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PREFACE

This second edition is a corrected, revised, and reprinted version of our original textbook. We

are particularly grateful to readers who have sent in suggestions for corrections. Among them

we owe a huge debt to R. B. Burckel (Kansas State University). Many of his corrections and
suggestions are incorporated in this new edition. Thanks too to Keith Yates (Manchester Metropoli-
tan University) who, while working on some of the more difficult problems, found some further
errors.

Preface to the second edition

Original Preface to first edition

In teaching first courses in real analysis over the years, we have found increasingly that the
classes form rather heterogeneous groups. It is no longer true that most of the students are
first-year graduate students in mathematics, presenting more or less common backgrounds for
the course. Indeed, nowadays we find diverse backgrounds and diverse objectives among stu-
dents in such classes. Some students are undergraduates, others are more advanced. Many stu-
dents are in other departments, such as statistics or engineering. Some students are seeking
terminal master’s degrees; others wish to become research mathematicians, not necessarily in
analysis.



xxiv Preface

We have tried to write a book that is suitable for students with minimal backgrounds, one
that does not presuppose that most students will eventually specialize in analysis.

We have pursued two goals. First, we would like all students to have an opportunity to ob-
tain an appreciation of the tools, methods, and history of the subject and a sense of how the
various topics we cover develop naturally. Our second objective is to provide those who will
study analysis further with the necessary background in measure, integration, differentiation,
metric space theory, and functional analysis.

To meet our first goal, we do several things. We provide a certain amount of historical per-
spective that may enable a reader to see why a theory was needed and sometimes, why the re-
searchers of the time had difficulty obtaining the “right” theory. We try to motivate topics be-
fore we develop them and try to motivate the proofs of some of the important theorems that
students often find difficult. We usually avoid proofs that may appear “magical” to students in
favor of more revealing proofs that may be a bit longer. We describe the interplay of various
subjects—measure, variation, integration, and differentiation. Finally, we indicate applications
of abstract theorems such as the contraction mapping principle, the Baire category theorem,
Ascoli’s theorem, Hahn-Banach theorem, and the open mapping theorem, to concrete settings
of various sorts.

We consider the exercise sections an important part of the book. Some of the exercises do
no more than ask the reader to complete a proof given in the text, or to prove an easy result
that we merely state. Others involve simple applications of the theorems. A number are more
ambitious. Some of these exercises extend the theory that we developed or present some related
material. Others provide examples that we believe are interesting and revealing, but may not
be well known. In general, the problems at the ends of the chapters are more substantial. A few
of these problems can form the basis of projects for further study. We have marked exercises



Preface XXV

that are referenced in later parts of the book with a ¢ to indicate this fact.

When we poll our students at the beginning of the course, we find there are a number of
topics that some students have seen before, but many others have not. Examples are the rudi-
ments of metric space theory, Lebesgue measure in IR, Riemann-Stieltjes integration, bounded
variation and the elements of set theory (Zorn’s lemma, well-ordering, and others). In Chap-
ter 1, we sketch some of this material. These sections can be picked up as needed, rather than
covered at the beginning of the course. We do suggest that the reader browse through Chap-
ter 1 at the beginning, however, as it provides some historical perspective.

Text Organization

Many graduate textbooks are finely crafted works as intricate as a fabric. If some thread is
pulled too severely, the whole structure begins to unravel. We have hoped to avoid this. It is
reasonably safe to skip over many sections (within obvious limitations) and construct a course
that covers your own choice of topics, with little fear that the student will be forced to cross
reference back through a maze of earlier skipped sections.

A word about the order of the chapters. The first chapter is intended as background read-
ing. Some topics are included to help motivate ideas that reappear later in a more abstract
setting. Zorn’s lemma and the axiom of choice will be needed soon enough, and a classroom
reference to Sections 1.3, 1.5 and 1.11 can be used.

The course can easily start with the measure theory of Chapter 2 and proceed from there.
We chose to cover measure and integration before metric space theory because so many impor-
tant metric spaces involve measurable or integrable functions. The rudiments of metric space
theory are needed in Chapter 3, however, so we begin that chapter with a short section contain-
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ing the necessary terminology.

Instructors who wish to emphasize functional analysis and reach Chapter 9 quickly can do
so by omitting much of the material in the earlier chapters. One possibility is to cover Sections
2.1 to 2.6, 4.1, 4.2, and Chapter 5 and then proceed directly to Chapter 9. This will provide
enough background in measure and integration to prepare the student for the later chapters.

Chapter 6 on the Fubini and Tonelli theorems is used only occasionally in the sequel (Sec-
tions 8.4 and 13.9). This is presented from the outer measure point of view because it fits bet-
ter with the philosophy developed in Chapters 2 and 3. One can substitute any treatment in
its place. Chapter 11 on analytic sets is not needed for the later chapters, and is presented as
a subject of interest on its own merits. Chapter 13 on the L,-spaces can be bypassed in favor
of Chapter 14 or 15 except for a few points. Chapter 14 on Hilbert space could be undertaken
without covering Chapters 12 and 13 since all material on the spaces £ and Lo is repeated as
needed. Chapter 15 on Fourier series does not need the Hilbert space material in order to work,
but, since it is intended as a showplace for many of the methods, it does draw on many other
chapters for ideas and techniques.

The dependency chart gives a rough indication of how chapters depend on their predeces-
sors. A strong dependency is indicated by a bold arrow, a weaker one by a fine arrow. The ab-
sence of an arrow indicates that no more than peripheral references to the earlier chapters are
involved. Even when a strong dependency is indicated, the omission of certain sections near the
en d of a chapter should not cause difficulties in later chapters. In addition, we have provided
a number of concrete applications of abstract theorems. Many of these applications are not
needed in later chapters. Thus an instructor who wishes to include material from all chapters
in a year course for reasonably prepared students can do so by
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Background and motivational
material that can be picked up

as needed.

’ Chapter 3 F% Chapter 2 ‘

’ Chapter 6 F% Chdpter 5 H Chdpter 9 % Chapter 11 ‘

Chdpter 7

|

’ Chapter 8 ‘ Chapter 12 \

’ Chapter 13 Chapter 14

Depends to some extent
Chapter 15 . g
on many earlier sections.

Section 10.1 gcztltl)SSG ‘

1. Omitting some of the less central material such as 3.8 to 3.10, 5.10, 7.6 to 7.8, 8.4 to 8.7,
9.14 to 9.15, 10.2 to 10.6, and various material from the remaining chapters.

2. Sampling from the applications in Sections 9.8, 9.12, 9.14, 10.2 to 10.6, and 12.6.
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3. Pruning sections from chapters from which no arrow emanates.
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Chapter 1

BACKGROUND AND PREVIEW

In this chapter we provide a review and historical sampling of much of the background needed
to embark on a study of the theory of measure, integration, and functional analysis. The setting
here is the real line. In later chapters we place most of the theory in an abstract measure space
or in a metric space, but the ideas all originate in the situation on the real line. The reader will
have a background in elementary analysis, including such ideas as continuity, uniform conti-
nuity, convergence, uniform convergence, and sequence limits. The emphasis at this more ad-
vanced level shifts to a study of sets of real numbers and collections of sets, and this is what we
shall address first in Sections 1.1 and 1.2.

Some of the basic ideas from set theory needed throughout the text are introduced in this
chapter. The rudiments of cardinal and ordinal numbers appear in Sections 1.3 to 1.5. At cer-
tain points in the text we make extensive use of cardinality arguments and transfinite induc-
tion. The axiom of choice and its equivalent versions, Zermelo’s theorem and Zorn’s lemma,
are discussed in Sections 1.3, 1.5, and 1.11. This material should be sufficient to justify these
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ideas, although a proper course of instruction in these concepts is recommended. We have tried
to keep these considerations both minimal and intuitive. Our business is to develop the analysis
without long lingering on the set-theoretic methods that are needed.

In Sections 1.7 to 1.10 we present two contrasting and competing theories of measure on the
real line: the theory of Peano—Jordan content and the theory of Lebesgue measure. They serve
as an introduction to the general theory that will be developed in Chapters 2 and 3. All the
material here receives its full expression in the later chapters with complete proofs in the most
general setting. The reader who works through the concepts and exercises in this introductory
chapter should have an easier time of it when the abstract material is presented.

The notion of category plays a fundamental role in almost all aspects of analysis nowadays.
In Section 1.6 the basics of this theory on the real line are presented. We shall explore this in
much more detail in Chapter 10.

Borel sets and analytic sets play a key role in measure theory. These are covered briefly in
Sections 1.12 and 1.13. The latter contains only a report on the origins of the theory of analytic
sets. A full treatment appears in Chapter 11.

Sections 1.15 to 1.21 present the basics of integration theory on the real line. A quick review
of the integral as viewed by Newton, Cauchy, Riemann, Stieltjes, and Lebesgue is a useful pre-
lude to an approach to the modern theory of integration. We conclude with a generalized ver-
sion of the Riemann integral that helps to complete the picture on the real line. We will return
to these ideas in Section 5.10.

A brief study of functions of bounded variation appears in Section 1.14. This material, of-
ten omitted from an undergraduate education, is essential background for the student of general
measure theory and, in any case, cannot be avoided by anyone wishing to understand the differ-
entiation theory of real functions.
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The exercises are designed to allow the student to explore the technical details of the sub-
ject and grasp new methods. The chapter can be read superficially without doing many exer-
cises as a fast review of the background that is needed in order to appreciate the abstract the-
ory that follows. It may also be used more intensively as a short course in the basics of analysis
on the real line.

1.1 The Real Numbers

The reader is presumed to have a working knowledge of the real number system and its elemen-
tary properties. We use IR to denote the set of real numbers. The natural numbers (positive in-
tegers) are denoted as IN, the integers (positive, negative, and zero) as Z, and the rational num-
bers as Q. The complex numbers are written as C and will play a role at a number of points in
our investigation, even though the topic is called real analysis.

The extended real number system IR, that is, IR with the two infinities +0c0 and —oo ap-
pended, is used extensively in measure theory and analysis. One does not try to extend too
many of the real operations to R U {4+00} U {—00}: we shall write, though,

c+o0o=+00 and ¢—o00=—00

for any ¢ € IR.
Limits of sequences in IR are defined using the metric

p(z,y) =lz—yl (z,y €R).
This metric has the properties that one expects of a distance, properties that shall be used later
in Chapter 9 to develop the concept of an abstract metric space.

1. 0 < p(x,y) < 400, (z,y € R).
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2. p(z,y) =0 if and only if z = y.
3. p(z,y) = p(y, ).

4. p(z,y) < p(x,2) + p(2,y), (z,y,2 € R).

We recall that sequence convergence in IR means convergence relative to this distance. Thus

xn — x means that p(z,,x) = |z, — x| — 0. A sequence {z,} is convergent if and only if
that sequence is Cauchy, that is, if lim,, ;00 p(Zm, 2n) = 0. On the real line, sequences that
are monotone and bounded are necessarily convergent. Virtually all the analysis on the real line
develops from these fundamental notions.

1.1.1 Sets of real numbers

In the theory to be studied here, we require an extensive language for classifying sets of real
numbers. The reader is familiar, no doubt, with most of the following concepts, which we present
here to provide an easy reference and review. All these concepts will be generalized to an ab-
stract metric space in Chapter 9.

Set notation throughout is standard. Thus union and intersection are written A U B and
AN B. Set difference is written A \ B, and so the complement of a set A C IR will be written
IR \ A. It is convenient to have a shorthand for this sometimes and we use A as well for this.
The union and intersection of a family of sets A will appear as

UA and ﬂA.

Ae A AeA
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o A limit point of a set E or point of accumulation of a set F is any number that can be
expressed as the limit of a convergent sequence of distinct points in E.

e The closure of a set E is the union of E together with its limit points. One writes E for
the closure of F.

e An interior point of a set E is a point contained in an interval (a,b) that is itself entirely
contained in F.

e The interior of a set E is the set of interior points of E. One writes E° or perhaps int(E)
for the interior of FE.

e An isolated point of a set is a member of the set that is not a limit point of the set.

e A boundary point of a set is a point of accumulation of the set that is not also an interior
point of the set.

o A set GG of real numbers is open if every point of G is an interior point of G.
e A set F of real numbers is closed if I’ contains all its limit points.
e A set of real numbers is perfect if it is nonempty, closed, and has no isolated points.

e A set of real numbers is scattered if it is nonempty and every nonempty subset has at
least one isolated point.

e A set F of real numbers is dense in a set Ejy if every point in Ej is a limit point of the set
E.
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e A set E of real numbers is nowhere dense if for every interval (a,b) there is a subinterval
(¢,d) C (a,b) containing no points of E. (This is the same as asserting that E is dense in
no interval.)

e A set F of real numbers is a Cantor set if it is nonempty, bounded, perfect, and nowhere
dense.

In elementary courses one learns a variety of facts about these kinds of sets. We review
some of the more important of these here, and the exercises explore further facts. All will play
a role in our investigations of measure theory and integration theory on the real line.

1.1.2 Open sets and closed sets

To begin, one observes that the interval
(a,b) ={z:a <z <b}
is open and that the interval
[a,b] ={z:a <z < b}
is closed. The intervals
[a,b) ={z:a <z <b} and (a,b]={z:a <z <b}

are neither open, nor closed.

It is nearly universal now for mathematicians to lean toward the letter “G” to express open
sets and the letter “F” to represent closed sets. The folklore is that the custom came from the
French (fermé for closed) and the Germans (Gebiet for region). The following theorem de-
scribes the fundamental properties of the families of open and closed sets.
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Theorem 1.1: Let G denote the family of all open subsets of the real numbers and F the fam-
ily of all closed subsets of the real numbers. Then

1. FEach element in G is the complement of a unique element in F, and vice versa.
2. G is closed under arbitrary unions and finite intersections.
3. F is closed under finite unions and arbitrary intersections.

4. Every set G in G is the union of a sequence of disjoint open intervals (called the compo-
nents of G).

5. Given a collection C C G, there is a sequence {G1,G2,Gs, ...} of sets from C so that
Ue=Ja.
aeC =1

Much more complicated sets than merely open sets or closed sets arise in many questions in
analysis. If C is a class of sets, then frequently one is led to consider sets of the form

e e
=1

for a sequence of sets C; € C. We shall write C, for the resulting class. Similarly, we shall write
Cs for the class of sets of the form
(e.e]
E=(\Ci
i=1
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for some sequence of sets C; € C. The subscript o denotes a summation (i.e., union) and ¢ de-
notes an intersection (from the German word Durchschnitt).
Continuing in this fashion, we can construct classes of sets of greater and greater complexity

Ca C(S; Caa 060'7 Ca5> 660'67 CO’(SO’?"')

which may play a role in the analysis of the sets C.

These operations applied to the class G of open sets or the class F of closed sets result in
sets of great importance in analysis. The class G5 and the class F, are just the beginning of a
hierarchy of sets that form what is known as the Borel sets:

G CGs CGs6 CGsos C Gs060 - - -
and

FCFoe CFos C Foso CFosos----

A complete description of the class of Borel sets requires more apparatus than this might sug-
gest, and we discuss these ideas in Section 1.12 along with some historical notes. Some elemen-
tary exercises now follow that will get the novice reader started in thinking along these lines.

Exercises

1:1.1 The classical Cantor ternary set is the subset of [0, 1] defined as

oo

C’z{xé[O,l]:sz;Zforin:OOrQ}.

n=1
Show that C' is bounded, perfect, and nowhere dense (i.e., C'is a Cantor set in the terminology of
this section).
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1:1.2 List the intervals complementary to the Cantor ternary set in [0, 1] and sum their lengths.

1:1.3 Let

S dn
D= 0,1 : z = for j, =0or 1 ,.
{x €[0,1]: x ”E=1 gn for J or }
Show D+ D = {z+vy : z,y € D} = [0,1]. From this deduce, for the Cantor ternary set C, that

C+C=10,2|.
1:1.4 Criticize the following “argument” which is far too often seen:

“If G = (a,b) then G = [a,b]. Similarly, if G = [J;2,(as,b;) is an open set, then
G = U2, lai, b;]. It follows that an open set G and its closure G differ by at most a
countable set.” (?)

[Hint: Consider G = (0,1) \ C where C is the Cantor ternary set.]
1:1.5 Show that a scattered set is nowhere dense.
1:1.6 If f: IR — IR is continuous, then show that the set
f7HC) ={a: fla) =y e C}
is closed for every closed set C.
1:1.7 If f is continuous, then show that the set
f7UG) ={z: fla) =y € G}
is open for every open set G.
1:1.8) We define the oscillation of a real function f at a point = as

wy(e) = nf sup {|f(y) - f(2)] 19,2 € (@ =,z + )}

Show that f is continuous at z if and only if wy(z) = 0.
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1:1.9 Show that the set {z : ws(x) > €} is closed for each € > 0.

1:1.10 For an arbitrary function f, show that the set of points where f is discontinuous is of type F,.
1:1.11 For an arbitrary function f, show that the set of points where f is continuous is of type Gs.
1:1.12 Prove the elementary parts (1, 2, and 3) of Theorem 1.1.

1:1.13 Prove part 4 of Theorem 1.1. Every open set G is the union of a unique sequence of disjoint
open intervals, called the components of G.

1:1.14 Prove part 5 of Theorem 1.1 (Lindelof’s theorem). Given any collection C of open sets, there is a
sequence {G1,G2,Gs, ...} of sets from C so that

Ua= [j Gi.
ceC o=l

1:1.15 Show that every open interval may be expressed as the union of a sequence of closed intervals
with rational endpoints. Thus every open interval is a F,. (What about arbitrary open sets?)

1:1.16 What is G N F?

1:1.17 Show that F C Gs.

1:1.18 Show that G C F,.

1:1.19 Show that the complements of sets in G4 are in F,, and conversely.
1:1.20 Find a set in G5 N F, that is neither open nor closed.

1:1.21 Show that the set of zeros of a continuous function is a closed set. Given any closed set, show
how to construct a continuous function that has precisely this set as its set of zeros.
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1:1.22 A function f is upper semicontinuous at a point z if for every € > 0 there is a § > 0 so that if
|z —y| < § then f(y) > f(x) —e. Show that f is upper semicontinuous everywhere if and only if
for every real a the set {z : f(x) > a} is closed.

1:1.23 Formulate a version of Exercise 1:1.22 for the notion of lower semicontinuity. [Hint: It should
work in such a way that f is lower semicontinuous at a point if and only if — f is upper semicon-
tinuous there.]

1:1.24< Prove that, if f,, — f at every point, then

(o ol olNe 9]

{z: f@)>a} = |J U Nie: fule) > a+1/m}.

m=1r=1n=r

1:1.25 Let {f,} be a sequence of real functions. Show that the set E of points of convergence of the
sequence can be written in the form

E=1U N N {&:1f@ = fnl@) <

k=1 N=1n=N m=N

}.

Bl

1:1.26 Let {f,} be a sequence of continuous real functions. Show that the set of points of convergence
of the sequence is of type Fs.

1:1.27 Show that every scattered set is of type Gs.
1:1.28 Give an example of a scattered set that is not closed nor is its closure scattered.

1:1.29 Show that every set of real numbers can be written as the union of a set that is dense in itself
(i.e., has no isolated points) and a scattered set.

1:1.30 Show that the union of a finite number of Cantor sets is also a Cantor set.
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1.2 Compact Sets of Real Numbers

A closed, bounded set of real numbers is said to be compact. The concept of compactness plays
a fundamental role in nearly all aspects of analysis. On the real line the notions are particularly
easy to grasp and to apply. A basic theorem, often ascribed to Cantor (1845-1918), leads easily
to many applications.

Theorem 1.2 (Cantor) If {[a;,b;]} is a nested sequence of closed, bounded intervals whose

lengths shrink to zero, then the intersection
o

(i, bi]
i=1
contains a unique point.

Here the sequence of intervals is said to be nested if, for each n,

[an+17 bn+1] C [ana bn]
The easy proof of this theorem can be obtained either by using the fact that monotone, bounded
sequences converge (and hence a, and b, must converge) or by using the fact that Cauchy se-

quences converge (a sequence of points z,, chosen so that each z,, € [an,b,] must be Cauchy).
See Exercises 1:2.1 and 1:2.2.

1.2.1 Cousin covering theorem

Our next theorem is less well known. It was apparently first formulated by Pierre Cousin at
the end of the nineteenth century. It asserts that a collection of intervals that contains all suf-
ficiently small ones can be used to form a partition of any interval. The term partition, used
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often in elementary accounts of integration theory, here means a subdivision of an interval [a, b]
by points

a=xpg<x1<---<xp=0>

so that [x;—1,2;] (i = 1,2,...,n) are nonoverlapping subintervals of [a,b] whose union is all of
[a, b].

Theorem 1.3 (Cousin) Let C be a collection of closed subintervals of [a,b] with the property
that for every x € |a,b] there is a § > 0 so that C contains all intervals [c,d] C [a,b] that contain
x and have length smaller than 6. Then there are points

a=xp<r1<--<xTp=>0

from [a,b] so that each interval [x;—1,x;] € C for alli=1,2,...,n.

A proof is sketched in Exercises 1:2.3. Note that it can be made to follow from the Cantor
theorem. We introduce some language that is useful in applying this theorem. Let us say that
a collection of closed intervals C is full if it has the property of the theorem that it contains all
sufficiently small intervals at any point z. Let us say that C is additive if whenever [c,d] and
[d, e] are in C it follows that [c,e] € C. Then Cousin’s theorem implies that any collection C of
closed intervals that is both additive and full must contain all intervals.

1.2.2 Heine-Borel and Bolzano-Weierstrass theorems

Our remaining theorems are all consequences of the Cantor theorem or the Cousin theorem.
The most economical approach to proving each is apparently provided by the Cousin theorem.
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In each case, define a collection C of closed intervals, check that it is full and additive, and con-
clude that C contains all intervals. The exercises give the necessary hints on how to start as
well as explain the terminology.

Theorem 1.4 (Heine—Borel) FEuvery open covering of a closed and bounded set of real num-
bers has a finite subcover.

Theorem 1.5: Fvery collection of closed, bounded sets of real numbers that has the finite inter-
section property, has a nonempty intersection.

Theorem 1.6 (Bolzano—Weierstrass) A bounded, infinite set of real numbers has a limit
point.

By a compactness argument in the study of sets and functions on IR, we understand any
application of one of the theorems of this section. Often one can recognize a compactness ar-
gument most clearly in the process of reducing open covers to finite subcovers (Heine—Borel)
or passing from a sequence to a convergent subsequence (Bolzano—Weierstrass). The reader
is encouraged to try for a variety of proofs of the exercises that ask for a compactness argu-
ment. Hints are given that allow an application of Cousin’s theorem. But one should develop
the other techniques too, especially since in more general settings (metric spaces, topological
spaces) a version of Cousin’s theorem may not be available, and a version of the Heine—Borel
theorem or the Bolzano—Weierstrass theorem may be.

Exercises

1:2.1 If {[a;, b;]} is a nested sequence of closed, bounded intervals whose lengths shrink to zero, then the
intersection ﬂfil[ai, b;] contains a unique point. Prove this by showing that both lima; and lim b;
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exist and are equal.

1:2.2 If {[a;, b;]} is a nested sequence of closed, bounded intervals whose lengths shrink to zero, then the
intersection (;, [a;, b;] contains a unique point. Prove this by selecting a point z; in each [a;, b;]
and showing that {z;} is Cauchy.

1:2.3 Prove Theorem 1.3. [Hint: If there is no partition of [a, b], then either there is no partition of
[a, 3(a + b)] or else there is no partition of [ (a + b),b]. Construct a nested sequence of intervals
and obtain a contradiction.

1:2.4 Prove Theorem 1.3. [Hint: Consider the set S of all points z € (a, b] for which there is a partition
of [a,t] whenever t < z. Write zo = sup S. Then 2z € S (why?), zo > a (why?), and zg < b is
impossible (why?). Hence zp = b and the theorem is proved.]

1:2.5 Prove the Heine—Borel theorem: Let S be a collection of open sets covering a closed set E. Then,
for every interval [a,b], there is a finite subset of S that covers E N [a,b]. [Hint: Let C be the col-
lection of closed subintervals I of [a,b] for which there is a finite subset of S that covers E N I.]

1:2.6 Prove Theorem 1.5 directly from the Heine-Borel theorem. Here a family of sets has the finite in-
tersection property if every finite subfamily has a nonempty intersection. [Hint: Take complements
of the closed sets.]

1:2.7 Prove the Bolzano—Weierstrass theorem: If a set S has no limit points, then S N [a, b] is finite for
every interval [a,b]. [Hint: If z is not a limit point of S, then S N [¢, d] is finite for small intervals
containing .|

1:2.8 Show that if a function f : IR — IR is continuous, then it is uniformly continuous on every closed
bounded interval. [Hint: Let € > 0 and let C denote the set of intervals I such that, for some ¢ >
0, z,y € I and |z — y| < 0 implies |f(z) — f(y)| < e. Try also for other compactness arguments
than Cousin’s theorem.]
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1:2.9 If f is continuous it is bounded on every closed bounded interval. [Hint: Let C denote the set of
intervals I such that, for some M > 0 and all x € I, |f(z)| < M ]

1:2.10 Prove the intermediate-value property: If f is continuous and never vanishes, then it is either al-
ways positive or always negative. [Hint: Let C denote the set of intervals [a, b] such that f(b)f(a) >
0.]

1:2.11 If f : R — IR is continuous and K C IR is compact, show that f(K) is compact. Is f~!(K) also
necessarily compact?

1:2.12 [Dini] Suppose that f, : IR — IR is continuous for each n = 1,2,3,..., and fi(z) > fa(z) >
fa(z) > ... and lim,, ., f(x) = 0 at each point. Prove that the convergence is uniform on every
compact interval. [Hint: Consider all intervals [a, b] such that there is a p so that, for all n > p and
all x € [a,b], fn(x) <el]

1.3 Countable Sets

The cardinality of a finite set is merely the number of elements that the set possesses. For infi-
nite sets a similar notion was made available by the fundamental work of Cantor in the 1870s.
We can say that a finite set S has cardinality n if the elements of S can be placed in a one-one
correspondence with the elements of the set {1,2,3,4,...,n}.

Similarly, we say an infinite set S has cardinality N if the elements of S can be placed in a
one-one correspondence with the elements of the set IN of natural numbers. More simply put,
this says that the elements of S can be listed:

S = {81,52,83,...}.

A set is countable (some authors say it is “at most countable”) if it has finite cardinality or car-
dinality Ng. A set is uncountable if it is infinite but does not have cardinality Ng. The choice of
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the first letter in the Hebrew alphabet (aleph, X) to represent the transfinite cardinal numbers
was made quite carefully by Cantor himself, and the notation is standard today.

To illustrate that these notions are not trivial, Cantor showed that any interval of real num-
bers is uncountable. Thus the points of an interval cannot be written in a list. The easiest and
clearest proof is based on the fact that a nested sequence of intervals shrinks to a point. Cantor
based his proof on a diagonal argument.

Theorem 1.7 (Cantor) No interval [a,b] is countable.

Proof. Suppose not. Then the elements of [a,b] can be arranged into a sequence ¢y, co, s, . . ..
Select an interval [a;, b1] C [a,b] so that ¢; &€ [a1,b1] and so that by — a1 < 1/2. Continuing
inductively, we find a nested sequence of intervals {[a;, b;]} with lengths b; — a; < 2% — 0 and
with ¢; & [a;, b;] for each i.

By Theorem 1.2, there is a unique point ¢ € [a,b] common to each of the intervals. This
point cannot be equal to any ¢; and this is a contradiction, since the sequence ¢y, ¢, c3,... was
to contain every point of the interval [a, b]. |

A comment must be made here about the method of proof. It is undoubtedly true that
there is an interval [a;, b;] with the properties that we require. It is also true that there is an
interval [ag, ba] with the properties that we require. But is it legitimate to make an infinite
number of selections? One way to justify this is to make explicit in the rules of mathematics
that we can make such infinite selections. This is provided by the axiom of choice that can be
invoked when needed.
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1.3.1 The axiom of choice

1.8 (Axiom of Choice) Let C be any collection of nonempty sets. Then there is a function f
defined on C so that f(F) € E for each E € C.

The function f is called a choice function. That such a function exists is the same for us as
the claim that an element can be chosen from each of the (perhaps) infinitely many sets. The
original wording (translated from the German) of E. Zermelo from 1904 is instructive:

For every subset M’', imagine a corresponding element m/, which is itself a member
of M’ and may be called the “distinguished” [ausgezeichnete] element of M’.

We can invoke this axiom in order to justify the proof we have just given. Alternatively, we
can puzzle over whether, in this specific instance, we can obtain our proof without using this
principle. Here is how to avoid using the axiom of choice in this particular instance, replacing it
with an ordinary inductive argument. Suppose that 17, s, I3, ...is a list of all the closed inter-
vals with rational endpoints. (See Exercise 1:3.7.) Then in our proof we announce a recipe for
the choice of [a;, b;] at each stage. At the kth step in the proof we simply find the first interval
I, in the sequence Iy, I, I3, ...that has the three properties that

1. Ip C [ak_l,bk_l],
2. ¢ & Ip, and

3. the length of I, is less than U,
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Then we set [ay, by] = I,. Since, at each stage, only a finite number of intervals need be consid-
ered in order to arrive at our interval I, we need much less than the full force of the axiom of
choice to make the determination for us.

In most aspects of real analysis the use of the axiom of choice is unavoidable and is under-
taken without apology (or perhaps even without explicit mention). Later, in Section 1.10, when
we construct a nonmeasurable set we shall have to invoke the axiom of choice; there we shall
mention the fact quite clearly and comment on what is known about the situation if the axiom
of choice were not to be allowed. In many other parts of this work we shall follow the usual cus-
tom of real analysts and apply the axiom when needed without much concern as to whether it
can be avoided or not. This attitude has taken some time to develop. The early French analysts
Baire, Borel, and Lebesgue relied on the axiom implicitly in their early works and then, after
Zermelo gave a formal enunciation, reacted negatively. For most of his life Lebesgue remained
deeply opposed, on philosophical grounds, to its use.!

Further material on the axiom of choice appears in Section 1.11. This axiom is known to
be independent of the rest of the axioms of set theory known as ZF (Zermelo—Fraenkel set the-
ory, without the axiom of choice). Kurt Godel (1906-1978) showed that the axiom of choice is
consistent with the remaining axioms provided one assumes that the remaining axioms are con-
sistent themselves. (This is something that cannot be proved, only assumed.)

! For an interesting historical essay on the subject, see G. H. Moore, “Lebesgue’s measure problem and Zer-
melo’s axiom of choice: the mathematical effect of a philosophical dispute,” Ann. N. Y. Acad. Sci., 412 (1983),
pp- 129-154.
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Exercises
1:3.1 Show Theorem 1.7 using a diagonal argument (or find a proof in a standard text).
1:3.2 Prove that every subset of a countable set is countable.

1:3.3 Let S be countable and let S* (k € IN) denote the set of all sequences of length k formed of ele-
ments of S. Show that S* is countable.

1:3.4 Prove that a union of a sequence of countable sets is countable.

1:3.5 Let S be countable. Show that the set of all sequences of finite length formed of elements of S is
countable.

1:3.6 Show that the set of rational numbers is countable.

1:3.7{ Show that the set of intervals with rational numbers as endpoints is countable.
1:3.8 Show that the set of algebraic numbers is countable.

1:3.9 Show that every subset of a countable Gs set is again a countable Gs set.

1:3.10 Show that scattered sets are countable. [Hint: Consider all intervals (a,b) with rational end-
points such that S N (a,b) is countable.]

1:3.11 Show that every Cantor set is uncountable.

1:3.12 Prove that every infinite set contains a subset that is infinite and countable. [Hint: Use the ax-
iom of choice.]

1:3.13 (Cantor-Bendixson) Show that every closed set C' of real numbers can be written as the union of
a perfect set and a countable set. Moreover, there is only one decomposition of C' into two disjoint
sets, one perfect and the other countable.
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1:3.14 Show that the set of discontinuities of a monotone, nondecreasing function f is (at most) count-
able. [Hint: Use the fact that the right-hand and left-hand limits f(z 4+ 0) and f(z — 0) must both
exist. Consider the sets

{z: f(x+0)— f(z —0) < 1/n}.

1:3.15 Let C be any countable set. Show that there is a monotone function f such that C' is precisely
the set of discontinuities of f. [Hint: Write C' = ¢1,¢a,¢3,... and construct f(z) =3, _,27"]

1:3.16 Show that the family of all finite subsets of a countable set is countable.

1:3.17 Let E C IR and let A consist of the right-isolated points of E (that is, x € A if z € F and there
exists some y > x so that (z,y) N E = (). Show that A is countable.

1:3.18¢ Let S be a collection of nondegenerate closed intervals covering a set £ C IR. Prove that there
is a countable subset of S that also covers E. Show by example that there need not be a finite
subset of S that covers E. [Hint: You may wish to use Exercise 1:3.17.]

1.4 Uncountable Cardinals

Every set can be assigned a cardinal number that denotes its size. So far we have listed just the
cardinal numbers

0,1,2,3,4,...,Ng, (1)
and we recall that the set of real numbers must have a cardinality different from these since it
is infinite and is uncountable.

To handle cardinality questions for arbitrary sets, we require the following definitions and
facts that can be developed from the axioms of set theory. If the elements of two sets A and B
can be placed into a one-one correspondence, then we say that A and B are equivalent and we
write A ~ B. For any two sets A and B, only three possibilities can arise:
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1. A is equivalent to some subset of B and, in turn, B is equivalent to some subset of A.
2. A is equivalent to some subset of B, but B is equivalent to no subset of A.
3. B is equivalent to some subset of A, but A is equivalent to no subset of B.

The other possibility that might be imagined (that A is equivalent to no subset of B and B is
equivalent to no subset of A) can be proved not to occur. In the first of these three cases, it can
be proved that A ~ B (Bernstein’s theorem). These facts allow us to assign to every set A a
symbol called the cardinal number of A. Then, if a is the cardinal number of A and if b is the
cardinal number of B, cases 1, 2, and 3 can be described by the relations

1. a=b.

2. a<hb.

3. a>b.

This orders the cardinal numbers and allows us to extend the list (1) above. We write X; for
the next cardinal in the list,

0<1<2<3<4<--- <Ny <Ny,

and we write ¢ for the cardinality of the set IR. That the cardinals can be, in fact, written in
such a list and that there is a “next” cardinal is one of the most important features of this sub-
ject. (This is called a well-order and is discussed in the next section.)

Cantor presumed that ¢ = Ny but, despite great effort, was unable to prove it. It has since
been established that this cannot be determined within the axioms of set theory and that those
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axioms are consistent if it is assumed and also consistent if it is negated. (More precisely, if the
axioms of set theory are consistent, then they remain consistent if ¢ = Ny is added or if ¢ > Ny
is added.) The assumption that ¢ = R; is called the continuum hypothesis (abbreviated CH)
and is often assumed in order to construct exotic examples. But in all such cases one needs to
announce clearly that the construction has invoked the continuum hypothesis.

Here are some of the rudiments of cardinal arithmetic, adequate for all the analysis that we
shall pursue.

1. Let a and b be cardinal numbers for disjoint sets A and B. Then a + b denotes the cardi-
nality of the set AU B.

2. Let a and b be cardinal numbers for sets A and B. Then a - b denotes the cardinality of
the Cartesian product set A x B.

3. Let a; (¢« € I) be cardinal numbers for mutually disjoint sets A; (i € I). Then >, ; a;
denotes the cardinality of the set (J;c; 4i.

4. Let b be the cardinal number for a set B; then 2° denotes the cardinality of the set of all
subsets of B.

5. Finally, let a and b be cardinal numbers for sets A and B. Then a’ denotes the cardinal-
ity of the set of all functions mapping B into A.

For finite sets A and B, it is easy to count explicitly the sets in (iv) and (v). There are 2°
distinct subsets of B and there are a® distinct functions mapping B into A. Note that with
A = {0, 1}, so that a = 2, these two meanings in (iv) and (v) give the same cardinal in general.
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(That is, the set of all subsets of B is equivalent to the set of all mappings from B — {0,1}.
See Exercise 1:4.5.)

This suggests a notation that we shall use throughout. By A® we mean the set of func-
tions mapping B into A. Hence by 2P we mean the set of all subsets of B (sometimes called
the power set of B).

One might wish to know the following theorems:

Theorem 1.9: For every cardinal number a, 2% > a.
Theorem 1.10: Ny - Ny = Np.

Theorem 1.11: c+ Ny =c andc+c=c.
Theorem 1.12: c-c=c.

Theorem 1.13: 280 = ¢,

In particular, the continuum hypothesis can then be written as
CH: 2N0 = Nl

which is its most familiar form.

Exercises
1:4.1 Prove that (0,1) ~ R.
1:4.2 (Bernstein’s theorem) If A~ By C B and B ~ A; C A, then A ~ B. (Not at all an easy theorem.)
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1:4.3 Prove that any open interval is equivalent to any closed interval without invoking Bernstein’s the-
orem.

1:4.4 Show that every Cantor set has cardinality c.

1:4.5 Show that the set of all subsets of B is equivalent to the set of all mappings from B — {0,1}.
[Hint: Consider x , for any A C B.]

1:4.6 Show that the class of functions continuous on the interval [0, 1] has cardinality c. [Hint: If two
continuous functions agree on each rational in [0, 1], then they are identical.]

1:4.7{ Show that the family of all closed subsets of IR has cardinality c.

1.5 Transfinite Ordinals

The set IN of natural numbers is the simplest, nontrivial example of what we shall call a well-

ordered set. The usual order (that is, m < n) on the natural numbers has the following proper-
ties.

1. For any n € IN, it is not true that n < n.
2. For any distinct n,m € IN, either m < n or n < m.
3. For any n, m, p € IN, if n < m and m < p, then n < p.

4. Every nonempty subset S C IN has a first element (i.e., there is an element ng € S so that
no < s for every other element s of S).

It is precisely this set of properties that allows mathematical induction. Let P be a set of
integers with the following properties:
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1. 1eP.
2. For all n € IN, m € P for each m < n implies that n € P.

Then P = IN. Indeed, if P is not IN, then P’ = IN'\ P is nonempty and so has a first element
ng. That element cannot be 1. All predecessors of ngy are in P, which, by property (ii), implies
that ng € P, which is not possible.

Mathematical induction can be carried out on any set that has these four properties, and
so we are not confined to induction on integers. We say that a set X is linearly ordered and
that “<” is a strict linear order on X if properties (i), (ii), and (iii) hold for this set and this
relation. We say that X is well-ordered if all four properties (i)—(iv) hold. If X is well-ordered
and x¢ is in X, then the set of all elements that precede xg is called an initial segment of X.

The following two facts are fundamental. The first can be proved from the axiom of choice
and is, in fact, equivalent to the axiom of choice. The second essentially defines the countable
ordinals.

1.14 (Well-ordering principle) Fuvery set can be well-ordered. That is, for any nonempty
set X there is a relation < that is a strict linear order on X making it a well-ordered set.

1.15 (Countable ordinals) There exists an uncountable, well-ordered set X with an order
relation < so that

1. X has a last element denoted ().

2. For every xg € X with xg # Q) the initial segment
{reX: x <z}
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1s countable.

3. There is an element w € X such that
{reX:z<w}=1{0,1,2,3,...}

and < has its usual meaning in the set of nonnegative integers.

Thus the set {0,1,2,3,...} of nonnegative integers is an initial segment of X. We can think
of X as looking like a long list starting with 0 and continuing just until uncountably many ele-
ments have been listed:

0<1<2< - <w<wH+l<w+2< - <w?<w?4+1<---<Q.

We call all the elements of X ordinals. Each element prior to w is called a finite ordinal. Each
element from then, but prior to the last one 2, is called a countable ordinal. The element 2 is
called the first uncountable ordinal.

We can identify an element & with the initial segment consisting of the elements that pre-
cede it. Thus each element of X can be thought of as a subset of X, and we see that each ele-
ment (other than the last element ) is finite or countable considered as a set. The first infinite
ordinal is w and the first uncountable ordinal is Q2. The cardinality of Q (i.e., the cardinality of
X \ {2} or, the same thing, the cardinality of X) is X;. Unless we assume the continuum hy-
pothesis, we do not know if this is c.

One can develop a bit of intuition about this situation by making the following observation.
Any finite collection of finite ordinals &1, &9, ... &, will stay away from w in the sense that there
is a finite ordinal £ so that, for each 7,

& <€ <w.
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The reason for this is that a finite union of finite sets is again finite. Similarly any countable
collection of countable ordinals &1, &, ... will stay away from €2 in the sense that there is a
countable ordinal £ so that, for each i,

&< E<Q.

