a commutator. We call such an expressammpound

commutator Because of what will follow shortly, it is important to undeand

this commutator notation. As practice with the notationedch of the follow-
ing computations before proceeding further.

Problem 186 Show that
1. ((A,B),A"1) = ABA1BIA1BAB!
2. (AAH),B)=1.

3. (((A)1),C),D)=1.
Answer O

Problem 187 To see the importance of putting in all commas and parenthese
in the commutator notation, verify that in general

1. (AB) # (A,B).
2. (AB)t#£ (A B)L

3. (AB,C) # (A,B)C # ((A,B),C).
a

Problem 188 One reason thatX,Y) is called the commutator of X and Y is
that XY =Y X if and only if(X,Y) = 1. Prove this. Answer O

4.6 Moving on.

So far, we have seen how to construct the 3—2, 4-3, 5—-4 andogigerations.
All of these are configurations of the tyge+ 1)-n; i.e., the breaking point
occurs when a single curve is removed from the configuration.

What if we want the breaking point to occur somewhat later?elxample,
how could we construct a 4—2 configuration? First, we musuie we under-
stand what a 4-2 configuration is. It consists of four curidesd together in
such a way that the entire configuration hangs togetherrénadval of a sin-
gle curve causes the remaining three to hang together, imaiviad of a second
curve causes the remaining two to fall apart.

Before embarking on the construction of a 4—2 configuratienys pause
for a moment to take stock of where we are.
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4.6.1 Where we are.

After some trial and error with our models we discovered howdnstruct the
3-2 configuration. Perhaps we were also successful in emtistg the 4—3
configuration by this method. Perhaps not. In any case tlgngkly became
too complex to rely on trial and error and on our simple moué.arrived very
naturally at an algebraic formulation of our problems.

It amounted to beginning with an appropriate placement offost few
curves and then writing down an expression for the last cuftss expression
had to link all the existing curves and had to have the prgpibt removal
of a single letter caused the entire expression to reduce tafter a while,
we saw the advantage of compact notation, and we introdueeddea of a
commutator. All this allowed us to see the structure of thefigorrations in
an algebraic setting. There were several new conceptsf athich evolved
naturally:

e Algebraic expressions for the last curve.

e How to simplify such algebraic expressions, using ideagesigd from
elementary algebra.

e The idea of a commutator and the natural extension to a contghoam-
mutator.

By successive compoundings of the commutator, we were aldertstruct
more complicated configurations.

We need only one more idea to show us the way to constructinganfig-
uration we wish. This idea will arise in connection with the24configuration.
It will become clear a bit later.

4.6.2 Constructing a 4—2 configuration.

Let's get started with the construction of a 4—2 configuratiBirst of all, what
do we start with? Since the breaking point is “2,” we may ad Wwegjin with
two separated circles andB. This way, when the two new curves that we shall
add are removed, we will end up with the two separated cuha®dB that we
started with.

Now what? That is, how should the third curve be woven throigindB?

Before attempting ProblefiB89and Probleni90try to determine what con-
cepts are involved. Whether or not you obtain solutionsckhmur answer.
Much of the reasoning in those answers will be needed in oactsig the con-
figurations that follow the 4—2 configuration.

Problem 189 What expression should represent the third curve C?
Answer O
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Problem 190 What expression should represent the fourth curve, D, id##
configuration? Answer O

Problem 191 Compare the two solutions
ABCA B Ic!
and
(A,B)(A,C)(B,C).
How many winds does each require? Would either of these mieth® useful

for obtaining other configurations such as the 5-2 or 5-3 gumétion?
Answer O

4.6.3 Constructing 5—2 and 6—2 configurations.

Let us try to imitate the two methods we used for the 4—2 cordigon to con-
struct a 5-2 configuration.

Problem 192 Construct a 5-2 configuration. Begin with two separated earv
A and B and determine formulae for the remaining curves C, ®&n
Answer O

Problem 193 Construct a 6—2 configuration. Use the method that starts off
with ABCD.... Answer O

Problem 194 Construct a 6—2 configuration. Use the method that starts off
with (A,B)(A,C)(A,D).... Answer O

4.7 Some more constructions.

What about the 5-3 configuration? How can we use what we hagad
learned? How do we begin? The last question is, of coursg, teasnswer.
Since the break point is “3,” we mubgginwith three separated curved; B
andC.

Arguing as before, we want our fourth curve to wind througésth three
curves in such a way as to form a 4—3 configuration.

Problem 195 Now what? Answer O

4.8 The general construction

We are now ready to understand the general constructioror@&gfoceeding
to that, construct each of the configurations below. Do tiignkdicating how
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many separated curves start the process and then givingphession for the
remaining curves, stating what the result is after eachecisradded.

For example, the following format for the 6—4 configurati@ncserve as a
model. Begin with four separated circlés,B, C, andD.

Add Formula Config-
uration
E (((A,B),C),D) 5-4
F | (((AB),C),D)(((AB),C),E)(((A.B),D),E)(((B,.C),D),E) | 6-4

Problem 196 Construct a 6—3 configuration. Verify that your construngo
works. O

Problem 197 Construct a 7—3 configuration. Verify that your construngo
works. 0

Problem 198 Construct an 8—4 configuration. Verify that your constrans
works. Answer O

4.8.1 Introducing a subscript notation

The configurations that Probler86-198ask for should offer no serious diffi-
culty (except that they take increasing amounts of spaceite down).

Consider Probleni98 It asked for eight curves linked together in such a
way that the break point occurs at 4 curves. The eighth clitygas added to
a 7-4 configuration. The formula for the eighth curve invel3 compound
commutators on four letters, for examgléA,B),C),D). Each such commuta-
tor has twenty-two winds. The eighth curve thus hack22 = 770 winds. Even
the short-hand commutator notation would involve writirggvth 35 compound
commutators. Note that replacidg B, C or D with a 1 causes all commutators
involving that letter to collapse, leaving a 7—4 configuwatas required.

More notation The time has come, once again, to introduce some further
short-hand notation. Let’s discuss this to see what kindad&tion might be
useful.

First, let’s look ahead. The 8—4 configuration would be aante to write
down in full commutator notation—but we could still do it. \6thif, for exam-
ple, we instead wanted to determine the 30th curve in a 30e@figuration?
We see that our alphabet, with only 26 letters, is inadequate

Of course, we could add the Greek 3, v, . ..), Hebrew(J,3,7,1...), and
Old-German I, 93, ¢, ...) alphabets in order to obtain more symbols to use.
But then what would we do if we wanted to construct a 300—20igaration?

Or a 3,000—2000 configuration?



4.8. THE GENERAL CONSTRUCTION 201

There must be a better way! There is. Itis, in fact, quite $enffhough it
may appear complicated at first). First we can solve our dilerof running out
of letters of the alphabet by introducing subscripts. Tingtead of writing the
fourth curve in a 4-3 configuration as

((A,B),C),

we call our first three curved;, A, andAs instead ofA, B andC. The fourth
curveA4 then has the formula

Ay = ((A1,A2),Ag).
Then, for example, the fifth curve of the 5-3 configurationl Wwdve the
formula

As = (<A17A2)7A\'3) ((Alv A2)7A4) ((A17A3)7A4) ((AZv A3)7A4)

4.8.2 Product notation

This hasn't saved us any work yet, but we see, for exampléjttiveuld save

us introducing a new letter to our alphabet in writing ther2@irve in a 28—-3
configuration. Let's see how we can save ourselves some Wanksider, once
again, the fifth curvéds in the 5-3 configuration. There are several things we
may notice:

e The formula forAs involves several commutators on three letters, a typi-
cal one beind(A1,A2),A).

e The subscripts are in increasing order when we read frontdeiftjht.

e The several terms that appear consist of all commutatorfieffarm
((ALA)), A0, with i < j < k<5, wherei, j andk are chosen from the
integers 1, 2, 3 and 4.

If we look at other configurations, such as the 6-5 configonative would
see a similar situation (when we use our subscript notation)

How can we incorporate these three observations in a simglgles com-
pact form? The notation below would follow standard mathgrahnotational
procedures for complicated products. Write

i<j<k<5
Let’s dissect the notation:

e ((Ai,A)),A) represents the typical term. For example, whenl, j = 2
andk =4, we get((A1,A2),As).

e The Greek letteFl (upper casa) indicates “product.” We are not actually
“multiplying” here, of course, but the notation we have bermng all
along suggests “multiplicative notation.”
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e Under the symboll we seei < j < k < 5. This indicates first that the
subscripts that appear are in increasing order, and thatiell subscripts
with i, j, k integers greater or equal to 1 and less than 5 are included.
Notice the “5” tells us thak is no larger than 4.

