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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 83, Number 3, November 1981 

MONOTONICITY THEOREMS 

B. S. THOMSON 

ABSTRACT. A generalization of the extreme derivates of a function is given and 

used to prove several monotonicity theorems. 

1. Introduction. There is now an extensive literature devoted to the investigation 

of conditions sufficient to ensure that a function be monotonic on an interval. An 

excellent introduction to this topic can be found in A. M. Bruckner's monograph 

[1] and in the expository article [2]. The multiplicity of results available in this area 

suggests an abstract and unified treatment might be useful. Here we introduce the 

notion of an abstract derivation basis and interpret several monotonicity theorems 

in terms of the "geometry" of the derivation basis. This permits us to derive a 

number of classical and recent monotonicity results within a single general setting. 

2. General theory. Throughout [a, b] is a fixed interval and q denotes the 

collection of all closed (nondegenerate) subintervals of [a, b]. Our structure is built 

on the product set q x [a, b]. Whenever S is a subset of 4 x [a, b] and X is a 

subset of [a, b] we will write S[X] = {(I, x) E S: x e X} and S(X) = {(I, x) E 

S: I C X}. If TE is a family of subsets of q x [a, b] then we write similarly 

i3[X] = {S[X]: S E id} and id(X) = {S(X): S E 93}. A finite subset P = {(Ii, xi): 

i = 1, 2, ... , n} of q x [a, b] is said to be a (pointed) partition if Ii and Ij do not 

overlap when i =/j. If P is a partition as above and E = U {Ii: i = 1, 2, . .. , n} 

then we will say moreover that P is a partition of E. A subset S of 4 x [a, b] is said 

to partition E if S contains a partition of E. A family T of subsets of q x [a, b] is 

said to partition E if every S, S E id, partitions E. 

Our main definitions follow. 
(1) A nonempty family T3 of subsets of x x [a, b] is said to be a derivation 

scheme if for every family {S,: x E [a, b]} T s3 there is an S C 93 with S[{x}] C 

SX for each x E [a, b]. 
(2) A derivation scheme T3 is said to be a derivation basis if, moreover, for every 

set G open in [a, b] and every So E e there is an S C e for which S[G] C So(G). 

(3) For any derivation scheme 03 and any real-valued interval function h (h: 

- R) the extreme Qd-derivates of h are defined to be 

D,h(x) = inf sup{h(I)/1II: (I, x) E S) 
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548 B. S. THOMSON 

and 

D,,3h(x) = sup inf(h(I)/III: (I, x) E S} 
Se t 

at any point x in [a, b] where III denotes the length of the interval I and empty 
suprema and infima follow the usual conventions. (Note that without further 
properties assumed for T3 there is no suggestion that D,h(x) must exceed D,h(x).) 

If f is a real-valued function on [a, b] then we will write as lf the usual interval 
function defined fromf by setting Af([a, /3]) = f(/3) - f(a). Thus our main object 
of study, the generalized extreme derivates of f, are written as DzAf(x) and 

DsAff(x) 
(4) For any derivation scheme id and any real-valued interval function h we write 

V(h, S) = sup{X(IX)(PIh(I)I: P C S, P a partition), V(h, ) = inf{ V(h, S): S E 
93), and h,,,(X) = V(h, QT[X]) (X C [a, b]). We will interpret V(h, 0) = 0. 

(5) If 'X is any family of nonnegative subadditive interval functions then a 
derivation scheme T3 is said to be SC-complete (cf. [4]) if h E SC and V(h, Q3) = 0 
together imply that h 0_ . In particular 93 is C-complete if this holds for every 
continuous, nonnegative, subadditive interval function. 

To illustrate these definitions and for later reference we give a number of 
concrete realizations of these ideas. Readers familiar with [4] and [5] should 
recognize the following examples. 

(i) The ordinary extreme (bilateral) derivates. If 6 is any positive function defined 
on [a, b] we will write D6 for the collection of all interval-point pairs ([x, y], z) with 
x,y, z E [a, b], z = x or z = y, and 0 <y - x <6(z). Then S is the family of all 
such sets D6 for arbitrary positive functions 6. It is straightforward to verify that 2 

is a derivation basis and that Z partitions every interval in J (cf. [5, p. 221]). For 
any function f on [a, b] the derivates Dz\f(x) and DzAf(x) are exactly the lower 
and upper extreme bilateral derivates of f at x; if f is continuous and of bounded 
variation on [a, b] it is possible to prove that the set function Afz gives the usual 
Lebesgue-Stieltjes outer measure on [a, b]. 