The reason for this is that a countable union of countable sets is again countable. This observa-
tion is most useful.

If we do assume the continuum hypothesis (CH), then the real numbers (or any set of car-
dinality 2%0) can be well-ordered as described above. If we do not wish to assume CH, we can
still perform a transfinite induction. In this case the version of Theorem 1.15 that we shall use
is the following:

Lemma 1.16: Any set X of cardinality 280 can be well-ordered in such a way that for each x €
X the set of all predecessors of x has cardinality strictly less than 20,

Every element, except the last, of a well-ordered set has an immediate successor defined as
the first element of the set of all later elements; for any x € X, if z is not the last element then
the immediate successor of  can be written as x + 1. Note, however, that elements need not
have immediate predecessors. Any element (w and € in Theorem 1.15 are examples) that does
not have an immediate predecessor is called a limit ordinal. We shall later define ordinals as
even and odd in a way that extends the usual meaning. The first element 0 and every limit or-
dinal is thought of as even, a successor of an even is odd, and a successor of an odd is even. In
this way every ordinal is designated as either odd or even.

This is admittedly a very sketchy introduction to the ordinals, but adequate for our pur-
poses. The serious reader will take a course in transfinite arithmetic or consult textbooks that
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take the time to develop this subject from first principles.

1.5.1 A transfinite covering argument

As an illustration of the method of transfinite induction, let us prove a simple covering property
of intervals using the ideas. We show that from a certain family of subintervals [z,y) C [a,b) a
disjoint subcover can be selected. The argument is, perhaps, the most transparent and intuitive
use of a transfinite sequence.

Lemma 1.17: Let C be a family of subintervals of [a,b) such that for every a < x < b there ex-
ists y, © < y < b so that [x,y) € C. Then there is a countable disjoint subfamily € C C so that

U [zy) =la,0).
[zy)e€

Proof. Set xg = a. By the hypotheses, we can choose an interval [zg,x1) € C and then an in-
terval [x1,z2) € C and, once again, [z, 23) € C, and so on. If z,, — b, then take & = {[x;_1,2;)}
and we are done. Otherwise, x,, — ¢ with ¢ < b. Then we can carry on with [¢,y1), [y1,y2), and
so on, until we eventually reach b.

Well not quite! The idea seems sound, but a proper expression of this requires a transfinite
sequence and transfinite induction. Set 2o = a and choose x1 < b so that [xg,x1) € C. Suppose
that for each ordinal a we have chosen z3 < b in such a way that [zg,241) € C for every
for which § 4+ 1 < a. Then we can choose z,, as follows: (i) If « is a limit ordinal, take x, =
SUPgq T3- (ii) If v is not a limit ordinal, let oy be the immediate predecessor of o and suppose
that o, < b. Take 2, < b so that [x4,,24) € C. The process stops if x4, = b.



30 Background and Preview  Chapter 1

Inside each interval [z,_1,2,) We can choose distinct rationals. Hence this process must
stop in a countable number of steps. The family € = {[zo—1,24)} is a countable disjoint sub-
family of C so that U[x y)eg[:c,y) = [a, b). [ |

Exercises

1:5.1 Prove the assertion 1.17 without using transfinite induction.

[Hint: Say that a point z > a can be reached if there is a countable disjoint subfamily € C C so
that U[x ne€l®,y) O a, z). Take the sup of all points that can be reached.]

1:5.2 Define a “natural” order on IN x IN and determine if it is a well-ordering.

1:5.3 Let A and B be linearly ordered sets. A natural order (the lexicographic order) on A x B is de-
fined as (a,b) < (¢,d) if a X corif a = ¢ and b < d. Show that this is a linear order. If A, B are
well-ordered, then is this a well-ordering of A x B? Describe the initial segments of A x B.

1:5.4 A limit ordinal is an ordinal with no immediate predecessor. Show that w and €2 are limit ordi-
nals.

1.6 Category

Recall that a set E of real numbers is nowhere dense if for every open interval (a,b) there is a
subinterval (¢,d) C (a,b) that contains no points of E. That is, it is nowhere dense if it is dense
in no interval. Loosely, a nowhere dense set is shot full of holes.

A set is first category if it can be expressed as a union of a sequence of nowhere dense sets.
Any set not of the first category is said to be of the second category. Nowhere dense sets are, in
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a certain sense, very small. Thus first category sets are, in the same sense, merely small. Sec-
ond category sets are then not small. The complement of a first category set must apparently
be quite large; such sets are said to be residual. Here, this notion of smallness should be taken
as merely providing an intuitive guide to how these concepts can be interpreted.

1.6.1 The Baire category theorem on the real line

A fundamental theorem of René Baire (1874-1932) proved in 1899 asserts that every interval

is second category. (It was proved too by W. F. Osgood two years earlier, but credit is almost
always assigned to Baire.) Note that the proof here is nearly identical with the proof of the fact
that intervals are uncountable; indeed, this theorem contains Theorem 1.7.

Theorem 1.18 (Baire) No interval [a,b] is first category.

Proof. Suppose not. Then [a, b] can be written as the union of a sequence of sets C1,Co,Cs, . ..
each of which is nowhere dense. Select an interval [a1,b1] C [a, b] so that C1 N [a1,b1] = 0 and so
that by — a; < 1/2. Continuing inductively, we find a nested sequence of intervals {[a;, b;]} with
lengths b; — a; < 27% — 0 and with C; N [a;, b;] = 0 for each 1.

By Theorem 1.2, there is a unique point ¢ € [a,b] common to each of the intervals. This
point cannot belong to any C; and this is a contradiction, since every point of the interval [a, b]
was to belong to some member of the sequence C1,Co, Cs, .. .. |

A category argument is one that appeals to Baire’s theorem. One can prove the existence
of sets or points (or even functions) by these means. It has become one of the standard tools of
the analyst and plays a fundamental role in many investigations.
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1.6.2 An illustration of a category argument

We illustrate with an application showing that an important class of functions has certain con-
tinuity properties. A function f is said to be in the first class of Baire or Baire 1 if it can be
written as the pointwise limit of a sequence of continuous functions. A Baire 1 function need
not be continuous. Does a Baire 1 function have any points of continuity? The existence of
such points is obtained by a category argument.

Theorem 1.19 (Baire) FEvery Baire 1 function is continuous except at the points of a set of
the first category.

Proof. Recall that we use wy(x) to denote the oscillation of the function f at a point = (see
Exercise 1:1.8). The proof follows from the fact that for each € > 0 the set of points

F(e) ={z :wf(zx) > e}
is nowhere dense. [This is because the set of points of discontinuity of f can be written as [ J,-, F(%
Let I be any interval; let us search for a subinterval J C I that misses F(¢). The proof is com-

plete once we find J.
Let f be the pointwise limit of a sequence of continuous functions { f;} and write

oo 0
Bo= () ({z €I fi@) - ;@) <e/2}.
i=nj=n
Each set E, is closed (since the f; are continuous), and the sequence of sets E,, expands to
cover all of I (since {f;} converges everywhere). By Baire’s theorem (Theorem 1.18), there
must be an interval J C I and a set E,, dense in J. (Otherwise, we have just expressed I as the
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union of a sequence of nowhere dense sets, which is impossible.) But the sets here are closed, so
this means merely that E,, contains the interval J. For this n (which is now fixed) we have

|fi(z) = fi(@)] < /2
for all 7, j > n and for all x € J. In this inequality set 7 = n, and let i — oo to obtain
[f (@) = ful2)] < /2.
Now we see that J misses the set F'(¢). Our last inequality shows that f is close to the continu-

ous function f,, on J, too close to allow the oscillation of f at any point in J to be greater than
. Thus there is no point in J that is also in F'(e). [

Theorem 1.19 very nearly characterizes Baire 1 functions. One needs to state it in a more
general form, but one that can be proved by the same method. A function f is Baire 1 if and
only if f has a point of continuity relative to any perfect set.

Exercises

1:6.1 Prove Theorem 1.18 using induction in place of the axiom of choice. (We used this axiom here
without comment.) [Hint: See the discussion in Section 1.3.]

1:6.2 Show that every subset of a set of first category is first category.

1:6.3 Show that every finite set is nowhere dense, and show that every countable set is first category.
1:6.4 Show that every union of a sequence of sets of first category is first category.

1:6.5 Show that every intersection of a sequence of residual sets is residual.

1:6.6 Show that the complement of a set of second category may be either first or second category.

1:6.7 Prove that, if F is first category, then E is nowhere dense.
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1:6.8 Show that a set of type G5 that is dense (briefly, “a dense Gs5”) is residual.

1:6.9 Let S C IR. Call a point = € IR first category relative to S if there is some interval (a,b) contain-
ing = so that (a,b) N S is first category. Show that the set

{z € S: =z is first category relative to S}

is first category.
1:6.10 The rationals Q form a set of type F,. Are they of type G5?

1:6.11 Does there exist a function continuous at every rational and discontinuous at every irrational?
Does there exist a function continuous at every irrational and discontinuous at every rational?
[Hint: Use Exercises 1:1.10 and 1:1.11.]

1:6.12 Let f,, : [0,1] — IR be a sequence of continuous functions converging pointwise to a function
f. Prove that, if the convergence is uniform, then there is a finite number M so that |f,(x)| <
M for all n and all € [0, 1]. Even if the convergence is not uniform, show that there must be a
subinterval [a,b] C [0,1] and a finite number M so that |f,(x)| < M for all n and all x € [a, b].

1:6.13 Theorem 1.19 as stated does not characterize Baire 1 functions. Show that a function is discon-
tinuous except at the points of a first category set if and only if it is continuous at a dense set of
points.

1:6.14 (Fort’s theorem) If f is discontinuous at the points of a dense set, show that the set of points z,
where f/(z) exists, is of the first category.

1:6.15 If f is Baire 1, show that every set of the form {z : f(x) > a} is of type F, and every set of the
form {z : f(z) > a} is of type Gs. (The converse is also true.) [Hint: Use Exercise 1:1.24.]



Section 1.7. Outer Measure and Outer Content 35

1.7 OQuter Measure and Outer Content

By the 1880s it was recognized that integration theory was intimately linked to the notion of
measuring the “length” of subsets of IR or the “area” of subsets of IR?. Peano (1858-1932),
Jordan (1838-1922), Cantor (1845-1918), Borel (1871-1956) and Lebesgue (1875-1941) are the
main contributors to this development, but many authors addressed these problems.

At the end of the century there were two main competing notions that allowed the concept
of length to be applied to all sets of real numbers. The Peano—Cantor—Jordan treatment defines
a notion of outer content in terms of approximations that employ finite sequences of intervals.
The Borel-Lebesgue method defines a notion of outer measure in terms of approximations that
employ infinite sequences of intervals. The two methods are closely related, and it is, perhaps,
best to study them together. The outer measure concept now dominates analysis and has left
the outer content idea as a historical curiosity. Nonetheless, by seeing the two together and
appreciating the difficulties that the early mathematicians had in coming to the correct ideas
about measure, we can more easily learn this theory.

For any interval I we shall write |I| for its length. Thus |[a,b]| = |(a,b)] = b — a and
|(—00,a)] = |(b,400)] = +oo. We include the empty set as an open interval and consider it
to have zero length.
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Definition 1.20: Let E be an arbitrary set of real numbers. We write

c*(E) = inf{zn: |I;| : E C OIZ}
1 i=1

1=

and

=1 =1

where in the two cases {I;} is a finite (infinite) sequence of open intervals covering E.

We refer to the set function ¢* as the outer content (or Peano-Jordan content) and \* as
(Lebesgue) outer measure. Note that ¢* is not of much interest for unbounded sets since it
must assign the value +o0o to each. Each of these set functions assigns a value (thought of as
a “length”) to each subset £ C IR.

The following properties are essential and can readily be proved directly from the defini-
tions. All the properties claimed for the Lebesgue outer measure in this chapter will be fully
justified in Chapters 2 and 3.
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Theorem 1.21: The outer content and the outer measure have the following properties:
1. ¢*(0) = x*(0) = 0.

For every interval I, ¢*(I) = X*(I) = |1].

For every set E, c*(E) > \*(E).

For every compact set K, ¢*(K) = \*(K).

For a finite sequence of sets {E;}, ¢*(Uj_y Ei) < >y ¢ (E;).

For any sequence of sets {E;}, N (Useq Ei) < Yooy M (E3).

Both c¢* and \* are translation invariant.

o XS & e

For any set E, c*(E) = c*(E).

This last property, ¢*(E) = ¢*(E), would nowadays be considered a flaw in the definition
of a generalized length function. For a long time, though, it was felt that this property was es-
sential: if a set A C B is dense in B, then “surely” the two sets should be assigned the same
length.

Exercises
1:7.1 Show that, for every interval I, ¢*(I) = \*(I) = |I|.

1:7.2 Show that, for every set E, ¢*(E) > A*(FE), and give an example to show that the inequality can
occur.
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1:7.3 Show that, for every compact set K, ¢*(K) = A*(K).
1:7.4 Show that, for any set E, c*(E) = c*(E).
1:7.5¢ Show that, for every finite sequence of sets {E;},
n n
¢ (U E) <Y (B
i=1 i=1
1:7.6{ Show that, for every infinite sequence of sets {E;},
A (U E) <> ON(E).
i=1 i=1
1:7.7 Show that both ¢* and \* are translation invariant.

1:7.8¢ Let G be an open set with components {(a;, b;)}. Show that

o0

N(G) = (b — ai),

i=1
but that ¢*(G) may be strictly larger.
1:7.9) Let G be an open subset of an interval [a, b] and write K = [a,b] \ G. Show that
(K)=M(K)=b—a—)\(G)
but that ¢*(K) = b — a — ¢*(G) may be false.
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1.8 Small Sets

In many studies of analysis there is a natural class of sets whose members are “small” or “neg-
ligible” for some purposes. We have already encountered the classes of countable sets, nowhere
dense sets, and first category sets that can, with some justice, be considered small. In addition,
the class of sets of zero outer content and the class of sets of zero outer measure also play the
role of small sets in many investigations. Each of these classes enters into certain problems in
that if a set is small in one of these senses it may be neglected in the analysis.

After some thought, one expects that in order to apply the term “small” to the members of
some class of sets S one would require that finite (or perhaps countable) unions of small sets
be small, that subsets of small sets be small, and that no interval be allowed to be small. More
formally, the properties of S that seem to be desirable are as follows:

1. The union of a finite [countable] collection of sets in S is itself in S.

2. Any subset of a set in § is itself in S.

3. No interval (a,b) belongs to S.

We say that S is an ideal of sets if properties (i) and (ii) hold. If the stronger version of (i)
holds (with countable unions), then we say that S is a o-ideal of sets. We have, by now, a num-
ber of different ideals of sets that can be viewed as composed of small sets. Let us summarize.
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Theorem 1.22:

GvoB o

6.

The nowhere dense sets form an ideal.
The first category sets form a o-ideal.
The finite sets form an ideal.

The countable sets form a o-ideal.

The sets of outer content zero form an ideal.

The sets of outer measure zero form a o-ideal.

There are some obvious connections and some surprising contrasts. Certainly, finite sets are
nowhere dense and of outer content zero. Countable sets are first category and of outer measure
zero. The other relations are not so easy or so immediate. Let us first compare perfect, nowhere
dense sets and sets of outer content zero.

1.8.1 Cantor sets

In the early days of the study of the Riemann integral (before the 1870s) it was recognized that
sets of zero outer content played an important role as the sets that could be neglected in argu-
ments. Nowhere dense sets at first appeared to be equally negligible, and there was some con-
fusion as to the distinction. It is easy to check that a set of zero outer content must be nowhere
dense; lacking any easy examples to the contrary, one might assume, as did a number of math-
ematicians, that the converse is also true. The following construction then comes as a bit of a
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surprise and shook the intuition of many nineteenth-century mathematicians. This shows that
Cantor sets (nonempty, bounded, perfect, nowhere dense sets) can have relatively large mea-
sure (or content, since the two notions agree for compact sets) even though they appear to be
small in some other sense. Constructions of this sort were given by H. J. Smith (1826-1883), du
Bois-Reymond (1831-1889) and others.

Theorem 1.23: Let 0 < o < 1. Then there is a Cantor set C C [0,1] whose outer content
(measure) is exactly c.

Proof. Let aq,as,... be a sequence of positive numbers with
(0.)
Z ap=1-— .
k=1
Let I; be an open subinterval of Iy = [0, 1], with |I1| = «; chosen in such a way that the set

Ay = Ip \ I consists of two closed intervals, each of length less than 1/2. At the second stage
we shall remove from A; two further intervals, one from inside each of the two closed intervals,
leaving As = Iy \ (I3 U Iz U I3) consisting of four intervals. We define the procedure inductively.
After the nth stage, we have selected

1+2422+.. 42" =2"—1

nonoverlapping open intervals I1, ..., Ion_1 with
201

n
D Ml =) i,
k=1 i=1
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and the set
2e1
=1\ |J I
k=1
consists of 2™ closed intervals, each of length less than 1/n, and \*(A4,) = 1 — > | o;. (Note
that the lengths of the closed intervals go to zero as n goes to infinity.)

Now let C' = (2, Ay and B = I \ C. Then C is closed, B is open, and B = (i I, with
the intervals I}, pairwise disjoint. We see, by Exercise 1:7.8, that

M (B) = Z || = Zak =1-«

k=1
and hence, by Exercise 1:7.9, that

X (C) =1—-\(B) = a.

Thus C' is a nowhere dense closed subset of Iy of measure «, and B is a dense open subset of I
of measure 1 — a. |

1.8.2 Expressing the real line as the union of two “small” sets

Theorem 1.23 shows the contrast between sets of zero content and nowhere dense sets. As a
result, we should not be surprised that there is a similar contrast between sets of outer measure
zero and sets of the first category. The next theorem expresses this in a remarkable way. Every
set of reals can be expressed as the union of two “small” sets (small in different ways). Be sure
to notice that we are using outer measure, not outer content, in the theorem.
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Theorem 1.24: Fvery set of real numbers can be written as the disjoint union of a set of outer
measure zero and a set of the first category.

Proof. Let {g;} be a listing of all the rational numbers. Denote by I;; that open interval cen-
tered at ¢; and with length 2777, Write G = U2, I;j and B = (;2; G;. Each Gj is a dense
open set, and so B is residual and hence its complement IR \ B is first category. But it is easy
to check that B has measure zero. Thus every set A C IR can be written as

A=(ANB)U(A\ B)

which is, evidently, the union of a set of outer measure zero and a set of the first category. W

Exercises

1:8.1 Show that every set of outer content zero is nowhere dense, but there exist dense sets of outer
measure zero.

1:8.2 Show that every set of outer measure zero that is also of type F, is first category.

1:8.3 Show that no interval can be written as the union of a set of outer content zero and a set of the
first category.

1:8.4 Show that a set E of real numbers has outer measure zero if and only if there is a sequence of in-
tervals {I;} such that each point of E belongs to infinitely many of the intervals and Y ;- | |I;] <
+00.

1:8.5 Let B and C be the sets referenced in the proof of Theorem 1.23.

(a) Prove that B is dense and open in [0, 1], so C' is nowhere dense and closed.
(b) Prove that C' is perfect.
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(c) Let {g;} be a listing of all the rational numbers. Denote by I;; that open interval centered
at ¢; and with length 277, Write G; = U;Z, [ and B = (2, G;. Show that A\*(B) <
A (G;) <277 for each j, and deduce that \*(B) = 0.

(d) Prove Theorem 1.24 by using the fact that, in every interval [a,b] and for every £ > 0, there
is a Cantor set C' C [a, b] with measure exceeding b — a — &.

1:8.6 Let Z be the class of all sets of real numbers that are expressible as countable unions of sets of
outer content zero.

(a) Show that Z is a o-ideal.
(b) Show that Z is precisely the o-ideal of subsets of sets that are outer measure zero and F,.

(¢) Show that Z is not the o-ideal of sets that are outer measure zero.

[Hint: Let C be a Cantor set whose intersection with each open interval is either empty or of pos-
itive outer measure. Choose a countable subset D C C, dense in C, and a G5 set E D D of outer
measure zero. Then E N C is also outer measure zero but cannot be in Z. (Use a Baire category

argument. )]

1.9 Measurable Sets of Real Numbers

The outer measure and outer content have many desirable properties, but lack one that would
seem to be an essential ingredient of a theory of lengths. They are not additive. If F;y and Es
are disjoint sets, then one expects the length of the union £ U Fsy to be the sum of the two
lengths. In general, we have only that

C*(El U EQ) < C*(El) + C*(EQ)
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and
/\*(El U EQ) < )\*(El) + )\*(EQ)

It is, however, not difficult to see that if £y and Es are not too “intertangled,” then equality
would hold. One seeks a class of sets on which the outer content or the outer measure is addi-
tive.

The key to creating these classes rests on a notion used by the Greeks in their investiga-
tions into area of plane figures. They considered that the area had been successfully found only
if it had been computed by successive approximations from outside and by successive approxi-
mations from inside and that the two methods gave the same answer. Here our outer measure
and outer content are obtained from outside approximations. Evidently, we should introduce an
inside approximation, hence an inner measure and an inner content, and look for the class of
sets on which the outer and inner estimates agree. In the case of content, this theory is due to
Peano and Jordan. In the case of measure, the corresponding definition was used by Lebesgue.

Definition 1.25: Let E be a bounded set contained in an interval [a, b]. We write
e(E) =b—a—c([a,]\ E)

and refer to c.(FE) as the inner content of E and the set function ¢, as the inner content.

Definition 1.26: Let E be a bounded set contained in an interval [a, b]. We write
M(B) =b—a—N(a,b]\ E)

and refer to \.(F) as the inner measure of E and the set function A, as the inner measure.

It is left as an exercise to show that, in these two definitions, the particular interval [a, b]
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that is chosen to contain the set F need not be specified. Measurability for bounded sets is de-
fined as agreement of the inner and outer estimates.

Definition 1.27: A bounded set E is said to be Peano-Jordan measurable if c.(E) = c*(E).
A bounded set E is said to be Lebesgue measurable if \.(E) = M*(E). An unbounded set E is
measurable (in either sense) if £ N [a, b] is measurable in the same sense for each interval [a, b].
The class of Peano—Jordan measurable sets shall be denoted as PJ. The class of Lebesgue
measurable sets shall be denoted as L.

When the inner and outer estimates agree, it makes sense to drop the subscripts and su-
perscripts. Thus on the sets where ¢, = ¢* we write ¢ = ¢, = ¢* and refer to ¢ as the con-
tent or perhaps Peano—Jordan content. Similarly, on the Lebesgue measurable sets we write
A = A = A" and refer to \ as Lebesgue measure.

The families of sets so formed have strong properties, and the set functions ¢ and A defined
on those families will have our desired additive properties. To have some language to express
these facts, we shall use the following:

Definition 1.28: Let X be any set, and let A be a nonempty class of subsets of X. We say A
is an algebra of sets if it satisfies the following conditions:

1. D e A
2. If Ae Aand B € A, then AUB € A.

3. If Ac A, then X\ A€ A
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It is easy to verify that an algebra of sets is closed also under differences, finite unions, and
finite intersections. For any set X, the class 2% of all subsets of X is obviously an algebra. So
is the class A = {0}, X}. An algebra that is also closed under countable unions is said to be a
o—algebra. Many of the classes of sets that arise in measure theory are algebras or c—algebras.

Definition 1.29: Let A be an algebra of sets and let v be an extended real-valued function
defined on A. If v satisfies the following conditions, we say that v is an additive set function.

1. v(0) =o0.
2.If Ac A, Be A, and AN B =0, then v(AU B) = v(A) + v(B).

A nonnegative additive set function is often called a finitely additive measure. Note that, for
an additive set function v and every finite disjoint sequence {E1, Es, ... E,} of sets from M,

n n
14 (U Ez) = Z V(EZ)
i=1 i=1
In general, we shall prefer a countable version of this definition. We say that v is a countably

additive set function if, for every infinite disjoint sequence {E1, E», ... } of sets from M whose

union | J;2, E; is also in M,
(0.0 0
i=1

i=1
Using this language, we can now describe the classical measure theory developed in the
nineteenth century by Peano, Jordan, and others and by Lebesgue at the beginning of the twen-
tieth century. Peano—Jordan content is a finitely additive set function on an algebra of sets;
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Lebesgue measure is a countably additive set function on a o—algebra of sets. The theorems
that now follow describe this formally. The first is not difficult. The second will be proved in
full as part of our more general development in Chapter 2. It is worth attempting a proof of
these two theorems now in order to appreciate the technical problems that arise in the subject.

Theorem 1.30: Let PJ[a,b] denote the family of all Peano—Jordan measurable subsets of an
interval [a,b]. Then the class PJ[a,b] forms an algebra of subsets of [a,b], and ¢ = ¢, = ¢* is a
finitely additive set function on that algebra.

Theorem 1.31: The class L forms a o—algebra of subsets of IR, and A = A\ = \* is a count-
ably additive set function on that o—algebra.

Theorem 1.30 is largely a historical curiosity. Theorem 1.31 is one of the fundamental re-
sults of elementary measure theory. Chapter 2 contains a complete proof of this in a more gen-
eral setting.

Exercises
1:9.1 Let E be a bounded set contained in an interval [a,b] C [a1,b1]. Show that
ex(BE)=b—a—c"([a,b]\ E) = by — a1 — c*([a1,01] \ E).
This shows that the definition of the inner content does not depend on the containing interval.
1:9.2 Let E be a bounded set contained in an interval [a,b] C [a1,b;]. Show that
M(E)=b—a—X([a,b] \ E) = b1 — a1 — X\*([a1,b1] \ E).

This shows that the definition of the inner measure does not depend on the containing interval.



Section 1.9. Measurable Sets of Real Numbers 49

1:9.3 Verify that an algebra of sets is closed also under differences, finite unions, and finite intersections.
1:9.4 Show that each of the following classes of subsets of a set X is an algebra:
(a) The class {0, X }.
(b) The class of all subsets of X.
(c) The class of subsets E of X such that either E or X \ E is finite.
)

(d) The class of subsets of X that have outer content zero or whose complement has outer con-
tent zero (here X C IR).

1:9.5 Show that each of the following classes of subsets of a set X is a o—algebra:
(a) The class of all subsets of X.

(b) The class of all subsets of X that are countable or have a countable complement.

(¢) The class of subsets of X that have outer measure zero or whose complement has outer mea-
sure zero (here X C IR).

1:9.6 Let A; be an algebra of subsets of a set X for each 7 € I. Show that [,.; A; is also an algebra.
1:9.7 Let A; be a o—-algebra of subsets of a set X for each ¢ € I. Show that [,.; A; is also a o—algebra.

1:9.80 Let S be a collection of subsets of a set X. Show that there is a smallest o—algebra containing
S. (We call this the o—algebra generated by S.) [Hint: Consider the family of all o—algebras that
contain S (are there any?) and use Exercise 1:9.7.]

1:9.9 Show that every interval (closed, open, or half-closed) is both Peano—Jordan measurable and Leb-
esgue measurable.

1:9.10 Show that every set of outer content zero is Peano—Jordan measurable.
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1:9.11 Show that every set of outer measure zero is Lebesgue measurable.

1:9.12< Suppose that a set F is Peano—Jordan measurable or Lebesgue measurable. Show that every
translate E +r = {& +r : € E} is also measurable in the same sense and has the same measure.

1:9.13<> Show that the class of Peano—Jordan measurable sets and the class of Lebesgue measurable sets
must both have cardinality 2¢. [Hint: Consider the subsets of a Cantor set of measure zero.]

1:9.14 Show that every Peano—Jordan measurable set is also Lebesgue measurable, but not conversely.

1:9.15 Theorems 1.30 and 1.31 might be misrepresented by saying that “c is merely finitely additive
while X is countably additive.” Explain why it is that c is also countably additive.

1:9.16< Let E be a bounded subset of IR. Show that
A(E) =sup{\*(F) : F C E, F closed}.
1:9.17 Prove that if By C B then A* (Eq) < A* (E3) and A\ (E1) < A (E»).

1:9.18 Prove that both outer measure A\* and inner measure \, are translation invariant functions de-
fined on the class of all subsets of IR.

1:9.19 Show that A (E) < \* (E) for all E C IR.

1:9.20 Show that every o—algebra of sets has either finitely many elements or uncountably many ele-
ments.

1.10 Nonmeasurable Sets

The measurability concept allows us to restrict the set functions ¢* and \* to certain algebras
of sets on which they are well behaved, in particular on which they are additive. Have we ex-
cluded any sets from consideration by this device? Are there sets that are so badly misbehaved
with respect to the measurability definition that we cannot use them?
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It is easy enough to characterize the class of Peano—Jordan measurable sets. Then we easily
see which sets are not measurable and we see how to construct nonmeasurable sets. We address
this first. The situation for Lebesgue measure is considerably more subtle and requires entirely
different arguments.

Theorem 1.32: A bounded set E of real numbers is Peano—Jordan measurable if and only if its
set of boundary points has outer content zero.

Proof. We may suppose that E C (a,b). Let By = int(E), B2 = E\ F1, and E3 = (a,b) \ E.
Suppose that ¢*(F3) = 0; we show that E is Peano—Jordan measurable. Let ¢ > 0. Choose a
finite collection of disjoint open subintervals {I;} of (a,b) covering Es so that ) |I;| < e. Let us
consider the intervals complementary to {I;} in (a,b). These are of two types, the ones interior
to E; and the ones interior to E3. We call the former {.J;} and the latter {K;}. Note that {I;},
{J;} together cover FE and {I;}, {K;} together cover (a,b) \ E.

We have
b—a=> |LI+ Y |hl+)IKil.
b—a= (o151 + Y1) + (1 + 1K) = S Ik

>c(E)+c*((a,b) \ E) —e.
Since ¢ is arbitrary, we can deduce that
c(E) 4+ c*((a,b) \ E) < b—a.

Hence

But the inequality
c(E)+c([a,b]\E) >b—a
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is true and
c*([a,b] \ E) = c*((a,b) \ E).

Thus ¢*(E) + ¢*((a,b) \ E) = b — a, and this establishes the measurability of the set E.
Conversely, suppose that we have this equality. Take a partition {I;} of [a, b] using open in-
tervals in such a way that

S {ILI: TNE #0} <c*(BE)+e
and
ST 10 (8] \ B) 0} < (10,8 \ B) +e.

(We can do this by refining two partitions that handle each inequality separately.) Note that in-
tervals that are used in both of these sums must contain a boundary point of E. Thus, because
b—a=> || and ¢*(E) + c*([a,b] \ E) = b — a, we can argue that

c*(E\ int(E)) < Z{m\ : I; contains a boundary point of E} < 2e.

Since ¢ is arbitrary, ¢*(E \ int(E)) = 0 as required. [

In particular, note that it is an easy matter now to exhibit sets that are not Peano—Jordan
measurable. The set of rational numbers in any interval must be nonmeasurable since every
point is a boundary point. For a more interesting example, any Cantor set C' will be Peano—
Jordan measurable if and only if ¢*(C) = 0 (see Exercise 1:10.1). We have seen in Theorem 1.23
how to construct Cantor sets in [0, 1] of positive outer content.
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1.10.1 Existence of sets of real numbers not Lebesgue measurable

We turn now to a search for Lebesgue nonmeasurable sets. We can characterize Lebesgue mea-
surable sets in a variety of ways. None of these, however, does anything to help to see whether
there might exist sets that are nonmeasurable. The first proof that nonmeasurable sets must
exist is due to G. Vitali (1875-1932). He showed that there cannot possibly exist a set function
defined for all subsets of real numbers that is translation invariant, is countably additive, and
extends the usual notion of length.

Theorem 1.33: There exist subsets of IR that are not Lebesgue measurable.

Proof. LetI:[—%,%]. For z,y € I, write x ~yif x —y € Q. For all z € I, let
Ka)={yel:z—yeQ}={z+rel:recQ}.

We show that ~ is an equivalence relation. It is clear that x ~ x for all x € I and that if x ~ y
then y ~ z. To show transitivity of ~, suppose that z,y,z € [ and x —y = r; and y — z = 79 for
r1,72 € Q. Then z — 2z = (v —y) + (y — 2) = r1 + 72, so & ~ z. Thus the set of all equivalence
classes K (x) forms a partition of I: | J,.; K(z) = I, and if K(z) # K(y), then K(x)NK(y) = (.

Let A be a set containing exactly one member of each equivalence class. (The existence of
such a set A follows from the axiom of choice.) We show that A is nonmeasurable. Let 0 = rg, 71,72,
be an enumeration of Q N [—1, 1], and define

Ak:{x—i—rk:ajeA}

so that Aj is obtained from A by the translation x — x + rp.
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Then

[_

N |—

7%] C U Ak - [_%7%] (2)

To verify the first inclusion, let € [—3, 3] and let o be the representative of K (z) in A. We

7)
have {xg} = AN K(x). Then x — 29 € QN [—1, 1], so there exists k such that x — x¢g = ri. Thus
x € Ay. The second inclusion is immediate: the set Ay is the translation of A C [—3, 1] by the
rational number r; € [—1,1].

Suppose now that A is measurable. It follows (Exercise 1:9.12) that each of the translated
sets Ay is also measurable and that \(Ag) = A(A) for every k. But the sets {A;} are pairwise
disjoint. If = € A; N A; for ¢ # j, then ; = 2z — r; and x; = 2z — r; are in different equiva-
lence classes. This is impossible, since z; — z; € Q. It now follows from (2) and the countable
additivity of A on £ that

1=A([=33]) <A 40) = D AA) < A([-5,3) =3. 3)
k=1 k=1

Let a = A(A) = A(A4g). From (3), we infer that
1<ata+---<3. (4)

But it is clear that no number « can satisfy both inequalities in (4). The first inequality implies
that « > 0, but the second implies that . = 0. Thus A is nonmeasurable.

A variant of our argument (using Exercise 1:22.11) shows that A.(A) = 0 while \* (4) > 0.
This, again, reveals why it is that A is nonmeasurable. |



Section 1.10. Nonmeasurable Sets 55

Many of the ideas that appear in this section, including the exercises, will reappear, in ab-
stract settings as well as in concrete settings, in later chapters.

The proof has invoked the axiom of choice in order to construct the nonmeasurable set. One
might ask whether it is possible to give a more constructive proof, one that does not use this
principle. This question belongs to the subject of logic rather than analysis, and the logicians
have answered it. In 1964, R. M. Solovay showed that, in Zermelo—Fraenkel set theory with a
weaker assumption than the axiom of choice, it is consistent that all sets are Lebesgue mea-
surable. On the other hand, the existence of nonmeasurable sets does not imply the axiom of
choice. Thus it is no accident that our proof had to rely on the axiom of choice: it would have
to appeal to some further logical principle in any case.

Exercises
1:10.1 Show that a Cantor set is Peano—Jordan measurable if and only if it has outer content zero.
1:10.2 Show that every set of positive outer measure contains a nonmeasurable set.
1:10.3 Show that there exist disjoint sets {Ej} so that

o0 o0

A* (U Ek> <N N\ (Ey).

k=1 k=1

1:10.4 Show that there exists a decreasing sequence of sets E1 D Es D FEs... so that each \*(Ey) <

400 and
A* <D1 Ek> < lim X* ().
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1.11 Zorn’s Lemma

In our brief survey we have already seen several points where an appeal to the axiom of choice
was needed. This fundamental logical principle can be formulated in a variety of equivalent
ways, each of use in certain situations.

The form we shall discuss now is called Zorn’s lemma after Max Zorn (1906-1994). To ex-
press this, we need some terms from the language of partially ordered sets. A partially ordered
set is a relaxation of a linearly ordered set as defined in Section 1.5. A relation a < b, defined
for certain pairs in a set S, is said to be a partial order on S, and (S, X) is said to be a partially
ordered set if

1. Foralla € S, a < a.
2. If a < band b =< a, then a = b.
3. If a<Xband b= c, then a <X c.

The word “partial” indicates that not all pairs of elements need be comparable, only that the
three properties here hold. A maximal element in a partially ordered set is an element m € S
with nothing further in the order; that is, if m =< a is true, then a = m.

The existence of maximal elements in partially ordered sets is of great importance. Zorn’s
lemma provides a criterion that can be checked in order to claim the existence of maximal ele-
ments. A chain in a partially ordered set is any subset that is itself linearly ordered. An upper
bound of a chain is simply an element beyond every element in the chain. The language is sug-
gestive, and pictures should help keep the concepts in mind.
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Lemma 1.34 (Zorn) If every chain in a partially ordered set has an upper bound, then the set
has a mazimal element.

This assertion is, in fact, equivalent to the axiom of choice. We shall prove one direction
just as an indication of how Zorn’s lemma can be used in practice.

Let {4; : ¢ € I} be a collection of sets, each nonempty. We wish to show the existence of a
choice function, that is, a function f with domain I such that f(i) € A; for each i € I. For any
single given element i; € I, we are assured that A;, is nonempty and hence we can choose some
element f(i;) € A;,. We could do the same for any finite collection {i1, 49, ...,i,}, but without
appealing to some logical principle we cannot do this for all elements of [.

Zorn’s lemma offers a technique. Define F as the family of all functions f such that

1. The domain of f is contained in /.
2. f(i) € A; for each 7 in the domain of f.

We already know that there are some functions in F. The choice function we want is presum-
ably there too: it is any element of F with domain 1.

Use dom f to denote the domain of a function f. Define a partial order on F by writing f <
g to mean that dom f C dom g and ¢ is an extension of f. A maximal element of F must be
our choice function. For, if f is maximal and yet the domain of f is not all of I, we can choose
iop € I\ dom f and some z;, € A;,. Define g on dom f U {ig} so that ¢g(ip) = x;,. Then g is an
extension of f, and this contradicts the fact that f is to be maximal.

How do we prove the existence of a maximal element? Zorn’s lemma allows us merely to
verify that every chain has an upper bound. If C C F is a chain, then there is a function h
defined on |J ¢ dom g so that h is an extension of each g € C. Simply take h(i) = g(i) for
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any g € C for which ¢ € dom g. The fact that C is linearly ordered shows that this definition is
unambiguous.

This completes the proof that Zorn’s lemma implies the axiom of choice. All applications of
Zorn’s lemma will look something like this. The cleverness that may be needed is to interpret
the problem at hand as a maximal problem in an appropriate partially ordered set.

Exercises

1:11.1 Let 2% denote the set of all subsets of a nonempty set X. Show that the relation A C B is a
partial order on 2¥. Is it ever a linear order?

1:11.2 Let F denote the family of all functions f : X — Y. Write f < g if the domain of g includes
the domain of f and g is an extension of f. Show in detail that (F, <) is a partially ordered set in
which every chain has an upper bound.

1:11.3<> Prove that there is a Hamel basis for the real numbers; that is, there exists a set H C IR that
is linearly independent over the rationals and that spans IR. (A set H is linearly independent
over the rationals if given distinct elements hq, ho, ...h, € H and any rq, 9, ...7, € Q with
> mihi = 0 then necessarily
rr=r9=---=17,=0.
A set H spans IR if for any € IR there exist
hi,ho,...hy € H and ry,79,...7, € Q

so that >, 7;h; = z.) [Hint: Find a maximal linearly independent set.]
1:11.4 Prove the axiom of choice assuming the well-ordering principle (that every set can be well-ordered).

[Hint: Given {4; : i € I} a collection of sets, each nonempty, well order the set | J;; A;. Consider
¢(4;) as the first element in the set A; in the order.]
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1:11.5 Show that the following statement is equivalent to the axiom of choice: If C is a family of dis-
joint, nonempty subsets of a set X, then there is a set C' that has exactly one element in common
with each set in C.

1.12 Borel Sets of Real Numbers

We have already defined several classes of sets that form the start of what is known as the Borel
sets:
G CGs5 CYso CYsos C Gsoso - - -

and
F CFy CFas C Fate T PFatiad oo oo

Now, with transfinite ordinals available to us, we can continue this construction. The reason
the transfinite ordinals are needed is that this process, which evidently can continue following a
sequence of operations, does not terminate using an ordinary sequence.

The notation used above, while useful at the start of the process, will not serve us for long.
Recall that the first ordinal 0 and every limit ordinal is thought of as even, the successor of an
even ordinal is odd, and a successor of an odd ordinal is even.