Example 4.8.1 How would this notation work for the construction of the 8—4
configuration? Let’s do it in detail. We use our customaryrfat with our new
notation.

Begin with four separated curvég, Az, A3 andA4. Add to thisAs to get
a 54 configuration, theAg to get a 6—4 configuration, thel; to get a 7—
4 configuration and, finallyAg to get a 8—4 configuration. The formulas are
evidently:

As = (((A17A2)7A3)7A4)
A= ] ((ALA)A)A)

i<j<k<l<6

A= T ((AGA).AA).
i<j<k<l<7
i<j<k<(<8

<

Simple, isn't it? Note we needed a fourth subscripthere, because each
commutator involved fouletters Note also that thetopping point(8 in our
last formula) agrees with the subscript of the curve we gpeesenting. What
would be the formula for the eleventh curve of an [I-6 confagian built by our
methods? The answer is simply

All: !_l (((((A7A1)7Ak)7Aﬁ)7M)7AH)
i<j<k<f<m<n<1l

Note that cutting away a single curve, sy, causes all commutators in-
volving A4 to reduce to 1, so what remains is equivalent to the tenthecoira
10-6 configuration. When we have cut away all but 7 curves, meeaat the
7—6 configuration, so cutting away one more curve, cause®thaining six to
fall apart.

4.8.3 Subscripts on subscripts

Are we now, finally, finished with these linking problems? Alst, but not
quite.

Once again, we are soon going to run out of letters—on thecsips For
example, the 11-6 configuration involved the indices (ietters or subscripts)
i, j, k £, m andn. If we wanted the 100th curve in the 100-70 configuration,
we would need 70 letters. How can we modify our notation oneentione
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to accommodate to such a configuration. As before, we int@dwmerical
subscripts on theubscriptghemselves! Thus, in place ofj, k, etc., we use
i1, i2, i3, etc. We can then writé1 in the 11-6 configuration using as indices
i1, i2, i3, ...Ig In place of the more clumsy lettersj, k, ¢, m, n that we used
previously:
A1 = I_l (((((Ai17Aiz)7A53)7Ai4)7Ai5)7Ai6)-
i1<irx<izg<lig<ig<ig<ll
In practice we would prefer to omit some of the expressionsibyely indicat-
ing with ellipses (i.e., three dots) that all these paresgseand subscripts are
needed:
Ai= [T (o (ALA)AL) ) A).

i1<ip<--<ig<1l

Why all those dots? The first set of dots indicates that we haven’t written in
all of the parentheses: there should be five of them. We carcestthe mess by
eliminating some and use the dots to indicate that more atly istended. The
second set of dots, those ungigrindicates that we have omitted the part of the
expression

i3<ig<isg
that should be included. Finally, the third set of dots, thioside the parenthe-
ses, indicates that we have not written in the eleméntandA;,. The reader
of such a formula is expected to understand what is missingfifinit in if
necessary.

This convention saves us some writing once the pattern algleinder-
stood. For example, the 100—70 configuration would be almgstssibly com-
plicated, but the dots help considerably. The 100th curtban configuration
is simply written as,

Moo [T (o (AL AL) AR A
i1<ip<---<izp<100
Problem 199 Write the 50th curve in a 87—-33 configuration in our new nota-
tion. (Assume the first 49 curves form a 49-33 configuration.)
Answer O

Problem 200 How many winds are there in the eleventh curve in an 11-5 con-
figuration?
Answer O

4.9 Groups

One of the many aspects of modern mathematics that disshegsiit from say,
nineteenth-century mathematics, is that there is nowaday®od deal of em-
phasis orabstract structuresWhat this amounts to is that mathematicians will
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often study some abstract system defined axiomatically¢iwhas, on the sur-
face, no connection with the real world.

Why should one study such abstract systems? One reasos.i§/dmy real
life situations to which mathematics has been successdpityied appear to be
quite different in nature, but actually involve the same meatatical analysis
and the same structure. We saw this many times in the chaptbliro. By
studying the abstract structure, one reduces the anatygiis éssentials. Any-
thing one proves within the abstract setting then applie=atth realization of
the abstraction.

One such abstract structure is that afraup. We shall define the notion of
a group and give a few examples of groups. We won’t developéthe theory
of groups (there are many excellent books on groups) buteteral examples
will suggest how a general abstract theory could be usegilidying individual
instances of the theory.

Definition of a group A groupis a setG together with an operation that
satisfies the following fofrconditions:

1) If aandb are elements o6 thena- b also belongs té&. (We
might writeab for a-b. Sometimes other notation suchasor +
is used for the operation to suggest multiplication or addi}

2) There is an element 1 belonging@such thata-1=1-a=a

for all ain G. The element 1 is called the identity. (Some times,
when “+” is the notation for the operation, the identity isndéed

by 0.)

3) If ais an element o6 then there is an elemeat ™ called the
inverse ofa such thata-a~1 =1 anda!-a= 1. (When+ is the
symbol for the operation, one writesa in place ofa™1.)

4) If a, b, andc are elements 0B then(a-b)-c=a- (b-c). Thisis
called theassociative law

At this point, the definition of a group is, of course, abstrdet’s look at
some examples.

Example 4.9.1Let G consist of the positive real numbers, and létdenote
usual multiplication (i.e., the operation that we would éavritten as %” in
elementary school). Then

1. If aandb are positive real numbers, sodsb.

3Note that there is no fifth condition requiring thetb = b- a. While many groups do have
this property (theeommutative properjywe have seen that our group does not.
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2. The usual number 1 satisfiasl =aand 1. a= a.

3. If ais a positive real number, the! is denoted commonly as/a and
al-a=1anda-al=1. (@ lis, of course, a real positive numbeaif
is.)

4. This is just the usual associative law for the multipii@atof real num-
bers.

How we group the numbers does not affect the outcome. For geam
4.(5-6)=4-30=120
and
(4-5)-6=20-6=120
<

Example 4.9.2 Let G denote the integers (including the negative integeits)
+ for the operation. It is easy to see that this gives us a group <

4.9.1 Rigid Motions

For those with a bit more background in mathematics, we roerttiat the
examples that appeared in Sectib@.1(polynomials, functions, matrices, vec-
tors) can all be endowed with a group structure by choosingesappropriate
group operation. Other important groups involve symmstpermutations, ro-
tations, or rigid motions in a plane.

To illustrate, we can describe the appropriate group ojperated in study-
ing the group of rigid motions. It is similar to our operationinking.

If A andB are rigid motions in a plane, thefB is just the the motion
achieved by applyin@ thenA. Suppose\ consists of translating every point 2
units to the right, and rotates a point 90 degrees about the origin. TA8n
consists of first rotating, then translating, whidé consists of first translating,
then rotating. In Figurd.7 we showAB applied to a triangld with one point
at the origin.

Figure 4.7: AB: First rotate the triangle, then translate.
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Figure 4.8 showsBA applied to the triangld. (We see that the group of
rigid motions is not commutative.)

-

--..~~
~

~

Figure 4.8: BA: First translate the triangle then rotate.

Note It is customary to read from right to left in describing rigidotions.
ThusAB indicates doind first.

4.9.2 The group of linking operations

Our algebraic work in this chapter can be viewed as part afigtbeory. We
give an intuitive and mathematically incomplete descoiptf this view now.

Suppose we begin, as we have many times, with three fixedatepanircles
A, B, andC in space. We view this as a starting set-up. Each startingpsktads
to its own linking group. (See Sectiagh2.2)

We consider all possible ways of weaving a fourth curve tgho&, B, and
C and write down what we called otormula for the fourth curvel-or example,
ABC~! would mean this: our curve goes throughthenB and then backwards
throughC and finally returns to its starting point. Théetion described by
ABC1is an element of our group. So is any similar action.

What is our group operation that corresponds to the We used in our
definition of a group? It is simplgoingone action then the other. For example,
if we firstdo ABC ! and therdo BAC 1A we get

ABC!BAC'A
as
(ABC ). (BAC1A).
In this case, there are no simplifications possible. Sonestjras we saw, there
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are simplifications possible. For example

(ABA1B71). (BABA™Y)
reduces to 1. This follows from the associative law in therdigdin of a group.
We leave it to the reader to verify that what we have been dwitiglinks will
satisfy the four stated conditions defining a group.