(ii) The approximate extreme derivates. Let (t, X) be any pair of numbers in the 
interval [0, 1]. Suppose that for each x E [a, b] there is given a measurable set 
M(x), with x E M(x), such that M(x) has right density at x exceeding A (or if 

A = 1 then right density equal to 1) and M(x) has left density at x exceeding X (or 
if X = 1 then left density equal to 1). For such a function M(y) write AM= 

{([x,y], z): x,y, z E [a, b], z = x or z = y, y <x, and x,y E M(z)). Then W(#A) 

will denote the family of all such collections AM where M is any function satisfying 
the above stated properties for a fixed pair (A, X). 

The family 9At) can be seen to be a derivation basis; Henstock [4] has shown 
that, provided A + X > 1, WAf) partitions every interval in 4. For measurable 
functions f the extreme derivates DxAif(x) and DxAf(x) with W = W(-) are exactly 
the approximate extreme derivates; the derivation basis W(1/2,1/2) yields similarly 
the preponderant extreme derivates of a measurable function. 

(iii) The symmetric extreme derivates. For any positive function 8 on (a, b) write 

S, as the collection of all interval-point pairs ([x - t, x + t], x) in 4 x [a, b] for 
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which 0 < t < 6(x), and let Ei denote the family of all such S8 for arbitrary positive 
functions 6 on (a, b). Again (5 is a derivation basis and the extreme (5-derivates are 
the usual extreme symmetric derivates. (E fails to partition every interval in 4 but it 
follows from a result of McGrotty [6] that (Pi is C-complete, and this fact permits a 
number of monotonicity theorems to hold for the symmetric derivates in the 
presence of a continuity hypothesis. 

We now proceed to our monotonicity theorems. If h is an interval function then 
we write h+ and h- for the interval functions h+(I) = max{ch(I), 0) and h-(I) = 
max{-h(I), 0). To prove that a real-valued function f on [a, b] is nondecreasing is 
then equivalent, obviously, to showing that the interval function if - vanishes 
identically, and this in turn can frequently be established by showing that the 
associated set function ?fe, vanishes. All our theorems reduce essentially to the 
fact that some information about the id-extreme derivates of Af can be used to 
prove that Afe =_ 0. In using this result the two lemmas which follow are basic; 
proofs can be found in [5]. 

LEMMA 1. If 93 is a derivation scheme and h a real-valued interval function then h. 
is an outer measure on [a, b]. If further T3 is a derivation basis then he, is a metric 
outer measure (i.e. all Borel sets are h.-measurable). 

LEMMA 2. Let T3 be a derivation scheme that partitions every interval in a. Then 93 
is necessarily 'X-complete for any choice of 96, and in particular T3 is (C-complete. 

THEOREM 1. Let SE be a derivation scheme, X a subset of [a, b], and h a real-valued 
interval function. If DPh(x) > 0 for he -almost every x in X then h (X) = 0. If 
D,h(x) > 0 a.e. in X and D,h(x) > -x for h -almost every x in X then h (X) = 

0, provided id is also a derivation basis. 

COROLLARY. Let 93 be a derivation scheme that is SC-complete. Then in order that 
a function f on [a, b] be nondecreasing it is sufficient that Af - E SC and either 

(a) DoAf(x) > O for Afe -almost every x in [a, b], or 
(b) DP1f(x) > 0 a.e. in [a, b] and DoAf(x) > -x for Af--almost every x in 

[a, b], with 9e being moreover a derivation basis. 

PROOF. The corollary follows immediately from the theorem because of defini- 
tion (5). To prove the first part of the theorem we need only establish that 
he(XO) = 0 where XO = {x E X: D,h(x) > 0). For any E > 0 there must be (by 
(1) and (3)) an S E 93 with h(I) > --III for every (I, x) E S[X0]. This gives 
h-(I) < ciII for such (I, x) and so h (X0) = V(h-, 0[XO]) < V(h- S[XO]) < 

c(b - a). As E > 0 is arbitrary it follows that h (X0) = 0 proving the first part. 
For the second part of the theorem we add in the hypothesis that e is a 