We define the classes F, and G, for every ordinal a < . We start by writing 7o = F
and Gg = G, F1 = Fyand G = Gg, Fo = Fos and Go = Gs,. The classes F, and G, for
every ordinal « are defined by taking countable intersections or countable unions of sets from
the corresponding classes 3 and Gg for ordinals 8 < «. If a is odd, then take F,, as the class
formed from countable unions of members from any classes Fg for § < «. If a is even, then
take F, as the class formed from countable intersections of members from any classes F 3 for
B < a.
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Similarly, if « is odd, then take G, as the class formed from countable intersections of mem-
bers from any classes Gg for 8 < a. If « is even, then take G, as the class formed from count-
able unions of members from any classes Gg for 3 < a.

This process continues through all the countable ordinals by transfinite induction. For a =
), we find that the formation of countable intersections (to form Fgq) or countable unions (to
form Gq) does not create new sets (see Exercise 1:12.5). The collection of all sets formed by
this process is called the Borel sets.

We list without proof some properties of the Borel sets on the line to give the flavor of the
theory.

1.35: The complement of a set of type F, is a set of type Go, and the complement of a set of
type G s a set of type F.

1.36: The union and intersection of a finite number of sets of type Fo (Go) is of the same
type.

1.37: Let a < ) be odd. Then the union of a countable number of sets of type Fo, is of the
same type, and the intersection of a countable number of sets of type G, is of the same type.

1.38: Every set of type Fo is of type Goy1. Every set of type G, is of type Fot1.-

1.39: The Borel sets form the smallest o—algebra of sets that contains the closed sets (the
open sets).

Thus one says that the Borel sets are generated by the closed sets (or by the open sets).
(Exercise 1:9.8 shows that there must exist, independent of this theorem, a “smallest” o—algebra
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containing any given collection of sets.) It is this form that we take as a definition in Chapter 3
for the Borel sets in a metric space.

Exercises

1:12.1 Show that the Borel sets form the smallest family of subsets of IR that (i) contains the closed
sets, (ii) is closed under countable unions, and (iii) is closed under countable intersections.

1:12.2 Show that the Borel sets form the smallest family of subsets of IR that (i) contains the closed
sets, (ii) is closed under countable disjoint unions, and (iii) is closed under countable intersections.

1:12.3 Show that the collection of all Borel sets has cardinality c.

1:12.4 Show that there must exist Lebesgue measurable sets that are not Borel sets. [Hint: Use Exer-
cise 1:9.13.]

1:12.5 Show that the formation of countable intersections (to form Fgq) or countable unions (to form
Gq) does not create new sets. [Hint: All members of any sequence of sets from these classes must
belong to one of the classes.]

1.13 Analytic Sets of Real Numbers

The Borel sets clearly form the largest class of respectable sets. This class is closed under all
the reasonable operations that one might perform in analysis. Or so it seems.

In an important paper in 1905, Lebesgue made the observation that the projections of Borel
sets in IR? onto the line are again Borel sets. The statement seems so reasonable and expected
that he gave no detailed proof, assuming it to follow by methods he just sketched. The reader
may know that the projection of a compact set in IR? is a compact set in IR (any continuous
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image of a compact set is compact), and so any set that is a countable union of compact sets
must project to a Borel set. It seems likely that one could prove that projections of other Borel
sets must also be Borel by some obvious argument.

Lebesgue’s assertion went unchallenged for ten years until the error was spotted by a young
student in Moscow. Suslin, a student of Lusin, not only found the error, but reported to his
professor that he was able to characterize the sets that could be expressed as projections of
Borel sets and that he could produce an example of a projection of a Borel set that was not
itself a Borel set.

Suslin calls a set £ C IR analytic if it can be expressed in the form

(0.9}
E= U m Iny no s,y
k=1

(n1,m2,n3,...)

where each Iy, nyns,..n, 1S @ nonempty, closed interval for each
k
(n1,n9,n3,...,ng) € IN

and each k£ € IN, and where the union is taken over all possible sequences (n1,ng2,ns,...) of
natural numbers. Note that while the family of sets under consideration,

{In1,n2,n3,...,nk : (nl, 9, T35+ - - nk) € ]Nk},
is countable the union involves uncountably many sets. Accordingly, this operation is substan-
tially more complicated than the operations that preserve Borel sets. We shall call this the
Suslin operation, although some authors, following Suslin himself, call it operation A.
In a short space of time Suslin, with the evident assistance of Lusin, established the basic
properties of analytic sets and laid the groundwork for a vast amount of mathematics that has
proved to be of importance for analysts, topologists, and logicians. We shall study this in some
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detail in Chapter 11. Here let us merely announce some of his discoveries. He obtained each of
the following facts about analytic sets:

e All Borel sets are analytic.

There is an analytic set that is not Borel.

A set is Borel if and only if it and its complement are both analytic.

Every analytic set in IR is the projection of some Gs set in IR2.

e Every uncountable analytic set has cardinality c.
e The projections of analytic sets are again analytic.

Thus in his short career (he died in 1919) Suslin established the fundamental properties of
analytic sets, properties that exhibit the role that they must play. Lusin and his Polish col-
league Sierpinski carried on the study in subsequent years, and by the end of the 1930s the
study was quite complete and extensive. Let us mention two of their results that are important
from the perspective of measure theory.

e All analytic sets are Lebesgue measurable.

e The Suslin operation applied to a family of Lebesgue measurable sets produces again a
Lebesgue measurable set.
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The study of analytic sets was well developed and well known in certain circles (mostly in
Poland), but it did not receive a great deal of general attention until two main developments.
In the 1950s a number of important problems in analysis were solved by employing the tech-
niques associated with the study of analytic sets. In another direction it was discovered that
most of the theory played an essential role in the study of descriptive set theory; since then all
the methods and results of Suslin, Lusin, Sierpiniski, and others have been absorbed by the logi-
cians in their development of this subject.

We shall return to these ideas in Chapter 11 where we will explore the methods used to
prove the statements listed here.

1.14 Bounded Variation

The following two problems attracted some attention in the latter years of the nineteenth cen-
tury.

1.40: What is the smallest linear space containing the monotonic functions?

1.41: For what class of functions f does the graph

{(z,y) :y = f(z)}
have finite length?

Du Bois-Reymond, for one, attempted to solve Problem 1.40. He noted that, for a function
f that is the integral of its derivative, one could write

@)= £(@) + | PO db - / o dr,
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where we are using the useful notation

[a]T = max{a,0} and [a]” = max{—a,0}.

Clearly, this expresses f as a difference of monotone functions. This led him to a more diffi-
cult problem, which he was unable to resolve: Which functions are indefinite integrals of their
derivatives? Unfortunately, this leads to a problem that will not resolve the original problem in
any case.

Camille Jordan (1838-1922) solved both problems by introducing the class of functions of
bounded variation. The functions of bounded variation play a central role in many investiga-
tions, notably in studies of rectifiability (as Problem 1.41 would suggest) and fundamental ques-
tions involving integrals and derivatives. They also lead to natural generalizations in the ab-
stract study of measure and integration. For that reason, the student should be aware of the
basic facts and methods that are developed in the exercises.

Let f be a real-valued function defined on a compact interval [a, b]. As in Section 1.2.1, let
P be a partition of [a, b], i.e., choose points

a=xg<x1 < -<xp=">
and then
P={[zi—1,zi]:1=1,2,...,n}

is a collection of nonoverlapping subintervals of [a, b] whose union is all of [a, b]. Let

V(£,P) =D _If(x;) — fzj-1)l-
j=1
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The variation of f on [a,b] is defined as
V(f;la,b]) = sup{V(f,P) : P is a partition of [a,b] }.

When V(f;[a,b]) is finite, we say that f is of bounded variation on [a,b]. We then write f is
BV on [a,b], or f is BV when the interval is understood. (The variant VB is also in common
usage because of the French variation bornée.)

The function T'(z) = V(f; [a, x]) measures the variation on the interval [a,z] and evidently
is an increasing function. This is called the total variation of f. It is this that allows the solu-
tion of Problem 1.40, for one shows that

f(x) =T(x) — (T(z) — f(z))
expresses f as a difference of monotone functions (Exercise 1:14.10).
For the problems on arc length, we need the following definitions. Let f and g be real func-
tions on an interval [a,b]. A curve C in the plane is considered to be the pair of parametric
equations

z=f(t), y=g() (a<t<b).
The graph of the curve C is the set of points
{(z,y) 2= f(t), y=9(t) (a<t <D}
The length ¢(C) of the curve C is defined as

sup Y v/ (F(2) = F(wj-1))? + (o) — gla-)’,

where, as above, the supremum is taken over all partitions of [a,b]. The curve is said to be rec-
tifiable if this is finite. Such a curve is rectifiable precisely when both functions f and g have
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bounded variation (Exercise 1:14.14). The graph of a function f is rectifiable precisely when f
has bounded variation (Exercise 1:14.16).

Exercises
1:14.1 Show that a monotonic function on [a, b] is BV.

1:14.2 Show that a continuous function with a finite number of local maxima and minima on [a, b] is
BV.

1:14.3 Show that a continuously differentiable function on [a,b] is BV.

1:14.4 Show that a function that satisfies a Lipschitz condition on [a, b] is BV.

[A function f is said to satisfy a Lipschitz condition if, for some constant M, |f(x) — f(y)| <
M|y — z|. These conditions were introduced by Rudolf Lipschitz (1832-1903) in an 1876 study
of differential equations.]

1:14.5 Estimate the variation of the function f(z) = zsinz~!, f(0) = 0, on the interval [0, 1].
1:14.6 Estimate the variation of the function f(z) = 2%sinz~1, f(0) = 0, on the interval [0, 1].
1:14.7 Prove that, if f is BV on [a,b], then f is bounded on [a, b].

1:14.8 Show that the class of functions of bounded variation on [a, b] is closed under addition, subtrac-
tion, and multiplication. If f and g are BV, and ¢ is bounded away from zero, then f/g is BV.

1:14.9¢ Show that if f is BV on [a,b] and a < ¢ < b, then
V(f;la,b]) = V(f;la,c]) + V(f;le,b]).
1:14.10{ Show that a function f is BV on [a, b] if and only if there exist functions f; and fy that are

nondecreasing on [a,b], and f(z) = fi(z) — fz2(x) for all x € [a,b]. [Hint: Let V(z) = V(f;]a,x]).
Verify that V' — f is nondecreasing on [a,b] and use f =V — (V — f)/]
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1:14.11 Show that the set of discontinuities of a function of bounded variation is (at most) countable.
[Hint: See Exercise 1:3.14.]

1:14.12 Show that if f is BV on [a, b], with variation V(x) = V(f;[a, z]), then
{z : f is right continuous at z} = {x : V is right continuous at x}.

1:14.13 Let {f,} be a sequence of functions, each BV on [a, b] with variation less than or equal to some
number M. If f,, — f pointwise on [a, b], show that f is BV on [a, b] with variation no greater
than M.

1:14.14 Show that the graph of a curve C in the plane, given by the pair of parametric equations
r=f@t), y=9(@) (a<t<D)
is rectifiable if and only if both f and g have bounded variation on [a, b]. [Hint: |z|, |y| < /22 +y2 <
] + ly|.]

1:14.15 Show that the length of a curve C' in the plane, given by the pair of parametric equations x =
f(t), y=g(t) (a <t <b),is the integral

/ VIFOF+ g 0P dt

if f and g are continuously differentiable.

1:14.16 Show that the graph of a function f is rectifiable if and only if f has bounded variation on
[a, b].

1:14.17) Let f : [a,b] — IR. We say that f is absolutely continuous if for each € > 0 there exists § > 0
such that, if {[a,, b,]} is any finite or countable collection of nonoverlapping closed intervals in
[a,b] with 72, (b — ax) < 6, then

Z |f(bk) — flax)| <e.
k=1
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This concept plays a significant role in the integration theory of real functions. Show that an abso-
lutely continuous function is both continuous and of bounded variation.

1:14.18 Give a natural definition for a complex-valued function on a real interval [a, b] to have bounded
variation. Prove that a complex-valued function has bounded variation if and only if its real and
imaginary parts have bounded variation.

1.15 Newton’s Integral

We embark now on a tour of classical integration theory leading up to the Lebesgue integral.
The reader will be familiar to various degrees with much of this material, since it appears in
a variety of undergraduate courses. Here we need to clarify many different themes that come
together in an advanced course in measure and integration.

The simplest starting point is the integral as conceived by Newton. For him the integral is
just an inversion of the derivative. In the same spirit (but not in the same technical way that
he would have done it) we shall make the following definition.

Definition 1.42: A real-valued function f defined on an interval [a, b] is said to be Newton
integrable on [a, b] if there exists an antiderivative of f, that is, a function F on [a, b] with
F'(z) = f(z) everywhere there. Then we write

b
™) [ f(@)do = F(b) - P(a).

The mean-value theorem shows that the value is well defined and does not depend on the
particular primitive function F' chosen to evaluate the integral. This integral must be consid-
ered descriptive in the sense that the property of integrability and the value of the integral are
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determined by the existence of some object for which no construction or recipe is available. If,
perchance, such a function F' can be found, then the value of the integral is determined, but
otherwise there is no hope, a priori, of finding the integral or even of knowing whether it exists.

One might wish to call this the calculus integral since, in spite of the many texts that teach
constructive definitions for integrals, most freshman calculus students hardly ever view an inte-
gral as anything more than a determination of an antiderivative.

At this point let us remark that this integral is handling functions that are not handled by
other methods. The integrals of Cauchy and of Riemann, discussed next, require a fair bit of
continuity in the function and do not tolerate much unboundedness. But derivatives can be un-
bounded and derivatives can be badly discontinuous. We know that a derivative is Baire 1 and
that Baire 1 functions are continuous except at the points of a first category set; this first cat-
egory set can, however, have positive measure, and this will interfere with integrability in the
senses of Cauchy or Riemann. Thus, while this integral may seem quite simple and unassuming,
it is involved in a process that is more mysterious than might appear at first glance. Attempts
to understand this integral will take us on a long journey.

Exercises
1:15.1 Show that the mean-value theorem can be used to justify the definition of the Newton integral.

1:15.2 Show that a derivative f’ of a continuous function f is Baire 1 and has the intermediate-value
property. [Hint: Consider f,(z) = n=(f(z+n~!) — f(x)). The intermediate-value property can be
deduced from the mean-value theorem.]

1:15.3 Show that a derivative on a finite interval can be unbounded.

1:15.4 Which of the elementary properties of the Riemann integral hold for the Newton integral? For
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example, can we write
b @ c
/a f(x)dx—i—/b f(x)dx:/a f(z)dz?

1.16 Cauchy’s Integral

A first course in calculus will include a proper definition of the integral that dates back to the
middle of the nineteenth century and is generally attributed to Bernhard Riemann (1826-1866).
Actually, Augustin Cauchy (1789-1857) had conceived of such an integral a bit earlier, but
Cauchy limited his study to continuous functions. Here is Cauchy’s definition, stated in modern
language but essentially as he would have given it in 1823 in his lessons at the Ecole Polytech-
nique.

Let f be continuous on [a, b] and consider a partition P of this interval:

a=x)<x1 <x2< < Tp_1 < xTp, =>b.

= Zf(mi—l)(flfi — Ti—1).

Let ||P|| = maxi<i<n(x; — z;—1) and define

/f dr = lim S(f,P).

1P(—0

Form the sum

Cauchy showed that this limit exists.
Prior to Cauchy, such a definition of integral might not have been possible. The modern
notion of “continuity” was not available (it was advanced by Cauchy in 1821), and even the
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proper definition of “function” was in dispute. Cauchy also established a form of the fundamen-
tal theorem of calculus.

Theorem 1.43: Let f be continuous on [a,b], and let
F(x):/ f@)dt (a<z<b).
Then F is differentiable on [a,b], and F'(z) = f(z) for all x € [a,b].

Theorem 1.44: Let F' be continuously differentiable on [a,b]. Then

b
F(b)— F(a) = / F'(x) dz.

Thus, for continuous functions, Cauchy offers an integral that is constructive and agrees
with the Newton integral. There are, however, unbounded derivatives, and so the Newton in-
tegral remains more general than Cauchy’s version.

1.16.1 Cauchy’s extension of the integral to unbounded functions

To handle unbounded functions, Cauchy introduces the following idea, one that survives to this
day in elementary calculus courses, usually under the unfortunate term “improper integral.”
Let us introduce it in a more formal manner, one that leads to a better understanding of the
structure.

Let f be a real function on an interval [a,b]. A point x¢ € [a,b] is a point of unboundedness
of f if f is unbounded in every open interval containing zg. Let Sy denote the set of points of
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unboundedness. If Sy is a finite set and f is continuous at every point of [a, b]\ S, there is some
hope of obtaining an integral of f. Certainly, we know the value of fcd f(t) dt for every interval
[c,d] disjoint from Sy. It is a matter of extending these values. Cauchy’s idea is to obtain, for
any c,d € Sy with (¢,d) NSy =0,

/C “idi= lim / T ey dr

e1\0,€2\0 Joy ey

Then, in a finite number of steps, one can extend the integral to [a, b], providing only that each
limit as above exists. A function is Cauchy integrable on an interval [a, b] provided that Sy is
finite, f is continuous at each point of [a, b] excepting the points in Sy and all the limits above
exist,.

One important feature of this integral is its nonabsolute character. A function f may be
integrable in Cauchy’s sense on an interval [a, b] and yet the absolute value |f| may not be. An
easy example is the function f(z) = F'(z) on [0, 1], where F(z) = 2z?sinz2. Here Sy = {0}
and f is continuous away from 0. Obviously, f is Cauchy integrable on [0, 1], and yet |f| is not.
Somehow the “cancelations” that take place for integrating f do not occur for |f], since

1
li t)|dt = .
ti [ 170t = +o0

This can be considered as the analog in integration theory of the fact that Y o2, (—1)"/i exists
and yet > o2, 1/i = +oo.

Finally, we mention Cauchy’s method for handling unbounded intervals. The procedure
above for determining the integral of a continuous function on a bounded interval [a,b] does
not immediately extend to the unbounded intervals (—o0, al, [a, +00), or (—o0, +00). Cauchy
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handled these in a now familiar way. He defines

+Oof(nlt)dx: lim /t f(z)dx

s,t—-+o00

Note that this integral, too, is a nonabsolute integral.

Exercises
1:16.1 Let Sy denote the set of points of unboundedness of a function f. Show that S; is closed.

1:16.2 Cauchy also considered symmetric limits of the form

b— c
lim ( t f(z)dx + f(z) dw)
a b+t

t—0+

as “principal-value” limits. Give an example to show that these can exist when the ordinary Cauchy
integral does not.

1:16.3 Cauchy also considered symmetric limits for unbounded intervals

t
s e

as “principal value” limits. Give an example to show that this can exist when the ordinary Cauchy
integral does not.

1:16.4 Let f(z) = 2%sinz~2, f(0) = 0 and show that f’ is an unbounded derivative on [0, 1] integrable
by both Cauchy and Newton’s methods to the same value. Show that |f| is not integrable by ei-
ther method.
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1.17 Riemann’s Integral

Riemann extended Cauchy’s concept of integral to include some bounded functions that are dis-
continuous. All the definitions one finds in standard calculus texts are equivalent to his. Using
exactly the language we have given for one of the results of Cauchy from the preceding section,
we can give a definition of Riemann’s integral. Note that it merely turns a theorem (for contin-
uous functions) into a definition of the meaning of the integral for discontinuous functions. This
shift represents a quite modern point of view, one that Cauchy and his contemporaries would
never have made.

Definition 1.45: Let f be a real-valued function defined on [a, b], and consider a partition P
of this interval
a=20 <21 <T93 <+ < Tp1<xp=2>=

supplied with associated points &; € [z;_1,x;]. Form the sum

S(f,P)=>_ f&) (@i — zi1)
=1

and let

Pl = fg?gin(xz — Ti1)-

Then we define ,
/ f(z) de= lim S(f,P)

I1Pl—0

and call f Riemann integrable if this limit exists.
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1.17.1 Necessary and sufficient conditions for Riemann integrability

The structure of Riemann integrable functions is quite easy to grasp. They are bounded (this
is evident from the definition) and they are “mostly” continuous. This was established by Rie-
mann himself. His analysis of the continuity properties of integrable functions lacked only an
appropriate language in which to express it. With Lebesgue measure at our disposal, the char-
acterization is immediate and compelling. It reveals too just why the Riemann integral must be
considered so limited in application.

Theorem 1.46 (Riemann-Lebesgue) A necessary and sufficient condition for a function f
to be Riemann integrable on an interval [a,b] is that f is bounded and that its set of points of
discontinuity in [a,b] forms a set of Lebesque measure zero.

Perhaps we should give a version of this theorem that would be more accessible to the math-
ematicians of the nineteenth century, who would have known Peano—Jordan content but not
Lebesgue measure. The set of points of discontinuity has an easy structure: it is the countable
union (o7 ; F, of the sequence of closed sets

Fo={z:w¢(z) > 1/n},
where the oscillation of the function is greater than the positive value 1/n. [Exercise 1:1.8 de-
fines wy(x).] That the set of points of continuity of f has measure zero is seen to be equivalent
to each of the sets Fj, having content zero. Thus the theorem could have been expressed in this,
rather more clumsy, way. Note that, so expressed, one may miss the obvious fact that it is only
the nature of the set of discontinuity points itself that plays a role, not some other geometric
property of the function. In particular, this serves as a good illustration of the merits of the
Lebesgue measure over the Peano—Jordan content.
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Exercises
1:17.1 Show that a Riemann integrable function must be bounded.

1:17.2¢ (Riemann) Let f be a real-valued function defined on [a,b], and consider a partition P of this
interval:

a=x9 <X <x2< < Tp_1<xT,=>0.

Form the sum
n

O(fa P) = Zw(fv [xi—lvxi])(xi - xi—l)v

i=1

where
w(f, 1) = sup{|f(z) — f(y)| - x,y € I}
is called the oscillation of f on the interval I. Show that in order for f to be Riemann integrable
on [a, b] it is necessary and sufficient that
lim O(f,P)=0.
I Pl[—0 (f: P)
1:17.3 Relate Exercise 1:17.2 to the problem of finding the Peano—Jordan content (Lebesgue measure)

of the closed set of points where the oscillation wy(z) of f is greater or equal to some positive
number c.

1:17.4 Relate Exercise 1:17.2 to the problem of finding the Lebesgue measure of the set of points where
f is continuous (i.e., where the oscillation wy of f is zero).

1:17.5 Riemann’s integral does not handle unbounded functions. Define a Cauchy—Riemann integral
using Cauchy’s extension method to handle unbounded functions.

1:17.6 Let Sy denote the set of points of unboundedness of a function f in an interval [a, b]. Suppose
that Sy has content zero (i.e., measure zero since it is closed) and that f is Riemann integrable in
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every interval [c,d] C [a,b] disjoint from S¢. Define fo(z) = f(z) if —s < f(x) < ¢, fu(z) = tif
f(z) >t and fs(z) = —s if —s > f(x). Define

s,t——+o00

/abf(x)dx_ lim /abfst(x)dx

if this exists. Show that f: f(x) dz does exist under these assumptions. This is the way de la
Vallée Poussin proposed to handle unbounded functions. Show that this method is different from
the Cauchy—Riemann integral by showing that this integral is an absolutely convergent integral.

1:17.7 Prove that a function f on an interval [a,b] is Riemann integrable if f has a finite limit at every
point.

1:17.8 Prove that a bounded function on an interval [a,b] is Riemann integrable if and only if f has a
finite right-hand limit at every point except only a set of measure zero. [Hint: The set of points at
which f is discontinuous and yet has a finite right-hand limit is countable.]

1.18 Volterra’s Example

By the end of the nineteenth century, many limitations to Riemann’s approach were apparent.
All these flaws related to the fact that the class of Riemann integrable functions is too small for
many purposes.

The most obvious problem is that a Riemann integrable function must be bounded. Much
attention was given to the problem of integrating unbounded functions by the analysts of the
that era and less to the fact that, even for bounded functions, the integrability criteria were
too strict. This fact was put into startling clarity by an example of Volterra. He produces an
everywhere differentiable function F such that F’ is bounded but not Riemann integrable. Thus
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the fundamental theorem of calculus fails for this function, and the formula

b
/ F'(z)dz = F(b) — F(a)

is invalid.

Here are some of the details of a construction due to Casper Goffman (1913-2006). For a
version closer to Volterra’s actual construction, see Exercise 5:5.5. Note that we have only to
construct a derivative F” that is discontinuous on a set of positive measure (or a closed set of
positive content). For this we take a Cantor set of positive measure (Theorem 1.23). It was the
existence of such sets that provided the key to Volterra’s construction.

Let C C [0,1] be a Cantor set of measure 1/2 and let {I,,} denote the sequence of open
intervals complementary to C in (0,1). Then ) ;2 |I;| = 1/2. Choose a closed subinterval
Jn C I, centered in I, such that |J,| = |I,|?. Define a function f on [0,1] with values 0 <
f(x) < 1 such that f is continuous on each interval .J,, and is 1 at the centers of each interval
J, and vanishes outside of every .J,. It is straightforward to check that f cannot be Riemann
integrable on [0, 1]. Indeed, since the intervals {I,,} are dense and have total length 1/2, and
the oscillation of f is 1 on each I, this function violates Riemann’s criterion (Exercise 1:17.2).

That f is a derivative follows immediately from advanced considerations (it is bounded and
everywhere approximately continuous and hence the derivative of its Lebesgue integral). This
can also be seen without any technical apparatus. We can construct a continuous primitive
function F' for f on each interval .J,,. To define a primitive F' on all of [0, 1], we write

Fz) = nzl / g fO

Let I C [0, 1] be an interval that meets the Cantor set C, and let n be any integer so that I N
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Jn # 0. Let £, = |I,,|. Since ¢,, < %, it follows that
|ImIn‘ > %(gn _E%) > ign
Then
110 | < [ Jn] = €2 < 16|10 L.
If N is the set of integers n for which I N J, # ), then

D IN T < 16|10 T[> < 16/1)°.
neN neN
From this we can check that F'(z) = f(z) = 0 for each x € C. For x € [0,1] \ C, it is obvious
that F'(z) = f(x). Thus f is a derivative and bounded (between 0 and 1).
Other flaws that reveal the narrowness of the Riemann integral emerge by comparison with
later theories. One would like useful theorems that assert a series of functions can be integrated
term by term. More precisely, if {f,} is a sequence of integrable functions on [a,b], and f(x) =

Yoo [n(z), then f is integrable, and

/:f(a:) dx:i::l/abfn(a:) da.

Riemann’s integral does not do very well in this connection since the limit function f can be
badly discontinuous even if the functions f,, are themselves each continuous. Many authors in
the first half of the nineteenth century routinely assumed the permissibility of term-by-term in-
tegration. It was not until 1841 that the notion of uniform convergence appeared, and its role
in theorems about term-by-term integration, continuity of the sum, and the like, followed soon
thereafter. By the end of the century there was felt a strong need to go beyond uniform conver-
gence in theorems of this kind.
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Yet another type of limitation is that Riemann’s integral is defined only over intervals. For
many purposes, one needs to be able to deal with the integral over a set E that need not be an
interval. The Riemann integral can, in fact, be defined over Peano—Jordan measurable sets, but
we have seen that this class of sets is rather limited and does not embrace many sets (Cantor
sets of positive measure for example) that arise in applications. One often needs a larger class
of sets over which an integral makes sense.

We shall deal in this text with a notion of integral, essentially due to Henri Lebesgue, that
does much better. The class of integrable functions is sufficiently large to remove, or at least
reduce, the limitations we discussed, and it allows natural generalizations to functions defined
on spaces much more general than the real line.

Exercises

1:18.1 Check the details of the construction of the function /' whose derivative is bounded and not Rie-
mann integrable.

1:18.2 Construct a sequence of continuous functions converging pointwise to a function that is not Rie-
mann integrable.

1:18.3 Define

[E flaydo = | @) f(@) da

a

when E C [a,b] and f is continuous on [a,b]. For what sets F is this generally possible?
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1.19 Riemann-Stieltjes Integral

T. J. Stieltjes (1856-1894) introduced a generalization of the Riemann integral that would seem
entirely natural. He introduced a weight function g into the definition and considered limits of
sums of the form

n

> £(&) (9(xi) — g(mi-1))

p=ll

where, as usual, g, z1, ..., T, is a partition of an interval and each &; € [z;_1,z;]. Although
it was introduced for the specific purpose of representing functions in a problem in continued
fractions, it should have been clear that this object (the Riemann—Stieltjes integral) had some
independent merit. Stieltjes himself died before the appearance of his paper, and the idea at-
tracted almost no attention for the next 15 years. Then F. Riesz showed that this integral gave
a precise characterization of the general continuous linear functions on the space of continuous
function on an interval. (See Section 12.8.) Since then it has become a mainstream tool of anal-
ysis. It also played a fundamental role in the development [notably by J. Radon (1887-1956)
and M. Fréchet (1878-1973)] of the abstract theory of measure and integration. For these rea-
sons the student should know at least the rudiments of the theory as presented here.
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Definition 1.47: Let f, g be real-valued functions defined on [a, b], and consider a partition P
of this interval
a=x0 <1 <2< < xp_1< Ty =D0,

supplied with associated points & € [x;_1, :L'Z] Form the sum

S(f,dg, P ngz (@:) — g(zi-1))

and let

P| = —zi 1)
| P|| = 113%(:6 Ti-1)

Then we define ,
| @ dste) = lim_S(,dg. P)

I1Pll—

and call f Riemann—Stieltjes integrable with respect to g if this limit exists.

Clearly, the case g(z) = x is just the Riemann integral. For g continuously differentiable,
the integral reduces to a Riemann integral of the form

[/ s = [ o

If g is of a very simple form, then the integral can be computed by hand. Suppose that g is a
step function; that is, for some partition P of this interval,

a=cp<cp<cyg<--<cp1<cp=Db,
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the function ¢ is constant on each interval (¢;—1,¢;). Let j; be the jumps of g at ¢;; that is jp =
glco+) — g(co), G = glcx) — glex—), and ji = g(ei+) — glei—) for 1 < < k — 1. Then one easily
checks for a continuous function f that

b k
| 1@ dste) =3 s
a i=1
The most natural applications of this integral occur for f continuous and g of bounded vari-
ation. In this case the integral exists and there is a useful estimate for its magnitude. We state
this as a theorem; it is assigned as an exercise in Section 12.8 where it is needed. We leave the
rest of the theoretical development of the integral to the exercises.

Theorem 1.48: If f is continuous and g has bounded variation on an interval [a,b], then f is
Riemann—Stieltjes integrable with respect to g and

[ 1) < (. 1701 ) Vi o8],

z€[a,b]

The exercises can be used to sense the structure of the theory that emerges without working
through the details. We do not require this theory in the sequel; but, as there are many appli-
cations of the Riemann—Stieltjes integral in analysis, the reader should emerge with some fa-
miliarity with the ideas, if not a full technical appreciation of how the proofs go. The study of
fab f(z)dg(z) is easiest if f is continuous and g monotonic (or of bounded variation). The de-
tails are harder if one wants more generality.
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Exercises
1:19.1 What is f; f(z)dg(x) if f is constant? If ¢ is constant?

b
g) = / f() dg(z)

establish the linearity of f — I(f,g) and g — I(f,g); that is, show that I(f1 + f2,9) = I(f1,9) +
I(fZ,g)v I(Cfvg) = I(f,cg) = CI(f,g)v and I(fvgl +g2) = I(f?Ql) +I(fa92)

1:19.3 Give an example to show that both fj f(x)dg(z) and [; f(z)dg(z) may exist and yet [* f(z)dg(x)

may not.
/f ) dg(x /f ) dg(x /f ) dg(x

under appropriate assumptions.

1:19.2 Writing

1:19.4 Show that

1:19.5 Suppose that g is continuously differentiable and f is continuous. Prove that

[ s [ s

[Hint: Write f(&)(g(zi) — g(xi—1)) as f(&)g'(m:)(xi — zi-1), where &, m; € [z;_1,;] using the

mean-value theorem.]

1:19.6 Let g be a step function, constant on each interval (¢;—1,¢;) of the partition

a=cp< 1<y << cpq<cp=b.
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Then, for a continuous function f,

/ f(x) dg(x Zf ()7,

where j; are the jumps of g at ¢;; that is, jo = g(co+) — g(co), jx = g(ek) — glex—), and j; =
g(cit+) —glei—) for 1 <i < k—1.

1:19.7 Show that if fab f(x) dg(zx) exists then f and g have no common point of discontinuity.

1:19.8 (Integration by parts) Establish the formula

b b
/ f() do(=) + / o) df (=) = FB)9(B) — F(a)a(a)
under appropriate assumptions on f and g.

1:19.9 (Mean-value theorem) Show that

b
[ 1@ dgta) = £€)6® - g(@)
for some & € [a, b] under appropriate assumptions on f and g.

1:19.10 Suppose that f1, fo are continuous and g is of bounded variation on [a, b], and define

o) [ " () dg()
/fz 1) dht /f1 ) fa(t) g (2).

for a < x < b. Show that
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1:19.11 Let g, g1, g2, ... be BV functions on [a, b] such that g(a) = g1(a) = --- = 0. Suppose that the
variation of g — g, on [a,b] tends to zero as n — co. Show that

b
B [ )l /f ) dg(e

for every continuous f. [Hint: Use Theorem 1.48.]

1.20 Lebesgue’s Integral

The mainstream of modern integration theory is based on the notion of integral due to Lebes-
gue. A formal development of the integral must wait until Chapter 5, where it is done in full
generality. Here we give some insight into what is involved.

Suppose that you have several coins in your pocket to count: 4 dimes, 2 nickels, and 3 pen-
nies. There are two natural ways to count the total value of the coins.

Computation 1. Count the coins in the order in which they appear as you pull them from
your pocket, for example,

10+10+5+10+1+5+10+1+1=253.

Computation 2. Group the coins by value, and compute
(10)(4) + (5)(2) + (1)(3) = 53.

The first computation corresponds to Riemann integration, while the second computation
is closely related to the methods of Lebesgue integration. Let’s look at this in more detail. Fig-
ure 1.1 is the graph of a function that models our counting problem using the order from com-
putation 1.
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f(=z)
10 ¢ = = dimes
5 — — nickels
1 — —— pennies
- T
1 9

Figure 1.1. A function that models our counting problem.

One can check easily that fog f(z) dr = 53, the integral being Riemann’s. Because of the
simple nature of this function, one sees that one needs no finer partition than the partition ob-
tained by dividing [0, 9] into 9 congruent intervals. This partition gives the sum corresponding
to the first method.

To consider the second method of counting, we use the notation of measure theory. If I is
an interval, we write, as usual, A\(I) for the length of I. If F is a finite union of pairwise-disjoint
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intervals, £ = I; U ---U I, then the measure of E is given by the sum
AME)=AN)+ -+ A{Ip)-

Now let

Ey={z: f(z) =1

Bs = {x: f(x) = 5},
and

Elg = {.’L’ : f(l‘) = 10}
Then A(E1) = 3, A(E5) = 2, and A(Ej9) = 4. In computation 2 we formed the sum
(DA(EL) + (5)A(Es5) + (10)A(E1o).

Note that the numbers 1, 5, and 10 represent the values of the function f, and A\(E;) indicates
“how often” the value 7 is taken on.

We have belabored this simple example because it contains the seed of the Lebesgue inte-
gral. Let us try to imitate this example for an arbitrary bounded function f defined on [a, b].
Suppose that m < f(z) < M for all z € [a,b]. Instead of partitioning the interval [a, b], we
partition the interval [m, M]:

m=yo<y1 < <yp=M.
For k=1,...,n, let
By ={z:yp-1 < f(z) < yr}-
Thus the partition of the range induces a partition of the interval [a, b]:

[a,b] = E1UE,U---UE,
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where the sets {E}} are clearly pairwise disjoint. We can form the sums

Zyk)\(Ek) and Zyk_l)\(Ek)

in the expectation that these can be used to approximate our integral, the first from above and
the second from below. We hope two things: that such approximating sums approach a limit
as the norm of the partition approaches zero and that the two limits are the same. If each of
the sets Ej happens to be always a finite union of intervals (e.g., if f is a polynomial), then the
upper and lower sums do have the same limit. This is just another way of describing a well-
known development of the Riemann integral via upper and lower sums.

But the sets Er may be much more complicated than this. For example, each E} might con-
tain no interval. Thus one needs to know in advance the measure of quite arbitrary sets. This
attempt at an integral will break down unless we restrict things in such a way that the sets that
arise are Lebesgue measurable. This means we must restrict our attention to classes of func-
tions for which all such sets are measurable, the measurable functions (Chapter 4).

After we understand the basic ideas of measures (Chapter 2) and measurable functions (Chap-
ter 4), we will be ready to develop the integral. The idea of considering sums of the form

Z Yk )\(Ek) and Z Yk—1 )\(Ek)
taken over a partition of the interval
[a,b] =F UEU---UE,

did not originate with Lebesgue; Peano had used it earlier. But the idea of partitioning the
range in order to induce this partition seems to be Lebesgue’s contribution, and it points out
very clearly the class of functions that should be considered; that is, functions f for which the
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associated sets
E={z:a< f(z) <}
are Lebesgue measurable.

The preceding paragraphs represent an outline of how one could arrive at the Lebesgue inte-
gral. Our development will be more general; it will include a theory of integration that applies
to functions defined on general “measure spaces.” The fascinating evolution of the theory of in-
tegration is delineated in Hawkins book on this subject.? A reading of this book allows one to
admire the genius of some leading mathematicians of the time. It also allows one to sympathize
with their misconceptions and the frustration these misconceptions must have caused.

1.21 The Generalized Riemann Integral

The main motivation that Lebesgue gave for generalizing the Riemann integral was Volterra’s
example of a bounded derivative that is not Riemann integrable. Lebesgue was able to prove
that his integral would handle all bounded derivatives. His integral is, however, by its very na-
ture an absolute integral. That is, in order for f: f(x) dx to exist, it must be true that

/ 1) d

also exists. The problem of inverting derivatives cannot be solved by an absolute integral, as we
know from the elementary example F’ with

F(z) = z?sinz™2.

2T. Hawkins, Lebesgue’s Theory of Integration, Chelsea Publishing Co., (1979).
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Thus we are still left with a curious situation. Despite a century of the best work on the
subject, the integration theories of Cauchy, Riemann, and Lebesgue do not include the original
Newton integral. There are derivatives (necessarily unbounded) that are not integrable in any
of these three senses. In general, how can one invert a derivative then?

To answer this, we can take a completely naive approach and start with the definition of the
derivative itself. If F’ = f everywhere, then, at each point £ and for every e > 0, there is a
0 > 0 so that

|F(z") — F(z') — f(€)(a" — )| <e(z" —2) (5)
for 2/ <&<a2”and 0 < 2" — 2’/ <.

We shall attempt to recover F'(b) — F(a) as a limit of Riemann sums for f, even though
this is a misguided attempt, since we know that the Riemann integral must fail in general to
accomplish this. Even so, let us see where the attempt takes us.

Let

a=x0<x1<Tp...Tp, =20
be a partition of [a, b], and let & € [z;—1,z;]. Then

n n

F(b) = Fa) =) (F(zi1) = Flz:) = Y _ f(&)(wi —@i-1) + R

i=1 =1

where
n

R= Z F(xi-1) — f(&)(zi — zi-1)) -

Thus F(b) — F(a) has been given as a Riemann sum for f plus some error term R. But it ap-
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pears now that, if the partition is finer than the number ¢ so that (5) may be used, we have

|R| < Z}F(%’) — F(zi-1) — f(&)(zi — zi-1)
=1

n
< Zs(xz —z;-1) =€e(b—a).
i=1
Evidently, then, if there are no mistakes here we have just proved that f is Riemann integrable
and that

b
/ f(t)dt = F(b) — F(a).

This is false of course. Even the Lebesgue integral does not invert all derivatives, and the
Riemann integral cannot invert even all bounded derivatives. The error is that the choice of
0 depends on the point £ considered and so is not a constant. But, instead of abandoning the
argument, one can change the definition of the Riemann integral to allow a variable §. The defi-
nition then changes to look like this.

Definition 1.49: A function f is generalized Riemann integrable on [a,b] with value I if for
every ¢ there is a positive function ¢ on [a, b] so that

Z FE @S =
i=1

whenever a = zp < 1 < 3 < -+ < x, = b is a partition of [a,b] with & € [z;_1,2;] and
O0<z;—zi_1 < 5(&)
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To justify the definition requires knowing that such partitions actually exist for any such
gauge 0; this is supplied by the Cousin theorem (Theorem 1.3).