If we look at our first two examples of groups, involving ordig numbers,
we see that those groups a@mmutative groupge.g.,a-b=b-aanda+b=
b+ ain the two examples). We have already observed that the griouplved
with our linking problems are not always commutative. Faaraple, ifA and
B are separated circles, th&B # BA. We can check this by using our model
and verifying thatABA" B! +£ 1, i.e., it does not reduce to a curve that links
neitherA or B.

Problem 201 Begin with twdinkedcircles A and B. Wind a third curve through
A and B according to the formula ABAB—1. Show that the third curve can be
pulled free from A and B, thereby showing that ABBA. (See Probleri88in
Sectio4.5.) 0

Problem201illustrates one simple situation of a linking problem thaeg
rise to a commutative group. More generally, our groups arecommutative,
although a group might have special relations in it that domowitate. For
example, ifA andB are linked, buC is separated fromA andB, then the relation
AB = BAis valid on the resulting group, but we can’t write, for exdepC =
CA. (Make a model.) Thus, for example, we can witBC = BAC, but we
can't write ABC= ACBIif we want to make a correct assertion in this group.

Problem 202 Suppose that the circles A and B are linked, but C is separated
from A and B. Simplify each of the following:

ABA 1B~1A and ABCAlB!A.
Where feasible, check with a model. O

4.10 Summary and perspectives

There are a number of things to be learned from this chapétis teview what
we did.

1. We started with two simple configurations (the 3—-2 and 3a#ifigura-
tions) and then asked for the construction of a 4—3 configurat

2. It became clear that pictures were inadequate for exgatiation. So we
made models which helped experimentation.
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But the models soon proved inadequate. We came natusadlyrtethod
of keeping track of our actions: a bookkeeping system. Tystesn soon
began to look like ordinary algebra, although symbols sisohBadid not
mean multiplication of numbers.

. We soon saw that this simple bookkeeping system was &ctamalal-

gebraic system with very simple properties. And, more intgdty, it
related directly to our linking problems

Cutting away a curve corresponded to removing the correfipgriet-
ter. That little bit of algebraic structure helped enormgurs solving the
simpler linking problems. They were simpler because of dgelaraic
methods. The 5-3 configuration, for example, may have bepossibly
difficult for us to construct without such a system.

. The algebraic formulation actually helped pinpoint thiuitive idea of

undoing everything we do, but to defer such undoings an Fpiate
length of time.

Even our algebra became prohibitive once we got to moregptoated
figures. The expressions just got too long. So we incorpdraie intu-
ition into the algebra and introduced commutators and camga@om-
mutators. The two useful notions involved “compoundingtofnmuta-
tors and “multiplying” commutators.

Even here, our notation was inadequate when we discussditjura-
tions such as the 8—4 configurations. The notion of commusatwplified
things, but still there were just too many commutators to loiow.

So we finally obtained adequate notation in Secfiéhl

Note that our final notation does more than just shortenattiing of

a formula. It contains the entire structure of any of our aunfitions.
When we began the linking problems, we may have had no ideaewhe
we were heading. As we progressed we learned more and mawethbo
structure ofn—k configurations, and we incorporated what we learned in
our notation. Sectiod.8.1developed the entire structure of such config-
urations, at least those constructed by our methods.

We also saw that some methods had the advantage of sigmilid also
had the disadvantage of not pointing us in the best dire¢tioproceed-
ing. For example, the fourth curve in the 4-2 configuratiomdde taken
as

D=ABCA'B'C™L
This helped us obtain thath curve in then—2 configuration, but gave no
hint for constructing the—3 configurations. Our other method was less
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efficient, but did give us such a hint. This phenomenon oftezucs in
mathematics. One solves a problem, but the particularisaldbes not
help us resolve new related probléms

11. Finally, we discussed grouperybriefly. Groups provide a general frame-
work for studying a number of mathematical systems such@sethsso-
ciated with linking problems. A good understanding of greagn help
one understand other linking problems that we have not densil. And
other problems not at all associated with links. Are grodnesfinal an-
swer? Of course not. Some algebraists study systems, vsiaabsys-
tems, of which the entire theory of groups is just a simplengxa! And
So it goes.

4.11 A Final Word

In a certain sense we have solved the linking problems wewtdbaolve. In
another sense, we haven't.

Let’s discuss this point, first in a broader context invotyan aspect of evo-
lution in mathematics and then in the specific context of whathave done
with links. When a mathematical subject is in its infancyisinot always en-
tirely clear what, exactly, the subject under study is.

4.11.1 As mathematics develops

When earlier generations of mathematicians studied regiospace bounded
by a surface, they might not have known exactly hegionsor surfacesor
boundedwere to be interpreted. They had easy to visualize modelsial.m
For examplehe region bounded by a sphareakes sense (i.e., the inside of the
sphere). So too does the inside of a bagel or pretzel. Theyhal$ no difficulty
in counting the number of holes in a pretzel, even though tmeept ofhole
may not have been well defined.

After all, if we look at a bagel we would agree that it has onkehwithout
our needing to know, in a strict mathematical sense, whaileikoBut, when
one proceeds to more complicated surfaces, one needs ta haathematically
precise way of dealing with the concepts.

Earlier generations of mathematicians often made significantributions
to a subject even though some of their work was mathematicafirecise. We
would say their work was not rigorous. One could say thattherk contained
errors. But, in a sense, it would be more descriptive to saly Work contained
gaps their results were correct under somewhat more resteictmditions than

4Recall that our solution for two, three, and four-marker gardid not lead to a general
solution until we completely changed our perspective aoltéd only at the gaps.
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they supposed. For example, if one defines a region in a nesay and then
provesa theorem about regions which is valid only if the region raestme
extra conditions (not mentioned in the definition), one hga@in reasoning.

Imprecise work is by no means worthless—it just doesn’t gagpply with-
out some sort of modification. For example, one constantiiepplane geom-
etry ideas in real life even though the surface of our earthage like a sphere
than like a plane. Thus we think of a baseball infield as plagaare without
that creating any real problems. The error in doing this ialsrbut would be
great if the sides of our “square” were thousands of mildserathan 90 feet.
Similarly, Newtonian physics is fine when it applies, but d&®e inadequate
to deal with such things as objects moving close to the spéédha or tiny
objects such as atoms.

4.11.2 Agap?

After creating our algebraic structure, we assumed it fality expressed the
structure of our linkings. It seemed to do just that. Acty#ldidn’t!

Consider, for example, the expressibBAL. As an element of our group,
it is not equal to the eleme®;, becaus@BA 1B~ is not equal to 1. But if our
shoelace follows the instructions given 8y ABA ™! applied to two separated
circles, we find we can “slipA off C, leavingB, as shown in Figuré.9. Thus
the formulaABA ™~ does have the same linking properties as the forBulaes.
The algebra and the linking were at odds.

A B

)
C

Figure 4.9:A “slips off” C.

The same thing would happen any time we had a formula of tha for
XY X1, whereX andY are any elements of our group. There would be a
cancellation that takes place in the linking, but not in theug. In our group
structureX andX 1 can’t cancel each other (MY X~1) unlessX andY com-
mute. But, when applied to links, such a cancellation cae #ce.
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How can we take this into account in our work? Actually, weédtaken it
into account, although we have not stated this explicitly.

Our project was to construot— k configurations. We always had an initial
set-up ofk separated curves. All the formulas we have used for the abegl
in our configurations are products of commutators or comgaammutators.
This problem of cancellation does not take place with conataus. For exam-
ple, the shoelace for our 4-3 configuration had the formula

ABAB~cBaBlAic L.
No cancellation here!

We successfully avoided all cancellations in our develamrbg restricting
our group suitably to group elements that actudthdescribe the linking struc-
ture ofn—k configurations. If we had tried to use the full group to repreasall
possible linking structures, we would have run into diffimd. As we saw with
the curveABA ™1 applied to two separated curvasandB, the group would not
describe some of the linkings accurately.

Example 4.11.1Let’s look at a rather artificial but clear example that ithases
this perspective. Suppose we wanted to prove that two sgjuatbe plane are
congruent if and only if their projections vertically onteetx-axis have the same
length. We wouldn’t be able to do that—the statement is false

The group of rigid motions in the plane (see Sect8.]) includes rota-
tions, and the length of a projection of a square can chanderua rotation.
But if we restrict our focus to only those squares that havéezbotal and ver-
tical sides, and we consider only the translations, theestant is true. It is
clear that such a square can be translated onto anothercpuete sf and only if
the two squares have the same side length, and that hap@ersohly if their
projections onto th&-axis have the same length.