derivation basis (satisfies (2)). Let us write Y = {x E X: -oo < De,h(x) < 0); the 
theorem then follows from the first part if we are able to establish that he( Y) = 0. 
For each integer n = 1, 2, 3, . . . write Y, = {x E X: -(n - 1/2) < Doh(x) < 0). 
By our assumptions each Yn has measure zero and so can be included in an open 
set Gn of measure less than any given i1 > 0. Select an S,, E T so that h(I) > -n I I 
whenever (I, x) E Sj[ Y,j and then use (2) to find an S' E e with S'[Gn] 5 Sn(Gn). 
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From this we see that every (I, x) E S'[ YJ] has I C Gn and also h(I) > -nIII. This 
proves that h( Yj) = V(h -, 8[ Yn]) < V(h -, S[ Yn]) < nq. As q > 0 is arbitrary 
this gives h(YJ) = 0 for each n and so h (Y) < I h Yn = 0 as required 
proving the theorem. 

With a minimum of structure we have included in this theorem a great many 
known monotonicity theorems (as is outlined below). The celebrated theorem of 
Goldowski and Tonelli (see e.g. Saks [8, p. 206]) requires further properties of the 
derivation basis. We shall need that the family id be filtering downwards and that 
its members permit a decomposition similar to that available for ordinary deriva- 
tives (e.g. as in the proof of G. C. Young's theorem in [1, p. 63]). Specifically we 
write the properties as (a) for every S, E S and S2 E S there is an S3 E SE with 
S3 C S, n S2; and (b) for every S E T3 and every X C [a, b] there is a sequence of 
sets { Xj with X = U Xn such that S[Xn] partitions every interval with endpoints 
in Xn. 

We may now state and prove an abstract version of the Goldowski-Tonelli 
theorem. 

THEOREM 2. Let S3 be a derivation basis having properties (a) and (b) and which is 
C-complete. If f is a continuous function on [a, b] for which (i) DBAf(x) > 0 a.e. and 
(ii) Dv,4f(x) = DTAf(x) everywhere except possibly on a countable set, then f is 
nondecreasing on [a, b]. 

PROOF. The proof follows very closely the lines of the original as it appears in 
Saks [8, p. 206]. Let G be the collection of all points x E [a, b] for which sf& (a, /3) 
vanishes on some interval (a, /3) containing x. It is clear that G is open in [a, b] 
and that Af,-(G) = 0. The conclusion of the theorem is obtained if we prove that 
G = [a, b]. To this end let E = [a, b] \ G; E is evidently closed and it is to be 
proved that it is empty. 

Write Xl = {x E [a, b]: DAv f(x) < -1 , X2 = {x E [a, b]: DvBAf(x) > -2), and 
observe that because of (ii) these sets exhaust [a, b] except possibly for a countable 
set. Choose an S EE s so that Af(I)/III < -1 whenever (I, x) E S[X1J and 
Af(I)/III > -2 whenever (I, x) E S[X2]. (This uses property (a).) By property (b) 
there are sequences {El) and { E2) with XI = U En' and X2 = U E,2 so that S[E,] 

partitions every interval with endpoints in Ei (i = 1, 2). 

Suppose that E is nonempty: then by Baire's theorem [8, p. 54] there must be a 

nonempty portion E n (a, /8) in which either (10) some set En' is dense, (2?) some 

set E,2 is dense, or (30) that reduces to a single point. The theorem is proved by 

establishing that each of these is impossible. 
As f is continuous it is easy to see that tAf ({x}) = /fo({x)) = 0 for every 

x E [a, b]. Thus if (30) is the case, i.e. E n (a, /) is a single point, then lAfg(a, /3) 
< Af; (G) + Afj (E n (a, /8)) = 0 which contradicts the definition of E. 

If (10) is the case and En' is dense in E n (a, /8) then any interval I with 

endpoints in E n (a, /) must have Af(I)/III < -1. To see this observe that any 

interval [x, y] with both x and y in En' is partitioned by S[En'] and so must have 

f(y) - f(x)/(y - x) < - 1; by continuity of f this obviously extends to the closure 
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of E ' proving the claim. Accordingly E must be nowhere dense in (a, /3), otherwise 
we would have Dlvf(x) S -1 everywhere on some subinterval which would violate 

(i) of the theorem. On the other hand if (t, -q) is a component subinterval of 

(a, /3) \ E then tAfj([t, 71]) < Afj(G) + Afg({(}) + f ({7q}) = 0 so that Af -[t, q] 
= 0 and this contradicts the fact that Af[f, q]/[, <1] ? -1 as proved above for such 
intervals. 