This defines a Riemann-type integral that includes the Lebesgue integral and the Newton
integral. It is equivalent to the integrals invented by A. Denjoy (1884-1974) and O. Perron in
1912. The generalized Riemann integral was discovered in the 1950s, independently, by Ralph
Henstock (1923-2007) and Jaroslav Kurzweil, and these ideas have led to a number of other
integration theories that exploit the geometry of the underlying space in the same way that this
integral exploits the geometry of derivatives on the real line.

In Section 5.10 we shall present a property of the Lebesgue integral that shows how it is in-
cluded in a generalized Riemann integral. We do not develop this theme any further as these
ideas should be considered, for the moment anyway, as rather specialized. A development of
these ideas can be found in the recent monographs of Pfeffer? or Gordon.* The main tool of
modern analysis is the standard theory of measure and integration developed in subsequent
chapters, and we confine our interests in integration theory to its exposition.

Exercises

1:21.1 Develop the elementary properties of the generalized Riemann integral directly from its defini-
tion (e.g., the integral of a sum f + g, the integral formula f: + [, = [7, etc.).

1:21.2 Show directly from the definition that the function f defined as f(z) = 0 for « rational and
f(z) = 1 for z irrational is not Riemann integrable, but is generalized Riemann integrable on any

3W. F. Pfeffer, The Riemann Approach to Integration: Local Geometric Theory. Cambridge (1993).
4R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock. Grad. Studies in Math, Vol. 4,
Amer. Math. Soc. (1994).
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interval, and that fol f(z)dz = 1.

1:21.3 Show that the generalized Riemann integral is closed under the extension procedure of Cauchy
from Section 1.16.

1.22 Additional Problems for Chapter 1

1:22.1 For an arbitrary function F':IR— IR, prove that the set
{z : F assumes a strict local maximum or minimum at x}
is countable. [Hint: Consider

An:{x:F(t)<F(:c)Vt7é:cin (:c—;,a:+1)}.

n
1:22.2 For an arbitrary function F':IR — IR, prove that the set
{x : limsup F(t) > lim sup F(t)}

t—zx t—z+

is countable.

1:22.3 For an arbitrary function F':IR — IR, prove that the set

{x . F(z) ¢ [h?i inf F(t), lim sup F(t)} }

t—x

is countable.
1:22.4 For an arbitrary function F':IR — IR, prove that the set

{a: : F is discontinuous at = and lim F'(t) exists}

t—zx

is countable.
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1:22.5 Show that the set of irrationals in [0, 1] has inner measure 1 and the set of rationals in [0, 1] has
outer measure 0.

1:22.6 Prove (or find somewhere a proof) that the following three logical principles are equivalent:

(a) The axiom of choice,
(b) The well-ordering principle [Zermelo’s theorem].

(¢) Zorn’s lemma.

1:22.7¢ An uncountable set S of real numbers is said to be totally imperfect if it contains no nonempty
perfect set. A set S of real numbers is said to be a Bernstein set if neither S nor IR \ S contains
a nonempty perfect set. Prove the existence of such sets assuming the continuum hypothesis and
using Statement 1.15. (Incidentally, no Borel set can be totally imperfect.) [Hint: Let C be the
collection of all perfect sets. This has cardinality ¢ (see Exercise 1:4.7). Under CH we can well
order C as in Statement 1.15, say indexing as {P, }, so that each element has only countably many
predecessors. Construct S by picking two distinct points x4, Y, from each P, in such a way that
at each stage we pick new points. (You will have to justify this by a cardinality argument.) Put
the z, in S.]

1:22.8¢ Show the existence of Bernstein sets without assuming CH.

[Hint: Use Lemma 1.16, and basically the same proof as Exercise 1:22.7, but with a little more
attention to the cardinality arguments.|

1:22.9¢ Assuming CH, show that there is an uncountable set U of real numbers (called a Lusin set)
such that every dense open set contains all but countably many points from U. [Hint: Let {G,}
be a well ordering of the open dense sets so that every element has only countably many predeces-
sors. Choose distinct points z,, from [ f<a Gp. Then U consists of all the points z,. (The steps
have to be justified. Remember that a countable intersection of dense open sets is residual and
therefore uncountable.)]
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1:22.10 Recall (Exercise 1:7.5) that the outer content ¢* is finitely subadditive; that is, if {Ej} is a se-
quence of subsets of an interval [a, b], then

c <O Ek> S zn:c*(Ek)
k=1 k=1

Show that ¢, is finitely superadditive; that is, if {Ey} is a disjoint sequence of subsets of IR,

S

1:22.11 Recall (Exercise 1:7.6) that the outer measure \* is countably subadditive; that is, if {Ej} is a

sequence of subsets of IR, then
A* (U Ek> <> X ().
k=1 k=1

Similarly, show that A, is countably superadditive; that is, if {E}} is a disjoint sequence of subsets

of an interval [a,b], then
. (05) > Soneo,
k=1

[Hint: Use Exercise 1:9.16.]

1:22.12 Let {c;} be complex numbers with Y ;2 |cx| < +oo and write f(z) = > pe; 2" for |z| < 1.
Show that f is BV on each radius of the circle |z| = 1.

1:22.13<> Let C' and B be the sets referenced in the proof of Theorem 1.23. Define a function f in the
following way. On Iy, let f = 1/2; on I, f = 1/4; on I3, f = 3/4. Proceed inductively. On the
2"~1 — 1 open intervals appearing at the nth stage, define f to satisfy the following conditions:
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(¢) f is constant on each of these intervals.

(73) f takes the values
1 3 2" —1

27,277..., 2n

on these intervals.

(¢i7) If 2 and y are members of different nth-stage intervals with = < y, then f(x) < f(y).

This description defines f on B. Extend f to all of [0, 1] by defining f(0) = 0 and, for « # 0,
f(z) =sup{f(t): t € B,t < x}.

(a) Show that f(B) is dense in Ij.

(b) Show that f is nondecreasing on Ij.

(¢) Infer from (a) and (b) that f is continuous on Ij.

(d) Show that f(C') = Iy, and thus C has the same cardinality as .

As an example, Figure 1.2 corresponds to the case in which, every time an interval [}, is selected,
it is the middle third of the closed component of A,, from which it is chosen. In this case, the set
C'is called the Cantor set (or Cantor ternary set) and f is called the Cantor function. The set
and function are named for the German mathematician Georg Cantor (1845-1918). Observe that
f “does all its rising” on the set C', which here has measure zero. More precisely, A(f(B)) = 0,
A(f(C)) = 1. This example will be important in several places in Chapters 4 and 5.

1:22.14 Using some of the ideas in the construction of the Cantor function (Exercise 1:22.13), obtain a
continuous function that is not of bounded variation on any subinterval of [0, 1].

1:22.15 Using some of the ideas in the construction of the Cantor function (Exercise 1:22.13), obtain a
continuous function that is of bounded variation on [0, 1], but is not monotone on any subinterval

of [0, 1].
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Figure 1.2. The Cantor function.

1:22.16 Show that the Cantor function is not absolutely continuous (Exercise 1:14.17).



Chapter 2

MEASURE SPACES

With the help of the Riemann version of the integral, calculus students can study such notions
as the length of a curve, the area of a region in the plane, the volume of a region in space, and
mass distributions on the line, in the plane, or in space. But there are serious limitations and
many awkward difficulties associated with Riemann’s methods. These length, area, and volume
notions, as well as many others, are better studied within the framework of measure theory.

In this framework, one has a set X, a class M of subsets of X, and a measure y defined on
M. The class M satisfies certain natural conditions (See Sections 2.2 and 2.3), and p satisfies
conditions one would expect of such notions as length, area, volume, or mass.

Our objective in this chapter is to provide the reader with a working knowledge of basic
measure theory. In Section 2.1, we provide an outline of Lebesgue measure on the line via the
notions of inner measure and outer measure. Then, in Sections 2.2 and 2.3, we begin our devel-
opment of abstract measure theory by extracting features of Lebesgue measure that one would
want for any notion of measure.

100
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This abstract approach has the advantage of being quite general and therefore of being ap-
plicable to a variety of phenomena. But it does not tell us how to obtain a measure with which
to model a given phenomenon. Here we take our cue from the development in Section 2.1. We
find that a measure can always be obtained from an outer measure (Section 2.8).

We also find that when we have a primitive notion of our phenomenon, for example, length
of an interval, area of a square, volume of a cube, or mass in a square or cube, this primitive
notion determines an outer measure in a natural way. The outer measure, in turn, defines a
measure that extends this primitive notion to a large class of sets M that is suitable for a co-
herent theory.

Many measures possess special properties that make them particularly useful. Lebesgue
measure has most of these. For example, the Lebesgue outer measure of any set £ can be ob-
tained as the Lebesgue measure of a larger set H D FE that is measurable. Every subset of
a set of Lebesgue measure zero is measurable and has, again, Lebesgue measure zero. In Sec-
tions 2.10 to 2.13 we develop such properties abstractly. Finally, Section 2.11 addresses the
problem of nonmeasurable sets in a very general setting.

2.1 One-Dimensional Lebesgue Measure

We begin our study of measures with a heuristic development of Lebesgue measure in IR that
will provide a concrete example that we can recall when we develop the abstract theory. This
is independent of the sketch given in the first chapter. Our development will be heuristic for
two reasons. First, a development including all details would obscure the major steps we wish
to highlight. Some of these details are covered by the exercises. Second, our development of the
abstract theory in the remainder of the chapter, which does not depend on Lebesgue measure
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in any way, will verify the correctness of our claims. Thus Lebesgue measure serves as our moti-
vating example to guide the development of the theory and our illustrative example to show the
theory in application.

We begin with the primitive notion of the length of an interval. We then extend this no-
tion in a natural way first to open sets, then to closed sets. Finally, by the method of inner and
outer measures, this is extended to a large class of “measurable” sets.

1. The measure of open intervals. We define
AI)=b-—a,

where I denotes the open interval (a,b). This is the beginning of a process that can, with some
adjustments, be applied to a variety of situations.

2. The measure of open sets. Define

MG) = AIw),

where G is an open set and {Ij} is the sequence of component intervals of G. If one of the com-
ponents is unbounded, we let A\(G) = oo. [If G # 0, then G can be expressed as a finite or
countably infinite disjoint union of open intervals: G = |JIx. If G = (), the empty set, define
A(G) = 0.] This definition is a natural one; it conforms to our intuitive requirement that “the
whole is equal to the sum of the parts.”

3. The measure of bounded closed sets. Define

AME)=b—a—A((a,b) \ E),
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where E' is a bounded closed set and [a, b] is the smallest closed interval containing E. Since
[a,b] = E'U ([a,b] \ E), our intuition would demand that

AME)+ A(a, b)) \E)=b—a
and this becomes our definition.

So far, we have a notion of measure for arbitrary open sets and for bounded closed sets. We
shall presently use these notions to extend the measure to a larger class of sets—the measurable
sets. Let us pause first to look at an intuitive example.

Example 2.1: Let 0 < a < 1. There is a nowhere dense closed set C' C [0, 1] that is of measure
a. (For the full details of the construction see Section 1.8.) Its complement B = [0,1] \ C'is a
dense open subset of [0, 1] of measure 1 — . In particular, if @ > 0, C' has positive measure. In
any case, C' is a nonempty nowhere dense perfect subset of [0, 1] and therefore has cardinality of
the continuum. (See Exercise 1:22.13.)

While the construction of the set C' is relatively simple, the existence of such sets was not
known until late in the nineteenth century. Prior to that, mathematicians recognized that a
nowhere dense set could have limit points, even limit points of limit points, but could not con-
ceive of a nowhere dense set as possibly having positive measure. Since dense sets were per-
ceived as large and nowhere dense sets as small, this example, with @ > 0, would have begun
the process of clarifying the ideas that would lead to a coherent development of measure theory.

We shall now use our definitions of measure for bounded open sets and bounded closed sets
to obtain a large class £ of Lebesgue measurable sets to which the measure A can be extended.
To each set E' € L, we shall assign a nonnegative number A(E) called the Lebesgue measure of
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E. Our intuition demands that a certain “monotonicity” condition be satisfied for measurable
sets: if B and E5 are measurable and F; C E5, then

AEr) < A(E2).

In particular, if G is any open set containing a set F, we would want \(E) < A(G), so A(G)
provides an upper bound for A(E), if E is to be measurable.

2.1.1 Lebesgue outer measure

We can now define the outer measure of an arbitrary set £ by choosing the open set G “eco-
nomically.”

Definition 2.2: Let E be an arbitrary subset of IR. Let
N (E) =inf {\(G) : EC G, G open}.
Then \* (E) is called the Lebesgue outer measure of E.

We point out, for later reference, that the outer measure can also be obtained by approxi-
mating from outside with sequences of open intervals (Exercise 2:1.10):

(©.9]

A*(F) = inf {Z M) : E C Upey Ii, each Ij; an open interval} :
k=1

Now A* (E) may seem like a good candidate for A(E). It meets the monotonicity requirement

and it is well defined for all bounded subsets of IR. It is also true, but by no means obvious,

that A* (E) = A(F) when FE is open or closed. (See Exercise 2:1.4.) But A\* lacks an essential
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property: we cannot conclude for a pair of disjoint sets Ey, Fo that
A* (El U Eg) = )" (El) + A* (EQ) .

The whole need not equal the sum of its parts.

2.1.2 Lebesgue inner measure

Here is how Lebesgue remedied this flaw. So far we have used only part of what is available to
us—outside approximation of E by open sets. Now we use inside approximation by closed sets.

Definition 2.3: Let E be an arbitrary subset of IR. Let
A (B) =sup{A\(F): F C E, F compact} .
Then A, (E) is called the Lebesgue inner measure of E.

Since E need not contain any intervals, there is no inner approximation by intervals, anal-
ogous to the approximation of the outer measure by intervals. We have, however, the following
formula for a bounded set E.

2.4: Let [a,b] be the smallest interval containing a bounded set E. Then
M(E)=b—a— X ([a,b]\ E).

This shows the important fact that the inner measure is definable directly in terms of the
outer measure. In particular, it suggests already that a theory based on the outer measure alone
may be feasible. We illustrate these definitions with an example.
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Example 2.5: Let Iy = [0, 1], and let Q denote the rational numbers in . Let e > 0 and let
{qr} be an enumeration of Q. For each positive integer n, let I,, be an open interval such that
gn € I and A\(I,) < €/2". Then Q C |JI,, and Y A(I,) < e. Thus \* (Q) = 0. The set

P =1y \ I is closed, and P C Iy \ Q. We see, using the assertion 2.4 and Exercise 2:1.12, that
A(P) > 1 —e. It follows that

l—e<A(P)< A (Ip\Q),

so that A, (I \ Q) = 1. Thus the set of irrationals in Iy has inner measure 1, and the set of
rationals has outer measure 0.

2.1.3 Lebesgue measurable sets

Inner measure A\, has the same flaw as outer measure \*. The key to obtaining a large class of
measurable sets lies in the observation that we would like outside approximation to give the
same result as inside approximation.

Definition 2.6: Let E be a bounded subset of IR, and let \* (E) and A, (E) denote the outer
and inner measures of E. If

A (E) = A (B),

we say that E is Lebesque measurable with Lebesque measure A\(E) = \* (E). If E is unbounded,
we say that E is measurable if £ N I is measurable for every interval I and again write A(E) =

X* (E).

One can verify that the class £ of Lebesgue measurable sets is closed under countable unions
and under set difference. If {F}} is a sequence of measurable sets, so is | J Ey, and the difference
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of two measurable sets is measurable. In addition, Lebesgue measure A is countably additive on
the class L: if {E}} is a sequence of pairwise disjoint sets from £, then

AU ER) =D MEw).

We shall not prove these statements at this time. They will emerge as consequences of the the-
ory developed in Section 2.10. Observe for later reference that A* is countably additive on L,
since A* = X on £. Thus we can view A as the restriction of A\*, which is defined for all subsets
of IR, to L, the class of Lebesgue measurable sets.

Not all subsets of IR can be measurable. In Section 1.10 we have given the details of the
proof of this fact. But we shall discover that all sets that arise in practice are measurable.

Many of the ideas that appear in this section, including the exercises, will reappear, in ab-
stract settings as well as in concrete settings, throughout the remainder of this chapter.

Exercises

2:1.1 In the definition of A(G) for G a bounded open set, how do we know that the sum > A(Ij) is fi-
nite?

2:1.2 Prove that both the outer measure and inner measure are monotone: If £y C FEs, then \* (E;) <

2:1.3 Prove that the outer measure \* and inner measure A\, are translation-invariant functions defined
on the class of all subsets of IR.

2:1.4 Prove that \* (E) = A\, (E) = M(E) when E is open or closed and bounded. (Thus the definition
of measure for open sets and for compact sets in terms of \* and \, is consistent with the defi-
nition given at the beginning of the section.) [Hint: If F is an open set with component intervals
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{(a;, b;)}, then show how A, (E) can be approximated by the measure of a compact set of the form
N
[a; +e27%,b; — e277]
i=1
for large N and small € > 0.]

2:1.5 Let [a,b] be the smallest interval containing a bounded set E. Prove that
A (B)=b—a— X" ([a,b] \ E).
[Hint: Split the equality into two inequalities and prove each directly from the definition.]

2:1.6 For all E C IR, show that A\, (E) < A* (E). [Hint: If F C E C G with F compact and G open, we
know already that A(F') < A(G). Take first the infimum over G and then the supremum over F.]

2:1.7 Show that if A\* (E) = 0 then E and all its subsets are measurable.

2:1.8 Show that there exist 2¢ Lebesgue measurable sets (where ¢ is, as usual, the cardinality of the real
numbers).

2:1.9 Show that if {G\} is a sequence of open subsets of IR then
by (U Gk> <Y AGh).
k=1 k=1
[Hint: If (a,b) C Up—,; Gk, show that b —a < >";2; A(Gj) by considering that
N
[a+e,b—¢] C U Gk
k=1

for small ¢ and sufficiently large N.]
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2:1.10 Using Exercise 2:1.9, show that

A" (F) = inf {Z AIy) : E C Uz Ik, each Ij, an open interval} .
k=1

2:1.11 Show that if {F} is a sequence of compact disjoint subsets of IR then

A (U Fk> >3 A(Fw).
k=1 k=1
[Hint: If F; and F» are disjoint compact sets, then there are disjoint open sets G; D Fy and Go D
Fy.]
2:1.12 Show that \* is countably subadditive: if {E}} is a sequence of subsets of IR, then

A* (U Ek> <> X (Er).
k=1 k=1
[Hint: Choose open sets G D FEj so that \* (Ey) +£27% > A\(G},) and use Exercise 2:1.9.]

2:1.13 Similarly to Exercise 2:1.12, show that A, is countably superadditive: if {E}} is a disjoint se-

quence of subsets of IR,
A (U Ek> > A (Br).

k=1 k=1
[Hint: Choose compact sets Fj, C Ej so that A, (Ey) —e27% > A\(F},) and use Exercise 2:1.11.]
2:1.14<> We recall that a set is of type F, if it can be expressed as a countable union of closed sets, and

it is of type G if it can be expressed as a countable intersection of open sets. (See the discussion
of these ideas in Sections 1.1 and 1.12.)
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(a)
(b)

(d)

Prove that every closed set F' C IR is of type Gs and every open set G C IR is of type F,.

Prove that for every set £ C IR there exists a set K of type F, and a set H of type G5 such
that K C £ C H and

AMEK) =X (B) <X (E) = AH).
The set K is called a measurable kernel of E, while the set H is called a measurable cover for
E.

Prove that if ¥ € £ there exist K, H as above such that
AMK) = AFE) = \H).

[The point of this exercise is to show that one can approximate measurable sets by relatively
simple sets on the inside and on the outside. By use of the Baire category theorem (see Sec-
tion 1.6), one can show that the roles played by sets of type F, and of type G5 cannot be
exchanged in parts (b) and (c).]

Show that “F,” cannot be improved to “closed” and “Gs” cannot be improved to “open” in
parts (b) and (c).

2:1.15 Give an example of a nonmeasurable set F for which A\, (E) = \* (E) = oo. [Hint: Use Theo-
rem 1.33.]

2.2 Additive Set Functions

We begin now our study of structures suggested by Lebesgue measure. The class of sets that
are Lebesgue measurable has certain natural properties: it is closed under the formation of
unions, intersections, and set differences. This leads to our first abstract definition.
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Definition 2.7: Let X be any set, and let A be a nonempty family of subsets of X. We say A
is an algebra of sets if it satisfies the following conditions:

1. e A
2. If A€ Aand B € A, then AUB € A.
3. f Aec A then X \ A e A

It is easy to verify that an algebra of sets is closed also under differences, finite unions, and
finite intersections. (See Exercise 2:2.1.) For any set X, the family 2% of all subsets of X is ob-
viously an algebra. So is the family A = {0, X}. We have noted that the family £ of Lebesgue
measurable sets is an algebra. Here is another example, to which we shall return later.

Example 2.8: Let X = (0,1]. Let A consist of () and all finite unions of half-open intervals
(a,b] contained in X. Then A is an algebra of sets.

Our next notion, that of additive set function, might be viewed as the forerunner of the no-
tion of measure. If we wish to model phenomena such as area, volume, or mass, we would like
our model to conform to physical laws, reflect our intuition, and make precise concepts, such as
“the whole is the sum of its parts.” We can do this as follows.

Definition 2.9: Let A be an algebra of sets and let v be an extended real-valued function
defined on A. If v satisfies the following conditions, we say v is an additive set function.

1. v(0) = 0.
2. If A, Be Aand AN B =, then v(AU B) = v(A) + v(B).
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Note that such a function is allowed to take on infinite values, but cannot take on both —oo
and oo as values. (See Exercise 2:2.8.) A nonnegative additive set function is often called a
finitely additive measure.

Example 2.10: Let X = (0,1] and A be as in Example 2.8. Let f be an arbitrary function on
[0,1]. Define v¢((a,b]) = f(b) — f(a), and extend vy to be additive on A. Then vy is an additive
set function. (See Exercise 2:2.14.)

2.2.1 Example: Distributions of mass

Example 2.10 plays an important role in the general theory, both for applications and to illus-
trate many ideas. Note that if f is nondecreasing, then the set function vy is nonnegative and
can model many concepts. If f(z) = z for all x € X, then vf(A) = A(A) for all A € A. Here, vy
models a uniform distribution of mass—the amount of mass in an interval is proportional to the
length of the interval. Another nondecreasing function would give rise to a different mass distri-
bution. For example, if f(z) = 22, v/((0,3]) = I, while v¢((3,1]) = 3; in this case the mass is
not uniformly distributed. As yet another example, let

0, 0o <2y <l

f(:c):{ 1, zo<z<1.
Then f has a jump discontinuity at xp, and
[0, ifxy ¢ A;
vy(4) = { 1, ifxzg € A.

We would like to say that xg is a “point mass” and that the set function assigns the value 1
to the singleton set {zo}, but {xo} ¢ A. Since point masses arise naturally as models in na-
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ture, this algebra A is not fully adequate to discuss finite mass distributions on (0, 1]. This flaw
will disappear when we consider measures on o-algebras in Section 2.3. In that setting, {z¢}
will be a member of the g-algebra and will have unit mass. These ideas are the forerunner of
Lebesgue—Stieltjes measures, which we study in Section 3.5.

In Example 2.10 we can take f nonincreasing and we can model “negative mass.” This is
analogous to the situation in elementary calculus where one often interprets an integral f; g(x) dx
in terms of negative area when the integrand is negative on the interval.

One can combine positive and negative mass. If f has a decomposition into a difference of
monotonic functions

f=f1— f2 with f; and f2 nondecreasing on X, (1)

then it is easy to check that v has a similar decomposition:

VE=Vfi — Vf-
Unless f is monotonic on X, there will be intervals of positive mass and intervals of negative
mass. Functions f that admit the representation (1) are those that are of bounded variation.
(We have reviewed some properties of such functions in Section 1.14. Note particularly Exer-
cise 1:14.10.) It appears then that we can model a mass distribution vy on [a, b] that involves
both positive and negative mass as a difference of two nonnegative mass distributions. This is
so if, in Example 2.10, f has bounded variation; is it true for an arbitrary function f?

2.2.2 Positive and negative variations

This leads us to variational questions for additive set functions that parallel the ideas and meth-
ods employed in the study of functions of bounded variation.
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Definition 2.11: Let X be any set, let A be an algebra of subsets of X and let v be additive
on A. For E € A, we define the positive variation of v on E by

V(v,E) =sup{v(A): A€ A,AC E}.
Similarly, we define the negative variation of v on E by

V(v,E)=inf{v(A): Ac AJAC E}.
Finally, we define the (total) variation of v on E by

Vw,E)=V (v,E)-V (v, E).

Note that the positive variation is indeed positive or nonnegative since V (v, E) > v()) = 0.
Similarly the negative variation is negative or nonpositive since V (v, E) < v(f)) = 0. The total
variation, defined as the difference of the two expressions, is well-defined even if one or both of
the postive and negative variations is infinite. [Some authors, thinking of these notions as sups
and infs, call them upper variation and lower variation instead.]

Exercise 2:2.16 displays the total variation V (v, E) in an equivalent form

n
Vv, B) = sup 3 [p(4y)
k=1
where the supremum is taken over all finite collections of pairwise disjoint subsets Ay of E, with
each Ay in A. For that reason some authors call the total variation the absolute variation. Note
that it is reminiscent of the usual definition of variation for a real-valued function.

Theorem 2.12: If v is additive on an algebra A of subsets of X, then all the variations are
additive set functions on A.
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Proof. We show that the positive variation is additive on A, the other proofs being similar.
That V (v,0) = 0 is clear. To verify condition 2 of Definition 2.9, let A and B be disjoint mem-
bers of A. Assume first that

V(v,AUB) < 0.
Let € > 0. There exist A’ and B in A such that A’ C A, B’ C B, v(A') > V (v, A) — ¢/2, and
v(B') >V (v,B) —¢/2. Thus
V(v,AUB)>v(A'UB) = v(4) +v(B) (2)
>V (v,A)+V (v,B) —e.

In the other direction, there exists a set C' € A such that C € AUB and v(C) >V (v, AU B)—

e. Thus
V(w,AUB)—e<v(C) = v(ANC)+v(BNO) (3)
< V(A +V(v,B).
Since ¢ is arbitrary, it follows from (2) and (3) that
V(,AUB)=V (v,A)+V (v,B).

It remains to consider the case V (v, AU B) = oo. Here one can easily verify that either

V (v, A) = 0o or V (v, B) = o0, and the conclusion follows. [

2.2.3 Jordan decomposition theorem

Theorem 2.13 provides an abstract version in the setting of additive set functions of the Jordan
decomposition theorem for functions of bounded variation (Exercise 1:14.10). It indicates how,
in many cases, a mass distribution can be decomposed into the difference of two nonnegative
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mass distributions. Here we shall show that

v(A) =V (r,A)+V (v, A)

or, equivalently,

v(A) =V (v, A) — [-V (v, A)].

Since V (v, A) is nonpositive, this latter identity expressed the decomposition as a difference of
two nonnegative additive set functions.

Theorem 2.13 (Jordan decomposition) Let v be an additive set function on an algebra A
of subsets of X, and suppose that v has finite total variation. Then, for all A € A,

V(A) =V (1, A) + V. (v, A). (4)

Proof. Let A, F € Aand E C A. Since
v(E) = v(A) — v(A\ B),

we have

v(A) =V, A) <v(E) <v(A) - V(v A). (5)

Expression (5) is valid for all E € A, E C A. Noting the definition of V' (v, A), we see from the
second inequality that

V(Va A) < V(A) _Z(Vv A) (6)
Similarly, from the first inequality, we infer that
K(Va A) > V(A) _V(V7 A) (7)

Comparing (6) and (7), we obtain our desired conclusion, (4). |
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Exercises

2:2.1 Show that an algebra of sets is closed under differences, finite unions, and finite intersections.

2:2.2 Let X be a nonempty set. Show that 2% (the family of all subsets of X) and {f), X} are both al-
gebras of sets, in fact the largest and the smallest of the algebras of subsets of X.

2:2.3¢> Let S be any family of subsets of a nonempty set X. The smallest algebra containing S is called
the algebra generated by S. Show that this exists. [Hint: This can be described as the intersection
of all algebras containing S. Make sure to check that there are such algebras and that the intersec-
tion of a collection of algebras is again an algebra.|

2:2.4¢ Let S be a family of subsets of a nonempty set X such that (i) §, X € S and (ii) if A, B € S
then both AN B and AU B are in §. Show that the algebra generated by S is the family of all sets
of the form J;, A; \ B; for A;, B; € S with B; C A;.

2:2.5¢ Let X be an arbitrary nonempty set, and let A be the family of all subsets A C X such that ei-
ther A or X\ A is finite. Show that A is the algebra generated by the singleton sets S = {{z} : x € X}.

2:2.6<> Let X be an arbitrary nonempty set, and let A be the algebra generated by a collection S of
subsets of X. Let A be an arbitrary element of A. Show that there is a finite family Sy C S so
that A belongs to the algebra generated by Sp. [Hint: Consider the union of all the algebras gen-
erated by finite subfamilies of S.]

2:2.7 Show that Example 2.8 provides an algebra of sets.

2:2.8<> Show how it follows from Definition 2.9 that an additive set function v cannot take on both —oo
and oo as values. [Hint: If v(A) = —v(B) = +o00, then find disjoint subsets A’, B’ with v(A’) =
+o0 and v(B’) = —co. Consider what this means for v(A" U B’).]
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2:2.9 Suppose that v is an additive set function on an algebra A. Let F; and F5 be members of A with
E, C Es and v(E») finite. Show that

v(Ex \ E1) = v(Ey) — v(Ey).
2:2.10 Let p be a finitely additive measure and suppose that A, B and C are sets in the domain of
with p(A) finite. Show that
(AN B) —p(ANC)| < u(BAC)
where BA C = (B\ C)U (C \ B) is called the symmetric difference of B and C.
2:2.11<> Suppose that v is additive on an algebra A. If B C A with A, B € A and v(B) = 400, then
v(A) = +o0.
2:2.12 Use Exercise 2:2.9 to show that the condition »(f)) = 0 in Definition 2.9 is superfluous unless v is
identically infinite.
2:2.13 Let X be any infinite set, and let A = 2X. For A C X, let
) ={ % 4 e
Show that v is additive. Let
B={AC X :Ais finite or X \ A is finite},
let B € B, and let
B ={ %, EX\5s fute
Show that B is an algebra and 7 is additive.
2:2.14<) Show that, in Example 2.10, v is additive on A and vy is nonnegative if and only if f is non-

decreasing. [Hint: This involves verifying that, for A € A, v;(A) does not depend on the choice of
intervals whose union is A.]
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2:2.15 Complete the proof of Theorem 2.12 by showing that the negative and total variations are addi-
tive on A.

2:2.16 Establish the formula
V(v,E) =sup Y [v(Ag)l,
k=1

where the supremum is taken over all finite collections of pairwise disjoint subsets Ay of E, with
each Ay in A.

2:2.17 Suppose that v is additive on A and is bounded above. Prove that V (v, A) is finite for all A € A.
Similarly, if v is bounded from below, V (v, A) is finite for all A € A.

2:2.18 Use Exercise 2:2.17 to obtain the Jordan decomposition for additive set functions that are bounded
either above or below.

2:2.19 Show that to every finitely additive set function of finite total variation on the algebra of Exam-
ple 2.8 corresponds a function f of bounded variation, such that v( (a,b]) = f(b) — f(a) for every
(a,b] € A.

2:2.20 We have already seen that if f is BV on [0, 1] then Example 2.10 models a finite mass distribu-
tion that may have negative, as well as positive, mass. What happens if f is not of bounded vari-
ation? Is there necessarily a decomposition into a difference of nonnegative additive set functions
then?

2.3 Measures and Signed Measures

Additive set functions defined on algebras have limitations as models for mass distributions or
areas. These limitations are in some way similar to limitations of the Riemann integral. The
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Riemann integral fails to integrate enough functions. Similarly, an algebra of sets may not in-
clude all the sets that one expects to be able to handle. In Example 2.10, for example, one can
discuss the mass of an interval or a finite union of intervals, but one cannot define mass for
more general sets.

We have mentioned several times that to obtain a coherent theory of measure the class of
measurable sets should be “large.” What do we mean by that statement? Roughly, we should
require that the class of sets to be considered measurable encompass all the sets that one rea-
sonably expects to encounter while applying the normal operations of analysis. The situation
on the real line with Lebesgue measure will illustrate.

In a study of a continuous function f : IR — IR we could expect to investigate sets of the
form {x: f(x) > c} or {z: f(z) > ¢}. The first of these is closed and the second open if f is
continuous. We would hope that these sets are measurable, as indeed they are for Lebesgue
measure. In Chapter 3 we shall make the measurability of closed and open sets a key require-
ment in our study of general measures on metric spaces.

Again, if f is the limit of a convergent sequence of continuous functions (a common enough
operation in analysis), what can we expect for the set

{z: f(z) > c}?

We can rewrite this as
oo o0 o

{z: f(z)>c} = U U ﬂ {z: fu(z) > c+1/m}
m=1r=1n=r
(using Exercise 1:1.24). It follows that the set that we are interested in is measurable provided
that the class of measurable sets is closed under the operations of taking countable unions and
countable intersections. An algebra of sets need only be closed under the operations of taking
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finite unions and finite intersections.

2.3.1 o—algebras of sets

This, and other considerations, leads us to Definition 2.14. We shall see that with this defini-
tion we can develop a coherent theory of measure and integration.

Definition 2.14: Let X be a set, and let M be a family of subsets of X. We say that M is a
o-algebra of sets if M is an algebra of sets and M is closed under countable unions; that is, if
{Ar} € M, then ;2 Ax € M.

2.3.2 Signed measures

It is now natural to replace the notion of additive set function with countably additive set func-
tion or signed measure.

Definition 2.15: Let M be a o-algebra of subsets of a set X, and let u be an extended real-
valued function on M. We say that p is a signed measure if u()) = 0, and whenever {Ay} is
a sequence of pairwise disjoint elements of M, then > >° | 1(Ay) is defined as an extended real

number with
n=1 n=1

If u(A) > 0 for all A € M, we say that u is a measure. In this case we call the triple (X, M, u)
a measure space. The members of M are called measurable sets.
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We mention that the term countably additive set function p indicates that p satisfies (8).
We shall also use the term o-additive set function.

Example 2.16: Let X = IN (the set of natural numbers) and M = 2N, the family of all sub-
sets of IN. It is clear that M is a og-algebra of sets. For A € M, let

p(A) =2 neal/2%, pa(A) = 3 pea l/n;

u3(A) = neq (1)"/27, pa(A) =3 pea (1)"/n.
One verifies easily that p; and pg are measures, with p1(X) =1 and p2(X) = oo. The set func-
tion ps3 is a signed measure. Since the series Y >, (—1)"/n is conditionally convergent, p4(A) is
not defined for all subsets of X, and 4 is not a signed measure.

An inspection of the example us reveals that it is the difference of two measures,
pa(A)= > 1/2n— >y 12,
n € A, n even n € A, n odd
just as we have seen that every additive set function is the difference of two nonnegative addi-
tive set functions. In Section 2.5 we will show that this is always the case for signed measures;
thus we will be able to reduce the study of signed measures to the study of measures. Signed
measures will again return to a position of importance in Chapter 5. At the moment, our focus
will be on measures.

2.3.3 Computations with signed measures

We shall require immediately some skill in handling measures. Often we are faced with a set
expressed as a countable union of measurable sets. If the sets are disjoint, then the measure of
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the union can be obtained as a sum. What do we do if the sets are not pairwise disjoint? Our
first theorem shows how to unscramble these sets in a useful way. (We leave the straightfor-
ward proof of Theorem 2.17 as Exercise 2:3.11. Recall that we use IN to denote the set of natu-
ral numbers.)

Theorem 2.17: Let {A,} be a sequence of subsets of a set X, and let A = |J;° | An. Let By =
Ay and, for all n € IN, n > 2, let

Bn:An\(AlU-~'UAn_1).

Then A = ;2| By, the sets By, are pairwise disjoint and B, C A, for alln € IN. If the sets
A, are members of an algebra M, then B,, € M for all n € IN.

We next show that measures are monotonic and countably subadditive.

Theorem 2.18: Let (X, M, ) be a measure space.
1. If A,B € M with B C A, then u(B) < u(A). If, in addition, u(B) < oo, then pu(A\ B) =
w(4) — u(B).
2. If {Ak}zozl C M, then M(Uzozl Ak) < 22021 M(Ak)

Proof. Part (i) follows from the representation
A=DBU(A\B).

To verify part (ii), let {Ax} € M, and let A = ;2 Ax. Let {By} be the sequence of sets
appearing in Theorem 2.17. Since M is an algebra of sets, By € M for all & € IN. It follows
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that A = (Jp—, B and that the sets By, are pairwise disjoint. Since yx is a measure, pu(A) =
> peq (Bg). But for each k € IN, p(By) < p(Ag), by part (i). Thus p(A) < 372, p(Ag). [ |

We end

2.3.4 The o-algebra generated by a family of sets

Note that any family S of subsets of a nonempty set X is contained in the -algebra 2% of all
subsets of X. It is also contained in a smallest o-algebra.

Definition 2.19: The smallest o-algebra containing a family of sets S is called the o-algebra
generated by S.

This can be described as the intersection of all g-algebras containing S. Indeed, to prove
that a smallest o-algebra containing a given family of sets S exists, one simply checks that the
intersection of all o-algebras containing § is itself a o-algebra.

The o-algebra generated by the open (or closed) subsets of IR is called the class of Borel
sets. It contains all sets of type F, or of type Gs, but it also contains many other sets. The o-
algebra generated by the algebra A of Example 2.10 also consists of the Borel sets.

Exercises

2:3.1 Let X be a nonempty set. Show that 2% (the family of all subsets of X) and {(), X} are both o—
algebras of sets, in fact the largest and the smallest of the o—algebras of subsets of X.

2:3.2 Let S be any family of subsets of a nonempty set X. The smallest c—algebra containing S is
called the o—algebra generated by S. Show that this exists. [Hint: This is described in the last
paragraph of this section. Compare with Exercise 2:2.3.]
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2:3.3 Let S be a family of subsets of a nonempty set X such that (i) §, X € S and (ii) if A, B € S,
then both AN B and AU B are in §. Show that the oc—algebra generated by S is, in general, not
the family of all sets of the form (J;°, A; \ B; for A;, B; € S with B; C A;. This contrasts with
what one might have expected in view of Exercise 2:2.4. [Hint: Take S as the collection of inter-
vals [0,n1] along with (.]

2:3.4 Let X be an arbitrary nonempty set, and let A be the family of all subsets A C X such that
either A or X \ A is countable. Show that A is the o—algebra generated by the singleton sets S =

{{z}:z € X}

2:3.5 Let X be an arbitrary nonempty set, and let A be the o—algebra generated by a collection S of
subsets of X. Let A be an arbitrary element of 4. Show that there is a countable family Sy C S
so that A belongs to the o—algebra generated by Sy. [Hint: Compare with Exercise 2:2.6.]

2:3.6 Let A be an algebra of subsets of a set X. If A is finite, prove that A is in fact a o-algebra. How
many elements can A have?

2:3.7 Describe the domain of the set function p4 defined in Example 2.16.
2:3.8 Show that a o-algebra of sets is closed under countable intersections.

2:3.9¢) Let X be any set, and let u(A) be the number of elements in A if A is finite and oo if A is infi-
nite. Show that p is a measure. (Commonly, p is called the counting measure on X.)

2:3.10< Let p be a signed measure on a o-algebra. Show that the associated variations are countably
additive. Thus, by Theorem 2.13, each signed measure of finite total variation is a difference of
two measures. (See Theorem 2.23 for an improvement of this statement.)

2:3.11 Prove Theorem 2.17.
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2:3.12 Let v be a signed measure on a c-algebra. If Ey C Fy C FEs... are members of the o—algebra,
then the limit lim,, . E, of the sequence is defined to be |J;-, E,. Prove that

v(lim E,)= lim v(E,).
[The method of Theorem 2.21 can be used, but try to prove without looking ahead. The same
remark applies to the next exercise.]

2:3.13< Let v be a signed measure on a g-algebra. If £y D E; D Fs... are members of the o—algebra,
then the limit lim,, .., £, of the sequence is defined to be ﬂfLO:O E,,. Prove that if v(Ey) is finite
then
v(lim E,)= lim v(E,).

n—oo n—oo

2.4 Limit Theorems

The countable additivity of a signed measure allows a number of limit theorems not possible
for the general additive set function. To formulate some of these theorems, we need a bit of set-
theoretic terminology.