A

CgA

X

Figure 4.10: Projections of squares on xhaxis.
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Note that in Figurel.1Q A can be translated on® but a rotation would be
required to mové ontoC. Here we have restricted our attention to only certain
squares, and have used only those rigid motions that argldteons. Rotations
didn’t enter the picture. |

In our linking project, we didn't discuss all possible linkigctures; we re-
stricted ourselves to separated curves ang-oconfigurations. We used only
the subgroup consisting of products of commutators and oomg commuta-
tors. Other elements of the linking group played no role.

4.11.3 Is our linking language meaningful?

In our study of links, we used a number of terms that had intiitontent for
all of us. Terms such asurve go through A backwardsvinds hangs together
falls apart, etc. were certainly meaningful to us for purposes of comgation,
and even for purposes of making models of various of our cardigpns. We
constantly used expressions suclseparated curveor we can pull the curve
out of A without cutting or tearingor these two curves have the same linking
properties We also sometimes gave warnings suclbaareful not to create
any knots in your shoelac&Ve did not, however, define these concepts in any
precise way.

For our purposes it may not have been necessary to defineca# terms.
We can construct (at least theoretically) any configuratibthe type we dis-
cussed. But we haven’t solved any of these problems in & stathematical
sense. The amount of mathematical machinery necessaryedescuss link-
ing problems rigorously is enormous.

4.11.4 Avoid knots and twists

Let’s illustrate the kinds of difficulties one encountersiife tries to mathema-
tize our discussion.

1. We all know intuitively which direction ibackwardsvhenwe go through
a curve C backwardsOr do we? IfC is a circle, we can all agree which
direction isforwardsand which direction i®ackwards But can we agree
which direction is which ifC is the 50th curve in an 80—20 configuration?

2. One difficulty is that a curv€ may havetwistsin it. Can we tolerate
twists? Small twists, surely. But what about big twists? Qultiple
twists? What exactly is a twist and what makes a twisiall big, or
multiple? And are these distinctions really important? And are wwist
important? If so, can they be avoided?
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Figure 4.11: This curve can be transformed into a circle.

3. The curve in Figurel.11is not a circle, but can be transformed into a
circle bystretching bending pulling, etc. Nocutting, tearing, or pasting
is necessary (whatever the precise meanings of these tegins a

4. The same is true of the cur@in Figure4.12 although you may need to
make a model to visualize it (simply untwist the ears to begin

C

Figure 4.12: Curve with “ear-like” twists.

5. Now, add a circlé\ to the configuration passing through the ears to obtain
the curve in Figurel.13

Make a model and check that the resulting configuration willcome apart
without cutting or tearing. But note that our curve with e&swent through A
and then through A backwards.

In other words, our twisted curve has form#la—1. But it doesn't reduce
to 1. What went wrong? In terms of our casual language, wevatidwists, not
paying attention to our earlier warning to avoid knots antstsv But we still
don’t know what a twist is. If we remove the cirche ourtwisted curvas not
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\\/

Figure 4.13: IC = AA1?

distinguishable from any other curve according to our usddke term curve.
But, in the presence @, its linking properties withA are quite different from
the linking properties of an untwisted curve with form@a—1.

The pointto these remarks is to make it clear that somethenlgadn’t really
come to grips with enters here. Our work isn't wasted. We ¢dincenstruct
our configurations if we caavoid knots and twisteshatever that may mean.
But, for a precise mathematical development, one would taikeow what the
terms mean and also how to deal with them mathematically.

4.11.5 Now what?

For our purposes it was easier simply to ignore the troubhesigsues we have
identified and possibly other issues we missed. If thesd baraddressed, the
status of our work is that we made a plausibility argumenthiame not provided
a rigorous proof. Maybe we (or someone else) can make ouf ggmyous or
find another proof. Or show that our result is false, perhapshowing no
configuration of some specific size is possible.

What is the current status of the problem? The original work in this area
dates back to paper by Hermann Brunn (1862-1939), in 1892inrBcon-
structedn—(n— 1) configurations. He acknowledged that his work was not rig-
orous. The considerable technical machinery necessagnatiésuch problems
rigorously had not yet been created. But, because of hisnatigaper, today
ann—k configuration is called an—k Brunnian link

In 1961, Hans Debrunner did provide a rigorous proof or Bisimesult.
And, he rigorously proved the existence ofratk configurations! Phew!

Then, in 1969, David Penney (see itefij [n our bibliography) provided
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a much simpler rigorous proof of the existence ofredk configurations. Our
chapter provides an intuitive, nonrigorous developmeadileg to Penney’s for-
mulation. Penney’s paper was only two pages long. It did matlve discov-
ery of the solution. It used mathematical induction to wetlfat the solution
via compound commutators works. He had to discover this boméperhaps
along the lines of our development) but the actual paper whsaoverification
of a formula he had discovered.

This progression is common in mathematics. Someone disg@veesult
and proves it. Perhaps the proof is not rigorous. Someoree petsvides a
rigorous proof. Then yet another mathematician finds a mumshlsr proof.

4.12 Answers to problems

Problem 165, page 184

You probably answered this without difficulty. You simplynsiructed three
curves with each of the three pairs linked as shown in Figuté.

Figure 4.14: The three curves are linked in pairs.

Compare Figurd.14with the Borromean rings of Figuke 1. Observe that,
in Figure4.1, the entire configuration is linked, but no pair of curvesngéd.
Here, each pair of curves is linked.

Figure 4.15 shows a different solution for this same problem made with
a “shoelace” model. Comparing the solutions given in Figu4 and Fig-
ure 4.15we see that, had we chosen to make the shoelace go “backwards”
through the second circle (instead of forwards as here) wadvoave con-
structed the same configuration in both. Should we have aitagegto describe
backwards and forwards? (See Sectloh 7for the answer to this question.)
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Figure 4.15: A shoelace model of a 3—1 configuration.

Problem 166, page 185

This is a bit harder than Proble®5without cheating and looking at the Bor-
romean rings for guidance, but you may have succeeded byniagsmore or
less along the following lines. We may as well begin with tweparated circles
(as indicated below).

O O

Figure 4.16: Start with two separated circles for Probleii

We now wish to “weave” a third curve through the two separatiedes
in such a way that the conditions of the problem are satisfiédt is our third
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curve (the “shoelace” if we made a model as suggested) mastenbrough the
other two so that removal of one of the three curves causesotifeguration to
“fall apart.” This must be true no matter which of the threeves is removed. It
must also be true that the entire configuration of three aufrangs together.”

Now it is clear that, no matter how we weave in the “shoelacayioval of
it will cause the other two curves to fall apart. (They areeatty separated.)
Our task is to do the weaving in such a way that, if we removétkeeiof the
other two curves, the remaining one and the shoelace carpbeased without
cutting or tearing.

Once we understood this much, we could experiment with ooelsice and
we might well arrive at a configuration such as the one in Fegut7.

Figure 4.17: Weave the curve through the circles.

Let's see what happens with this configuration.

1. If we cut away the shoelace, the remaining two curves aeaady sepa-
rated.

2. If, instead, we cut away the curve on the right as in Figufs8 the
shoelace is draped over the remaining curve near the Koititwe hold
the shoelace & and pull, voila, we have effected the separation.
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Figure 4.18: Cut away the circle on the right.

3. Similarly, if we cut away the curve on the left as shown igu¥e4.19
the shoelace is draped over the remaining curve in such aheyftwe
hold the shoelace with one hand near the pgiahd with the other hand
near the poinZ and pull, once again, voila!

»

Figure 4.19: Cut away the circle on the left.

Can you visualize all that? Perhaps you need the model.
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Problem 167, page 185

If you think it possible, look again at the reasoning thattiethe construction
of the 3—2 configuration to see if there is any discerniblégpatthat could be
of some help. And use your model.

It is too hard to rely on a picture. It is much easier to expentwith three
rings and a shoelace.

If, on the other hand, you think it is not possible, try to diger some basic
irreconcilable difficulty (as you did with the tiling probites in Chapted).

Problem 168, page 187

Figure4.20illustrates a curve (using the model) that is described by the ex-
pression

APBAR.

Figure 4.20:A°BAR.

SPhotos courtesy of Curry Sawyer.
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Figure4.21illustrates a curve described by the expres&i@&BPAP.

Figure 4.21:ABB°AP

Problem 169, page 187

The first two expressiorBABPA? and APBAB® from Problem168 give rise to
3-2 configurations. These are really essentially the sartteeadescription we
gave before with the roles @ and B reversed or the directions we chose as
positive changed.

Problem 170, page 187

The last three expressiod’BB?, AAAPAP, and ABBPAP result in configura-
tions that can be separated with no more than a “pull.” (Ndirgitor tearing
necessary.)

