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THE TEACHING OF MATHEMATICS 

EDITED BY JOAN P. HUTCHINSON AND STAN WAGON 

More on the Fundamental Theorem of Calculus 

CHARLES SWARTZ 
Department of Mathematics, New Mexico State University, Las Cruces, NM 88003 

and 

BRIAN S. THoMSON 
Department of Mathematics, Simon Fraser University, Burnaby, B. C., Canada VSA 1 S6 

In a note [1] in the MONTHLY, Botsko and Gosser point out that the standard 
version of the Fundamental Theorem of Calculus holds when the usual derivative is 
replaced by the right-hand derivative. We would like to point out that by making a 
slight alteration in the usual definition of the Riemann integral, we can obtain an 
integral for which the Fundamental Theorem of Calculus holds in full generality. 

We begin by recalling one of the common definitions of the Riemann integral. 
If P = {a = xo < x1 < ... < xn = b} is a partition of [a, b], the mesh of P is 
max{xi - xi-,: i = 1, ...,n}1. 

DEFINITION 1. A function f: [a, b] aR is Riemann integrable over [a, b] if 
there exists A Ec R such that for every e > 0 there exists 8 > 0 such that if P is a 
partition of mesh less than 8 and if ti E [xi_, xi], then 

n 
| ,f(ti)(xi -xi-j- A < e. 

The number A is calleca the Riemann integral of f and is denoted by fab'. 
In order for a function f: [a, b] - R to be Riemann integrable it is necessary 

that whenever the interval [a, b] is partitioned into subintervals of length less than 
8, the Riemann sums EX lf(ti)(xi - xi-,) approximate the integral of f within e. It 
is this requirement of being able to uniformly partition the interval that limits the 
scope of the Riemann integral. It would be much more desirable to somehow allow 
"variable length" partitions; for example, if one were attempting to approximate 
the area under the graph of f(x) = 1/Vl, 0 < x < 1, it would be natural to take 
the subintervals in an approximating partition to be very fine near the singularity 
x = 0. By making a slight modification in the definition above, we can easily 
achieve the ability to employ such variable length partitions. 

First, note that the requirement in Definition 1 that the partition P have mesh 
less than B can be replaced by the condition: 

/ 8 8 
[xi, xi] c t(ti - 2, ti + 2 where ti E [xi-l' Xi]. (1) 

Now we can achieve the desired variable length partition by merely replacing the 
constant 8 in (1) by a positive-valued function 8: [a, b] -- R, i.e., we replace (1) by: 

[xi-, xi] C (ti - 8(ti), ti + 8(ti)) where ti E [xi-,, Xi]. (1') 
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1988] THE TEACHING OF MATHEMATICS 645 

By varying 8(t) as t varies along the interval [a, b], the lengths of the subintervals 
in the partition satisfying (1') will vary with 8(ti). 

We give the formal definition of the resulting integral. A tagged partition of 
[a, b] is a finite set T = {x0, xl,..., xn; t1, t2,..., tn } such that {x0, xl,..., x",} is 
a partition of [a, b] and ti E [xi-,, xi]; the point ti is said to be a tag for the 
subinterval [xi-,, xi]. Any positive-valued function 8: [a, b] -o R is called a gauge 
on [a, b]. We say that a tagged division T is 8-fine if (1') is satisfied. 

DEFINITION 2. A function f: [a, b] o- R is gauge-integrable over [a, b] if there 
exists A e R such that for every E > 0 there exists a gauge 8 on [a, b] such that if T 
is a 8-fine tagged partition of [a, b], then 

n 

. f(ti)(xi - xi-1) - A <E. 

The number A is called the (gauge) integral of f and is denoted by Jabf. The 
gauge integral is also referred to as the generalized Riemann integral [9] or the 
Riemann complete integral [5]. From Definition 1, we see that a function is 
Riemann integrable iff it is gauge integrable with respect to constant-valued gauges. 
Note also that if a function is gauge integrable then its integral is the limit of a 
sequence of Riemann sums. One technicality must be taken care of in order for 
Definition 2 to make sense: it must be shown that every gauge 8 has at least one 
8-fine tagged partition. Currently this observation is ascribed to Pierre Cousin [2] 
but it may go somewhat earlier. The lemma has a curious habit of rediscovery: for 
example, each of the articles [3], [7], [12], [14] contains a fresh account with similar 
applications. The proof requires only a compactness argument (based on the 
Bolzano-Weierstrass or Heine-Borel theorems) and indeed the lemma is equivalent 
to these theorems. The reader can find an elementary proof in [9]. 