2.4.1 Limsup and liminf of a sequence of sets

First, recall that if A is a subset of a set X then the characteristic function of A is defined by
1, ifx e A,
Xal@) = { 0, ifzeX\A
Suppose, now, that we are given a sequence {A,} of subsets of X. Then there exist sets B;
and By with
Xp, = lim sup Xa,
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and

Xp, = lim inf Xy, -
The set B; consists of those x € X that belong to infinitely many of the sets A,,, while the
set Bo consists of those x € X that belong to all but a finite number of the sets 4,,. We call
these sets the limsup A,, and liminf A,,, respectively. Our formal definition has the advantage
of involving only set-theoretic notions.

Definition 2.20: Let {A,} be a sequence of subsets of a set X. We define

limsup A,, = ﬂ (U A >

m=1
and
liminf A,, = U (ﬂ A >
m=1
If

limsup A,, = liminf A,, = A,
we say that the sequence {Ay} converges to A and we write
A =1limA,,.

2.4.2 Monotone limits in a measure space

Observe that monotone sequences, either expanding or contracting, converge to their union
and intersection, respectively. Furthermore, if all the sets A, belong to a o-algebra M, then
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limsup A4,, € M and liminf A,, € M.

For monotone sequences of measurable sets, limit theorems are intuitively clear.

Theorem 2.21: Let (X, M, u) be a measure space, and let {A,} be a sequence of measurable
sets.

1. If Ay C Ay C ..., then lim p(A4,) = p(lim Ay).
2. If A1 D Ay D ... and p(Anm) < oo for some m € IN, then lim pu (Ay) = p(im A4,,).

Proof. Let Ag= (. Then

lim Ay, = G A, = [j (Ap \ An_1).
=1 =il

Since the last union is a disjoint union, we can infer that

00 k
pllim An) =3 p(An \ Apoy) =lim D p(An \ Anoi)
n=1 n=1

k

= limy (Ul(An \ Anl)) = lim p(Ag).
n—=

This proves part (i). For part (ii), choose m so that u (A,,) < oo. A similar argument shows

that

(A \ i Ay) = lim ((Am) = p(An))

Because these are finite, assertion (ii) follows. [
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2.4.3 Liminfs and limsups in a measure space

Theorem 2.22: Let (X, M, u) be a measure space, and let {A,} be a sequence of sets from M.
Then

1. p(liminf A,) < liminf u(Ay);
2. if u(Uy2y An) < 00, then p(limsup A,) > limsup p(A4,);

3. if {An} converges and p(lJ;>, An) < oo, then
p(lim A,) = lim u(Ay).

Proof. We prove (i), the remaining parts following readily. For m € IN, let By, = (2, An.
Since By, C Am, p(Bm) < u(Ay). It follows that

liminf pu(By,) < liminf p(Ay,). 9)
The sequence{B,,} is expanding, so lim,, By, = {J,._; Bm. Using Theorem 2.21, we then obtain
p(lim By,) = lim pu(Byy,).
Thus
p(liminf A,) = p ( U Bm> = u(lim By,) = lim pu(By,)

m=1

= liminf pu(B,,) < liminf u(A4,,),
the last inequality being (9). [
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Exercises

2:4.1 Verify that in Definition 2.20
limsup A,, = {z : € A, for infinitely many n}

n—oo
and
liminf A,, = {z : 2 € A, for all but finitely many n} .

2:4.2 Supply all the details needed to prove part (ii) of Theorem 2.21.

2:4.3 For any A C IN, let
_f >ohea27", if Ais finite;
v(4) = { 00, if A is infinite.
(a) Show that v is an additive set function, but not a measure on 21N,

(b) Show that v does not have the limit property expressed in part (i) of Theorem 2.21 for mea-
sures.

2:4.4 Verify parts (ii) and (iii) of Theorem 2.22.
2:4.5 Show that the finiteness assumptions in parts 2 and 3 of Theorem 2.22 cannot be dropped.
2:4.6 State and prove an analog for Theorem 2.21 for signed measures.

2:4.7{ Verify the following criterion for an additive set function to be a signed measure: If v is additive
on a o-algebra M, and lim,, v(A,) = v(lim, A, for every expanding sequence {4, } of sets from
M, then v is a signed measure on M.

2:4.8¢ (Borel-Cantelli lemma) Let (X, M, 1) be a measure space, and let {4,,} be a sequence of sets
with >°77 ; pu(A,) < oco. Then
p(limsup A,,) = 0.
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2:4.9 Let C be a Cantor set in [0, 1] of measure @ (0 < a < 1) (see Example 2.1). Does there exist a se-
quence {J;} of intervals with Y72 ; A(Jx) < oo such that every point of the set C lies in infinitely
many of the intervals Ji?

2:4.10< Let A be the algebra of Example 2.10, let
[0, f0<z<z <],
f(x)_{l, if 2o <z < 1. ’
and let vy be as in that example. We shall see later that v; can be extended to a measure py de-

fined on the o-algebra B of Borel sets in (0, 1]. Assume this, for the moment. Show that p;({zo}) =
1; thus {zo} represents a point mass.

2.5 The Jordan and Hahn Decomposition Theorems

Let us return to the Jordan decomposition theorem, but applied now to signed measures. Cer-
tainly, since a signed measure is also an additive set function, we see that any signed measure
with finite variation can be expressed as the difference of two nonnegative additive set func-
tions. We expect the latter to be measures, but this does not yet follow. In the setting of signed
measures there is also a technical simplification that comes about. An additive set function may
be itself finite and yet have both of its variations infinite. For this reason, in the proof of Theo-
rem 2.13, we needed to assume that both variations were finite; otherwise, the proof collapsed.
For signed measures this does not occur.

2.5.1 Jordan Decomposition

Thus we have the correct version of the decomposition for signed measures, with better hy-
potheses and a stronger conclusion.
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Theorem 2.23 (Jordan decomposition) Let v be a signed measure on a o—algebra A of
subsets of X. Then, for all A € A,

v(A) =V (v, A)+V (v, A)

and the set functions V (v,-) and —V (v,-) are measures, at least one of which must be finite.

Proof. This follows by the same methods used in the proof of Theorem 2.13, provided we
establish some facts. We can prove (see Exercise 2:3.10) that if v is c—additive on A then so
too are both variations. We prove also that if v is finite then both variations are finite. Thus,
with these two facts, the theorem (for finite-valued signed measures) follows directly from Theo-
rem 2.13.

If v is not finite, then we shall show that precisely one of the two variations is infinite. In
fact, if v(E) takes the value +oc, then V (v, E) = +o0o and —V (v, -) is everywhere finite. With
this information the proof of Theorem 2.13 can be repeated to obtain the decomposition.

Evidently then, the theorem can be obtained from the following assertion which we will now
prove.

2.24: Let v be a signed measure on a o—algebra A of subsets of X. If E € A and V (v, E) =
+oo, then v(E) =4o00. If E€ A andV (v, E) = —o0, then v(E) = —c0.

It is sufficient to prove the first statement. Suppose that V (v, E) = +o0o. Because of Exer-
cise 2:2.11, we may obtain that v(F) = +oo by finding a subset A C E with v(A) = +00. There
must exist a set £; C E such that

Z/(El) > 1.
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As V (v,-) is additive and V (v, E) = 400, it follows that either V (v, Ey) = co or else V (v, E \ Ey) =
oo. Choose A; to be either Fy or E \ Ej, according to which of these two is infinite, so that

V (I/, Al) = 400.
Inductively choose E,, C A,_1 so that
v(E,) >n

and choose A, to be either E, or A,_1 \ E, according to which of these two is infinite so that

V (v, A,) = +o0.
There are two case to consider:

1. For an infinite number of n, A, = A,,_1 \ Ey.
2. For all sufficiently large n (say for n > ng), 4, = E,.

In the first of these cases we obtain a sequence of disjoint sets {E,, } so that we can use the o—
additivity of v to obtain

v <U Enk> = ZV(EM) > an = +o00.
k=1 k=1

k=1
This would give us a subset of F with infinite ¥ measure so that v(F) = 400 as required.
In the second case we have obtained a sequence
EDE, DEnt1 D Eia....
If v(E,,) = +00, we once again have a subset of F with infinite v measure so that v(F) = +oo
as required. If v(E,,) < 400, then we can use Exercise 2:3.13 to obtain

Y55, Bn) = g, V(E) 2 Jig = oo
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and yet again have a subset of E with infinite v measure so that v(E) = +o0o. This exhausts all
possibilities and so the proof of assertion 2.24 is complete. The main theorem now follows. W

2.6 Hahn Decomposition

The Jordan decomposition theorem is one of the primary tools of general measure theory. It
can be clarified considerably by a further analysis due originally to H. Hahn (1879-1934). In
fact, our proof invokes the Jordan decomposition, but Hahn’s theorem could be proved first and
then one can derive the Jordan decomposition from it. This decomposition is, again, one of the
main tools of general measure theory; we shall have occasion to use it later in our discussion of
the Radon—Nikodym theorem in Section 5.8.

Theorem 2.25 (Hahn decomposition) Let v be a signed measure on a o-algebra M. Then
there exists a set P € M such that v(A) > 0 whenever A C P, A € M, and v(A) < 0 whenever
AC X\ P, Ae M.

We call the set P a positive set for v, the set N = X \ P a negative set for v, and the pair
(P,N) a Hahn decomposition for v.
Proof. Using Exercise 2:2.8, we see that v cannot take both the values +00 and —oo. Assume
for definiteness that v(E) < oo for all E € M. It follows that V (v, X) is finite. We construct a
set P for which
V(V,ﬁ) =V (v,P)=0,

where V and V denote the positive and negative variations of v as defined in Section 2.2. We
know that V and —V are measures. (Recall the notation P for the complement of a set P.)
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For each n € IN, there exists P, € M such that

— 1
v(P,) >V (w,X)— o (10)
Define P = limsup,,_,, Py, so that P = liminf,_ o ﬁn Then, from the inequality (10), we have
. — _ _ — 1
% (1/, Pn) =V, X) =V (0, P) <V (0, X) —v(Pa) < 5
Using Theorem 2.22 (i), we infer that
— = Iy 1
0V <V,P> < liminf V' (I/,Pn) < lim — =0.
n—00 n—oo 2™
Thus V/ (1/, ]5> =0.
It remains to show that V (v, P) = 0. First, note that
_ — 1
—V(,P)=V (P, —v(P) <V (,X)—v(P,) < o
Hence, for every k € IN,
(0.0}
0< -V(,P)<-V (u, U Pn>
n=k
§—ZK(V7Pn)§ 2771:%
n=k n=~k
It follows that V (v, P) = 0 as required. [

Note the connection with variation both in the proof of this theorem and in the decomposi-
tion itself. For any signed measure v we shall use its Hahn decomposition (P, N) to define three
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further measures v, v~ and |v| by writing for each E € M,
vH(E)=v(ENP)=V (v,E) [positive variation]
v (E)=-v(ENN)=-V (v,E) [— negative variation]
and
[V|(E) = v (E) + v (E) [total variation].
Observe that the three set functions here, v*, v*, and |v| derived from the signed measure v
are measures themselves (not merely signed measures) and that the following obvious relations
hold among them:
v=vt—uv"

lv|=vT 4+ 0.

Two measures a and 3 on M are called mutually singular, written as o L (3, if there are
disjoint measurable sets A and B such that X = AU B and a(B) = ((A) = 0; that is, the
measures are concentrated on two different disjoint sets. The measures here v and v~ are mu-
tually singular, since v(N) = v~ (P) = 0.

Exercises

2:6.1 A set E is a null set for a signed measure v if [v|(E) = 0. Show that if (P, N) and (Py, Ny)
are Hahn decompositions for v then P and P; (and similarly N and N;) differ by a null set [i.e.,
w[(P\ P) = |v|(P1\ P) = 0].

2:6.2 Exhibit a Hahn decomposition for each of the signed measures ps and 3p1 — pe, where py, po, and
w3 have been given in Example 2.16.
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2:6.3 Let F be the Cantor function on [0,1] (defined in Exercise 1:22.13). Suppose that pp is a measure
on the Borel subsets of (0, 1] for which pr((a,b]) = F(b) — F(a) for any (a,b] C (0,1]. Let A be
Lebesgue measure restricted to the Borel sets.

(a) Show that pup L A\
(b) Exhibit a Hahn decomposition for A\ — pp.

2.7 Complete Measures

Consider for a moment Lebesgue measure A on [0, 1]. Since A is the restriction of \* to the fam-
ily L of Lebesgue measurable sets, every subset of a zero measure set has measure zero. But,
for a general measure space (X, M, p), it need not be the case that subsets of zero measure sets
are necessarily measurable.

This is illustrated by the space (X, B, \), where X is [0, 1] and B is the class of Borel sets
in [0,1]: that is, B is the o-algebra generated by the open sets. A cardinality argument (Exer-
cise 2:7.1) shows that, while the Cantor ternary set K has 2¢ subsets, only ¢ of them are Borel
sets, yet A(K') = 0. It follows that there are Lebesgue measurable sets of measure zero that are
not Borel sets. Thus (X, B, A) is not complete according to the following definition.

Definition 2.26: Let (X, M, ) be a measure space. The measure p is called complete if the
conditions Z C A and pu(A) = 0 imply that Z € M. In that case, (X, M, u) is called a complete
measure space.

Completeness of a measure refers to the domain M and so, properly speaking, it is M that
might be called complete; but it is common usage to refer directly to a complete measure.
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2.7.1 The completion of a measure space

It is clear from the monotonicity of u that, when a subset of a zero measurable set is measur-
able, its measure must be zero. When a measure space is not complete, it possesses subsets F
that intuition demands be small, but that do not happen to be in the domain of the measure pu.
It may seem that such sets should have measure zero, but the measure is not defined for such
sets. It would be convenient if one could always deal with a complete space. Instead of saying
that a property is valid except on a “subset of a set of measure zero,” we could correctly say
“except on a set of measure zero.” Fortunately, every measure space can be completed naturally
by extending u to a measure 1 defined on the o-algebra generated by M and the family of sub-
sets of sets of measure zero.

Theorem 2.27: Let (X, M, n) be a measure space. Let
Z={Z:3N € M for which Z C N and u(N) =0}.
Let M={MUZ:M ¢ M,Zc Z}. Define i on M by
A(M U Z) = u(M).

Then

1. M is a o-algebra containing M and Z.

2. T is a measure on M and agrees with u on M.

3. [ 1s complete.
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Proof. Part (i). It is clear that M contains M and Z. To show that M is closed under com-
plementation, let A =M U Z with M € M, Z C N and u(N) = 0. Using our usual notation for
complementation, i.e., F = X \ E, we can check that
A=MNZ=MNN)UNNMNZ).
Since MNNeMand NNMNZcCN € Z, we see from the definition of M that Ae M.
Finally, we show that M is closed under countable unions. Let {A,} be a sequence of sets
in M. For each n € IN, write
Ap =M, U Z,

with M,, e M, Z, € Z. Then

U4n=JMauz,) = (UMn) U (UZn)
We have M,, ¢ M and Z, C N, e M N Z, so|JM, € M and
UZnc|JNneMnz.

Thus | J A4, has the required representation. This completes the verification of (i).
Part (ii). We first check that 7 is well defined. Suppose that A has two different representa-
tions:
A=DM UZ = MyU Zy
for My, My € M, Zy, Zy € Z. We show u(M;) = u(Msz). Now
My, C A= MyUZy C My U Ny with M(NQ)ZO.
Thus
p(My) < p(Mz) + p(N2) = p(Ma).
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Similarly, u(Ma) < u(My), so @i is well defined.

To show that 7z is a measure on M, we verify countable additivity, the remaining require-
ments being trivial to verify. Let {A4,} be a sequence of pairwise disjoint sets in M. For every
n € IN, we can write A, = M, U Z, for sets M,, € M, Z,, € Z. Note that the union |J;> ; M,
belongs to M and that | J72 | Z,, belongs to Z. Then

ARV RV R(VES)
:u@an> :;uwn):gum

Thus 77 is a measure on M. It is clear from the representation A = M U Z and the definition of
o that T = p on M.

Part (iii) Let i(A) = 0 and let B C A. We show that u(B) = 0. Write A=MUZ, M € M,
Z € Z. Since fi(A) =0, p(M) = 0,50 A= MU Z € Z. Tt follows that B € Z C M, and so [ is
complete as required. |

Exercises
2:7.1 Prove each of the following assertions:
(a) The cardinality of the class G of open subsets of [0,1] is c.
(b) The cardinality of the class B of Borel sets in [0, 1], is also c.
(¢) The zero measure Cantor set has subsets that are not Borel sets.
)

(d) The measure space (X, B, \) is not complete.
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2:7.2 Let B denote the Borel sets in [0, 1], and let A be Lebesgue measure on B. Prove that

([Ov 1]737 X) - ([Oa 1]7 L, /\)

2.8 Outer Measures

We turn now to the following general problem. Suppose that we have a primitive notion for
some phenomenon that we wish to model in the setting of a suitable measure space. How can
we construct such a space? We can abstract some ideas from Lebesgue’s approach (given in
Section 2.1). That procedure involved three steps. The primitive notion of the length of an
open interval was the starting point. This was used to provide an outer measure defined on all
subsets of IR. That, in turn, led to an inner measure and then, finally, the class of measurable
sets was defined as the collection of sets on which the inner and outer measures agreed. In this
section and the next we shall see that this same procedure can be used quite generally. Only
one important variant is necessary—we must circumvent the use of inner measure. The reason
for this will become apparent.

We begin by abstracting the essential properties of the Lebesgue outer measure. A method
for constructing outer measures similar to that used to construct the Lebesgue outer measure
will be developed in the next section.
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Definition 2.28: Let X be a set, and let u* be an extended real-valued function defined on 2%
such that

1. p*(0) =0.
2. If AC B C X, then pu*(A) < p*(B).

3. If {A4,} is a sequence of subsets of X, then

n=1 n=1

Then p* is called an outer measure on X.

It follows from the first two conditions that an outer measure is nonnegative. Condition 3 is
called countable subadditivity.

Let us first address the question of how we obtain a measure from an outer measure. The
simple example that follows may be instructive.

Example 2.29: Let X = {1,2,3}. Let p*(0) =0, pu*(X) = 2, and pu*(A) = 1 for every other set
A C X. It is a routine matter to verify that p* is an outer measure. Suppose now that we wish
to mimic the procedure that worked so well for the Peano—-Jordan content and the Lebesgue
measure. We could take our cue from the formula in assertion 2.4 and define a version of the
inner measure for this example as

e(A) = 1 (X) — p*(X \ A) =2 — " (X \ A).
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If we then call A measurable provided that p.(A) = p*(A), and let
H(A) = 1 (A)
for such sets, our process is complete. We find that all eight subsets of X are measurable by

this definition, but p is clearly not additive on 2%. The classical inner-outer measure procedure
completely fails to work in this simple example!

A bit of reflection pinpoints the problem. The inner—outer measure approach puts a set A
to the following test stated solely in terms of p*: is it true that

p(A) + 5 (X \ A) = p*(X)?
In Example 2.29, every A C X passed this test. But, for A = {1} and E = {1, 2}, we see that
i (A) + i (B\ A) =2 > 1 = *(B).
Thus, while p* is additive with respect to A and its complement in X, it is not with respect to
A and its complement in FE.

2.8.1 Measurable sets with respect to an outer measure

These considerations lead naturally to the following criterion of measurability. It is due to Con-
stantin Carathéodory (1873-1950). We have already touched upon Lebesgue’s notion of a mea-
surable set, defined using inner and outer measures. Carathéodory’s definition is more general
and avoids the introduction of inner measures.

Definition 2.30: Let y* be an outer measure on X. A set A C X is p*-measurable if, for all
sets £ C X,
W (B) = p*(E N A) + p* (B \ A). (11)
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This definition of the measurability of a set A requires testing the set A against every subset
E of the space. In contrast the inner—outer measure approach requires only that equation (11)
of Definition 2.30 be valid for the single “test set” £ = X.

Example 2.31: Let X and p* be as in Example 2.29. Consider a,b € X, with a # b. If

E = {a,b} is examined as the test set in (11) of Definition 2.30, we see that {a} is not u*-
measurable. Similarly, we find that no two-point set is p*-measurable. Thus only () and X are
w*-measurable. This is the best one could hope for if some kind of additivity of u* over the
measurable sets is to occur. Note, also, that unlike Lebesgue measure, nonmeasurable sets in
X have no measurable covers or measurable kernels. (See Exercise 2:1.14.)

2.8.2 The o-algebra of measurable sets

Definition 2.30 defining measurability involves an additivity requirement of p*, but not any
kind of g-additivity. It may therefore be surprising that this simple modification of the inner—
outer measure approach suffices to provide a o-algebra M of measurable sets on which p* is
o-additive.

Theorem 2.32: Let X be a set, u* an outer measure on X, and M the class of p*-measurable
sets. Then M is a o-algebra and p* is countably additive on M. Thus the set function p de-
fined on M by u(A) = p*(A) for all A € M is a measure.

Proof. In applying condition (11) in Definition 2.30 for a measurability test of a set A note
that it is enough, because of subadditivity, to verify that

p(E) > p (ENA)+ p(E\ A) (12)
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for an arbitrary set E of finite measure. We start by checking that () € M. For any set F C X,
obviously

W (B) = p*(EN0) + 1 (B \ ),
verifying condition (12). If A € M and B = X \ A then the identity

W (E) = u*(E N A) + u*(B\ A) = u*(E\ B) + * (BN B)
shows that B € M. Thus far we know that that ) € M and M is closed under complementa-
tion.

We show that any finite union of sets in M must also be in M. It is sufficient to check that,
if A1, As € M, then necessarily A1 U Ay € M. For any F C X, since A1 € M,

p*(E) = p (BN A1)+ p™(E\ Ar).
For the set Ay € M, we use the test set E\ A; to obtain
(B0 A7) = (B \ A1) 0 Ag) + p*((B\ A1) \ 4).
We need the two simple set identities
(B\ A1)\ As = B\ (41U 4y)

and

[(E\ A1) NAJU[EN A = EN (A1 U Ag).
Putting these together and using the subadditivity of the outer measure we obtain,

1*(B) > (BN A1) + (5(E\ A1) N 4g) + (B \ (A1 U 43))

= p(EN(A1UA)) +p"(E\ (A1 U Az)).

This is exactly what we need to verify, using condition (12), to prove that 4; U Ay € M.
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Now let {A;} be a sequence of measurable sets. We shall verify that the union

A= [jAj
j=1

belongs also to M. There is no loss of generality in assuming that the sets are disjoint, for we
can express A as a union of a disjoint sequence of sets from M using a familiar device (e.g. as
in our proof of Theorem 2.21).

We let E C X and show that Definition 2.30 is satisfied. Write B,, = U?Zl A;. Note that
B, € M. We give an inductive proof that, for every n = 1,2,3,...,

p(ENB)=p [En| 4] =D n(ENn4). (13)
j=1 j=1

This is certainly true for n = 1. Suppose that it is true for some given n. Use E N B, 11 as a
test set for the measurability of B,, (which we know is measurable) to obtain

p*(EN Bpi1) = w*([E N Bpga] N By) + p*([E'N Brya] \ Br)

and deduce, using the induction hypothesis, that

n+1
p*(E N Bpy1) = p*(EN By) + p*(EN Apy1) = > p*(EN 4y).
g=Ii

Thus (13) is proved.
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The monotonicity of the outer measure and the subadditivity of the outer measure now sup-
plies the inequality

n (ee)
> w(ENA) =p(ENBy) <p(ENA) <> p*(ENA4A)
Jj=1 Jj=1
valid for all n. From this we see that

*(ENA) Z” (ENA)) (14)

It remains only to test the measurability of A using the test set £. From the monotonicity of
outer measures and (13) we have

pHE) = g (EN By) + p*(E\ Bn) 2 ) w*(ENAj) + p*(E\ 4)
j=1
for all n. If this is true for all n, then

i (ENA)) + p*(E\ A).

Finally, using (14), we obtain our test for the measurability of A, that
pi(E) Z2 W (ENA)+u (E\ A).
This completes the proof that M is a o-algebra and there remains only to observe that p* is

countably additive on M. But this is precisely what (14) shows, for that identity is valid for
any set £ and any sequence of disjoint measurable sets {4;}. |
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Exercises

2:8.1 Let p* be an outer measure on X, and suppose that one of the two sets A, B C X is measurable.
Show that u*(A) + p*(B) = p*(AU B) + p*(AN B).

2:8.2 Let X be an uncountable set. Let p*(A) = 0 if A is countable and p*(A) = 1 if A is uncountable.
Show that p* is an outer measure, and determine the class of measurable sets.

2:8.3 Let p* be an outer measure on X, and let Y be a p*-measurable subset of X. Let v*(A) = u*(A)
for all A C Y. Show that v* is an outer measure on Y, and a set A C Y is v*-measurable if and
only if A is p*-measurable. Thus, for example, a subset A of [0, 1] is Lebesgue measurable (as a
subset of [0,1]) if and only if it is Lebesgue measurable as a subset of TR.

2:8.4<> Prove that if A C X and p*(A) = 0 then A is p*-measurable. Consequently, the measure space
generated by any outer measure is complete.

2.9 Method |

In Section 2.8 we have seen how one can obtain a measure u from an outer measure p*. We
still have the problem of determining how to obtain an outer measure y* so that the resulting
measure p is compatible with whatever primitive notion we wish to extend.

Once again, we can abstract this from Lebesgue’s procedure. Suppose that we have a set X,
a family 7 of subsets of X, and a nonnegative function 7 : 7 — [0, 00]. We view 7 as the fam-
ily of sets for which we have a primitive notion of “size” and 7(T') as a measure of that size. We
shall call 7 a premeasure to indicate the role that it takes in defining a measure. In order for
our methods to work, we need assume no more of a premeasure 7 than that it is nonnegative
and vanishes on the empty set. [In the Lebesgue framework of Section 2.1, for example, we can
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take X = [0,1], 7 as the family of open intervals, and the premeasure 7(T) as the length of the
open interval 7]
Here is a more formal development of these ideas.

Definition 2.33: Let X be a set, and let 7 be a family of subsets of X such that ) € 7. A
nonnegative function 7 defined on 7 so that 7()) = 0 is called a premeasure, and we refer to
the family 7 as a covering family for X.

Note that hardly anything is assumed about the properties of a premeasure and a covering
family. The terminology is employed just to indicate the intended use: we use the members of
the family to cover sets, and we use the premeasure to generate an outer measure. The process,
defined in the following theorem, of constructing outer measures is often called Method I in the
literature.

Method I is very useful, but it can have an important flaw when X is a metric space. In
Section 3.2 we shall discuss this flaw and see how a variant, called Method II, overcomes this
problem.

Theorem 2.34 (Method I construction of outer measures) Let T be a covering family
for a set X, and let 7 : T — [0, 00] with 7(0) =0. For A C X, let

p*(A) = inf {iT(Tn) : TheT and AC Uy Ty } : (15)
n=1

where an empty infimum is taken as co. Then p* is an outer measure on X.

Proof. Before beginning the proof note that a set A not contained in any countable union
of sets from the covering family 7 is assigned an infinite outer measure. Note too that, while
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the definition of the outer measure uses countable covers, finite covers are included as well since
€T and 7(0) = 0.

It is clear that p*(()) = 0 and that p* is monotone. To verify that p* is countably subaddi-
tive, let {A,} be a sequence of subsets of X. We show that

w (U An> <Y ut(An).

If any p*(A,,) = oo, there is nothing to prove, so we suppose that each is finite. Let ¢ > 0. For
every n € IN, there exists a sequence {T,;}72, of sets from 7 such that A,, C (Jy— Thi, and

T(Tor) < (An) + 2% (16)
k=1
Now . e
U An C U U Tnka
n=1 n=1k=1
so by (15) and (16)
p (U A <D 1@ < [ An) + o) = Yot (An) +e.
n=1 n=1 k=1 =l n=1
We conclude that
u* <U An> <3 (4
=il =l

since € is an arbitrary positive number. |
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2.9.1 A warning

The philosophy of the Method I construction, we recall, is to refine some premeasure 7 acting
on a family of sets 7 in such a way as to produce a useful outer measure. One might assume
that the new outer measure reflects closely properties of the tools that were used to construct
it. But the outer measure may assign different values to the sets in 7 than the premeasure 7
and may not even consider the sets in 7 to be measurable.

Exercises 2:9.3 to 2:9.5 illustrate that the members of 7 need not, in general, be measurable
and that 7(7") need not equal p(7'), not even when T € 7 is in fact measurable.

For a natural and important example, suppose that we wish a measure-theoretic model for
area in the Euclidean plane IR?. We could start with 7" as the family of open squares (along
with () and with 7(7") as the area of the square 7. We apply Method I to obtain an outer mea-
sure A} in IR?. We then restrict A} to the class Lo of measurable sets, and we shall have Lebes-
gue’s two-dimensional measure \s.

We would be assured at this point of having a g-algebra of measurable sets Lo, but we would
need to do more work to show that Lo possesses certain desirable properties. Nothing in our
general work so far guarantees, for example, that members of the original family 7 are in Lo
(i.e., the members of 7 are measurable) or, indeed, that the measure of a square 7' is the origi-
nal value 7(7") with which we started. In the case of Ls, it would be unfortunate if open squares
were not measurable by the criterion of Definition 2.30 and worse still if the measure of a square
were not its area. We shall see later, fortunately, that no such problem exists for Lebesgue mea-
sure in IR"™ or for a variety of other important measures.
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Exercises
2:9.1 Verify that the set function p* as defined in (15) satisfies conditions 1 and 2 of Definition 2.28.

2:9.2$ Refer to Example 2.10. Let 7 consist of () and the half-open intervals (a,b] C (0,1], and let 7 =
v¢. Apply Method I to obtain p* and M. Assuming that 7 C M and ¢ = 7 on 7, this now

provides a model for mass distributions on (0, 1]. Let g1, g2, ... be an enumeration of Q N (0, 1].
Construct a function f, so that for all A C (0, 1],
1
an€A

where p is obtained from 7 by our process, and 7((a, b)) = f(b) — f(a).

2:9.3) Let X = {1,2,3}, 7 consist of ), X and all doubleton sets, with 7(0) = 0, 7({z,y}) = 1, for all
x #y € X, and 7(X) = 2. Show that Method I results in the outer measure u* of Example 2.29.
How do things change if 7(X) = 3?

2:9.4 Let X =N, 7 consist of (), X, and all singleton sets. Let 7(0) =0, 7({z}) =1, for all z € X, and
(a) 7(X) = 2.
(b) 7(X) = oo.
In each case, apply Method I and determine the family of measurable sets.
2:9.5 Repeat Exercise 2:9.4 with the modification that
1
r(fo}) = oy
[Note in part (b), that X € M, but 7(X) # p(X).] How do things change if 7(X) = 17
2:9.6 Show that if 7 € M then u(T) < 7(T) for all T € 7.




Section 2.10. Regular Outer Measures 153

2.10 Regular Outer Measures

We saw in Section 2.8 that the inner—outer measure approach does not, in general, give rise to
a measure on a o-algebra. There are, however, many situations in which the class of sets whose
inner and outer measures are the same is identical to the class of sets measurable according to
Definition 2.30.

Definition 2.35: An outer measure p* is called regular if for every E C X there exists a mea-
surable set H D E such that u(H) = p*(E). The set H is called a measurable cover for E.

Theorem 2.36: Let pu* be a reqular outer measure on X and suppose that

(X)) < oo.
A necessary and sufficient condition that a set A C X be measurable is that
BH(X) = 1 (A) + (X \ A). (17)

Proof. The necessity is clear from Definition 2.30. To prove that the condition is sufficient,
let A be a subset of X satisfying (17), let E be any subset of X, and let H be a measurable
cover for F. It suffices to verify that

WHE) = 1 (BN A)+ (B 4), (18)
the reverse inequality being automatically satisfied because of the subadditivity of p*.

Observe first that
w(A\NH) + (XN A\ H) 2 p(X\ H). (19)

Since H is measurable, we have

i (A) = p* (AN H) + p*(A\ H) (20)
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and
WX\ A) = i (H\ A) + " (X \ H) \ A). 1)
Now p*(X) = p*(A) + p*(X \ A) by (17). Thus, from equations (20) and (21) and the subaddi-
tivity of p*, we infer that
W(X) = (AN H) + " (AN H) + (B \ A) + (X \ H)\ A)
> p(H) +p(X \ H) = p(X).

It follows that the one inequality above is actually an equality. Subtracting the inequality (19)
from this equality, we obtain

u*(H 0 A) + 17 (H \ A) < u(H). (22)

This subtraction is justified since all the quantities involved are finite. Because & C H, we see
from (22) that

KB N A) + (B A) < (0 A) + 0 ( \ 4) < p(H) = ().
This verifies (18). [

In Section 2.1, we gave a sketch of one-dimensional Lebesgue measure and promised there
to justify those aspects of the development that we did not verify at the time. The material
in Section 2.8 provides a framework for developing Lebesgue measure using the Carathéodory
criterion of Definition 2.30 and Method I. But it does not justify the inner—outer measure ap-
proach of Section 2.1. For that, we need to verify that \* is regular and then invoke Theo-
rem 2.36.
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2.10.1 Regularity of Method | outer measures

It is not the case that every outer measure obtained by Method I is regular. Example 2.29 and
Exercise 2:9.3 show this. Theorem 2.37 is useful in showing that, when Method I is invoked for
the purpose of extending the primitive notions that we have already mentioned (length, area,
volume, and mass) the resulting outer measures will be regular.

Theorem 2.37: Let p* be constructed by Method I from T and 7. If all members of T are
w*-measurable, then p* is reqular.

Proof. Let A C X. We find a measurable cover for A. If *(A) = oo, then X is a measurable
cover. Suppose then that p*(A) < co. For each m € IN, let {T;,n},- | be a sequence of sets from
the covering class 7 such that

o0 o0 . 1
AcC U Tnn and ZT(Tmn) < p*(A) + p—
n=1 n=1

Let
o0 o0
T, = UTmn and H = ﬂ T

n=1 m=1
Since each of the sets T}, is measurable, so too is H. We show that H is a measurable cover
for A.
Clearly, A C H and so pu*(A) < pu(H). For the opposite inequality, we have, for each m € IN,
(o.¢]
1

SZ mn<z Tz <,U A)—i_%
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For each m € IN, H C T,,, and so
* *k 1
p(H) < p*(Tm) < p*(A) + —.

This last inequality is true for all m € IN, so u(H) < p*(A). Thus u(H) = p*(A), and H is a
measurable cover for A. |

2.10.2 Regularity of Lebesgue outer measure

Corollary 2.38: Lebesque outer measure X* on IR is reqular.

Proof. Here 7 consists of () and the open intervals, and 7(7T') is the length of the interval T'.
Because of Theorem 2.37, it suffices to show that each interval (a,b) is measurable by Carathéodory’
criterion (Definition 2.30).

Let E C IR and let € > 0. There is a sequence {T,,} C 7 that covers E for which

. €
g ) < A )+§.
Take
U, ={7,N(a,b): n € N},
Us ={T, N (—o0,a):n €N},
Uz ={T, N (b,00) : n € N},
and

L{4:{(af%e,a+%s), (b—%s,bJr%s)}.
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Then Uy covers E N (a,b) and Us U Us UU,4 covers E'\ (a,b). The total length of the intervals
in Uy, Ua, Us is the same as for the original sequence, and the additional lengths from /4 have
total length equal to /2. Hence

N(E N (a,b)) + XN (E\ (a,b)) iT )+e/2 < X(E) +e.
n=1

Since € is arbitrary, we have
A (EN(a,b))+ N (E\ (a,b)) <X (E)

for any F C IR, and it follows that (a,b) must be measurable. |

2.10.3 Summary

Let us summarize some of the ideas in Sections 2.8 and 2.10, insofar as they relate to the im-
portant case of Lebesgue measure on an interval. We start with the covering family 7 of open
intervals and with the primitive notion 7(7") as the length of the interval 7. Upon applying
Method I, this gives rise to an outer measure p*. We then apply the Carathéodory process to
obtain a class M of measurable sets and a measure p that equals p* on M. To verify that our
primitive notion of length is not destroyed by the process, we show, as in the proof of Corol-
lary 2.38, that open intervals are measurable. It is then almost trivial to verify that the mea-
sure of an interval is its length. Theorem 2.37 now tells us that p* is regular; thus we could
have used the inner—outer measure approach of Section 2.1. This would result in the same class
of measurable sets and the same measure as provided by the Carathéodory process.
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Exercises

2:10.1 Prove that, if p* is a regular outer measure and {4, } is a sequence of sets in X, then p*(liminf 4,,) <
liminf 1*(A,,). Compare with Theorem 2.22 (i).

2:10.2$ Prove that, if u* is a regular outer measure and {A,} is an expanding sequence of sets, then
w*(limy, A,) = lim,, 4*(A,,). Compare with Theorem 2.21 (i).

2:10.3 Show that the conclusions of Exercises 2:10.1 and 2:10.2 are not valid for arbitrary outer mea-
sures.

2:10.4 Let X =N, p*(0) =0, and p*(E) =1 for all E # 0.

(a) Show that p* is a regular outer measure.

(b) Let {A,} be a sequence of subsets of X (not assumed measurable). Show that, while the
analog of part (i) of Theorem 2.22 does hold (Exercise 2:10.1), the analogs of parts (ii) and
(iii) do not hold.

2:10.5 Let X = IN, and let 0 = ag,a; = % < ap < az < --- with lim, a,, = 1. If E has n members, let
w*(E) = a,. If E is infinite, let p*(E) = 1.

(a) Show that p* is an outer measure, but that p* is not regular.
(b) Show that the conclusions of Exercise 2:10.2 and Theorem 2.36 hold.

2:10.6 Prove the following variant of Theorem 2.36: Let p* be a regular outer measure, let H be mea-
surable with u(H) < oo, and let A C H. If u(H) = p*(H N A) + p*(H \ A), then A is measurable.

2:10.7) Let X = (0,1], 7 consist of the half-open intervals (a, b] contained in (0, 1], and f be increasing
and right continuous on (0, 1] with lim, ¢ f(z) = 0. Let 7((a,b]) = f(b) — f(a). Apply Method I to
obtain an outer measure p%. Prove that 7 € M and py is regular and thus the inner—outer mea-
sure approach works here. Observe that all open sets as well as all closed sets are p} measurable.
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In particular, such measures can be used to model mass distributions on IR. (See Exercise 2:4.10,
and Example 2.10 and the discussion following it.)

2:10.8<¢ Let 7 be a covering family for X. Prove that, if Method I is applied to 7 and 7 to obtain the
outer measure p*, then for each E C X with u*(F) < oo there exists S € 7,45 such that E C S
and p*(S) = p*(E). (In particular, if X is a metric space and 7T consists of open sets, S can be
taken to be of type Gs.) [Hint: See the proof of Theorem 2.37.]

2.11 Nonmeasurable Sets

In any particular setting, can we determine the existence of nonmeasurable sets? Certainly, it is
easy to give artificial examples where all sets are measurable or where nonmeasurable sets exist.
But in important applications we would like some generally applicable methods.

The special case of Lebesgue nonmeasurable sets should be instructive. Vitali was the first

to demonstrate the existence of such sets using the axiom of choice. Let 0 = rg,r1,72,... be an
enumeration of Q N [—1,1]. Using this sequence, he finds a set A C [—3, 3] so that the collection
of sets

Ap={z+rp:x € A}

forms a disjoint sequence covering the interval [—%, %] As Lebesgue measure is translation in-

variant and countably additive, the set A cannot be measurable. (See Section 1.10 for the de-
tails.) In Section 12.6 we will encounter an example of a finitely additive measure that extends
Lebesgue measure to all subsets of [0, 1] and is translation invariant. This set function cannot
be a measure, however, because of the Vitali construction. Unfortunately, this discussion does
little to help us in general as it focuses attention on the additive group structure of IR and the
invariance of \.
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Another example may help more. We have seen a proof of the existence of Bernstein sets,
that is, a set of real numbers such that neither it nor its complement contains any perfect set.
(See Exercises 1:22.7 and 1:22.8.) Such a set cannot be Lebesgue measurable. To see this, re-
member that the outer measure of any set can be approximated from above by open sets; con-
sequently, the measure of a measurable set can be approximated from inside by closed (or per-
fect) sets. But a Bernstein set and its complement contain no perfect set, and so both would
have to have measure zero if they were measurable.