Problem 171, page 187

When an action is undone immediately (ashA’BBP, AAAPAP and ABBPAR)
it is as if the action had not been accomplished in the firstepl&lote how this
can happen in stages. For exampleABB’AP the elemen# is not undone until
later, butB is undone at the first opportunity and that allovg be undone too.
This is necessarily vague (at this stage). Part of what wi Bbaloing is to
make it more precise.
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Problem 172, page 187

Yes. Taking the left ring a#\ and the right ring a3, the shoelace has the
formulaABAPB®. So itis a 3-2 configuration.

Problem 173, page 188

If you have not constructed the 4—3 configuration yet, tryimagbry to use what
you have learned from ProblehY 1)

Problem 174, page 190

Check, using the ordinary rules of arithmetic, that eaclnefexpressions
AAP BB°, APA BB, AB°BA?, andAAAAAPAP

is equal to 1.

Problem 175, page 190

Check, using the ordinary rules of arithmetic, that eachhefexpressions
A, ABB®, AAPA, andBAAPBPA

is the same aA.

Problem 177, page 192
Check that
ABC=— AC
ABCA B lct— Aacalc?
ABA B l—1
both algebraically and by thinking about what is really gpam.

Problem 179, page 193

If, in the 4—3 configuration, we le represent the curve
X =ABA B!
then the 4-3 configuration takes the form
xcx-ict
It's just like the 3—-2 configuration except thAtrepresents more than just a
single link.
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Problem 180, page 193

A construction is given in Sectiofi4, but you should try before reading on. To
do this construction you must first indicate the startingugetand then give an
expression for the action of the fifth curve (the shoelace).

You will have to verify that no matter which of the five curvascut away,
the result is 1. Also, you should check that if no curve is cuhy the entire
configuration hangs together. Unless you have a very gooe@hwal will find
it difficult actually to construct it physically.

Problem 182, page 196

The 6-5 configuration is constructed by beginning with 5 smed curve®,
B, C, D, andE and winding the sixth curve through the given five according t
the expression

((((A,B),C),D),E).

Note, as before, that replacing any of the let#®&r8, C, D or E by | causes the
entire expression to reduce to |. Note also that the shoetast go through 46
winds to complete its task.

Problem 183, page 196

That((1,B),C) = 1 follows from the reduction
((1,B),C) = (1,B)C(1,B8) ¢!
—1B1 '8 'cBiB 1 'ct=BBcBBIC =1
Here we have used the fact thatl= 1. Make sure you follow the above
computations and fill in whatever steps are missing.

Problem 186, page 197

Problem186 and Problenil87 are straightforward computations, but you may
need to work out the details for Probler88

Problem 188, page 197

SupposeXY =Y X. By definition
(X,Y)=XYyx1ty-1

and this is the same &6XX 1Y~ because we are assuming for the problem
thatXY =Y X. Thus, putting this all together, we have

(X, Y)=XYX Wy oyxxtlyl=1



4.12. ANSWERS TO PROBLEMS 223

On the other hand, ifX,Y) = 1, thenXY X~Y~1 = 1. Thus
(XYX Y H) (YX) =1(YX) =YX
while, it is also true that
(XY XY 1) (Y X) = XY X Yty X = XY.
HenceXY =Y X. Make sure you understand each step of the argument above.

Problem 189, page 198

To answer this problem, we need to know what we are looking Ve will
eventually have four curve&, B, C, andD. The breaking point for the 4-2
configuration is 2. Thus each pair of curves must be separate@ach group
of three curves must hang together. Another way to say thigiseach group
of three curves must form a 3—2 configuration. For in that ceethree curves
will hang together, but removal of one more curve will causetivo remaining
curves to fall apart. Thus, the third cur@should form a 3—2 configuration
with A andB. This gives rise to the formulgA, B) for C.

Problem 190, page 198

We first observe that the formula must have the quality thabsal of a single
letter leaves a 3—2 configuration. For in that case, remdvalsecond letter
will cause the expression to collapse. Thus, you may expecetto be some
symmetry in the roles of\, B, andC in the expression. Some students in the
class suggestedBCA 1B~1C~1 for the fourth curve D. Let us verify that this
gives the desired result.

If we remove| We arrive at
A BCB Ic1
B ACAIc?
C ABA 1B

Each of these three resulting configurations is a 3—2 cordigur. If we
removeD, the curve we have just added, we arrive at the 3—2 configurati
formed byA, B, andC. And that’s just what we wanted.

Here is another expression you may have tried for D:

(A,B)(A.C)(B.C).

Why is that a natural expression to try? Well, we want rem@fa single

curve to result in a 3—2 configuration for the remaining carvllgebraically,

this is tantamount to the condition that removal of a singtel (more precisely,

replacing the letter by 1), results in an expression for ac+figuration. Let'’s
check.
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e If we replaceA by 1:
(A,B)(A,C)(B,C) = (1,B)(1,C)(B,C) = 11(B,C) = (B,C).

e If we replaceB by 1: (A,B)(A,C)(B,C) = (A,C).
A B).

o If we replaceC by 1: (A,B)(A,C)(B,C) = (A,B)

Make sure you understand these computations.

Problem 191, page 199

The first solution,
ABCA 1B Ic?t

has six winds. The secor{é, B)(A,C)(B,C) has twelve winds. So the first is
simpler and more efficient. And that'’s certainly a desirahlality.

Another desirable quality is that the construction givéghts that are useful
to further construction. For example, the 3—2 configuraiame insights to
the 4-3 configuration which in turn helped us see how to coosthe 5-4
configuration. Does either of the constructions of the 4-+#igaration help us
see how to construct, for example, a 5-2 configuration? Todutdhe answer
to this question, look at Problef®2-Problem194in Section4.6.3

Problem 192, page 199

Since the break-point of a 5-2 configuration is at “2” we begéh two sep-
arated curve# andB. Following the reasoning of Sectigh6.2we see tha€
should be added so that B, andC together form a 3—2 configuration. Then
should be added so that B, C, andD form a 4-2 configuration. Finally we
addE. Let us see what our two solutions to the 4—-2 configuratior hawffer.

It is convenient to use a chart that gives complete direstionthe construc-
tion. These directions should be such that a skilled workey understands our
notation would be able (at least in principle) to make a moBelin with two
separated curveg,andB. First attempt:

Add Formula Resulting Configuratior
C (A,B) 3-2
D ABCA1B~IC! 4-2
E | ABCDA1B-C-ID? ?

Does the addition dE give rise to a 5-2 configuration? We need only check
that removal of a single letter gives rise to a 4-2 configaratiFor example,
removal ofA gives rise to the expression

BcDB ic1p1?
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so that the curveB, C, D, andE form a 4-2 configuration. Similar compu-
tations show that removal of any other single letter gives to a 4—-2 config-
uration so the construction works. The culgénas only eight winds. Pretty
efficient—we couldn’t possibly get by with fewer. (Why?) Whabout our
other construction of the 4—-2 configuration? Does that gmeiasights? Let’s
try to see what is involved.

The expression for D in that construction was

(A,B)(A,C)(B,C).
This construction succeeded because removal of any of tee kttersA, B, or
C (more precisely, replacing the letter with 1) gave rise tovgpte commutator.
This represents a 3—2 configuration. We should observehitbaxpression was
obtained by combining the three lettéxsB, andC in pairs in all possible ways:
A with B, Awith C, andB with C. If we extended this idea, we would arrive at

the following description of a configuration. Begin with tweparated curves,
A andB.

Add Formula Resulting Configuratiory
C (A,B) 3-2
D (A,B)(A,C)(B,C) 4-2
E | (A,B)(A,C)(A,D)(B,C)(B,D)(C,D) ?

Is this a 5—2 configuration? As before, we must show that capdea single
letter with | causes the expression to reduce to a 4-2 coafigar. If, for
example, we replace the lett&mwith |, we arrive at

(1,B)(1,C)(1,D)(B,C)(B,D)(C,D),
which reduces t0B,C)(B,D)(C,D), a 4—2 configuration formed by the remain-
ing four curvesB, C, D andE. A similar analysis shows that the same is true if
we replace any of the other letters with 1: we always arrivee 4t2 configura-
tion for the remaining curves.

This solution is less efficient than the preceding one. Is tlise, the curve
E has twenty-four winds. The last solution required onlyhéiginds forE.

Problem 193, page 199

The 6-2 configuration involves no new ideas. We can extehéreihethod that
we have already used. For the first method, we would wind tkté surve F
through the 5-2 configuration already constructed accgrttirihe formula

ABCDEA B IcIp g1
Ten winds in all.
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Problem 194, page 199

The second method gives rise to this formulaFor
(A.B)(A,C)(A,D)(AE)(B,C)(B,D)(B,E)(C,D)(C,E)(D,E).
Forty winds in all.