There now remains only case (2?). Suppose that E,2 is dense in E n (a, /8). By 

arguments similar to those above we can prove that Af(I)/ Il > -2 for any 

interval I with endpoints in E n (a, /3); in fact this is true for any interval 

I c (a, 3). For example if [x,y] c (a, /) with x E E and y E G then there is a 

component (t, 7) of G to which y belongs and, as before, Afe ([f, q]) = 0 so that 

f(y) - f(s) > 0. This gives f(y) - f(x) = f(y) - f(s) + f(s) - f(x) > -2 since 
[x, f] has endpoints in E n (a, p8). The other cases are similar. But this inequality 
holding for all subintervals of (a, /3) requires that DTAf(x) > -2 at every point of 

(a, /3); this together with (i) of the theorem and Theorem 1 gives zAf& (a, /3) = 0 
which again contradicts the definition of E and completes the proof of the 

theorem. 
The assumption of continuity in this theorem can be replaced by the requirement 

that f be at least in Baire class 1 and continuous in the Darboux sense. For a proof 
we need only appeal to a very general reduction theorem of Bruckner [1, p. 1811 
that permits such extensions under very mild (and frequently encountered) condi- 

tions. Here the only condition that needs to be checked is supplied by the following 
lemma. 

LEMMA 3. Let 93 be a derivation basis that has property (b) above. If everywhere in 
a set X with at most countably many exceptions one of the inequalities DTAf(x) > 

- x or Dq3Af(x) < + x holds then f must be VBG on X. 

PROOF. It is evidently sufficient to show that f is VBG on the set X = {x E 

[a, b]: DvAf(x) < + cx} and if we write, for each natural number n, X, = {X E X: 

Dq3Af(x) < n} then it is enough to prove that f is VBG on each Xn and it will 

follow that f is VBG on the set X = U Xn. To this end choose S E e so that 

Af(l) < nil for every (1, x) E S[Xn] and use property (b) to produce a sequence of 

sets {EEm) covering Xn such that S[EmI partitions every interval with endpoints in 

Em. If J is any such interval it is evident that Af(J) < nIJI. This shows that 

f(x) - nx is decreasing on Em and so f is of bounded variation on Em. Since 

Xn = U Em it follows thatf is VBG on Xn as required. 
We conclude with some remarks illustrating possible applications of the theo- 

rems presented here. If Z denotes the derivation basis associated with ordinary 

differentiation (example (i) above) and the lower extreme derivate of a functionf is 

written in its usual notation f'(x) (rather than DzAf(x)) then Theorem 1 proves the 

following monotonicity result: in order for a function f to be nondecreasing on an 

interval [a, b] it is enough that f'(x) > 0 except possibly in a set N, or that 

f'(x) > 0 a.e. andf'(x) > -x except possibly in a set N with vfi,(N) = 0. Here N 

may be taken as empty with no restrictions on f, N could be taken as countable on 
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the assumption thatf is continuous at each point of N, N could be taken as a set of 

measure zero provided we know that f is ACG*, or N could be such that 

If(N)l = 0 provided f is continuous and VBG*, since in each of these cases it is 

possible to verify that zAfjj(N) = 0. Theorem 2 in this setting is exactly the classical 

Goldowski-Tonelli theorem. 
With s? = %(? i) of example (ii) and writing fap(x) in place of DgAf(x) for the 

lower approximate extreme derivate we have the theorem: in order for a functionf 

to be nondecreasing on an interval [a, b] it is enough that fap(x) > 0 except 

possibly in a set N, orfap(x) > 0 a.e. and fp(x) > -oo except possibly in a set N 

wheref is measurable and where Af,f7(N) = 0. Using N empty here gives a result of 

Goffman and Neugebauer [3] and a recent result of O'Malley [7]. Again there are a 

number of variants possible by varying the scope of the exceptional set N and 

restrictingf in such a way that Afs-(N) = 0. In this setting Theorem 2 goes back to 

Tolstoff and Bruckner (see [1, p. 175]). 
There are a number of other derivation bases that share the properties of ?) and 

VI. We shall not give the details but it is possible to investigate qualitative 

derivatives and selective derivatives in this setting and to prove that the corre- 

sponding derivation bases have all the properties needed to apply Theorems 1 and 

2. Note that the symmetric derivation basis does not have property (b) and so while 

Theorem 1 applies to it, Theorem 2 does not. 
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