This example does contain a clue, albeit somewhat obliquely. The example suggests that
some topological property (relating to closed and open sets) of Lebesgue measure is intimately
related to the existence of nonmeasurable sets. But the proof of the existence of Bernstein sets
simply employed a cardinality argument and did not invoke any deep topological properties of
the real line. In fact, the nonmeasurability question reduces in many cases, surprisingly, to one
of cardinality.

2.11.1 Ulam'’s theorem

The following result of S. M. Ulam illustrates the first step in this direction. Ultimately, we
wish to ask, for a set X, when is it possible to have a finite measure defined on all subsets of
X, but that assigns zero measure to each singleton set?

Theorem 2.39 (Ulam) Let Q be the first uncountable ordinal, and let X = [0,Q). If pu is a fi-
nite measure defined on all subsets of X and such that u({x}) = 0 for each x € X, then u is the
zero measure.
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Proof. For any y € X, write A, = {x € X : < y}, the set of all predecessors of y. Then
each set A, is countable, and so there is an injection

fl,y): Ay — IN.
Define for each z € X and n € IN
Byn={2€X:2z<z2 f(z,z) =n}.
If 21, zo are distinct points in X, then evidently the sets By, , and By, , are disjoint. Since u
is finite, this means that, for each integer n, (B, ,) > 0 for only countably many = € X. This
means, since X is uncountable, that there must be some z¢ € X for which pu(B, ) = 0 for each

integer n.
Consider the union

o0
By = U on,n
n=1
and observe that p(By) = 0. If y > x¢, then f(xg,y) = n for some n € IN. Hence {y € X : zg <y} C
Bjy. Thus
X=ByU{y€X:y<umo},

and this expresses X as the union of a set of ;1 measure zero and a countable set. Hence u(X) =
0 as required. [ |

If we assume CH (the continuum hypothesis), it follows from Ulam’s theorem that there is
no finite measure defined on all subsets of the real line and vanishing at points except for the
zero measure itself. This applies not just to the real line, then, but to any set of cardinality c.
This is true even without invoking the continuum hypothesis, but requires other axioms of set
theory. Note that this means that it is not the invariance of Lebesgue measure or its properties



162 Measure Spaces  Chapter 2

relative to open and closed sets that does not allow it to be defined on all subsets of the reals.
There is no nontrivial finite measure defined on all subsets of an interval of the real line that
vanishes on singleton sets.

These ideas can be generalized to spaces of higher cardinality. We define an Ulam number
to be a cardinal number with the property of the theorem.

Definition 2.40: A cardinal number X is an Ulam number if whenever X is a set of cardinality
N and p is a finite measure defined on all subsets of X and such that pu({z}) = 0 for each z € X
then p is the zero measure.

Certainly, Ny is an Ulam number. We have seen in Theorem 2.39 that N; is also an Ulam
number. The class of all Ulam numbers forms a very large initial segment in the class of all car-
dinal numbers. It will take more set theory than we choose to develop to investigate this fur-
ther,! but some have argued that one could consider safely that all cardinal numbers that one
expects to encounter in analysis are Ulam numbers.

Exercises

2:11.1 Show that every set of real numbers that has positive Lebesgue outer measure contains a non-
measurable set.

! See K. Ciesielski, “How good is Lebesgue measure?” Math. Intelligencer 11(2), 1989, pp. 54-58, for a discus-
sion of material related to this section and for references to the literature. That same author’s text, Set Theory
for the Working Mathematician, Cambridge University Press, London (1997) is an excellent source for students
wishing to go deeper into these ideas. In Section 12.6 we shall return to some related measure problems.
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2:11.2 Show that there exist disjoint sets {Fj} so that
A* (U Ek> <D X (Br).
k=1 k=1
2:11.3 Show that there exist sets E1 D Ey D Es... so that A*(E)) < 400, for each k, and
A" i * .
<ﬂ Ek> < lim \* ()
k=1
2:11.4 Let E be a measurable set of positive Lebesgue measure. Show that E can be written as the
disjoint union of two sets E = Ey U E5 so that A(E) = \*(Ey) = A*(Es).

2:11.5 Let H be a Hamel basis (see Exercise 1:11.3) and Hj a nonempty finite or countable subset of
H. Show that the set of rational linear combinations of elements of H \ Hy is nonmeasurable.

2:11.6 Every totally imperfect set of real numbers contains no Cantor set but does contain an uncount-
able measurable set.

2:11.7 Exercise 2:11.6 suggests asking whether there can exist an uncountable set of real numbers that
contains no uncountable measurable subset. Such a set (if it exists) is called a Sierpiriski set and
must clearly be nonmeasurable.

(a) Let X be a set of power 2% and let £ be a family of subsets of X, also of power 2%, with
the property that X is the union of the family &£, but is not the union of any countable sub-
family. Assuming CH, show that there is an uncountable subset of X that has at most count-
ably many points in common with each member of £.

(b) By applying (a) to the family of measure zero G5 subsets of IR, show that, assuming CH,
there exists a Sierpinski set.
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2:11.8 Let p* be an outer measure on a set X, and suppose that £ C X is not p*—measurable. Show
that
inf {u*(ANB): A, B p*—measurable, AD E, B> X \ E} > 0.
2:11.9 A cardinal number X is an Ulam number if and only if the following: if ©* is an outer measure
on a set X and C is a disjointed family of subsets of X with (i) card(C) < X, (ii) the union of every
subfamily of C is p*~measurable, (iii) p*(C) = 0 for each C € C, and (iv) p (Ugee C) < 0o, then

1 UC =0.

ceC

2:11.10 If S is a set of Ulam numbers and card(S) is an Ulam number then the least upper bound of S
is an Ulam number.

2:11.11 The successor of any Ulam number is an Ulam number. [Hint: See Federer, Geometric Measure
Theory, Springer (1969), pp. 58-59, for a proof of these last three exercises.]

2.12 More About Method I

Let us review briefly our work to this point from the perspective of building a measure-theoretic
framework for modeling some geometric or physical phenomena. In an attempt to satisfy our
sense that “the whole should be the sum of its parts,” we created the structure of an algebra of
sets A with an additive set function defined on A. This structure had limitations—the algebra
might be too small for our purposes. For example, the algebra generated by the half-open inter-
vals on (0, 1] consisted only of finite unions of such intervals (and () of course). Even singletons
are not in the algebra. The notion of countable additivity in place of additivity helped here—it
gave rise to a o-algebra of sets and a measure.
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We then turned to the problem of how to obtain a measure space that could serve as a model
for a given phenomenon for which we had a “primitive notion.” We saw that we can always ob-
tain a measure from an outer measure via the Carathéodory process and that Method I might
be useful in obtaining an outer measure suitable for modeling our phenomenon. We say “might
be useful” instead of “is useful” because there still are two unpleasant possibilities: our “primi-
tive” sets T need not be measurable and, even if they are, it need not be true that

7(T) = u(T)
for all T" € 7. Such flaws might not be surprising insofar as we have placed only minimal re-
quirements on 7 and 7. What sorts of further restrictions will eliminate these two flaws?
Let us return to the family of half-open intervals on (0, 1]. Here we have an increasing func-
tion f defined on [0, 1], and we obtain 7 from f by

7((a,b]) = f(b) = f(a),
with 7 extended to be additive on the algebra 7 generated by the half-open intervals. In this
natural setting, we have some additional structure. The family 7 is an algebra of sets, and 7 is
additive on 7. This structure suffices to eliminate one of the unpleasant possibilities. Note that
the proof is nearly identical to that for Corollary 2.38, but there, since the open intervals that
were used for the covering family did not form an algebra, it was not so easy to carve up the
sets.

2.12.1 Regularity for Method | outer measures

Theorem 2.41: Let u* be constructed from a covering family T and a premeasure T by
Method I, and let (X, M, ) be the resulting measure space. If T is an algebra and T is addi-
tive on T, then T C M and p* is reqular.



166 Measure Spaces  Chapter 2

Proof. By Theorem 2.37, it is enough to check that each member of 7 is p*—measurable. Let
T € 7. To obtain that T € M, it suffices to show that, for each £ C X for which p*(F) < oo,

w(E) > i"(ENT) + p*(ENT) (23)

where we are using our usual notation for complementation, i.e., T denotes X \T.
Let € > 0. Choose a sequence {T,,} from 7 such that

o
Ec | T,
=il
and

ZT(Tn) < p(E)+e.

n=1
Since 7 is additive on 7, we have, for all n € IN
(Tp) = (TN T) + (T, N T).
But

EnTc |J@wnT) and ENnT C | J(TnnT). (24)
n=1

n=1
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Thus

(o @] (o] (0.0
E)+e>> 7(T) =Y 7(T,NT)+ Y 7(T,NT)
n=1 n=1 n=1

[o.¢] (o.0)
> WH(TuNT) + Y p*(TnT
n=1 n=1

> p*(ENT) + p*(ENT),
the last inequality following from (24). Since € is arbitrary, (23) follows. [

Primitive notions like area, volume, and mass that are fundamentally additive might well
lead to a 7, 7 combination that satisfies the hypotheses of Theorem 2.41.

2.12.2 The identity ;(7) = 7(T) for Method | measures

We next ask whether the hypotheses of Theorem 2.41 remove the other flaw that we mentioned:
7(T) need not equal u(T'). To address this question, we look ahead.

A result of Section 12.6 enters our discussion. There is a finitely additive measure 7 defined
on all subsets of [0,1] such that 7 = A on the class £ of Lebesgue measurable sets. We men-
tioned this example in Section 2.11, where we proved too that, if x4 is a finite measure on 2[0:1]
with p({z}) =0 for all = € [0,1], then u(E) =0 for all E C [0, 1].

Suppose now that we take 7 = 201 and 7 the finitely additive extension of A mentioned
above and apply Method I to obtain p* and p. Theorem 2.41 guarantees that all members of 7°
are measurable. But this means that every subset of [0, 1] is measurable. From the material in
Section 2.11 just mentioned, this implies that © = 0. Since 7 = A on £, 7 and p cannot agree
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on any set of positive Lebesgue measure. Thus, even though 7 and 7 had enough structure to
guarantee all subsets of [0, 1] measurable, the measure p did not retain anything of the primi-
tive notion of length provided by 7!

Our development of Lebesgue measure on [0, 1] actually provides a clue for removing the
remaining flaw. Recall that in Section 2.1 we first extended the primitive notion of A(I), the
length of an interval, to A(G), G open. This anticipated a form of o-additivity. We then de-
fined \(F), F closed. We can extend A by additivity to the algebra 7 generated by the family
of open sets (or, equivalently, by the family of closed sets). Taking 7 = A on 7, one can show
that 7 is o-additive according to the following definition.

Definition 2.42: Let A be an algebra of sets, and let « be additive on A. If

a(| ) 4n) = a(4,)
n=1 n=1

whenever {4, } is a sequence of pairwise disjoint sets from A for which
o0
L 4. e 4,
n=1

we say that « is o-additive on A.

Thus if @ > 0, it can fail to be a measure only when A is not a g-algebra. It may well hap-
pen that when a concept is “fundamentally” additive, a 7, 7 combination can be found such
that 7 is o-additive on 7. See Exercise 2:13.4.

Theorem 2.43: Under the hypotheses of Theorem 2.41, if T is o-additive on T, then u(T) =
7(T) for allT € T.
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Proof. We first show that, if {7},} is any sequence of sets in 7, T € 7 and T C | J;-; Ty, then

T(T) < 7(Th). (25)
=l

Let By =T N1} and, for n > 2, let
B,=TNT,\(T1U---UT,_1).

Then, for all n € IN, B, C T NT,, By, € T, the sets B, are pairwise disjoint, and T' = (| By.
Since 7 is o-additive on 7,

o o0
T(T)=> 7(Bn) <> _7(Tn).
=1 n=1
This verifies (25). It now follows that
oo (0.0}
7(T) < inf {ZT(Tn) |\ JT.oT.T, € T} = ¥ (7).
n=1 n=1
But since {T'} covers the set 7', u*(T) < 7(T"). Thus 7(T") = p*(T'). Since T' is measurable by
Theorem 2.41, p*(T') = p(T). [ |
Exercises

2:12.1 Following the proof of Theorem 2.41, we gave an example of a 7, 7 combination, 7 = 2[%1] and

7 = A on L, such that the u resulting from Method I had little connection to length on £. What
would happen if we took the same 7 but restricted 7 to 7 = L7
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2.13 Completions

Our presentation of Method I in Section 2.8 seemed simple and natural. It required little of
7 and 7. But it had flaws that we removed in Section 2.12 by imposing additional additivity
conditions on 7 and 7. These conditions seemed natural because 7 often represents a primi-
tive notion of size that is intuitively additive. Exercise 2:13.4 provides a possible example of
how we might naturally be led to use Theorems 2.41 and 2.43. On the other hand, these condi-
tions seem to impose serious restrictions on the use of Method I. One might ask, what measure
spaces (X, M, u) are the Method I result of a 7, 7 combination that satisfies such additivity
conditions?

Such a space must be complete because any Method I measure is complete. We next show
that the only other restriction on (X, M, u) is that X not be “too large.”

Definition 2.44: Let (X, M, u) be a measure space. If u(X) < oo, then we say that the mea-
sure space is finite. If X = (J;7 | X,, with p(X,,) < oo for all n € IN, then we say that the space
is o-finite.

Theorem 2.45: Let (X, M, pn) be a o-finite measure space. Let T = M and T = u, and apply
Method I to obtain an outer measure i* and a measure space (X, M, i). Then

1. IfA € M, thenA = MU Z, where M € M and Z C N € M with w(N) = 0. Thus
(X, M, 1) is the completion of (X, M, p).

2. 1If v is the restriction of a reqular outer measure p* to its class of measurable sets, then
Pt =t
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A N is the shaded region

H

Figure 2.1. The set N is a measurable cover for H \ A.

Proof. To prove (i), assume first that u(X) < oo. Let A € M. Now M C M by Theo-
rem 2.41. Thus g* is regular by Theorem 2.37, so A has a fi*-measurable cover H. Since M is a
o-algebra, Theorem 2.37 and Exercise 2:10.8 show that H can be taken in M. Because X € M,
our assumption that p(X) < oo implies that i*(A) < oo. Since * is additive on M,
BH(H N\ ) = @ (H) — fi*(4) = 0.
Now let N be a measurable cover in M for H \ A. See Figure 2.1.
By Theorem 2.43, i*(N) = pu(N), so u(N) = @*(H \ A) = 0. But
A=(H\N)U(ANN).

To verify this, observe first that if x € A, but = ¢ N, then

r€ A\N C H\N.

In the other direction, since N D H \ A, any x € H \ N must be in A, and obviously ANN C A.
Now let M = H\ N,and let Z = ANN. Then M € M and Z C N with p(N) = 0. The
equality A = M U Z is the required one, and the proof of part (i) of the theorem is complete
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when p(X) < oco. The proof when u(X) = oo is left as Exercise 2:13.1.
To prove (ii), let A C X. By hypothesis, p comes from a regular outer measure p*. Thus
there exists a measurable cover M € M for A. By the definition of 4",

i*(A) < (M) = ().
In the other direction, observe first that, since M is a o-algebra,
f*(A) =inf {u(B): AC Be M}.
But if A C B € M, then p*(A) < pu*(B) = u(B), so
p(A) <inf{u(B): AC Be M}.
Therefore, i*(A) = p*(A). |

Corollary 2.46: Every complete o-finite measure space (X, M, p) is its own Method I
Carathéodory extension. That is, an application of Method [ to T = M and T = p results
in the space (X, M, p).

Proof. Observe that the completion of a complete measure space is the space itself and apply
part (i) of Theorem 2.45. [

The hypotheses of Theorem 2.45 and Corollary 2.46 cannot be dropped. See Exercises 2:13.2
and 2:13.3.

Exercises
2:13.1 Prove part (i) of Theorem 2.45 when p(X) = oo.
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2:13.2 Let X =R, M = {A: Ais countable or R \ A is countable}, and define
cardinality A, A is finite;
) = { y

0, A is infinite.

a) Show that p is a complete measure on M.

(c

(d) Reconcile these with Theorem 2.45 and Corollary 2.46.

(a)

(b) Show that i (See Theorem 2.45) is not the completion of p.
) Show that x is not the restriction to its measurable sets of any outer measure.
)

2:13.3 Let (X, M, ) be as in Example 2.29. Apply the process of Theorem 2.45 and determine whether
=

2:13.4< Suppose that we have a mass distribution on the half-open square S = (0,1] x (0,1] in IR?, and
we know how to compute the mass in any half-open “interval” (a,b] X (¢, d]. Suppose that singleton

sets have zero mass. We wish to obtain a measure space (X, M, u) to model this distribution based
only on the ideas we have developed so far.

First try: Take 7 as the half-open intervals in S, together with ), and let 7(7") be the mass of T
for T € T. Apply Method I to get p* and then (X, M, ).

(a) Can we be sure that M is a o-algebra and p is a measure on M? Can we be sure that
TCM?IUT e M, must u(T) =7(T)?
Second try: We note that 7 is intuitively additive. So let 771 be the algebra generated by 7', and
extend 7 to 7; so that 7 is additive on 7 ;.

(b) Can we do this? That is, can we be sure that 71(71), T3 € 71, does not depend on the
decomposition of 7} into a union of members of 77 If so, what are the answers to the
questions posed in part (a) when we apply Method I to 77 and 74?
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Third try: We believe mass is fundamentally o-additive. But 7 is only an algebra. So we verify
that 7 is o-additive on 77. Can we now answer the three questions in part (a) affirmatively?

2.14 Additional Problems for Chapter 2

2:14.1 Criticize the following “argument” which is far too often seen:

“If G = (a,b) then G = [a,b]. Similarly, if G = |J;=,(a;,b;) is an open set, then G =
Us=, [as, b;] so that G and G differ by a countable set. Since every countable set has
Lebesgue measure zero, it follows that an open set G and its closure G have the same
Lebesgue measure.” (?)

2:14.2 Let A be a set of real numbers of Lebesgue measure zero. Show that the set {2 : € A} also
has measure zero.

2:14.3 Let A be the set of real numbers in the interval (0, 1) that have a decimal expansion that con-
tains the number 3. Show that A is a Borel set and find its Lebesgue measure.

2:14.4 Let FE be a Lebesgue measurable subset of [0, 1], and define
B={z€[0,1] : NEN(z—e,z+¢)) >0 foralle>0}.
Show that B is perfect.

2:14.5 Let E be a Lebesgue measurable subset of [0, 1] and let ¢ > 0. If A\(E N I) > ¢A(]) for all open
intervals I C [0,1], show that A\(E) = 1.

2:14.6 Let A, be a sequence of Lebesgue measurable subsets of [0, 1] and suppose that lim sup,, . A(A,) =
1. Show that there is some subsequence with

A\ (ﬁ Ank) -0
k=1
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[Hint: Arrange for > oo, (1 — A (A4y,)) < 1]

2:14.7$ Let (X, M, 1) be a measure space. A set A € M is called an atom, if u(A) > 0 and, for all
measurable sets B C A, u(B) = 0 or u(A\ B) = 0. The measure space is nonatomic if there are no
atoms.

(a) For any = € X, if {} € M and p({z}) > 0, then {2} is an atom.

(b) Determine all atoms for the counting measure. (The counting measure is defined in Exer-
cise 2:3.9.)

(c) Show that if A € M is an atom then every subset B C A with B € M and u(B) > 0 is also
an atom.

(d) Show that if Ay, Ao € M are atoms then, up to a set of y—measure zero, either A; and Ao
are equal or disjoint.

(e) Suppose that p is o-finite. Show that there is a set Xy C X such that X is a disjoint union
of countably many atoms of (X, M, ) and X \ X, contains no atoms.

(f) Show that the Lebesgue measure space is nonatomic.

(g) Give an example of a nontrivial measure space (X, M, p) with pu({z}) = 0for allz € X
and so that every set of positive measure is an atom. [Hint: Construct a measure using Exer-
cise 2:2.5.]

2:14.8<¢ (Liaponoft’s theorem) Let 1, ..., u, be nonatomic measures on (X, M), with u;(X) = 1 for all
it =1,...,n. These measures can be viewed as giving rise to a vector measure

M —[0,1]" =[0,1] x [0,1] x ---[0,1]
on (X, M) defined by
u(A) = (p1(A); - ., pn(A))
for each A € M. A theorem of Liaponoff (1940) states that
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The set S of n-tuples (x1,...,xy) for which there exists A € M such that p(A) =
(1, ...,2p) i a convex subset of [0,1]™.

(a) Let (X, M, p) be a nonatomic measure space with p(X) = 1. Show that for each v € [0, 1]
there is a set £, C X such that u(E,) = ~. [Hint: Use some form of Zorn’s lemma (Sec-
tion 1.11) or transfinite induction.

(b) Show that part (a) follows from Liaponoft’s theorem.
(¢) Show that (1/n,1/n,...,1/n) € S. You may assume the validity of Liaponoft’s Theorem.
(d) Interpret part (c) to obtain the following result, indicating the technical meanings of the
terms in quotation marks.
Given a cake with n ingredients (e.g., butter, sugar, chocolate, garlic, etc.), each nonatomic

and of unit mass and mixed together in any “reasonable” way, it is possible to “cut the cake
into n pieces” such that each of the pieces contains its “share” of each of the ingredients.

2:14.9<¢ Show that there exists a set E C [0, 1] such that, for every open interval I C [0,1], A\(INE) >0
and A(I'\ E) > 0.
2:14.10 Let {E,} be a sequence of measurable sets in a measure space (X, M, ) with each 0 < p(E,) <
oo. When is it generally possible to select a set A € M with each u(A N E,) > 0 and each
(B \ A) > 07
2:14.11 Let K be the Cantor set. Each point x € K has a unique ternary expansion of the form
T = .a10203 . .. (a; =0o0ra; =2, i€elN).

Let b; = a;/2 and let f(x) = .bybabs ..., interpreted in base 2. For example, if © = % = 0.0200...
(base 3), then we would have f(z) = 2 = 0.0100... (base 2). Show that if f is extended to be
linear and continuous on the closure of each interval complementary to K, then the the extended
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function f is continuous on [0, 1]. Determine the relationship of this function f to the Cantor func-
tion (Exercise 1:22.13).

2:14.12 Let X = [0,1] and let 7 = A\*. In each case apply Method I to the family 7 and determine p*
and M. How do things change if 7 = A, in part (f)?

[Hint for (f): The nonmeasurable set A discussed in Section 1.10 has A\, (A4) = 0.]

2:14.13<¢ Show that every set E C IR with A*(E) > 0 contains a set that is nonmeasurable. [Hint: Let
E C [-3,3], and let E;, = E N Ay, where {A;} is the family of sets appearing in our proof in
Section 1.10 of the existence of sets in IR that are not Lebesgue measurable.]

2:14.14 Suppose that p* is the outer measure on X obtained by Method I from 7 and 7, and suppose
that pf is any other outer measure on X satisfying i (7) < 7(T) for all T € 7. Prove that pi <
p*. Give an example for which pi(T) = 7(T) for all T € T and pj # p*. [Hint: Let 7 = {0,[0,1]}
and pf = A\*]

2:14.15¢ Let 7 be a covering family, and let 773 and 72 be nonnegative functions on 7. Let pf and p3
be the associated Method I outer measures. Prove that if uj(7) = pb(T) for all T € T then pf =

13-
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2:14.16 Let (X, M, 1) be a measure space with u(X) = 1, and suppose that u(M) > 0 for each
nonempty M € M. For each x € X, let

afz) =inf{u(E): Ee€ M,z € E}.

(a) Show that there is a set A, € M such that z € A, and pu(A4,) = a(z).
(b) Prove that the sets {A,} are either disjoint or identical.



Chapter 3

METRIC OUTER MEASURES

In Chapter 2 we studied the basic abstract structure of a measure space. The only ingredients
are a set X, a o—algebra of subsets of X, and a measure defined on the oc—algebra. In almost
all cases the set X will have some other structure that is of interest. Our example of Lebes-
gue measure on the real line illustrates this well. While (IR, £, \) is a measure space, we should
remember that IR also has a great deal of other structure and that this measure space is influ-
enced by that other structure. For instance IR is linearly ordered, is a metric space, and also
has a number of algebraic structures. Lebesgue measure, naturally, interacts with each of these.
In this chapter we study measures in a general metric space. As it happens, the only mea-
sures that are of any genuine interest are those that interact with the metric structure in a
consistent way. In Section 3.2 we introduce the concepts of metric outer measure and Borel
measure, which capture this interaction in the most convenient and useful way. In Section 3.3
we give an extension of the Method I construction that allows us to obtain metric outer mea-
sures. Section 3.4 explores how the measure of sets in a metric space can be approximated by

179
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the measure of less complicated sets, notably open sets or closed sets or simple Borel sets. The
remaining sections develop some applications of the theory to important special measures, the
Lebesgue—Stieltjes measures on the real line and Lebesgue—Stieltjes measures and Hausdorff
measures in IR".

We begin with a brief review of metric space theory. In this chapter, only the most rudi-
mentary properties of a metric space need be used. Even so the reader will feel more comfort-
able in the ensuing discussion after obtaining some familiarity with the concepts. A full treat-
ment of metric spaces begins in Chapter 9. Some readers may prefer to gain some expertise in
that general theory before studying measures on metric spaces. Abstract theories, such as met-
ric spaces, allow for deep and subtle generalizations. But one can also view them as simplifica-
tions in that they permit one to focus on essentials of the structure.

3.1 Metric Space

Sequence limits in IR are defined using the metric

p(z,y) =z -yl (z,y€R)
which describes distances between pairs of points in IR. In higher dimensions one develops a
similar theory, but using for distance the familiar expression

p(z,y) = | Y lwi—vil2 (z,y €R").
=1

The only properties of these distance functions that are needed to develop an adequate the-
ory in an abstract setting are those we have listed in Section 1.1. We can take these as forming
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our definition.

Definition 3.1: Let X be a set and let p : X x X — IR. If p satisfies the following conditions,
then we say p is a metric on X and call the pair (X, p) a metric space.

1. p(z,y) >0 for all z,y € X.

(@, y)

2. p(z,y)

3. p(z,y) = p(y,x) for all z,y € X.
(%, 2)

4. p(x,z) < p(x,y) + p(y, 2) for all z,y,z € X (triangle inequality).

A metric space is a pair (X, p), where X is a set equipped with a metric p; in many cases
one simply says that X is a metric space when the context makes it clear what metric is to be
used. Sequence convergence in a metric space (X, p) means convergence relative to this dis-
tance. Thus x,, — = means that p(z,,z) — 0. The role that intervals on the real line play is
assumed in an abstract metric space by the analogous notion of an open ball; that is, a set of
the form

B(zo,e) = {z: p(x,z0) < €},

which can be thought of as the interior of a sphere centered at g and with radius e; avoid,
however, too much geometric intuition, since “spheres” are not “round” and do not have the
kind of closure properties that one may expect.
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3.1.1 Metric space terminology

The language of metric space theory is just an extension of that for real numbers. Throughout
(X, p) is a fixed metric space. For this chapter we need to understand the notions of diameter,
open sets, and closed sets.

e For xp € X and r > 0, the set
B(zo,r) ={z € X : p(xo,x) <r}

is called the open ball with center xy and radius 7.

For zp € X and r > 0, the set
Blzo,r] = {z € X : p(xo,z) <7}

is called the closed ball with center xy and radius r.
e Aset G C X is called open if for each o € G there exists r > 0 such that B(zg,r) C G.

o A set F is called closed if its complement F=X \ Fis open.

A set is bounded if it is contained in some open ball.

A neighborhood of x( is any open set GG containing xg.

If G = B(xo,¢), we call G the e-neighborhood of x.

The point xg is called an interior point of a set A if xy has a neighborhood contained in

A.
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e The interior of A consists of all interior points of A and is denoted by A° or, occasionally,
int(A). It is the largest open set contained in A; it might be empty.

e A point xg € X is a limit point or point of accumulation of a set A if every neighborhood
of xg contains points of A distinct from x.

e The closure, A, of a set A consists of all points that are either in A or limit points of A.
(It is the smallest closed set containing A.) One verifies easily that o € A if and only if
there exists a sequence {z,} of points in A such that x,, — .

e A boundary point of A is a point xg such that every neighborhood of zy contains points of
A as well as points of A = X \ A.

e The diameter of a set £ C X is defined as
diameter (F) = sup{p(z,y) : z,y € E}.
[We shall take diameter () = 0].

e An isolated point of a set is a member of the set that is not a limit point of the set.
o A set is perfect if it is nonempty, closed, and has no isolated points.
e A set E C X is dense in a set Ey C X if every point in Fj is a limit point of the set E.

e The distance between a point € X and a nonempty set A C X is defined as
dist(z, A) = inf{p(z,y) : y € A}.
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e The distance between two nonempty sets A, B C X is defined as
dist(A, B) = inf{p(z,y) : x € A, y € B}.

e Two nonempty sets A, B C X are said to be separated if they are a positive distance
apart [i.e., if dist(A, B) > 0].

The last three of these notions play an important role in the discussion in Section 3.2, where
they are discussed in more detail. Here we should note that “dist” is not itself a metric on the
subsets of X since the second condition of Definition 3.1 is violated if AN B # () but A # B.

3.1.2 Borel sets in a metric space

The Borel sets in a metric space are defined in the same manner as on the real line and have
much the same properties. We shall use the following formal definition.

Definition 3.2: Let (X, p) be a metric space. The family of Borel subsets of (X, p) is the
smallest o—algebra that contains all the open sets in X.

It is convenient to have other expressions for the Borel sets. The family of Borel sets can be
seen to be the smallest o—algebra that contains all the closed sets in X. But for some applica-
tions we shall need the following characterization.
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Theorem 3.3: The family of Borel subsets of a metric space (X, p) is the smallest class B of
subsets of X with the properties

1. If E1, Es, E3, ... belong to B, then so too does | ;= E;.
2. If By, By, E3, ... belong to B, then so too does ()=, E;.

3. B contains all the closed sets in X.

We can also introduce the transfinite sequence of the Borel hierarchy

G CGs CGs6 CGsos C G060 - - -

and
foonU(SCfJJJCFUéJé---a

just as we did in Section 1.12. Of these, we would normally not go beyond the second stage or
perhaps the third stage in any of our applications.

3.1.3 Characterizations of the Borel sets

It is useful to describe the class of Borel sets in a narrower manner than that of Theorem 3.3.
For easy reference we include a proof of this variant.'

!This proof has been supplied to us by R. B. Burckel.
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Theorem 3.4: The family of Borel subsets of a metric space (X, p) is the smallest class B of
subsets of X with the properties:

1. If E1, Es, E3, ... belong to B, and are pairwise disjoint then the union | J;2, E; also be-
longs to B.

2. If B\, Es, E3, ... belong to B, then the intersection ;2 E; also belongs to B.

3. B contains all the closed sets in X.

Proof. It is clear that the Borel sets form a family with these properties. Thus to prove that
this is a characterization we show that any family B with these three properties must contain
all the Borel sets. We first show that every open set U in X is a member of B. The sets

V={reX:0<dist(z, X \U) <1}
and
F={zeX: dist(z, X \U) > 1}

satisfy U = V U F', they are disjoint, and F' € B since it is closed. Thus, to prove that U € B, it
is sufficient (because of (i) and (iii)) to prove that V € B.
Consider the function f : X — IR defined by

f(z) =dist(x, X \ V).
This is continuous and f~1((0,1)) = V.
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We observe that the open interval (0,1) in IR can be expressed as a union and intersection
of compact subsets in the following manner:

0,1)= | J Kmu <ﬂ U an>
m=1

k=1n=1

where K, and C, are compact subsets of (0,1) and all unions in the identity are disjoint ones.
(See Exercise 3:1.1.)
Consequently

V=f101)=J f(EnU (ﬂ U fl(an)>

=1l =1l

expresses V in a way that allows us to see that it is a member of 5. Here we are using property
(i) for the disjoint unions, property (ii) for the intersections, the continuity of f to ensure that
all the sets f~1(K,,) and f~1(Cyx) are closed, and finally property (iii) to ensure that all these
sets are members of B. Hence B contains V', and hence also U.

We now have a family of sets containing all open sets, all closed sets and closed under the
operations (i) and (ii). Exercise 3:1.5 can be used to complete the proof, showing that B con-
tains all Borel sets. [ |
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Exercises

3:1.1{ Show that the open interval (0, 1) in IR can be expressed as
m=1 k=1n=1
where K, and C,; are compact subsets of (0,1) and all unions in the identity are disjoint ones.

[Hint: Let C' be the Cantor ternary set in [0, 1] and let {/,} be the open components of the set
(0,1) \ C. Use first K, = I,,. Check that these are disjoint and that

(071)\ fj Ko, :C\{Cl,CQ,Cg,,...}

m=1
where {¢;} is a list of all the “endpoints” of the Cantor set. Fix k and describe how to construct a
disjoint collection of closed subsets {C),;} of the set C' so that

c\{ea} = | Cune

Finally verify the required identity.|
3:1.2 Prove that in a metric space every closed set is a Gg.
3:1.3 Prove that in a metric space every open set is an F,.
3:1.4 Prove Theorem 3.3.
3:1.5¢ Let C be a class of subsets of a metric space (X, p) with the following properties:

(a) If Ey, Es, Es, ... are disjoint and belong to C, then so too does | J;2, E;.
(b) If E1, Es, Es, ... belong to C, then so too does (2 E;.
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(¢) C contains all the open sets in X.

Prove that C contains all Borel subsets of X. [Hint: Note that C need not itself be closed under
complementation. But that should suggest a look at the family
Co={C:CeC and X\C €C}.
What properties does Cy have?]
3:1.6 A metric space (X, d) is said to be separable if there exists a countable subset of X that is dense

in X. In a separable metric space, show that there are no more than 2%° open sets and 2"° closed
sets.

3:1.7 In a separable metric space, show that there are no more than 2% Borel sets. [Hint: Use transfi-
nite induction, the ideas of Section 1.12, and Exercise 3:1.6.]

3.2 Measures on Metric Spaces

We begin our discussion with an example of a Method I construction that produces a measure
badly incompatible with the metric structure of IR?. We use this to draw a number of conclu-
sions. It will give us an insight into the conditions that we might wish to impose on measures
defined on a metric space. It also gives us an important clue as to how Method I should be im-
proved to recognize the metric structure.

Example 3.5: Take X = IR?, let 7 be the family of open squares in X, and choose as a pre-
measure 7(T') to be the diameter of . We apply Method I to obtain an outer measure p* and
then a measure space (IR?, M, 11). What would we expect about the measurability of sets in

77?7 Since diameter is essentially a one-dimensional concept, while 7 consists of two-dimensional
sets, perhaps we expect that every nonempty 7" has infinite measure.
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T T
T; T,
To
Figure 3.1.

The square Tp.

Let Ty € 7 have side length 3, and let 17, T5, T5 and T be in 7, each with side length 1,
and as shown in Figure 3.1. Then 7(Tp) = 3v/2, while 7(T};) = /2 for i = 1,2,3,4. It is easy to
verify that, for all T € 7, u*(T) = 7(T') and that

4 4
" (U T> < (Ty) = 3E < WE= 3 (T
i=1

i=1

It follows that none of the sets T;, ¢ = 1,2, 3,4, is measurable. A moment’s reflection shows that

no nonempty member of 7 can be measurable.

We note two significant features of this example.

1. The squares T; are not only pairwise disjoint, but they are also separated from each other
by positive distances: if x € T;, y € Tj, and i # j, then the distance between x and y
exceeds 1. As we saw, p* is not additive on these sets. Now we know outer measures are
not additive in general, but for Lebesgue outer measure, if u*(AUB) # p*(A) + p*(B) and
AN B =0, then the sets A and B are badly intertwined, not separated.
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2. The class M of measurable sets is incompatible with the topology on IR?: open sets need
not be measurable.

Indeed, these two features, we shall soon discover, are intimately linked. If we wish open sets
to be measurable, we must have an outer measure which is additive on separated sets, and con-
versely. We take the latter requirement as our definition of a metric outer measure.

3.2.1 Metric Outer Measures

Recall that in a metric space we use

dist(A4, B) = inf{p(z,y) : x € A and y € B}
as a measure of the distance between two sets A and B. When A = {x}, we write dist(z, B)
in place of dist({z}, B). Although we call dist(A, B) the distance between A and B, dist is not
a metric on the subsets of X. Recall, too, that if dist(A, B) > 0, then we say that A and B

are separated sets. For example, the sets T; appearing in Example 3.5 are pairwise separated;
indeed, dist(7;,T;) > 1 if i # j.

Definition 3.6: Let u* be an outer measure on a metric space X. If
p*(AUB) = p*(A) +p*(B)
whenever A and B are separated subsets of X, then p* is called a metric outer measure.
Thus metric outer measures are designed to avoid the unpleasant possibility (i) that we ob-
served for the Method I outer measure p* in our example. In Theorem 3.8 we show that the

second unpleasant possibility of our example cannot occur: Borel sets will always be measurable
for metric outer measures.
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3.2.2 Measurability of Borel sets

The first step in proving that Borel sets are measurable with respect to any outer measure is
supplied by the following lemma, due to Carathéodory.

Lemma 3.7: Let p* be a metric outer measure on X. Let G be a proper open subset of X, let
F =X\ G be its complement in X and let A C G. Let
A, ={z e A:dist(z,F) > 1/n}.
Then
W (A) = lim " (Ay).
n—oo
Proof. Recall that F' denotes the set complementary to G, which in this case must be closed
since G is open. The existence of the limit follows from the monotonicity of ©* and the fact
that {A,} is an expanding sequence of sets. Since A,, C A for all n € IN, p*(A4) > limy, 00 1" (4y).
It remains to verify that
WH(A) < lim i (Ay).
n—oo
Since G is open, dist(z, F') > 0 for all x € A, so there exists n € IN such that =z € A,,. It follows
that A = ;2 An.
For each n, let

1 1
Bn - An An - : S i ,F — .
41\ {:): | dist(z, F') < n}
Then

A=A, U U B, = Ay, U U By U U Boj 1.
k=2n k=n k=n
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Thus
(o0} o
w(A) < p*(Azn) + Y 4" (Bar) + D 1 (Bakta)-
k=n k=n
If the series are convergent, then

pr(A) < hm w*(Agp) = lim u*(Ay),

n—oo

as was to be proved.
The argument to this point is valid for any outer measure. We now invoke our hypothesis
that p* is a metric outer measure. Suppose that one of the series diverges, say

ZM*(B%) = 00. (1)
k=1

It follows from the definition of the sets By that, for each k € IN,

1 1
. B B > -
dist(Bag, Bog+2) > 2k+1 2k +2 -

0,

so these sets are separated. Thus

n—1
(U B2k> => 1 (Bu). (2)

But As, D UZ;I Boy., so
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Combining (2) and (3), we see that

k=1
It follows from our assumption (1) that lim,, o p
Jim i (An) > p*(A).
Finally, if it is the series Y po; p*(Bag+1) that diverges, the argument is similar. We omit the
details. m

*

(Agy) = o0, so

Theorem 3.8: Let u* be an outer measure on a metric space X. Then every Borel set in X is
measurable if and only if u* is a metric outer measure.

Proof. Assume first that p* is a metric outer measure. Since the class of Borel sets is the o-
algebra generated by the closed sets, it suffices to verify that every closed set is measurable. Let
F be a nonempty closed set and let G = X \ F. Then G is open. We show that F satisfies the
measurability condition of Definition 2.30. Let E C X, let A = E \ F, and let {A4,,} be the
sequence of sets appearing in Lemma 3.7. Then dist(A,,, F') > 1/n for all n € IN, and

Jim ¥ (An) = p*(B\ F). (4)
Since p* is a metric outer measure and the sets A,, are separated from F, we have, for each n €
N,
W(B) > 5 (BN F)U Ay) = (BN F) + 1" (An).
From (4) we see that
W (B) = (BN F) + p* (B \ F).
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The reverse inequality is obvious. Thus F' is measurable.
To prove the converse, assume that all Borel sets are measurable. Let A; and As be sepa-
rated sets, say dist(A;, A2) = > 0. For each x € Ay, let

G(z) ={z: p(z,2) <v/2},
and let
G=J G).
TEA]

Then G is open, A; C G, and G N Ay = (). Since G is measurable, it satisfies the measurability
condition of Definition 2.30 for the set £ = A; U As; that is,

p (A1 U Ag) = p*((A1U A2) NG) + p* (A1 U A2) N F). (5)
But 41 C G and GN Ay =0, s0 (A1 UA2) NG = A; and

(Al UAQ) NE = A,
and (5) becomes
(A1 U Ag) = p* (A1) + p*(As),

as was to be shown. |

Theorem 3.8 shows that metric outer measures give rise to Borel measures, that is, measures
for which every Borel set is measurable. This does not rule out the possibility that there ex-
ist measurable sets that are not Borel sets. Some authors reserve the term Borel measure for a
measure satisfying rather more. For example, one might wish compact sets to have finite mea-
sure or one might demand further approximation properties. The term Radon measure is also
used in this context to denote Borel measures with special properties relative to the compact
sets.
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Exercises

3:2.1 Let us try to fix the problems that arose in connection with Example 3.5 that began this section.
Let 7 be the family of half-open squares in (0, 1] x (0, 1] of the form (a,b] X (¢,d], b —a = d — ¢,
together with (), and let 7(T) be the diameter of 7. Do the finite unions of elements of 7 form
an algebra of sets? Can 7 be extended to the algebra generated by 7 so as to be additive on this
algebra? Can we use Theorem 2.41 effectively?