Problem 195, page 199

If you did the reasonable thing and tried to extend the efitaieethod described
in Problem189and Problenmi90for the 4-2, 5-2, and 6—2 configurations, you
probably ran into difficulty.

Basically, what allowed that method to be so efficient is thatformula for
the 3-2 configuration involves only simple winds and inversee don’t have
to undo anything more complicated than a single wind. Fongta, in the
expression

ABA1B™1
A~ undoesA, B~lundoesB. Thus, the expression
ABCA B ic!

allows removal of a single letter to result in a 3—2 configorgtas required in
a is 4-2 configuration.

Now, with the 5-3 configuration, we are faced with somethirayercom-
plicated. Removal of a single curve must give rise to a 4—3igoration. And
in the 4-3 configuration some of the “undoings” undo comnauw&atnot just
simple winds. For example, in the expression

ABA'B-cBAB A IlC!,
to undoC is simple, but to unddABA 1B~ requires the more complicated
expressioBAB 1AL,

Perhaps you found a way of doing it. But does it offer any ihtsdhat will
be useful in constructing more complicated configuratid@s?second method
was less efficient than our first in constructing configuraiovhich had the
breaking point at “2.” But it did offer a clearer pattern farther construction.

For example, to construct the 5-2 configuration, the fifttvepyE followed
a formula which played no favorites with respect to the Istfg B, C andD.

It simply took all pairs of those four letters, formed the plsncommutators on
them, and followed one-after-another:

E: (AB)(AC)(AD)(B,C)(B,D)(C,D).
Removal of a single curve resulted in a 4—2 configuration aset
This suggests that the fifth curve of the 5-3 configurationiccdoilow a

formula which played no favorites with respect to the lett&y B, C andD,
takes all triples of those letters, forms compound commousabn them, and
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follows one-after-another.
E: ((AB),C)((AB),D)((AC),D)(B,C),D).

Let’'s check. Removal of a single curve should result in a &+#iguration.
If we removeA, for example, we arrive at(B,C),D), which does represent a
4-3 configuration using the curvBsC, D andE.

The same result occurs, of course, if any other curve is rechoWe shall
not carry out a full computation here. We merely observe, tfratexample,
((1,B),C) = 1 (see Problem83).

Problem 198, page 200

The answer is given in Exampie8.1

Problem 199, page 203
Aso: [ (G (AL AR) A - ) Aigs)-

i1<ip<---<izz<50

Problem 200, page 203

There are 11,592 winds in the eleventh curve in an 11-5 caafign. There
are 252 commutators on 5 letters chosen from the 10 ledgrs., Ajo. Each
such commutator has 46 winds, as we saw in Seetidrg
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Appendix A

Induction

The story is told that when the great mathematician Karl Friedrich Gauss
(1777-1855) was a child, his teacher asked the pupils to @ddlluthe inte-
gers from | to 100, (perhaps as punishment for talking in ©lasVithin a few
seconds, Gauss came up with the answer, 5050.

Here is how Gauss achieved this so quickly, He reasonedlag/flSet up
the sum

S =1 + 2 + 3 + ... + 99 + 100
S =100 + 99 + 98 + ... + 2 + 1
2s = 101 + 101 + 101 + ... + 101 + 101

So twice the sum is 100 101 and the sum must be 5050.
The same technique could be used to show that for every yogiteger

n(n 2+ =) (A1)

Suppose, now, that we hadn’t spotted this clever proof boetieless had
begun to suspect some kind of formula would be true. We migpéement
(with small values oh) as we did in all the problems we attacked, and guess
the formula A.1). We can then easily check the formula foe 1,2,3,... up to
quite large values. How far should we go in this process wwibre convinced
the formula is indeed true?

The answer is that no amount of checking constitutes to & pwoall values
of n. A mathematical proof requires a verification for every eabf n and
checking a few million special cases does not prove the rest.

One way to verify that the formula works for all valuesrofises the notion
of mathematical inductionvhich we discuss in this Appendix. We shall see
that this technique is useful in many parts of mathematic&dt, mathematical
induction figures frequently in our problems dealing witbkRiNim, and Links.

1+2+3+...+n=

1The same story has been told about many different mathearaicBut it may be true in
the case of Gauss.

229
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A.1 Quitting smoking by the inductive method

Before applying induction to proving some mathematicalesteents let us try
to get a sense of the method in an every-day setting. Supppsesan who
wished to stop smoking knew that if he (or she) could stopdst pne whole
day, he could be sure to avoid smoking for the very next daghdf were true
then, in fact, he would certainly stop smoking forever ifyohe can to stofor
one day This would get him started: each day that he did not smokdditead
to the next smoke-free day.

In connection with our formulaX.1) we could argue similarly. Suppose one
can verify that A.1) is valid forn = 1. (That’s like being able to stop smoking
for that one day). And suppose we could prove th#te formula is truefor
any particular positive integerthen it must be true for the next integes- 1.
(That’s the analog oknowingthat if he can go any full day without smoking,
he can certainly go one more). If we can do that, then we wileh@roved the
validity of (A.1) for all positive integers.

A.2 Proving a formula by induction

Let us return to the task of proving the formula that Euleccdiered on his
own.
n(n+1
1+24+3+---+(n=1)+n= ( 5 ).
An easydirect proof of this would follow Euler’s idea. LeSbe the sum so
that

S=1+2+4+3+---+(n—=1)+n
or, expressed in the other order,
S=n+(n-1)+(n—-2)+---+2+1
Adding these two equations gives
2S=n+L)+(n+1)+(n+1)+---+(n+1)+(n+1)
and hence

2S=n(n+1)

or ( )
nn+1

S= >

which is the formula we require.

Suppose instead that we had been unable to construct thog pracking
any better ideas we could justtestitoutfor 1,n=2,n=3,...foras long as
we had the patience. Eventually we might run into a countargte (proving
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the theorem is false) or have an inspiration as to why it is.ttndeed we find
1(1+1)

2
2(2+1)

2
11243= 3(3; )
and we could go on for some time. On a computer we could rajitkek for
several million values, each time finding that the formuleakd.

If the computer ever finds a counterexample (just one instavitere the
formula fails) then that would be a proof that it is a falsenfiota.

But if the computer never finds a counterexample, if the fdenpuoves to
be correct after hours of checking? Is this a proof? If a fdenworks this
well for untold millions of values oh, how can we conceive that it is false?
We would certainly have strong emotional reasons for belgethe formula
if we have checked it for this many different values, but thizuld not be a
mathematical proof.

Instead, here is a proof that uses the same method of indubi@d we had
the smoker use to quit his habit.

Suppose that the formula does fail for some value.ofThen there must
be a first occurrence of the failure, say for some intédgerVe knowN # 1
(since we already checked that) and so the previous intéget does allow a
valid formula. It is the next on#l that fails. But if we can show that this never
happens (i.e., there is never a situation with- 1 valid andN invalid), then we
will have proved our formula.

For example, if the formula

1=

1+2=

M(M+1
1+2+3+---+M:%
is valid, then
M(M+1
1+2+3+-~-+M+(M+1):%HMJ&)

MM+1)+2M+1) (M+1)(M+2)

2 a 2 ’
which is indeed the correct formula for= M + 1. Thus there never can be
a situation in which the formula is correct at some stage anid &t the next

stage. It follows that the formula is always true. This is @gfiby induction.
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A.3 Setting up an induction proof

This may be used to try to prove any statemit) about an integen. We
wish to prove that the statements

P(1),P(2),P(3),...,P(n),...
(all of them)are true.
Here are the steps:
Step 1 Verify the statemen®(n) for n= 1.

Step 2 (The induction step) Show that whenever the statement ésfouany
positive integemit is necessarily also true for the next intege# 1.

Step 3 Claim that the formula holds for all integens> 1 by the principle of
induction.

A.3.1 Starting the induction somewhere else
An inductive argument is, on occasion, somewhat more coeweif the state-
ments are labeled differently. Thus instead of wanting tverthe statements
P(1),P(2),P(3),...,
we might want to prove the statements
P(0),P(1),P(2),P(3),...
or even,
P(3),P(4),P(5),....

There is nothing new here, just a different use of labelsud¢tidn proceeds
in the same way. For example here is the scheme that we woeltbysove
that each of the statements

P(0),P(1),P(2),P(3),...
is true.

Step 1 Verify the statemen®(n) for n=0.