Before proceeding to the Fundamental Theorem of Calculus, consider the inte- 
grability of the Dirichlet function: f(x) = 1 for 0 < x < 1 and rational and 
f(x) = 0 for 0 < x < 1 and irrational. This is the most common example given of a 
bounded function that is not Riemann integrable, and will, therefore, furnish a 
comparison of the gauge and Riemann integrals. Let e > 0 be given and for x 
irrational, set 8(x) = 1. Let { z, }? 1 be an enumeration of the rationals in [0, 1] and 
set S(zi) = e/21?l. Now suppose that T = {x0, xl,..., xn; t1, t2,..., tn) is a 8-fine 
tagged division of [0, 1]. If t, is not rational, the term f(ti)(xi - xi_1) in the 
Riemann sum of f with respect to T is 0; if t, is rational and t, = z1, then the term 
f(ti)(xi - xi-,) in the Riemann sum is less than 28(zj) = e/2J+1. Thus, we have 

n-i 00 

E f(ti)(xi - Xi-1 < 2 E ,/2j+l = E 
i=O j=1 

where the factor 2 is necessary since each zj may be the tag for two of the 
subintervals in the partition. This implies that f is gauge integrable with Jof = 0. 
Note that the gauge 8 is definitely not a constant-valued gauge. 

We now show that the Fundamental Theorem of Calculus is valid for the gauge 
integral in full generality. For this we require the following lemma which plays the 
role of the Mean Value Theorem in the usual proofs of the Fundamental Theorem 
of Calculus for the Riemann integral. 
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646 CHARLES SWARTZ AND BRIAN S. THOMSON [August-September 

LEMMA 3 (STRADDLE LEMMA). Let F: [a, b] - R be differentiable at z E [a, b]. 
Then for each e > 0, there is a 8 > 0 such that 

IF(v) - F(u) - F'(z)(v - u) I < E(v -u), 
whenever u < z < v and [u, v] 5 [a, b] n (z - 8, z + 8). 

Proof. Since F is differentiable at z, there is a 8 > 0 such that 

I(F(x) - F(z))/(x - z) - F'(z)I < E 
for 0 < Ix - zI < 8, x e [a, b]. If z = u or z = v, the conclusion is immediate so 
suppose u < z < v. Then, 

IF(v) - F(u) - F'(z)(v - u)I 

<IF(v) - F(z) - F'(z)(v - z)I +IF(z) - F(u) - F'(z)(z - u)I 
< E(v - z) + e(z - u) = e(v - u). 

The geometric interpretation of the Straddle Lemma is clear. If the points u and 
v "straddle" z, then the slope of the chord between the points (u, f(u)) and 
(v, f(v)) is close to the slope of the tangent line at (z, f(z)). 

THEOREM 4 (FUNDAMENTAL THEOREM OF CALCULUS). If F: [a, b] o- R is dif- 
ferentiable on [a, b], then F' is gauge integrable over [a, b] and JfbF' = F(b) - F(a). 

Proof. Let e > 0. For z E [a, b], let 8(z) > 0 be the 8 given by the Straddle 
Lemma. Suppose T = { x0, x,.. ., x; tl, t2,..., tn } is a 8-fine tagged partition of 
[a, b]. Then by the Straddle Lemma, 

n 

| F'(ti)(xi - xi-) - (F(b) -F(a)) 

n 
= ( F'(t1)(x1 - xi-) - (F(xi) -Fx-1) 

< , e(xi - xi1) = e(b - a), 
i=l 

and the conclusion follows. 

Note that in general the gauge 8 constructed above is not a constant-valued 
gauge and depends on the differentiability properties of F. 

The versions of the Fundamental Theorem of Calculus for both the Riemann and 
Lebesgue integrals require the hypothesis that the derivative F' is integrable; it is 
part of the conclusion of Theorem 4 that the derivative F' is gauge integrable. For 
example, the derivative of the function F(t) = t2 CoS( 'i1/t2), 0 < t < 1, F(O) = 0 is 
gauge integrable, but is not integrable for either the Riemann or Lebesgue integrals. 

To further illustrate the utility of the gauge integral, we now proceed to 
generalize Theorem 4 by allowing the function F to be nondifferentiable at a 
countable number of points. 

THEOREM 5. Let F: [a, b] oa be differentiable except perhaps at countably many 
points of [a, b]. Let G: [a, b] R Ii be such that G(x) = F'(x) when F is differentia- 
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19881 THE TEACHING OF MATHEMATICS 647 

ble at x. If F is continuous, then G is gauge integrable over [a, b] with JabG = F(b) - 
F(a). 