3:2.2 Let X =IR?, let 7 consist of the half-open intervals
T = (a,b] X (c,d]

in X, and let 7(7") be the area of T'. Let p* be obtained from 7 and 7 by Method I. Prove that u*
is a metric outer measure. The resulting measure is called two-dimensional Lebesgue measure.

3.3 Method Il

As we have seen, the Method I construction applied in a metric space can fail to produce a
metric outer measure. We now seek to modify Method I in such a manner so as to guarantee
that the resulting outer measure is metric. The modified construction will be called Method II.
Let us return to Example 3.5 involving squares in IR?, with 7(T) the diameter of the square
T. To obtain p*(T"), we observe we can do no better than to cover T' with itself. If, for exam-
ple, we cover a square T of side length 1 with smaller squares, say ones of diameter no greater
than 1/n, we find that we need more than n? squares to do the job, and the estimate for p*(T')
obtained from these squares exceeds nv/2. The smaller the squares we use in the cover of T,
the larger the estimate for p*(7'). We do best by simply taking one square, T', for the cover.
Thus the small squares are irrelevant and play no role in the construction, and yet it is pre-
cisely these that should have an influence on the size of the measure. This is the source of our
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problem. We now present a new method for obtaining measures from outer measures that ex-
plicitly addresses this by forcing the sets of small diameter to be taken into account.
Let 7 be a covering family on a metric space X. For each n € IN, let
Tn,={T €T : diameter (T') < 1/n}.
Then 7, is also a covering family for X for each n € IN. Let 7 be a premeasure defined on the
family 7. For every n € IN, we construct p;, by Method I from 7, and 7. Since 7,41 C T,

fini1(E) = i (E)
for all n € IN and for each £ C X. Thus the sequence {x; (F)} approaches a finite or infi-
nite limit. We define pf as lim,, . p;, and refer to this as the outer measure determined by
Method II from 7 and 7.

3.3.1 Method |l outer measures are metric outer measures

Our next theorem shows that this process that we have called Method II always gives rise to a
metric outer measure.

Theorem 3.9: Let p be the measure determined by Method II from a premeasure T and a
family T. Then pg is a metric outer measure.

Proof. We first show that yuf is an outer measure. That uf(0) = 0, and that pj(A) < ud(B)
if A C B are immediate. To verify that p is countably subadditive, let { Ay} be a sequence of
subsets of X. Since pi(E) > pk(FE) for all E C X and n € IN, we have

i (U Ak) <Y (Ak) <7 us(Ar).
k=1 k=1 k=1
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Thus
s (U Ak) = lim_uy, <U Ak> <) u(Ag).
k=1 k=1 k=1

This verifies that pg is an outer measure.
It remains to show that if A and B are separated then

#3(AUB) = u(A) + i (B).
Certainly,

po(AU B) < pg(A) + po(B),
and so it is enough to establish the opposite inequality. We may assume that pj(AU B) is finite.
Suppose then that dist(A, B) > 0. Choose N € IN such that dist(A4, B) > 1/N. Let ¢ > 0. For
every n € IN there exists a sequence {7}, } from 7, such that | J;-; Tnx D AU B and

o0

> 7(Tuk) < pn(AUB) +e.
k=1

Then, for n > N and k € IN, no set Tj,;, can meet both A and B and hence T, N A = () or else
T N B =10. Let

]le{kE]N:TnkﬁA#@}
and

N, = {k € N : T,,, N B # 0}.
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Then
pr(4) < Y (T
kE]l\Il
and
pn(B) < Y 7(Tok)-
kE]N2
Therefore,

i (A) + 45 (B) < Y 7(Tor) < pp(AUB) + ¢
k=1

Since this is true for every € > 0, we have, for n > N,

fin(A) + pn(B) < pp (AU B).

Because this holds for all n > N, u§(A)+u5(B) < pi(AUB). Thus pf is a metric outer measure.
|

3.3.2 Agreement of Method | and Method Il measures

Let us return to Example 3.5. Our previous discussion involving covers of a square 7" with smaller
squares suggests that p((7") = oo for every square 7. This is, in fact, the case. If T" is an open
square with unit side length, u*(T) = ny/2. Thus

p3(T) = lim () = co.
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A similar argument shows that (7)) = oo for all T € 7. This may be no surprise since we
have used a “one-dimensional” concept (diameter) as a premeasure for a two-dimensional set
T. Recall that the Method I outer measure p* had p*(7T') = 7(T), since we could efficiently
cover T' by itself. In this example, small squares cannot cover large squares efficiently, and the
Method I outcome differs from that of Method II. Our next result, Theorem 3.10, shows that if
“small squares can cover large squares efficiently” then the Method I and Method II measures
do agree.

Theorem 3.10: Let p be the measure determined by Method II from a premeasure T and a
family T and let y* be the Method I measure constructed from T and T . A necessary and suf-
ficient condition that iy = p* is that for each choice of e > 0, T € T, andn € IN, there is a
sequence {T} from T, such that T C Jpe, Ty, and
(0.9]
7(Ti) < 7(T) + &.
k=1

Proof. Necessity is clear. If the condition fails for some €, T', and n, then pi(7) > p*(T'). To
prove sufficiency, observe first that, since 7,, C 7 for all n € IN,

p < iy < g (6)

To verify the reverse inequality, let A C X and let £ > 0. We may assume that p*(A) < oco. Let
{T;} be a sequence of sets from 7 such that A C |J,_; 7; and
o
€
D T(T) < wi(A) + 5. (7)

=1
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Let n € IN. Using our hypotheses, we have, for each i € IN, a sequence {S;;} of sets from 7,
covering T; such that
(0.0
€
> T (Si) < () + ST (8)

k=1
Now A C ;2 Upe; Sik, so by (7) and (8) we have

A< (s <Z[ )+ 5] S A +e

d=1 f=il

Since ¢ is arbitrary, p(A) < p*(A). This is true for every n € IN, so
po(A) = lim pn(A) < p*(A). (9)

From (6) and (9), we see that p* = ug. [

Corollary 3.11: Under the hypotheses of Theorem 3.10, Method I results in a metric outer
measure.

Method II also has a regularity result identical to Theorem 2.37. We leave the details as
Exercise 3:3.4.

Theorem 3.12: Let p be constructed from T and 7 by Method II. If all members of T are
measurable, then pf is reqular. In particular, if each T € T is an open set, the measurable
covers can be chosen to be Borel sets of type Gs.
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Exercises
3:3.1 In the proof of Theorem 3.9, verify that u§(0) = 0 and ui(A) < pg(B) if A C B.

3:3.2 Let 7 consist of () and the open intervals in X = (—1,1), and let 7((a,b)) = |b* — a?|. Apply

Method I to obtain p* and Method II to obtain .
(a) Determine the class of p*-measurable sets.
(b) Calculate ©*((0,1)) and ug((0,1)).

3:3.3 Let X = IR, 7 counsist of () and the open intervals in IR. Let 7(#) = 0 and let 7((a,b)) = (b —
a)~! for all other (a,b) € 7. Let py and po be the measures obtained from 7 and 7 by Methods I
and II, respectively.

(a) Show that p;(F) =0 for all £ C X.
(b) Show that us(E) = oo for every nonempty set £ C X.
Note 7(T'), p1(T), and po(T) are all different in this example. While Method I always results in

w*(T) < 7(T), this inequality is not valid in general when Method II is used. We had already seen
this in our example with squares.

3:3.4 Prove Theorem 3.12.

3:3.5 Verify that in Theorem 3.12, if we do not assume that the sets in 7 are measurable, we can still
conclude that each set A C X with finite measure has a cover in 7 ,5. (Compare with Exer-
cise 2:10.8.)
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3.4 Approximations

In most settings the measure of a measurable set can be approximated from inside or outside by
simpler sets, perhaps open sets or G; sets, as we were able to do on IR with Lebesgue measure.
By the use of Theorems 2.36 and 3.12, one can obtain such approximations from sets that were
used in the first place to construct the measure. The approximation theorem that follows is of a
different sort, however, in that it does not involve Methods I or II, or outer measures. We show
how to approximate the measure of any Borel set first from inside by closed sets and then from
outside by open sets for any Borel measure. Recall that for u to be a Borel measure requires
merely that p be a measure whose o—algebra of measurable sets includes all Borel sets.

3.4.1 Approximation from inside

The first approximation theorem asserts conditions under which we can be sure of approximat-
ing the measure of a Borel set by using a closed subset of the Borel set.

Theorem 3.13: Let X be a metric space, i a Borel measure on X, € > 0 and By a Borel set
with ((By) < co. Then By contains a closed set F for which u(By \ F) < €.

Proof. We assume first that u(X) < oo and show that all Borel sets have the stated prop-
erty. Let £ consist of those sets £ C X that have the property that for any v > 0 there is a
closed subset K of E for which u(FE \ K) < 7. We claim that every Borel set B C X is a mem-
ber of £.

We show that £ contains the closed sets and that it is closed under countable unions and
closed under countable intersections. By Theorem 3.3, it follows that £ must contain all the
Borel sets.
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It is clear that £ contains the closed sets. Suppose now that F;, Es, ...belong to £. There
must exist closed sets K; C E; with u(E; \ K;) < 27", We get immediately that
(0. 0] o o (0.9]
m (ﬂE\ ﬂK) <p (U (Ei\Ki)> <Y 2=
i=1 i=1 i=1 i=1
Since (2, K; is a closed subset of (2, E;, we see that the intersection of the sequence {E;}
belongs to £.
The union can be handled similarly but requires an extra step, since countable unions of
closed sets are not necessarily closed. Note that

Jim 4 (UEZ\UKZ> = (UEz\UKz>
i=1 i=1 i=1 i=1
<pu (fj (E; \ KQ) < iari =e.
=1

i=1
(It is here that we are using the finiteness assumption, since to invoke the limit requires Theo-
rem 2.21.) Thus, for sufficiently large n, we must have

H(GE’L\OKZ> <g,
i=1 i=1

and this set, |J;_, Kj, is a closed subset of | ;2 E;.

To complete the proof we need to address the case u(X) = oo. Define a new measure g by
setting po(F) = u(B, N E) for all E C X. Then pyg is a finite Borel measure on X. By what we
have just proved, all Borel sets can be approximated from inside by closed sets. In particular,
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there is a closed set F' C By for which po(Bo \ F)) < e. Since uo(Bo \ F') = p(Bo \ F) we are
done. |

We mention that the discussion following Theorem 3.20 will show that the o-algebra £ in
the proof just given need not consist of all measurable sets. See also Exercise 3:6.3. We now
turn to the approximation from the outside by open sets.

3.4.2 Approximation from outside

The second approximation theorem asserts conditions under which we can be sure of approxi-
mating the measure of a Borel set by using a larger open set that contains the Borel set.

Theorem 3.14: Let X be a metric space, ;v a Borel measure on X, € > 0, and B a Borel set.
If n(X) < oo or, more generally, if B is contained in the union of countably many open sets O;
each of finite u-measure, then B is contained in an open set G with u(G \ B) < e.

Proof. This theorem follows from the preceding. Choose each closed set C; C O; \ B in such a
way that

p((0i\Ci)\ B) = p((0; \ B)\ C) < e27".
Here B N O; is a subset of the open set O; \ C;. Define

G =J©0:\Gy).
i=1

Then G is open, G contains B, and (G \ B) < €. [ |

For reference let us put the two theorems together to derive a corollary, valid in spaces of
finite measure.
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Corollary 3.15: Let X be a metric space and pn a Borel measure with u(X) < oo. For every
€ > 0 and every Borel set B, there is a closed set F' and an open set G such that

FcBCAG,
with
w(B) —e < p(F) < u(B) < w(G) < u(B) +e.

3.4.3 Approximation using F, and G; sets

From these two theorems we easily derive a further approximation theorem that uses slightly
larger classes of sets than the open and closed sets.

Theorem 3.16: Let X be a metric space, and p a Borel measure on X such that u(X) is fi-
nite. Then every Borel set B C X has a subset K of type F, and a superset H of type Gs, such
that

In terms of the language of Exercise 2:1.14, every Borel set in X has a measurable cover of
type Gs and a measurable kernel of type F,. The requirement that p(X) < oo in the statement
of Theorem 3.16 cannot be dropped. See Exercise 3:4.3.

Corollary 3.15 and Theorem 3.16 involve approximations of Borel sets by simpler sets. If
we know that measurable sets can be approximated by Borel sets, then the conclusions of 3.15
and 3.16 can be sharpened. For example, under the hypotheses of Theorem 3.12, if 7 consists
of Borel sets, every measurable set M has a cover H € B. If u(X) < oo, H has a cover H’
of type Gs. Thus H' is a cover for M as well. If one wished, one could combine the hypotheses
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of 3.12, 3.15, and 3.16 suitably to obtain various results concerning approximations of measur-
able sets by Borel sets, sets of type Gs, open sets, and so on.

Exercises

3:4.1 Prove Theorem 3.14 in the simplest case where p(X) < oo.
3:4.2 Prove Theorem 3.16.

3:4.3 Let B denote the Borel sets in IR. Recall that part of the Baire category theorem for IR that as-
serts that a set of type G5 that is dense in some interval cannot be expressed as a countable union
of nowhere dense sets. For E € B, let u(E) = A(E) if E is a countable union of nowhere dense
sets, (E) = oo otherwise. Show that (IR, 5, ;1) is a measure space for which the conclusion of
Theorem 3.16 fails.

3:4.4 Let u be a finite Borel measure on a metric space X. Prove that, for every Borel set B C X,
w(B) =inf {u(G) : B C G, G open}
and

w(B) =sup{u(F): F C B, F closed}.

3.5 Construction of Lebesgue—Stieltjes Measures

The most important class of Borel measures on IR™ are those that are finite on bounded sets.
Often these are called Lebesgue—Stieltjes measures after the Dutch mathematician, T. J. Stiel-
tjes (1856-1894), whose integral (see Section 1.19) played a key role in the development of mea-
sure theory by J. Radon (1887-1956) in the second decade of the last century. For the same



208 Metric Outer Measures  Chapter 3

reason, they have also been called Radon measures. Certain of the Hausdorff measures that we
discuss in Section 3.8 are, in contrast, examples of important Borel measures that are infinite
on every open set.

Lebesgue—Stieltjes measures are Borel measures in IR™ that can serve to model mass distri-
butions. Some previews can be found in Example 2.10 and Exercises 2:2.14, 2:9.2, and 2:10.7.
We can now use the machinery we have developed to obtain such models rigorously and com-
patibly with our intuition. We consider the one-dimensional situation in detail here and then
outline the construction for IR™ in Section 3.7.

Suppose, for each z € IR, that we know the mass of intervals of the form (0, z| or of the
form (z,0] and that all such masses are finite. Let

mass (0,z], if x> 0;
f(z) = 0, if x =0; (10)
—mass (z,0], ifz<0.

Then f is a nondecreasing function on IR. While f need not be continuous, we require f to be
right continuous. Since monotonic functions have left and right limits at every point, this just
fixes the value of f at its countably many points of discontinuity in a particular way.

We now carry out a program similar to the one we outlined in Exercise 2:13.4. Here we are
dealing with intervals in IR, rather than in IR%. Let 7 consist of the half-open intervals of the
form (a,b], the empty set, and the unbounded intervals of the form (—oo, b] and (a, ). For a
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premeasure 7 : 7 — [0, 0o, we shall use
0, if T = 0;
_ ) f(b) = f(a), if T = (a,b];
) = F(b) = limg—— oo f(a), if T = (—o0,b; oy
limp—.0 f(b) — f(a), if T = (a, 00).
The limits involved exist, finite or infinite, because f is nondecreasing.
Continuing the program, we let 71 be the algebra generated by 7. One sees immediately

that 71 consists of all finite unions of elements of 7. We wish to extend the premeasure 7 to an
additive function 71 : 71 — [0,00]. For T € 71, write

T=TUTr,U---UT,,
with T; € T for each i =1,...,n, and T; N T; = 0 if i # j. We “define”
Tl(T) :T(T1)+T(T2)+"'+T<Tn). (12)

The quotes indicate that we must verify that (12) is unambiguous. (Recall our example of squares
in Section 3.2 when 7 was the diameter of the square.)

3.17: The set function 11 is well defined on T .

Proof. Consider first the case that 7' € 7. Let

n

i (a, b} = U(ai,bi]

=1
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with a1 = a, b, = b, and a;41 = b; for all i =1,...,n — 1. Thus
T((a7 b]) = f(b) - f(a) - Z(f(bz) - f(az)) - T((au bz])
i=1 i=1

A similar argument shows that if an unbounded interval 7' € 7 is decomposed into finitely
many members of 7 then (12) holds. Finally, any " € 7 is a finite union of members of 7.
These members can be appropriately combined, if necessary, to become a disjoint collection

{(ai, bi]}?:l with b; < ajq1. (13)

Here it is possible that a; = —oo or b, = oco. Suppose that T' is decomposed into a finite dis-
joint union of sets in 7, say T' = |Jj_, Tj. Let

Ai = {] : T] C (al,bl]}
Then, (a;, b;] = UjeAi Tj. We have already seen that, for all i =1,...,n,

((as, b)) = Y 7(T)).

JEA;

Since any representation of 71" as a finite disjoint union of members of 7 heads to the same col-
lection (13), the sum in (12) does not depend on the representation for 7. [

Because of Theorem 2.41, we now know that an application of Method I would lead to a
measure space in which every member of 7 is measurable. This implies that every Borel set is
measurable. To see this, note that an open interval is a countable union of half-open intervals,

(a,0) = | (a,bal,

n=1
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where a < by < by < --- < band lim, .~ b, = b. It follows from Theorem 3.8 that u*

is a metric outer measure. From Theorem 2.37 we see that p* is also regular and from Exer-
cise 2:10.8 that each set A C IR has a Borel set B as a measurable cover. It now follows read-
ily from Theorem 3.16 that B can be taken to be of type Gs (left as Exercise 3:5.1). What we
do not yet know is that the members of 71, or even of 7, have the right measure; that is, that
w*(T) = 7(T). To obtain this result, it suffices to show that 7| is o-additive on 7. We can
then invoke Theorem 2.43.

3.18: The set function 1 is o-additive on 7T 1.

Proof. To show that 7 is o-additive on 71, we must show that, if {7},} is a sequence of pair-

wise disjoint sets in 71 whose union 7" is also in 71, then
o

n(T) =Y n(Tn).
n=1

Observe that it is sufficient to consider only the case that T is a single interval, either a finite
half-open interval (a, b], an infinite interval (—oo, b], or an infinite interval (a,c0). Every other
set in 71 is a finite disjoint union of intervals of these three types.

We address only the case where T' = (a, ], a bounded interval; the other cases can be han-
dled similarly. For finite additivity, our work was simplified by the fact that if (a,b] = (U, (as, bi,
with the sets {(a;, b;]} pairwise disjoint,

i=1
because the intervals must form a partition of (a, b].
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This telescoping of the sum is not always possible when dealing with an infinite decompo-

sition of the form (a,b] = ;2 (as, b;] with the sets {(a;, b;]} pairwise disjoint. For example,
consider
(1,1 =(-10u | J (n+ 1)~ n].
n=1

Here 0 is a right endpoint of an interval in the collection, but not a left endpoint of any other
interval. Tt is still true that

) = f(=1) = £(0) +Z fl(n+1)7H],

but this requires handling right-hand limits at 0. In general, if for some ¢ € IN, b; is a limit
point of the set {a; };?‘;1, then b; # a; for any j € IN. Thus we do not get the cancelations
from which we benefited when we had telescoping sums. Moreover, there can be infinitely many
points of this type to handle. Note that it is only the right endpoints that have this feature.
Let us look at the situation in some detail. Let A = {a;} and B = {b;}. Then A C B U
{a}, but B is not necessarily contained in A. A simple diagram can illustrate that B \ A can be

infinite. Now
[a‘a b] = U(a’k7 bk) UBU {CL}
It follows that B U {a} is a countable closed set. Let Jy = [f(a), f(b)] and, for k € IN, let Jj, =

[f(ag), f(b)]. Since f is nondecreasing, Jp—; Jx C Jo, and the intervals Ji have no interior
points in common. Because f is right continuous at x = a,

Jo C U Jr U f(B)U{f(a)}.
k=1
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B is countable, so f(B) is also countable, and hence

Af(B)U{f(a)}) =0,

where, as usual, A denotes the Lebesgue measure. It follows that

D (F(Br) = flar)) = A <U Jk) < A(Jo)

k=1 k=1
<A <U Jka(B)U{f(a)}>
k=1
= > A(Jk) = Y (F(br) — flar))-

=1 k=1

k
Thus f(b) — f(a) = A(Jo) = 22g21(f (bk) — f(ak)), so that
71((a, b)) = Y 7i((ax, b))
k=1

as required. [

We have now completed the program. We can finally conclude that an application of Method I
will give rise to an outer measure ,u;‘c and then to a measure space (X, My, u¢) with

py((a,0]) = f(b) — f(a).
We call piy the Lebesgue—Stieltjes measure with distribution function f. We shall also use such

phrases as pif is the measure “induced by” f or “associated with” f. Observe that for ¢ € IR
the function f + c can also serve as a distribution function for y1y. When dealing with finite
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Lebesgue—Stieltjes measures, it is often convenient to choose f so that lim,_,_ f(z) = 0.
Moreover, when all the measure is located in some interval I, it may be convenient merely to
specify f only on I itself (as, for example, we do in Exercise 3:5.5). Technically, this amounts to
extending f to all of R in such a way that pf(IR\ I) = 0. (Such an extension would be required
for Exercise 3:13.5.)

Example 3.19: A probability space is a measure space of total measure 1. If X = IR, the dis-
tribution function can be chosen so that lim,_, o f(z) = 0 and will then satisfy lim,_,o, f(z) =
1. For a measurable set A, 1r(A) represents the probability that a random variable lies in A.
As a concrete example, if ¢ is the standard normal density (bell-shaped curve),

1 1.2
B) = e 2% —00 <z < 00),
$(2) = 5= ( )
then ffooo ¢ (z) de = 1, and one can take f(x f ¢ (t) dt as an associated distribution

function.

In the setting of probability, the “mass” of a Borel set A is interpreted as the probability
of the “event” A occurring. Thus the probability that a standard normal random variable Z
satisfies a < Z < b is

b
Pr(a<Z<8) = f0) - f() = [ (@) da
More generally, for any Borel set A we would have
Pr(Z € A) / o(z

where the integral must be interpreted in the Lebesgue sense. (We will have to wait until Chap-
ter 5 for this.)
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Exercises

3:5.1 Prove that, for any Lebesgue—Stieltjes measure u, every A C X has a measurable cover of type G
and a measurable kernel of type F,.

3:5.2 Use Theorems 3.9 and 3.10 to give another proof that a Lebesgue—Stieltjes outer measure Ky is a
metric outer measure.

3:5.3 Let
0, if z <O0;
fl@)=9 1, if0<z<1;
2, ifx>1.

)

Show that 7((0, 1)) < (0, 1]) < p7([0, 1])-

3:5.4 Let X =R and
(4) = n, if card ANIN = n;
MA =1 o0, if AN is infinite.

Construct a distribution function f such that pr = p.

3:5.5 Let f be the Cantor function, and let uy be the associated Lebesgue—Stieltjes measure. Calculate
ps((3,2)) and ps((K N (2,1)), where K is the Cantor ternary set.

3:5.6 Let uy be a Lebesgue-Stieltjes measure. Show that
pr((a.b)) = lim (f(z) - (@)
and calculate pr({b}).

3:5.7{ The term Lebesgue-Stieltjes measure is often used to apply to what would more properly be
called a “Lebesgue—Stieltjes signed measure.”
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(a)

(b)

What should we mean by a Lebesgue—Stieltjes signed measure associated with a function f
that is not nondecreasing? [Hint: If f = f; — fo where f; and f5 are nondecreasing what
should one use?]

Let
1, ifz<-—1;
flx)y=1¢ 2% if-1<z<1;
1, ifl<a.

Let 117 be the associated Lebesgue-Stieltjes measure. Calculate the Jordan decomposition for
the signed measure fif, and compute

pr((~1,1) and Vg, (1,1)).
Let f : [a,b] — IR be a function of bounded variation and let
F(z)=V(f;[a,2]) (a<z<D)

be its total variation function. What is the relation between the Lebesgue-Stieltjes measure
for F' and the signed Lebesgue-Stieltjes measure for f? [Hint: Compare |u| and pp.]

[Note that functions of bounded variation give rise to Lebesgue—Stieltjes signed measures via their
decomposition into a difference of two nondecreasing functions.]

3:5.80 Let (X, M, 1) be a measure space. A set A € M is called an atom if u(A) > 0 and for all mea-
surable sets B C A, u(B) =0 or u(A\ B) = 0. (See Exercise 2:14.7.)

(a)
(b)

Give an example of a space (IR, M, u) for which [0,1] is an atom.

Let (IR, My, puy) be a Lebesgue-Stieltjes measure space. Prove that, if A is an atom in this
space, A contains a singleton atom with the same measure. That is, there exists a € A for
which pr({a}) = pr(A). One also uses the term “point mass” to describe a singleton atom of

py-
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(¢) A measure p is nonatomic if there are no atoms. Prove that a Lebesgue—Stieltjes measure is
nonatomic if and only if its distribution function is continuous.
3.6 Properties of Lebesgue—Stieltjes Measures

We investigate now some of the important properties of Lebesgue—Stieltjes measures in one di-
mension. The first theorem provides a sense of the generality of such measures.

Theorem 3.20: Let f be nondecreasing and right continuous on IR. Let u} be the associated
Method I outer measure, and let (IR, My, jiy) be the resulting measure space. Then

1. ,u} 18 a metric outer measure and thus all Borel sets are u}—measumble.
2. If A is a bounded Borel set, then pug(A) < co.

3. Fach set A C IR has a measurable cover of type Gs.

4. For every half-open interval (a,b], ps((a,b]) = f(b) — f(a).

Conversely, let pu* be an outer measure on IR with (X, M, u) the resulting measure space. If
conditions (i), (it), and (iii) are satisfied by pu* and p, then there exists a nondecreasing, right-
continuous function f defined on IR such that u}i(A) = p*(A) forall A C IR. In particular,
pr(A) = p(A) for all A e M.

Proof. Most of the proof of the first half of the theorem is contained in our development.
The converse direction needs some justification, since our concept of “mass” was not made pre-
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cise. Define f on IR by
p((0,2)), if x> 0;
f(z) = 0, if x = 0;
—u((x,0]), ifz<0.
It is clear that f is nondecreasing. To verify that f is right continuous, let z € IR and let {d,,}

be a sequence of positive numbers decreasing to zero. Suppose, without loss of generality, that
z > 0. Then

(0,2] = () (0,2 + 6n).
=l

Since u((0,z + 41]) < oo by (ii), we see from Theorem 2.21, part (ii), that
p((0,2]) = lim_ p((0, 2 + dn]),

that is, f(z) = lim,—co f(x + 6,), and f is right continuous.

To show that ,u} = u*, we proceed in stages. We start by showing agreement on half-open
intervals, then open intervals, open sets, bounded Gg sets, bounded sets, and finally arbitrary
sets.

First, it follows from the definition of f that

ps((a,0]) = p((a, bl)

for every finite half-open interval (a,b]. Next, observe that, since both p and pf are o-additive,
and every open interval is a countable disjoint union of half-open intervals, u(G) = ps(G) for
every open interval G. This extends immediately to all open sets G. Now let H be any bounded
set of type G5. Write H = (1,2 Gy, where {G,} is a decreasing sequence of bounded open sets.
That the sequence {G,} can be chosen decreasing follows from the fact that the intersection of
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a finite number of open sets containing H is also an open set containing H. Since us(Gp) =
wu(Gp) for every n € IN, it follows from (ii) and Theorem 2.21, part (ii), that pur(H) = u(H).
Thus p1y and 4 agree on all bounded sets of type Gs. (We needed these sets to be bounded so
that we could apply the limit theorem.)

Now let A be any bounded subset of IR. By (iii), there exist sets H; and Hs of type Gs such
that H; D A, Hy D A, Nf(Hl) = ,LL}(A), and ,u(Hg) = ,U,*(A) Let H = Hy N Hy. Then A C H.
It follows that

py(A) = p(H) = p*(A).
Finally, let A be any subset of IR. For n € IN, let
A, =AN[—n,n].
Then p}(An) = p*(Ay). Since both p} and p* are regular outer measures, we obtain
pp(A) = Tim pp(A,) = lim p*(An) = p*(A)
from Exercise 2:10.2. [ ]

3.6.1 How regular are Borel measures?

We should add here a word about regularity of Borel measures. One might expect, given the
nice approximation properties of Borel measures, that in any setting in which the Borel sets are
measurable one would find a Borel regular measure. This is not the case; a Borel measure may
behave quite weirdly on the non-Borel sets. Our next example gives such a construction that
shows in particular that condition (iii) in Theorem 3.20 cannot be dropped.

Example 3.21: Let (IR, M, 1) be an extension of Lebesgue measure A to a o-algebra larger
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than L. (See Exercise 3:13.13.) Thus L is a proper subset of M, and p = XA on L. Let A € M,
and suppose that A is bounded, say A C I = [a,b]. Suppose further that A and I \ A have
Borel covers with respect to pu. Let Hy and Hy be such covers. Thus A € Hy, I \ A C Ho,
w(Hy) = p(A), and p(Ha) = p(l \ A). We may assume that H; and Ha are also \*-covers of A
and I \ A, respectively, since we could intersect H; and Hs with such Borel covers. Since p = A
on L,
1(A) = p(Hy) = A(Hy) = A*(4)
and
W(I\ A) = pu(Hy) = A(Ha) = X*(I'\ A).
Then
(D) = p(A) + (I \ A) = X(A) + X*(I\ A).
We see from the regularity of A* that A € L. It follows that there are p-measurable sets A
without Borel covers: if A C B € B, then p(B) > u(A).

We can apply this discussion to the converse part of Theorem 3.20 to show that the regu-
larity condition (iii) cannot be dropped. Let us first apply the machinery of Theorem 2.45. We
arrive at the complete measure space (IR, ﬂ, ft). It is clear that i is a Borel measure that is fi-
nite on bounded Borel sets, but not every A € M has a Borel cover with respect to fi. We show
that there is no nondecreasing, right-continuous function f such that

pf = fion M. (14)
Thus, for all such functions, ,u; C T

Suppose, by way of contradiction, that there is a function f so that u; = fi on M. Since
i = X on L, the function f must be of the form f(xz) = x + ¢, ¢ € IR. Otherwise, there would be
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an interval (a,b] such that
p((a,0]) = f(b) = f(a) # b —a= A((a,b]).

It follows that p; is Lebesgue measure. But M contains sets that are not Lebesgue measurable,
so g is not defined on all of M, contradicting (14).

3.6.2 A characterization of finite Borel measures on the real line

We do, however, have the following theorem that illustrates the generality of Lebesgue—Stieltjes
measures. In particular, every finite Borel measure on IR agrees with some Lebesgue—Stieltjes
measure on the class of Borel sets. This is of interest in certain disciplines, such as probability,
in which measure space models have finite measure. See Exercise 3:13.4 for an improvement of
Theorem 3.22.

Theorem 3.22: Let o be a Borel measure on IR with u(B) < oo for every bounded Borel set B.
Then there exists a nondecreasing, right-continuous function f such that pp(B) = pu(B) for ev-
ery Borel set B C IR.

Proof. We leave the proof as Exercise 3:6.1. |

3.6.3 Measuring the growth of a continuous function on a set

Let us return to Theorem 3.20. From condition (iv) we see that

puy((a,b]) = f(b) = f(a)
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for every half-open interval (a,b]. If f is continuous, us({z}) = 0 for allz € IR (see Exer-
cise 3:5.8), and the four intervals with endpoints a and b have the same p¢-measure. We can
interpret that measure as the “growth” of f on the interval:

pp() = A(fF(1))-
If one replaces the intervals by arbitrary sets £, one might expect u3(E) = A*(f(E)); the outer
measure of F is the amount of “growth” of f on E. This is, in fact, the case.

Theorem 3.23: Let f be continuous and nondecreasing on IR, and let u’} be the associated
Lebesgue=Stieltjes outer measure. For every set E C IR,

py(E) = X(f(E)).

Proof. Let E C IR and let ¢ > 0. Cover E with a sequence of intervals {(ay, b,]} so that

(e.9]

S " (f(ba) = flan)) < WHE) +e.

n=1
Let J,, = f((an,by]). Since f is continuous and nondecreasing, each interval .J,, has endpoints
f(ay) and f(b,). Now

S0,
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Since ¢ is arbitrary,
A (f(E)) < pi(E). (15)
To prove the reverse inequality, let G be an open set containing f(E) so that
AG) S N (f(E)) +e.

Let {J,} be the sequence of open component intervals of G. For each n € IN, let I,, = f~1(.J,,).
Since f is continuous, each I, is open and, since f is nondecreasing, [, is an interval. It is clear
that E C o2 I,. Thus, for I,, = (an,by), we have

wH(E) < py (U In> <Y pp(ln)
n=1 n=1

= (f(bn) = fan)) = > _A(Ja) = M(G) < N(f(E)) +e.
=il

n=1
Since ¢ is arbitrary,
Wi(E) < N(F(E)). (16)
The desired conclusion follows from (15) and (16). [

The hypothesis that f be continuous is essential in the statement of Theorem 3.23. Exer-
cise 3:6.4 provides a version that handles discontinuities.

Exercises

3:6.1 Prove Theorem 3.22. [Hint: Follow the proof of Theorem 3.20 to the point that a measurable
cover of type Gs is not available.]
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3:6.2 Give an example of a o-finite measure p on the Borel sets in IR for which no Lebesgue—Stieltjes
measure agrees with p on the Borel sets. [Hint: Let p({z}) =1 for all z € Q/]

3:6.3 Show that there exists a measure space (X, M, p) with p(X) < oo and all Borel sets measurable,
which also meets the following condition. There exists a measurable set M and an € > 0 such that
if G is open and G D M then u(G) > pu(M) + . Compare with Corollary 3.15. [Hint: See the
discussion following Theorem 3.20.]

3:6.4 Let f be nondecreasing, and let 11y denote its associated Lebesgue—Stieltjes measure.

(a) Prove that the set of atoms of pr is at most countable.
(b) Let A be the set of atoms of p¢. Prove that, for every E C X,

HHE) =X (FE)+ D nr({ad):

a€ANE

[Hint: See Exercise 3:5.8 and Theorem 3.23.]

3.7 Lebesgue—Stieltjes Measures in R"

We turn now to a brief, simplified discussion of Lebesgue—Stieltjes measures in n-dimensional
Euclidean space IR™. As before, we are interested in Borel measures that assume finite values
on bounded sets.

For ease of exposition, we limit our discussion to the case n = 2. We wish to model a mass
distribution or probability distribution on IR%. As a further concession to simplification, let us
assume finite total mass, all contained in the half-open square

Ty = (0,1] x (0,1] = {(z1,22) € R?: 0 <z, <1, 0 < xp < 1},
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Let 7 denote the family of half-open intervals (aj, b1] X (a2, be] contained in Tp; that is, sets of
the form
(a,b]:{(xl,wg):0<a1<w1§61§1, 0<a2<x2§b2§1},

where a = (a1, az2), b = (by,b2). Since 0 = (a,a] for any a € Ty, ) € 7.

Suppose now that for all b € Tj we know the mass “up to b”; more precisely, we have a
function f : Ty — IR such that f(b) represents the mass of (0,b]. We wish to obtain 7 from f
as we did in the one-dimensional setting. This will provide a means of measuring our primitive
notion of mass. Since two or more intervals can be pieced together to form a single interval, 7
must be additive on such intervals. We achieve this in the following way. Let T" = (a,b] € 7.
Two of the corners of T" are a = (a1, a2) and b = (b1, b2). The other two corners are (ap,b2) and
(b1,a2). Define a premeasure 7 on the covering family 7" by

7(T) = f(b1,b2) — f(a1,b2) — f(b1,a2) + f(a1,az). (17)
Figure 3.2 illustrates.

We can now proceed as we did before. We extend 7 to the algebra 71 generated by 7. This
algebra consists of all finite unions of half-open intervals contained in 7. We then extend 7 to
71 by additivity and verify that 71 is actually o-additive on 7. The ideas are the same as those
in the one-dimensional case, but the details are messy. Method I leads to a metric outer mea-
sure u?, and each A C T has a measurable cover of type Gs. Furthermore, every interval (a, b
is measurable, and

pr((a,0]) = 7((a,b]),
with 7((a,b]) as given in (17).

In our preceding discussion, we chose the function f to satisfy our intuitive notion of “the

mass up to b.” Suppose that we turn the problem around. We ask which functions f can serve
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To

ba |.......

a2

Figure 3.2. Define 7(T) = f(b1,b2) — f(a1,b2) — f(b1,a2) + f(a1,az2).

as such distributions. In the one-dimensional case, it sufficed to require that f be nondecreas-
ing and right continuous. The monotonicity of f guaranteed that p;y be nonnegative, and right
continuity followed from Theorem 2.21 and the equality

(0,2] = () (0, + 4.

>0

In the present setting, f must lead to 7(7") > 0 in expression (17). This replaces the mono-
tonicity requirement in the one-dimensional case. Right continuity is needed for the same rea-
son that it is needed in one dimension. Here this means right continuity of f in each variable
separately.

Exercises 3:7.1 to 3:7.3 provide illustrations of Lebesgue—Stieltjes measures on 7.
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Exercises

3:7.1 Let f be defined on T by
[ 2v?2, fory > x;
f(l'7y)—{ y\/j7 fOI'ySl'.

Let py be the associated Lebesgue—Stieltjes measure. Prove that for every Borel set B C Ty,
np(B) = A(BNL),
where L is the line with equation y = x and \ is one-dimensional Lebesgue measure on L. Observe

that f is continuous, yet certain closed rectangles with one side on L have larger measures than
their interiors.

3:7.2 Let f be defined on T by
_f oz ify>3;
ﬂ%w{o,ﬂy<;
Let 115 be the associated Lebesgue-Stieltjes measure. Show that uy represents a mass all of which
is located on the line y = %

3:7.3 Let f be defined on T by
_J oty ifrt+y<l
f(””’y)_{1 if o +y > 1.
Show f is increasing in each variable separately, but that the resulting 7 takes on some negative
values. In particular, 7(Tp) = —1.

)

3.8 Hausdorff Measures and Hausdorff Dimension

The measures and dimensional concepts that we shall describe here go back to the work of Fe-
lix Hausdorff in 1919, based on earlier work of Carathéodory, who had developed a notion of
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“length” for sets in IR™. In our language, the length of a set £ C IRY will be its Hausdorff
one-dimensional outer measure, ;*(1). Considerable advances were made in the years following,
particularly by A. S. Besicovitch and his students. In recent years, the subject has attracted a
large number of researchers because of its fundamental importance in the study of fractal ge-
ometry. A development of this subject would take us too far afield. For such developments, we
refer the reader to the many excellent recent books on the subject.? Here we give only an in-
dication of how to construct the Hausdorff measures, how the dimensional ideas arise, and an
indication of how the dimension of a set can provide a more delicate sense of the size of a set in
IRY than Lebesgue measure provides.