Step 2 (The induction step) Show that whenever the statement ésfouany
integerm > 0 it is necessarily also true for the next integes 1.

Step 3 Claim that the formula holds for afi > 0 by the principle of induction.

A.3.2 Setting up an induction proof (alternative method)

This alternative format may also be used to try to prove aajestentP(n)
made about an integer In this version we do not go from stepto stepn+ 1.
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Instead we may rely upoany or all of the stepffom 1, 2, ..., up tan itself to
help verify stepn+ 1. As before, we wish to prove that the statements
P(1),P(2),P(3),...,P(n),...

(all of them)are true.
Here are the steps:

Step 1 Verify the statemen®(n) forn=1.

Step 2 (The induction step) Show that whenever the statement ésftuall
positive integers 1, 2, .. mit is necessarily also true for the next integer
m+-1.

Step 3 Claim that the formula holds for afi > 1 by the principle of induction.

Note that the induction step is different in this method. Vas before we
assumed tha(m) was true and fashioned a proof ti{tn+ 1) should then be
true, here we assumed more. We assumed that all of the statteeme

P(1),P(2),P(3),...,P(m)
are true, and then we found a proof tRam- 1 should be true.
In the exercises you are asked for induction proofs of varigtatements.

You might try too to give direct (noninductive) proofs. Whimethod do you
prefer?

Problem 203 For every positive integer 12" > n. O

Problem 204 Formulate the example of the person who wished to give up-smok
ing in the language of Mathematical Induction. That is, wai the statements

P(n)forn=1,23,...? 0
Problem 205 Prove by induction that for every-a 1,2,3,...,
1H(2n+1
24242 NOE >6( n+1)

Answer O

Problem 206 Compute for n=1, 2, 3, 4 and5 the value of
14+3+5+---+(2n—1).

This should be enough values to suggest a correct formulafy Veby induc-
tion. 0

Problem 207 Prove by induction for every & 1,2,3,... that the number
7 —4"
is divisible by3. 0
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Problem 208 Prove by induction that for every-a1,2,3, ...
(14x)" > 1+nx
for any x> 0. 0

Problem 209 Prove by induction that for every-a 1,2 3, ...
1— "+l
1-r
for any real number g~ 1. 0

Lhr+ri4. 41" =

Problem 210 Prove by induction for every & 1,2 3,... that
B4+28438 4 4= (1+24+3+-+n)
O

Problem 211 Show that the following two principles are equivalent (iaes-
suming the validity of either one of them, prove the other).

(Principle of Induction) Let S be any set of positive integers such
that:

1. 1 belongsto S.
2. For all integers n, if nisisin S, then so isH1l.

Then S contains every positive integer.
and

(Well Ordering of N) If S is a set of positive integers and con-
tains at least one element, then S has a first element (i.@nienal
element).

0

Problem 212 (Birds of a feather flock together) Any collection of n birds must

be all of the same species.

Proof. This is certainly true ih = 1. Suppose it is true for some valoeTake

a collection ofn+ 1 birds. Remove one bird and keep him in your hand. The
remaining birds are all of the same species. What about teeoyour hand?
Take a different one out and replace the one in your hand.eSiemow is in

a collection ofn birds he must be the same species too. Thus all birds in the
collection ofn+ 1 birds are of the same species. The statement is now proved
by induction.[Criticize this “proof”’] Answer O

Problem 213 There were many possible uses of induction in Nim. For exampl
in 2-pile Nim we asserted that positions of the fomn) were all balanced.
Give an inductive proof of this fact. Answer O
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Problem 214 Use induction and the fact that the Nim ganflek) are balanced
to prove that the 3-pile Nim game of the foffh b, c) is balanced if b is even
andc=b+1. 0

Problem 215 The inequality
2n+1 > 2n+2n71+~_~+21_i_20

can be used in our analysis of the game of Nim. Verify it byétida.
Answer O

Problem 216 Prove using induction: For every positive integer n,
Ml 1=y

(Thus, for examplé*—1=234+2242+1)
The problem shows that the largest binary numeral with a fixethber of
bits is one less than the smallest having one more bit, e.g.,

10000 1 = 1111(base 2)
O

Problem 217 What is the corresponding statement for base ten of therstte
in Problem2167? 0

A.4 Answers to problems

Problem 205, page 233

Check forn= 1. Assume that
n(n+1)(2n+1)
6
is true for some fixed value of. Using this assumption (called the induction
hypothesis in this kind of proof), try to find an expression fo

1242243+ 4+ (n+1)>2
It should turn out to be exactly the correct formula for thensaf the firstn+ 1
squares. Then claim the formula is now proved fondsly induction.

124092132, .12

Problem 212, page 234

The induction step requires us to show that if the statenwemt it true, then so
is the statement fan+ 1. This induction step must be truent= 1 and ifn= 2
and ifn=3..., in short, for alh. Check the induction step for= 3 and you
will find that it does work; there is no flaw. Check the induatitep forn = 4
and again you will find that it does work.
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But does it work for alh > 1? Well yes and no. Yes far=3,n=4,n=25,
..., butnofom=1andn=2.

Problem 213, page 234

For each integem = 0,1,2,3,... we letP(n) be the statement that the position
(n,n) is balanced in a 2-pile Nim game. The induction starts at0 and the
needed steps are:

1. We proveP(0) is true.
2. We prove that iP(k) is true whenever & k < n, thenP(n+1) is true.

Then we know, by induction, th&(n) is true for all integers > 0.

Here it is convenient to begin our induction mt= 0. Now, P(0) is the
statement that the positi@f, 0) is balanced. This is true since the final position
in a Nim game is always balanced.

To verify the induction step, suppose thk) is true whenever & k < n.
Consider the gam@g+1,n+1). Any move from this position results in a game
(m,n+1) or (n+1,m) wherem < n+ 1. A balancing response resulting in the
position (m, m) is possible sincen < n+ 1. This position is balanced (by the
Induction Hypothesis). Thug+ 1,n+ 1) is balanced; i.e. 1+ 1) is true, as
was to be proved.

You may have noticed that we needed the full Induction Hyesith that
P(k) is truefor all k < nin order to verify thaP(n+ 1) is true. In many of the
other applications of an inductive argument it was enougisgume only that
P(n) was true in order to prove thafi®+ 1) is true.

Problem 215, page 235

To do this, letP(k) be the statement:
P(k): 2Kk okl 40120
Our first step is to show that
P(1): 22>21420
is true. But this amounts only to checking that-8.
Suppose now (the induction hypothesis) that) is true. Thus (witm some
fixed positive integer) we are assuming that
P(n): 2Misongon-ly ... 401420
is a true statement.
We wish to show that the statemdtin+ 1) is true, i.e., our goal is to prove

that
P(n+ l) . 2[n+1]+1 > 2[1’14—1] +2[I’H—1]—1+ . +21+20
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is a true statement. We can do this by using our induction tigsis.
Check that

2n+2 _ 2(2n+1) > 2(2n 4o 21 + 20)7
because of the induction hypothesis. Note that both sidéseohequality are
even numbers. It follows that
2n+2 > 2n+1+_‘__|_22+21+20.
This is exactly the statemeR{n+ 1) and so that statement is true. The inequal-
ity now follows by induction for all values afi=1,2,3,....
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Appendix B

Nim, A Game with a Complete
Mathematical Theory

Charles L. BoutonNim, A Game with a Complete Mathematical
Theory,Annals of Mathematics, Second Series, Vol. 3, No. 1/4
(1901-1902), pp. 35-39.
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240 The Game of Nim

NIM, A GAME WITH A COMPLETE MATHEMATICAL
THEORY.

By CrarrLEs L. BouTton.

THE game here discussed has interested the writer on account of its seem-
ing complexity, and its extremely simple and complete mathematical theory.*
The writer has not been able to discover much concerning its history, although
certain forms of it seem to be played at a number of American colleges, and
at some of the American fairs. It has been called Fan-Tan, but as it is not
the Chinese game of that name, the name in the title is proposed for it.

1. Description of the Game, The game is played by two players,
A and B. Upon a table are placed three piles of objects of any kind, let us
say counters. The number in each pile is quite arbitrary, except that it is well
to agree that no two piles shall be equal at the beginning. A play is made as
follows :—The player selects one of the piles, and from it takes as many coun-
ters as he chooses; one, two, . . ., or the whole pile. The ounly essential
things about a play are that the counters shall be taken from a single pile, and
that at least one shall be taken. The players play alternately, and the player
who takes up the last counter or counters from the table wins.