Proof The proof is not substantially different and requires only some arithmetic 
to take care of the exceptional set N = { zi: i = 1, 2,.... } where F may fail to be 
differentiable. Let e > 0. For x 5 N define 8(x) > 0 by the Straddle Lemma as 
before. For zi E N, choose 3(zi) > 0 such that IG(zi)j28(zj) < E/2i+2 and 

IF(zi) - F(zi + h)j <'e/2i+3 
for lhl < S(zi) (by continuity). Suppose that T = {xO, xl..., xn; t, t2,..., t.} is a 
8-fine tagged partition of [a, b]. Then as before, 

n 

E G(ti)(xi - xi-) - (F(b) - F(a) 

n 

=F|. (G(ti)(xi -xi-j - (F(xi)- F(xi-1))) |(2) 
i=1 

We break the sum on the right-hand side of (2) into two parts. Let E' denote the 
sum of the terms with tags ti Z N, and let E" denote the sum of the terms with tags 
ti E N. As before the sum E' is less than E(b - a). For E", if ti = zj, then 

IG(ti)(xi - xi-) I < G(zj) 128(zj) < E/2j+2 

and 

F(xi) -F(xi1)j <?IF(xi) - F(zj)I +IF(zj) - F(xi 1)I < 2E/2"3. 

Hence, 
00 00 

? < 2( E/2j+2 + E E/2j?+2 - 
j=l j=l 

where the factor of 2 accounts for the fact that each zj may be the tag for at most 
two of the subintervals. Thus, the sum in (2) is less than e(b - a) + e and the result 
follows. 

Both versions of the Fundamental Theorem of Calculus given in Theorems 4 and 
5 are well known for the gauge integral and can be found in [9]. There is also a 
divergence version of the Fundamental Theorem of Calculus for a gauge-type 
integral in n dimensions given in [13]. 

The functions F(x) = 2X1/2, 0 < x < 1, and G(x) = x-1/2 for 0 < x < 1 and 
G(O) = 0 provide a simple example where Theorem 5 is applicable but the more 
familiar version of the Fundamental Theorem of Calculus is not. Note that in this 
case, the integral 

1x 1/2dx = J1G = jF = 2 

is computed without resorting to the limiting technique required by the Riemann 
approach. 

Note that the continuity assumption in Theorem 5 is important. For example, if 
Fl(x) = x + 1 for 0 < x < 1 and Fl(x) = -x for -1 < x < 0, then Fl'(x) = 

G(x) except for x = 0, but f1 G = 0 while Fl(l) - F1(-1) = 1. 
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648 WILLIAM J. KNIGHT [August-September 

As can be seen from the definition, the gauge integral has very much the same 
flavor as the Riemann integral, being obtained from a slight modification of the 
Riemann integral, and does not require a lot of technical apparatus for its introduc- 
tion as is the case for the Lebesgue integral. However, despite the elementary 
appearance of the gauge integral, it leads to a very powerful theory of integration 
which encompasses the Riemann integral, the Cauchy-Riemann (improper 
Riemann) integral, and the Lebesgue integral. For this reason, the gauge integral 
would seem to be a very reasonable candidate for inclusion in an introductory real 
analysis course; it is as conceptually easy to describe as the Riemann integral and 
yet possesses all of the powerful properties of the Lebesgue integral including the 
Monotone and Dominated Convergence Theorems. 

Remarkably, this simple modification of the Riemann integral was not intro- 
duced until approximately a century after Riemann's introduction of his integral in 
1854. The gauge integral was independently introduced by Kurzweil [6] and Henstock 
[4]; Kurzweil used the integral to treat some questions in ordinary differential 
equations but did not develop any of the deep properties of the integral; Henstock 
established the convergence theorems for the integral. 

The interested reader can find very readable expositions of the gauge integral in 
[5], [8], [9]. E. J. McShane also treats a "gauge-like" integral in [10], [11]; he alters 
the definition above by dropping the requirement that the tag ti belongs to its 
corresponding subinterval. The resulting integral is, surprisingly enough, exactly 
equivalent to the classical Lebesgue integral. 
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A Strong Inverse Function Theorem 

WILLIAM J. KNIGHT 
Department of Mathematics and Computer Science, Indiana University, South Bend, IN 46634 

A linear transformation from Rin into the same space Rin is one-to-one if and 
only if its matrix relative to, say, the standard basis has nonzero determinant. In this 
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