It is the writer’s purpose to prove that if one of the players, say A, can
leave one of a certain set of numbers upon the table, and after that plays with-
out mistake, the other player, B, cannot win. Such a set of numbers will be
called a safe combination. In outline the proof consists in showing that if A4
leaves a safe combination on the table, B at his next move cannot leave a safe
combination, and whatever B may draw, 4 at his next move can again leave a
safe combination. The piles aro then reduced, 4 always leaving a safe com-
bination, and B never doing so, and .4 must eventually take the last counter
(or counters).

2. Its Theory. A safe combination is determined as follows: Write
the number of the counters in each pile in the binary scale of notation,t and

* The modification of the game given in §6 was described to the writer by Mr. Paul E.
More in October, 1899. Mr. More at the same time gave a method of play which, although
expressed in a different form, is really the same as that used here, but he could give no proof
of his rule.

+ For example, the number 9, written in this notation, will appear as

1-2% 4 0-22 4+ 0-2! 4+ 1-2° == 1001.
(85)
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place these numbers in three horizontal lines so that the units are in the same
vertical column. If then the sum of eack column is 2 or O (<. e. congruent to
0, mod. 2), the set of numbers forms a safe combination. For example,

1001,
101,
1100,

or 9, 5, 12 is a safe combination. It is seen at once that if any two numbers
be given, a third is always uniquely determined which forms a safe combina-
tion with the two given numbers. Moreover, it is obvious that if a, b, ¢ form
a safe combination any two of the numbers determine the remaining one, that
is, the system is closed. A particular safe combination which is used later is
that in which two piles are equal and the third is zero. In the proofs which
follow, the binary scale of notation is used throughout.

Tueorem 1. If A leaves a safe combination on the tudle, B cannot leave a
safe combination on the table at his next move. B can change only one pile, and
he must change one. Since when the numbers in two of the piles are given the
third is uniquely determined, and since A left the number so determined in the
third pile (7. e., the pile from which B draws) B cannot leave that number.
Hence B cannot leave a safe combination.

TueoreM 1. If A leaves a safe combination on the table, and B diminishes
one of the piles, A can always diminish one of the two remaining piles, and
leave a safe combination. Consider first an example. Suppose A leaves the
safe combination nine, five, twelve, and that B draws two from the first pile,
leaving the numbers seven, five, twelve, or

111,
101,
1100.

If A is to leave a safe combination by diminishing one of the piles, it is
clear that he must select the third pile, that containing fwelve. The number
which is safe with 111 and 101 is 10, or two. Hence .4 must leave {wo in the
pile which contunins twelve, or draw ten from that pile, and by doing so he
leaves a safe combination.

To prove the general theorem, let the numbers, expressed in the binary
scale, be written with the units in a vertical column, and suppose that 4 left
a snfe combination. B selects one of the piles and diminishes it. When a
number of the binary scale is diminished it is essential to notice that in going
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over the number from left to right the first change which occurs is that some
1 is changed to 0, for if a O were changed to 1 the number would be increased
whatever changes were made in the subsequent digits.* Consider, then, this
first column, counting from the left, in which a change occurs. One and only
one of the other two numbers will contain 1 in this same column, for 4 left a
safe combination. Let A4 select the pile which contains the 1 in this column,
and change the number by writing 0 in this column, and filling the remaining
columns to the right with 0 or 1 so as to make a safe combination. The col-
umns to the left remain unchanged, since they already have the required form.
The new number so formed will be less than that in the pile which A4 selected.
Hence whatever B draws, A can always diminish one of the piles, and leave
a safe combination. That is, if 4 at any play can leave a safe combination on
the table, he can do so at every subsequent play, and B never can do so.

If the play continues in this way 4 must win. For one of the piles must
be reduced to zero by either 4 or B. If B reduces it to zero, the two remain-
ing piles will be unequal, since 5 can never leave a safe combination, and 4
at his next move will make them equal, and will thereafter always leave them
equal. B must, therefore, reduce the second pile to zero, and 4 then takes all
of the third pile, and wins. If, on the other hand, A is the first player to ve-
duce one of the piles to zero, he leaves the other two piles equal and wins as
before. Hence we see that the player who can first leave a safe combination
on the table should win.

If it happens that in the beginning a safe combination is placed on the
table, the second player should win. If in the beginning a safe combination
is not placed on the table, it is easily seen that the first player canalways leave
a safe combination by diminishing some one of the piles, and he can often do
this by drawing from either one of the three piles. Therefore in this case the
first player should win. That is, the first player should win or lose according
as a safe combination is not or is placed on the table at the beginning.

3. The Chance of a Safe Combination. Assuming thatthe number
in each pile at the beginning was determined by chance, let us compute the
chance of a safe combination’s being placed upon the table. It is easily shown
that if each pile contains less than 2” counters and if no pile is zero (7. e. if
there are three piles), the possible number of different piles is

* The proof of this statement depends on the fact that the number 100 . . . (» ciphers),
or 2%, is greater than the number 11 . . . (n ones), or 2»—1 4 22—2 4 | 4+ 2 41 =2" — 1.
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2::—1(2211 —_ ‘l)
3 .
The number of safe combinations in the same case is

(21:—1 — 1)(211____ 1)

Hence the chance of a safe combination’s being placed upon the table at first is
on —1 __ 1
210—!(2)0 + ])’

and this is the chance that the second player xhould win. The chances of the
first player’s winuing are to those of the second as

o 3

2042 5 -E';;T:i- to 1,
on the assumption that both players know the theory, and that the numbers in
the various piles were determined by chance.

4. A List of Safe Combinations, » = 4. The following are the 35

sufe combinations all of who=e piles are less than 16:

1 2 3 2 4 0 3 4 7 4 812
1 4 5 2 5 7 3 5 6 4 913
1 6 7 2 810 3 811 410 14
1 8 9 2 91 3 910 411 15
110 11 212 14 31215
112 13 213 15 313 14
114 15

5 813 6 8 14 7 815

5 912 6 915 7 9 14

5 10 15 6 10 12 710 13

511 14 6 11 13 711 12

Of course, to give all safe combinations of numbers less than 16 we should have
to add to the above table the 15 of the form 0, n, n.

5. Generalization. The foregoing game can he at once generalized
to the case of any number of piles, with the same rule for playing. In this
case a safe combination is a set of numbers such that, when written in the bi-
nary scale and arranged with the units in the same vertical column, the sum of
each column is even (7. e., = 0, mod. 2). Just as befure, it is shown that the
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player who first leaves a safe combination can do so at every subsequent play,
and will win. The induction proof is so direct that it seems unnecessary to
give it.

6. Modification. The gaume may be modified by agreeing that the
player who takes the last counter from the table loses. This modification of
the three pile game seems to be more widely known than that first described,
but its theory is not quite so simple.

A safe combination is defined just as in the first case, except that 1, 1, 0
is not a safe combination, and 1, 1, 1 and 1, 0, 0 are safe combinations. When
the first theory indicates that A should play 1, 1, O he must play either 1,1, 1
or 1, 0, 0. The earlier part of the proof proceeds as hefore. In order to com-
plete it, we must show that B can never leave 1, 1,1; that, when 1,1, 0 is
indicated for A, he can always play either 1, 0, 0 or 1, 1, 1; and finally that,
if the play is carried out in this way, B must take the last counter. That B
can never leave 1, 1, 1 is at once clear, for A never leaves 1,1, nwheren > 1,
since this is not a safe combination. Secondly, let us consider what sets of
numbers 5 can leave which would indicate 1, 1, 0 as A’s next play in the first
form of game. They are 1, 1, n where n > 1, and 1, n, 0 where n > 1. In
the first case 4 leaves 1, 1, 1 and in the second 1, 0, 0. The proof is now
easily completed. Either 4 or B reduces a pile to zero. If B does so, the
other two piles are unequal and both greater than unity, or at least one of the
two remaining piles is unity. Inthe latter case 4 obviously wins. In the for-
mer case 4 makes the two piles equal, and then keeps them equal until B re-
duces one of them to 1 or 0. If B makes it 1, A takes all the other pile; if B
makes it 0, 4 takes all but 1 of the other pile. Hence if B first reduces a pile
to zero A wins. If A first reduces a pile to zero he leaves the other two piles
equal and each greater than unity, and wins as before. Hence if 4 plays on
the safe combinations as here modified, B must take the last counter from the
table, and loses. That is, in this modified game, also, the player who can first
get a sate combination should win.

This modified game can also be generalized to any number of piles.
The safe combinations are the same as before, except that an odd number of
piles, each containing one, is now safe, while an even number of ones is not
safe.

HARVARD UNIVERSITY,
CAMBRIDGE, MASSACHUSETTS.
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