Let us return once again to our illustration with squares in Section 3.2. This time, how-
ever, in anticipation of our needs, we change the covering family 7. We take 7 to consist of
all open sets in IR?, with 7(T) = diameter (T), the diameter of the set T € 7. Method II
gives rise to a metric outer measure p such that pi(7) = oo for all open squares T € 7.
This might have been expected, since diameter is a one-dimensional notion and open squares
are two-dimensional.

Suppose that we take, instead, a different premeasure

7(T) = (diameter (T))?
which is smaller for sets of diameter smaller than 1. Perhaps, now, Method II will give rise to
an outer measure for which squares will have zero measure, a two-dimensional object being

measured by a “three-dimensional” measure. Let Ty be a square of unit diameter, and let m,
n € IN.

2For example, C. A. Rogers, Hausdorff Measures, Cambridge (1970) and K. J. Falconer, The Geometry of
Fractal Sets, Cambridge (1985).
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We cover Ty with (n + 1)? open squares T; (i = 1, 2, ..., (n + 1)?), each of diameter 1/n,
and find for all m < n that
(n+1)2 2
o n—+1
(@) < 3 mzy = LD (18)
i=1
Consequently, each measure has 1), (7p) = 0 and
po(To) = lim pp, (To) = 0.
m—0o0
The same is true of any open square. In fact, uE‘;(IR2) =0.
Consider now a further choice of premeasure
7(T) = (diameter (T'))?,
which is intermediate between the two preceding examples. A similar analysis shows that
\ (n+1)°
o (T0) < 7 (m < n),
SO
po(To) <1 =7(To) = 2X2(To), (19)

where o denotes two-dimensional Lebesgue measure. On the other hand, if Ty C (Jpo, T} and
Ty € T, then

> 7(Tr) = (diameter (Ty))” > > Ao(Th)
k=1 k=1 k=1

Xa(|J Tr) = Xa(T0),
k=1

Vv
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the first inequality following from the fact that any set of finite diameter ¢ is contained in a
square of the side length §. It follows that \o(7h) < p§(Zp). Combine this inequality with (19)
and recognize that T is p-measurable to obtain

A2(To) < po(To) < 2X2(To).
Let us take a more general viewpoint. Let 7 consist of the open sets in IR”Y. For each real
s> 0, let
7(T) = (diameter (T))?,
and let u(®) be the measure obtained from 7 and 7 by Method II. A bit of reflection suggests
several facts. In the space IR? (N = 2), we have

(s 0, if s > 2;
wo) =

00, ifs<2 for every T € T,

and
2 = sup{s : u®(IR?) = oo} = inf{s : u® (IR?) = 0}.
Similarly, for arbitrary N, we have
N = sup{s : p®(RY) = 00} = inf{s : u (RY) = 0}.
The proofs of the last three assertions are not difficult. One can actually show that if Ay is
Lebesgue N-dimensional measure in IRY and if we use
7(T) = (diameter (T'))™
then ,u(N ) is a multiple of Ay, a multiple that depends on the dimension N. For example, in IR?
(N = 2), this multiple can be proved to be 4/7. In the special case on the real line IR (N = 1),
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we are using as premeasure
7(T) = diameter (T),
which is just the length if T" is an open interval. Method II reduces to Method I in this case

and we have () = X. Thus the multiple connecting Lebesgue one-dimensional measure and
M 51
pt s 1.

3.8.1 Hausdorff dimension

These concepts can be extended to a more general setting and will allow us to define a notion
of dimension for subsets of a metric space.

Definition 3.24: Let X be a metric space, let 7 denote the family of all open subsets of X,
and let s > 0. Define a premeasure 7 on 7 by

7(T) = (diameter (T))".

Then the outer measure p*(®) obtained from 7 and 7 by Method 1II is called the Hausdor{f
s-dimensional outer measure, and the resulting measure ,u(s), the Hausdorff s-dimensional mea-
sure.

We know that 1*(®) is a metric outer measure by Theorem 3.9 and that it is regular, with
covers in G5 by Theorem 3.12. These measures are all translation invariant, since the premea-
sures are easily seen to be so. We could have taken 7 = 2% in the definition, but our work in
Section 3.2 indicates advantages to having 7 consist of open sets. Furthermore, for £ C X,
s> 0, and ¢ > 0, there exists an open set G D F such that

(diameter (G))® < (diameter (E))® + .
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It follows (Exercise 3:8.1) that the outer measures p*(*) that we obtain do not depend on whether
we take for our covering family 7 = 2% or 7 = G, the family of open sets in X.

Our first theorem shows that, in general, the behavior we have seen in IRY using s = 1,
2, 3 must occur. For any set £ C X, there is a number sg so that for s > sg the assigned s-
dimensional measure is zero, while for s < sy the s-dimensional measure is infinite.

Theorem 3.25: If u**)(E) < 0o and t > s, then i*®(F) = 0.

Proof. Write §(T") for diameter (T"), where T is any subset of our metric space X. Let n € IN
and let {T;} be a sequence from 7 such that £ C |J;2, T; and §(7;) < 1/n, for all i € IN. Then,

for all 7 € IN,
N\ t—s

and

o0 t_S o0
wOEB) < 3 () < (1) S (6T (20)
=1

n

Since (20) is valid for every covering of E by sets in 7,

N 1 t—s e
e < (5) wO®,
Now let n — oo to obtain lim,, .. ,u:L(t) (E) = p*®O(E) =0. |

Note that this theorem shows that, for s < 1, u(®) is a Borel measure on IR that assigns
infinite measure to every open set. In fact, u(*) is not even o-finite on IR (Exercise 3:8.8). Thus
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we have an important example of regular Borel measures on IR that are not Lebesgue—Stieltjes
measures.
Theorem 3.25 justifies Definition 3.26.

Definition 3.26: Let E be a subset of a metric space X, and let 1*(*)(E) denote the Hausdorff
s-dimensional outer measure of E. If there is no value s > 0 for which p**)(E) = oo, then we
let dim (E) = 0. Otherwise, let

dim (E) = sup{s : p**)(E) = o0}
Then dim (F) is called the Hausdorff dimension of E.

Suppose that K is a Cantor set, that is a nonempty, bounded nowhere dense perfect set in
IR. Tt is possible that A(K) > 0, in which case u™")(K) = M(K), but if \(K) = 0, Lebesgue
measure can contribute no additional information as to its size. Hausdorff dimension, however,
provides a more delicate sense of size. Exercises 3:8.2 and 3:8.3 show that there exists Cantor
sets in [0, 1] of dimension 1 and 0 respectively. Exercise 3:8.11 shows that the Cantor ternary
set has dimension log 2/log 3. Moreover, one can show that for every s € [0, 1] there exists a
Cantor set of dimension s. If

dim (Kl) = 81 < 892 =dim (K2)7

then for t € (s1,s2), p®(K;) = 0, while ) (K3) = co. Thus the measure p®) distinguishes
between the sizes of K1 and Ko.
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3.8.2 Hausdorff dimension of a curve

Hausdorff dimension has an intuitive appeal when familiar objects are under consideration. We
have noted, for example, that dim(IRY) = n. What about dim (C), where C is a curve, say in
IR3? Before we jump to the conclusion that dim(C) = 1, we should recall that there are curves
in IR? that fill a cube.? Such curves must have dimension 3. And there are curves in IR?, even
graphs of continuous functions f : IR — IR, that are of dimension strictly between 1 and 2. But
for rectifiable curves, that is, curves of finite arc length, we have the expected result, which we
present in Theorem 3.27.

First, we review a definition of the length of a curve. By a curve in a metric space (X, p),
we mean a continuous function f : [0,1] — X. The length of the curve is

sup >~ p(f(wi-1), f(22)),
=1

where the supremum is taken over all partitions
O=zp< < <zpp =1

of [0,1]. The set of points C = f[0, 1] is a subset of X, and it is the dimension of the set C that
is our concern. The proof uses elementary knowledge of compact sets in metric spaces. The
continuous image of a compact set is again compact. Also, the diameter of a compact set K

is attained; that is, there are points z, y € K so that p(x,y) is the diameter of K.

3See, for example, G. Edgar, Measure, Topology and Fractal Geometry, Springer (1990), for the construction of
such curves.
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Theorem 3.27: Let f : [0,1] — X be a continuous, nonconstant curve in a metric space X,
and let £ be its arc length. Then, for C = f([0,1]),

1. 0<pMC) <t
2. If f is one to one, then p(V(C) = ¢.

Thus, if £ < oo, dim(C) = 1.

Proof. Write 6(T) for diameter (T') for any set T C X. We prove first that u(0(C) < ¢. If

¢ = oo, there is nothing to prove, so that assume ¢ < oco. It is convenient here to use the result
of Exercise 3:8.1 and to use coverings of C by arcs of C. If Aq,..., A, is a collection of subarcs
of C such that C = |J;~, A;, and 6(A;) < 1/n, for alli =1,...,m, then

() < Zm:5(z4i)- (21)
=1

We wish to relate the right side of (21) to the definition of /.
First, let us obtain the arcs A; formally. Let n € IN. Since f is uniformly continuous, there
exists v > 0 such that

1
p(f(z), f(y) <~
whenever z,y € [0,1] and |z — y| < ~. Let

O=x0<21- - <2 =1

be a partition of [0, 1] with |x; — z;_1| < v for all i = 1,...,m. Then the arcs A; = f([zi—1, zi])
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cover C, and
= > 8(41) 2 p(f(@i1), £(29)
for alli = 1,...,m. It follows from the compactness of [x;_1, ;] that A; is compact for each i.
Thus the diameter of A; is actually achieved by points f(y;) and f(z;), with
i—1 Sy < 2 < .
This means that
6(Ai) = p(f(ys), f(2))-
We now use the partition
O<sym<zi<yp<zmn<--Syn<zn<l

to obtain a lower estimate for /. Continuing (21), we have
(€)<Y 6(A) =) p(f(wi): f(=) < € (22)
i=1 i=1

Letting n — oo, we infer that
pw®(C) = lim pxM(C) <.

n—0oo

That
p(e) <¢

now follows from the fact that C is p*(V)-measurable. That 0 < p(1(C) follows from the fact
that if 0 < a < b <1 then

1O (fla b)) > p(f(a), £ ). (23)
(See Exercise 3:8.7.) This completes the proof of part (i).
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Suppose now that f is one-one. Let
O=axpg<21 < - < =1

be a partition of [0, 1], and note that the sets f([x;—1,%;)) are pairwise disjoint Borel sets. Thus,

using (23) on each arc,

(g
i=1
= ©D(f([0,1)))
= wO(f([0,1]) = p(C).
This is valid for all partitions, and so ¢ < ,u(l)(C). In view of part (i), £ = uM(C).

3.8.3 Exceptional sets

We end this section with a comment about “exceptional sets”. Consider the following state-
ments about a nondecreasing function f defined on an interval /. Let

D = {z : f is discontinuous at =},
N = {z : f is nondifferentiable at =},

N’ = {x : f has no derivative, finite or infinite, at x}.

Then
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1. D is countable.
2. AM(V) =0.

3. ,u(l)(G) = 0 where G C IR? consists of the points on the graph of f corresponding to
points of continuity in N’.

Each of these statements indicates that a nondecreasing function has some desirable prop-
erty outside some small exceptional set. The notion of smallness differs in these three state-
ments. Observe that statement (iii) involves a subset of IR?. The weaker statement, that \o(G) =
0, provides much less information than statement (iii). We shall prove a theorem corresponding
to assertion (ii) later in Chapter 7.

We shall encounter a number of theorems involving exceptional sets. Cardinality and mea-
sure are only two of the many frameworks for expressing a sense in which a set may be small.
The notion of first category set is another such framework; we study this intensively in Chap-
ter 10. We mention another sense of smallness involving “porosity” in Exercise 7:8.12.

Exceptional sets of measure zero are encountered so frequently that we employ special ter-
minology for dealing with them. Suppose that a function-theoretic property is valid except, per-
haps, on a set of y—measure zero. We then say that this property holds almost everywhere, or
perhaps p—almost everywhere or even for almost all members of X. This is frequently abbrevi-
ated as a.e. For example, statement (ii) above could be expressed as “f is differentiable a.e.”

Exercises
3:8.1 Verify that, for all s > 0 and F C X, p*(®)(E) has the same value when 7 = G as when 7 = 2¥.
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3:8.2 Let P be a Cantor set in IR with A(P) > 0. What is dim (P)?

3:8.3 Construct a Cantor set in IR of dimension zero. [Hint: Control the sizes of the intervals compris-
ing the sets A,, in Example 2.1.]

3:8.4 Recall that a function f : R — IR is called a Lipschitz function if there exists M > 0 such that

|f(y)—f(x)] < M|y—=z| for all z,y € R. Show that if f is a Lipschitz function then, for all E C IR,
dim (f(£)) < dim (E).

3:8.5 Show how to construct a set A in IR such that A(4) = 0, but dim (A4) = 1.
3:8.6 Give an example of a continuous curve C of finite length such that x(M)(C) < ¢.

3:8.7 Prove that if f : [0,1] — X is a continuous curve in X and 0 < a < b <1 then

uD(flaBl) = p(f(a), (b))

[Hint: Define g : f([a,b]) — IR by g(w) = p(f(a),w). Use g to obtain a comparison between
p M (fla,b]) and the length of the interval [0, p(f(a), f(b))].]

3:8.8 Show that, for s < 1, (IR, B, 1*(*)) is not a o-finite measure space.

3:8.9 Let X = IR but supplied with the metric p(z,y) = 1 if & # y. What is the result of applying
Method II to 7 = G, 7 = diameter (7). (What are the families 7,,7)

3:8.10 Suppose that we were trying to measure the length of a hike. We count our steps, each of which
is exactly 1 meter long, and arrive at a distance that we publish in our trail guide. A mouse does
the same thing, but its steps are only 1 centimeter long. Since it must walk around rocks and
other objects that we ignore, it will report a longer length. An insect’s measurement would be
still longer, and a germ, noticing every tiny undulation, would measure the distance as enormous.
Probably, the actual distance along an ideal curve covering the trail is infinite. A better sense of
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“size of the trail” can be given by its Hausdorff dimension. Benoit Mandelbrot* discusses the dif-
ferences in reported lengths of borders between countries. He also provides estimates of the di-
mensions (between 1 and 2) of these borders. Express our fanciful discussion of trail length in the
more precise language of coverings, Hausdorff measures, and Hausdorff dimension.

3:8.11 Let K be the Cantor set, and let s = log2/log3. Cover K with 2" intervals, each of length 37".
Show that

ps () < 1.

Show that these intervals are the most economical ones with which to cover K. Deduce that dim(K) =
log2/log3 and p*(*)(K) = 1.

3.9 Methods Il and IV

In applications of measure theory to analysis, one may need to construct an appropriate mea-
sure to serve as a tool in the investigation. We have already seen the usefulness of Methods 1
and II, both of which were developed by Carathéodory. In this section we extend this collec-
tion of methods by adopting a new approach, but one again built on the same theme of refining
some crude premeasure into a useful outer measure. These methods can also be used to develop
Lebesgue—Stieltjes and Hausdorff measures. We shall use them in Section 7.6 to construct total
variation measures for arbitrary continuous functions.

We assume that X is a metric space and that a covering relation Hl, in the sense of the fol-
lowing definition, has been specified.

Definition 3.28: By a covering relation on a metric space X we mean a collection of pairs
(C,x) where C C X and z € X.

“B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co. (1982).
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Most often in applications, when (C,x) € H then the point z would be a member of C' and
it is in this sense that such collections have been named as “covering” relations. This covering
relation H establishes a relationship under which points x are “attached” to certain selected
sets C' by the requirement that (C,z) € H. For example, a simple and useful such relation
would be to take z is attached to C if z € C; a slight variant would have 2 € C. If the sets
in 7 are balls, then a useful version is to have z is attached to C' to mean that C' is centered at
z. In general, the geometry and the application dictate how this can be interpreted. No special
assumptions are needed on the relationship in general.

We suppose that a premeasure 7 is defined on H, i.e., 7 : HH — IR with

0<7(C,z) <0 [(C,x) € H].

We assume, just as for Methods I and II, that there is no structure on 7, and we will require
that 7(0, x) = 0 if this happens to be defined (although it usually is not). As before, this crude
premeasure will be refined into a genuine outer measure by some kind of approximation process.

Here, however, we shall use packings rather than coverings. The idea of a covering esti-
mate, we recall, is to approximate the measure of a set I/ by some minimal covering of E using
sets from a covering. Naturally, overlapping of sets would occur even in a good covering. For a
packing, we allow no overlap.

Definition 3.29: A finite subset 7 of H is said to be a packing if
™ = {(Ii,l’i) = 1,2,3,...,72}
and I; N I; = () for i # j.
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Definition 3.30: Let 7 be a premeasure on H. Then the variation of 7 on a packing # C H is
defined as

V(r,m) =) 7(Ci ;)
i=1
where
W:{(Ii,l’i):i: 1,2,3,...,71}

is the packing.

Definition 3.31: Let 7 be a premeasure on H. Then the variation of 7 on a covering relation
6 C H is defined as

V(r,B) =sup{V(r,7): 7 C § and 7 is a packing}.

We shall find ways of using the variational estimates V' (7, 5) to obtain our measures. The
first step is to define the collection of covers that will play a role in the computation. (Recall
the notation B(x,J) for the open ball in the metric space X centered at x and with radius J.)
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Definition 3.32: Let H be a covering relation on a metric space X. Let £ C X.

1. A family 8 C H is said to be a full cover of E (relative to H) if for every x € E there is a
0 > 0 so that

(C,x) eH and C C B(z,0) = (C,z)e€p.

2. A family g C H is said to be a fine cover of E (relative to H) if, for every x € E and ev-
ery € > 0, either

there exists at least one pair (C,x) € 8 for which C' C B(z,¢)

or else no such pair (C,x) exists in all of H.
The fine covers are closely related to the notion of a Vitali cover in the literature (see Sec-
tion 7.1). They play a key role in the study of differentiation of functions and integrals.
3.9.1 Constructing measures using full and fine covers
We now define our two methods of constructing outer measures.

Definition 3.33: Let H be a covering relation on a metric space X and 7 a premeasure on H.
For every £ C X, we define

1. 7°(E) =inf{V(7,5) : f C H a full cover of E}.
2. 7°(F) =inf{V(7,0) : B C H a fine cover of E}.

The set functions 7° and 7° will be called the Method III and Method IV outer measures (re-
spectively) generated by 7.
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Theorem 3.34: Let H be a covering relation on a metric space X and T a premeasure on H.
Then 7° and 7° are metric outer measures on X and 7° < 7°.

Proof. Most of the details of the proof are either elementary or routine. Here are two details
that may not be seen immediately.

First, let us check the countable subadditivity of 7°. Suppose that F is contained in a union
U, En, and that each 7°(E,,) is finite. Then for any ¢ > 0 and n = 1,2,3,... there is a full
cover (3, C H of E,, so that

V(r,Bn) < 1°(E,) +e27".
Observe that 8 = J;2, B, is a full cover of E. Hence

(B) < V() < S V() < 3 (r°(Ba) +<27).

n=1 n=1

o
< Z T
n=1
Second, let us consider how to prove that 7° is a metric outer measure. Suppose that A, B
are subsets of X a positive distance apart. Let 3 be a full cover of AU B with
V(r,B) <7*(AUB) +e.

Because of this separation, we may choose two disjoint open sets G; and G2 covering A and B,
respectively. Consider the families

From this one sees that

61 ={(C,z) e B:C C G1}
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and
B2 ={(C,z) € B:C C Ga}.
Then f; is a full cover of A and s is a full cover of B. If (C1,z1) € $1 and (Ca,x2) € (B2 then
certainly the sets C| and Cs are disjoint. This means that
T*(A) +7%(B) < V(7, 1) + V(7,62) < V(1,08) < T°(AUB) +e.
From this inequality and the subadditivity of 7° the identity,
7*(AUB) =71*(A)+7°(B)

can be readily obtained. The remaining details of the proof are left as exercises. |

Example 3.35: Let Hj denote the set of all pairs ([u,v],w) where [u,v] is a compact interval
on the real line and w a point in [u, v]. This is a covering relation on IR; we take for ¢([u,v], w)
the length of the interval [u,v], i.e.,

([u,v],w) =v —u.
Then ¢ is a premeasure and it is possible to prove that
0° =10 =\
This is known as the Vitali covering theorem. That is, both measures recover the Lebesgue
outer measure. This will be discussed in greater detail in Section 7.6.

Example 3.36: Let Hj be as in Example 3.35 and define the premeasure 7, by requiring that
7([u, v],w) = g(v) — g(u), where g is a continuous nondecreasing function on the real line. Then
an extension of the Vitali covering theorem can be proved asserting that

O_

o __ %
Tg Tg—ug.
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That is, both measures recover the Lebesgue-Stieltjes outer measure uy generated by the mono-
tonic function g. This too will be discussed in greater detail in Section 7.6.

Example 3.37: Again let Hy be as in Examples 3.35 and 3.36. For a premeasure take, 75([u, v], w) -
(v —u)®, where 0 < s < 1. Then 7 can be shown to be exactly the s-dimensional Hausdorff
measure, and the larger measure 79 is indeed larger and plays a role in many investigations un-

der the name “packing measure.”

3.9.2 A regularity theorem

Here is a simple regularity theorem that illustrates some methods that can be used in the study
of these measures. In any application, one would need to adjust the ideas to the geometry of
the situation.

Theorem 3.38: Let C be a collection of subsets of a metric space X and define the covering
relation
H={(C,z): C €C and x is an interior point of C}.
Let T be any premeasure on H. Let E C X with 7°(E) < oo and let € > 0. Then there is an F,
set Ch1 D E and there is an F,5 set Co D E such that
7*°(Cy) < 7*(E) + ¢ and 7°(C2) = 7°(E).
Proof. There is a full cover § C H of £ so that
V(r,B) < t*(E) +e.
Choose §(z) > 0 for each = € E so that
Cel, zeint(C), and C C B(z,d) = (C,z) € .
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Define
E,={x€FE:x)>1/n}
and consider the closed sets {E,}. One checks, directly from the definition, that 3 is a full
cover (relative to H) of each set E,. Thus
7 (En) <V(1,8) <(E)+¢

and so also, since this is a metric outer measure,

T° (U En> <71*(E)+e.
n=1
The set C; = U2, En

1 En is an F, set that contains I and affords our desired approximation to
7°(E). The set Cy of the theorem can now be obtained by taking an intersection of an appro-
priate sequence of closed sets. |

Exercises
3:9.1 Let H be a covering relation on a metric space X.

(a) Show that every full cover of a set is also a fine cover of that set.
(b) Let 8 be a full (fine) cover of E and suppose that G is an open set containing E. Then
61 ={(C,x) e p:C C G}
is also a full (fine) cover of E.

(c) Let 3, be a full (fine) cover of E,, for each n = 1,2,3,.... Show that |J,—, 3, is a full (fine)
cover of |Jo~ | Ey.
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(d) Suppose that (1, (s, ...are subsets of H and 7 any premeasure. Show that

v (a L_Jl ﬁn> < Zlvm Br)-

(e) If By is a full cover of E and (s is a full cover of E then §; N By is a full cover of E.

(f) If 51 is a fine cover of E and [ is a full cover of E, then $; N P9 is a fine cover of E.

(g) If By is a fine cover of E and (s is a fine cover of E, then 8; N B2 need not be a fine cover of
E.

3:9.2 Complete the proof of Theorem 3.34 by verifying that 7° < 7°. [Hint: In the preceding exercise
we checked that every full cover was also a fine cover.]

3:9.3¢ Let H.,. be the covering relation consisting of all pairs ([u, v],u) (u, v € IR). Suppose that f is a
real function. Show that the collection

B =A(z,yl,2) : f(y) = f(z) > c}

is a full cover (relative to H,.) of the set

{x sliminf [f(y) — f(x)] > c}
y—x+
and a fine cover of the (larger) set
{x limsup [f(y) — f(x)] > c} .
y—at
3:9.4$ Define upper and lower derivates for a function F : IR — IR as
_ F(v)-F
DF(z) = inf sup {(v)(u)
§>0

tx € [u,v], 0<v—u<(5}
v—u
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and

b EEEEO

DF(z) = supinf cx € [u,v), O<v—u<5}
5>0 Uv—=u
Let Hy be the covering relation consisting of all pairs ([u, v],w), u, v € R, u < w < v. Let a € R,

and let
F(v) — F(u)

vV—1Uu

5= { (wolw):

Prove that § is a full cover (relative to Hy) of the set
E, ={z € (a,b) : DF(x) > a}

>, wE [u,v] C [a,b]}.

and a fine cover of the larger set
Ey = {z € (a,b) : DF(z) > a}.
3:9.5 In the proof of Theorem 3.38, show in detail that 3 is a full cover of each set E,,.

3.10 Mini-Vitali Theorem

Let us return to Example 3.35. The covering relation we used, Hy, denotes the set of all pairs
([, v],w) where [u,v] is a compact interval on the real line and w a point in [u,v]. We employ
the premeasure

u,v,w)=v—u (u<w< ).
The choice of letter ¢ here suggests “length.” The classical Vitali covering theorem asserts that

0° =1 =\".

Thus Lebesgue outer measure A* can be realized by Methods I and II using coverings, and
equally well realized by Methods III and IV using packings from full and fine covers. We will
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discuss the Vitali covering theorem in depth in Section 7.1.

The Mini-Vitali theorem, rather easier to prove, is the same assertion about sets of measure
zero. A set of Lebesgue measure can be characterized in three different ways, using coverings,
using full covers, and using fine covers. In the language of the measures above, we shall prove
that A(F) = 0 if and only if either ¢°(E) = 0 or ¢*(E) = 0. We state and prove this theorem
now and use it, in Section 3.11 to obtain our first proof of the celebrated Lebesgue differentia-
tion theorem.

Theorem 3.39 (Mini-Vitali Covering Theorem) The following are three equivalent state-
ments that assert that a set E of real numbers has Lebesgue measure zero:

1. For every e > 0 there is an open set G containing E for which \(G) < €.
2. For every € > 0 there is a full cover (relative to Hy) B of E for which V (¢, ) < e.

3. For every € > 0 there is a fine cover (relative to Hy) B8 of E for which V(¢,3) < e.

The proof follows after we establish some simple covering lemmas.

3.10.1 Covering lemmas

We begin with an elementary covering lemma for finite families of compact intervals on the real
line. Recall that we are using throughout the fixed covering relation

Ho = {([u,v],w) :u < v, u <w < v}.

All statements about our covers concern subsets of Hy.
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Lemma 3.40: Let 3 be a finite subset of the covering relation Hy. Then there is a packing m C

B,
m={([ci,di],e;) i =1,2,...,m},

for which®

U [u,v] C UB* [ci, dj].

([u,v],w)ep

“By 3 * [u,v] we mean the interval centered at the same point as [u, v] but with three times the length.

Proof. For [c1,d;] simply choose the largest interval available. Note that 3 * [c;, d;] will then
include any other interval [u, v] for which ([u,v],w) € (3 and for which [u, v] intersects [c1,d1].
See Figure 3.3.

For [cg, da] choose the largest interval from among those that do not intersect [c1, d;]. Note
that together 3 * [c1,d;] and 3 * [co, d2] include any interval of the family that intersects either
[c1,d1] or [ca,ds]. Continue inductively, choosing ([cgt1, dg+1], €x+1) € B so that [cxi1, dii1] is
the largest interval available that does not intersect one the previously chosen intervals [c;, d1],
[ca,da], ..., [ck,dk]. Stop when you run out of intervals-pairs to select. |

Our second covering lemma is nearly as elementary, and is just an observation about the
structure of open sets.
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3% [c1,d1]

[u, v]
[e1,da]

Figure 3.3. Note that 3 * [c1,d1] will include any shorter interval [u,v] that intersects [c1,d1].

Lemma 3.41: Let 3 be any subset of Hy. Then the set
G = U (u,v)
([u,0],w)ep
is an open set that contains all but countably many points of the set

E = U [u, v].

([u,v],w)eB

Proof. Certainly G is open, since it is a union of a family of open intervals. Any point that is
in £ but not in G must be an endpoint of a component interval of G. For example if a € E but
not in G then there must be an element ([a,b],c) or ([b,al,c) in . In the former case (a,b) C G
but [a,b) ¢ G. In the latter case (a,b) C G but (a,b] ¢ G. But the collection of endpoints of
the component intervals of G is countable. Consequently E \ G is countable. |

Our next lemma is the key to the argument for our proof of the mini version of the Vitali
covering theorem.
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Lemma 3.42: Let § C Hy. Write
G = U (u,v).
([u,v],wep
Then G is an open set and, if g = N(G) is finite, then there must exist a packing © C 3,

7 ={([z, ya), 2) 1 k=1,2,...,p}
for which

b
> (yk — ) = g/6. (24)
k=1

In particular
=c\ | [
([uw],w)en
is an open subset of G and \(G') < 5g/6.

Proof. It is clear that the set G of the lemma, expressed as the union of a family of open in-
tervals, must be an open set. Let {(a;,b;)} be the sequence of component intervals of G. We

know then that the Lebesgue measure of G must be
(0.0]

9=XG)=> (b —a).
i=1
Choose an integer N large enough that
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Inside each open interval (a;,b;), for i =1, 2, ..., N, choose a compact interval [¢;, d;] so that
N
> (di — i) > g/2.
i=1
Write
N
K = U [Ci, dz]
i=1

and note that K is a compact set covered by the family

{(u,) : ([u,v],w) € B}

Consequently there must be, by the Heine-Borel theorem, a finite subset

Bl = {([ula U1]7w1)7 (['LLQ, /UZ]’ 'UJ2), ([ug, US],'UJB), ey ([Um’ Um]’ wm)}
from ( for which
K C U(uhvl)
i=1
By the simple covering Lemma 3.40 there is a packing = C fy,
™= {([zk, yxl,2t) : k= 1,2,...,p}

for which
m

N p
U[ci,di] C U(ui,vi) C U 3 % [Tk, Yk)-
i=1 k=1

i=1
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Thus
P N
23(% = .%'k) > Z(dz = Ci) > 9/2.
k=1 i=1
Statement (24) and the estimate on A(G’) then follow. [

3.10.2 Proof of the Mini-Vitali covering theorem

We use these elementary covering lemmas now to complete our proof of Theorem 3.39. To sort
out the three concepts being compared in the statement of the theorem define:

1. A set F is of measure zero if, for every ¢ > 0, there is an open set G O F for which
AG) <e.

2. E is full null if for every e > 0 there is a full cover 5 C Hy for which V (¢, 3) < e.
3. E is fine null if for every € > 0 there is a fine cover § C Hy for which V (¢, ) < e.

Every full null set is clearly a fine null set; this is because every full cover is also a fine cover.
Every set of measure zero is a full null set by a simple covering argument. Let &€ > 0 and, sup-
posing that F is a set of measure zero, choose an open set G containing E for which A(G) <
€/2. Then

B ={([u,v],w) : w € E, [u,v] C G}

is a full cover (relative to Hy) of E. If 7 is any packing contained in (3, then certainly

Viem) = Y (v-u)<AG)<e/2

([u,v],wem
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Consequently V (¢, 5) < e/2 < e. Hence E is full null.
To complete the proof we show that every fine null set is a set of measure zero. Let us sup-
pose that E is not a set of measure zero. We show that it is not fine full then. Define

g0 = inf{A\(G) : G open and G D E}.

Since FE is not measure zero, g9 > 0.
Let B be an arbitrary fine cover of £. Define

G= U (u,v).
([u,v],w)eB
This is an open set and, by Lemma 3.41, G covers all of E except for a countable set. It follows
that A\(G) > ey, since if A\(G) < g¢ we could add to G a small open set G’ that contains the
missing countable set of points and for which the combined set G U G’ is an open set containing

FE but with measure smaller than &g.
By Lemma 3.42 there must exist a packing = C (8 for which

> (v—u) >eo/6. (25)
([wlw)em
In particular V' (¢, 3) > €9/6. But that means that E is not a fine null set, since this is true for
every fine cover (3.

3.11 Lebesgue differentiation theorem

Using the mini-Vitali theorem, we can prove that functions of bounded variation on the real
line are differentiable at every point excepting possibly a set of Lebesgue measure zero. We
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will return to this theorem in Section 7.2 and give, at that time, another rather more revealing
proof that uses the full Vitali covering theorem. Here we shall need only the mini-version.

Definition 3.43: The total variation of a function F' : [a,b] — IR on that interval is the num-
ber V(F'; [a,b]) defined as the supremum of the values

> |F(si) = F(siz1)|
=1

taken over all choices of points

a=80<81 < <8 1<8,=>0.

Definition 3.44: A function F : [a,b] — IR is said to have bounded variation on [a,b] provided
that V(F}; [a, b]) < oo.
Note that, should F' be monotonic on [a, b] then
V(F;la,b]) = [F(b) — F(a)].
Thus all monotonic functions have bounded variation.

Theorem 3.45 (Lebesgue differentiation theorem) Suppose that F : [a,b] — IR is a func-
tion of bounded variation. Then F is differentiable at almost every point in (a,b).

Corollary 3.46: Let F' : [a,b] — IR be a monotonic function. Then F is differentiable at al-
most every point in (a,b).
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The proof uses the upper and lower derivates. To analyze how a derivative F’(z) may fail
to exist we split that failure into two pieces, an upper and a lower derivative, defined already in
Exercise 3:9.4. We will show that, for almost every point x in (a,b),

DF(z) > —c0, DF(z) < o0,
and
DF(z) = DF(x).

From these three assertions it follows that F' has a finite derivative F’(x) at almost every point
z in (a,b).

3.11.1 A geometrical lemma

The proof employs an elementary geometric lemma that Donald Austin® used in 1965 to give
a simple proof of this theorem. Our proof of the differentiation theorem is essentially his, but
written in different language. See also the version of Michael Botsko®.

°D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Amer. Math. Soc. 16 (1965)
220-221.

SM. W. Botsko, An elementary proof of Lebesgue’s differentiation theorem. Amer. Math. Monthly 110 (2003),
no. 9, 834-838.
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Lemma 3.47 (Austin’s lemma) Let G : [a,b] — IR, « > 0 and suppose that G(a) < G(b).

Let

G(v) — G(u)
v—u

5= { (wolw):

Then, for any nonempty packing ™ C (3,

< —a, wE u,v] C [a,b]}.

al > (w-uw)]| <V(Giab]) - |GO) - G(a)].

([u,v],w)em

Proof. To prove the lemma, let 7m; be a partition of [a, b] that contains the packing m. By a
partition we mean a finite collection of interval-point pairs {([c;, d;], e;)} with nonoverlapping
(not disjoint) intervals that exhausts the interval [a, b]. This is clearly possible.

Now write
IG(b) = G(a)| =G(b) —Gla)= > [Gv) - G(u)]
([w,v],w)em1
= Y [G)-Gwl+ >  [G) -G(u)
([uyv],w)en ([u,v],w)em\ ™
< —o Z [v—u] | +V(G;]a,b]).
([w,v],w)em
The statement of the lemma follows. [ |

As a corollary we can replace G with —G to obtain a similar statement.
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Corollary 3.48: Let G : [a,b] — IR, a > 0 and suppose that G(b) < G(a). Let
G(v) — G(u
5= { (ol w: SO

>a, weE [u,v] C [a,b]}.
v—u
Then, for any nonempty packing ™ C (3,

al > (w-w]| <V(Gia,b]) - |GO) — G(a)].

([u,w],w)en

3.11.2 Proof of the Lebesgue differentiation theorem

We now prove Theorem 3.45. The first step in the proof is to show that, at almost every point ¢
in (a,b),
DF(t) = DF(t).
If this is not true then there must exist a pair of rational numbers r and s for which the set
E.s ={t € (a,b): DF(t) <r < s < DF(t)}

is not a set of measure zero. This is because the union of the countable collection of sets E,
contains all points ¢ for which DF(t) # DF(t).

Let us show that each such set E, is fine null in the language of the Mini-Vitali theorem;
we then know that E,; is a set of Lebesgue measure zero. Write o = (s — r)/2, B = (r + s)/2,
G(t) = F(t) — Bt. Note that

E.s={t € (a,b) : DG(t) < —a <0< a < DG(t)}.
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Since F' has bounded variation on [a, b], so too does the function G. In fact
V(G;[a,b]) < V(F;[a,b]) + B(b—a).
Let € > 0 and select points
a=5)<8 < - -<8,_1<8,=0b
so that

> 1G(si) — G(si-1)| > V(G [a, b]) — ae.
i=1

Let E/, = E s\ {s1,82,.-.,5n—1}. Let us call an interval [s;_1, s;] black if G(s;)—G(s;—1) >0
and call it red if G(s;) — G(s;—1) < 0.
For each i = 1,2,3,...,n we define a covering relation 3; as follows. If [s;_1, s;] is a black
interval then
G(v) — G(u)
BZ—{([’LL,U],H)). p—
If, instead, [s;—1, si] is a red interval then

B; = {([u,v],w) c M

v—u
Let 8 =J;_, Bi- It is easy to check that this collection [ is a fine cover of E}, (cf. Exercise 3:9.4).
Let m be any nonempty packing contained in #. Write m; = 7w N §;. By Lemma 3.47 applied
to the black intervals and Corollary 3.48 applied to the red intervals we obtain that

< —a, wE [u,v] C [sil,si]}.

> o, We [U,U} C [si_l,si]} .

o Y (w—u) | <V(G[sic1,si]) = IG(si) — G(sio1)].

([u,v],w)€Em;
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Consequently
! Z (v—u) | =« Z Z (v—u)
([u,v],w)em 1=1 ([u,v],w)e€m;

n

< Z V(G;[si-1,5i]) — Z |G(si — G(si-1)|
i=1 1=1

< V(Gi[a,b]) — [V/(G; [a,b]) — ae] = ae.
We have proved that f is a fine cover of E/, with the property that

Z (v—u)<e
([u,v],w)en
for every packing m C (. In the earlier language we have shown that V' (¢, 3) < e. It follows that
E/, is fine null, and hence a set of Lebesgue measure zero. So too then is E,¢ since the two sets
differ by only a finite number of points.

We know now that the function F' has a derivative, finite or infinite, almost everywhere in
(a,b). We wish to exclude the possibility of the infinite derivative, except on a set of measure
Zero.

Let

Ey ={t € (a,b): DF(t) = co}.
Choose any B so that F'(b) — F(a) < B(b—a) and set G(t) = F(t) — Bt. Note that G(b) < G(a)
which will allow us to apply Corollary 3.48.
Let € > 0 and choose a positive number « large enough so that

V(G;a, b)) — |G(b) — G(a)| < ae.
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Define G G
p={twolw): EL=E 5 o g c o},
This is a fine cover of F,. Let m be any packing m C 3. By our corollary then
a Y (v—u) <V(G;[a,b]) — |G() — G(a)] < ae.
([uyv],w)er
We have proved that 3 is a fine cover of F, with the property that
Z (v—u)<e
([u,v],w)€Em;
for every packing m C 3. It follows that F, is fine null, and hence a set of measure zero. The
same arguments will handle the set

E_o ={t € (a,b) : DF(t) = —cc}.

Exercises
3:11.1 Suppose that F, F} and F; are real-valued functions defined on an interval [a, b].
(a) Compute V(F;[a,b]) if F' is monotonic on [a, b].
(b) Estimate V (Fy + Fb; [a,b]).
(¢) Estimate V (rFy + sFs;[a,b]).
(d) Estimate V(Fy - Fy; [a,b]).
3:11.2 Compute V(F;[0,1]) where F is given by the formula F(z) = xsin(1/z).
3:11.3 Show that V(F};[0,1]) < oo if F is the continuous function given by the formula F(z) = 22 sin(1/x).
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3:11.4 Show that every function that has bounded variation on an interval is bounded there.

3:11.5 Let {F}} be a sequence of functions on a compact interval [a, b] such that

sup V (Fy, [a,b]) < cc.
k

If F(z) =limy_ oo Fi(x) for all  in [a,b] show that F' has bounded variation on [a, b].

3:11.6 Give an example of a sequence of functions {F}} such that V(Fg;[a,b]) < oo for each k and
for which F(z) = limg_  Fx(x) exists at every point, but for which F' does not have bounded
variation on [a, b].

3.12 Additional Remarks on Special Sets

We end this chapter with some additional remarks concerning monotonic functions, Cantor sets,
and nonatomic measures. Any subset of the real line that is nonempty, bounded, perfect, and
nowhere dense is said to be a Cantor set.”

3.12.1 Cantor sets

We have already discussed Cantor-like functions in Exercise 1:22.13. These are continuous, non-
decreasing functions that map a Cantor set onto an interval. Speaking loosely, we can say that
Cantor functions do all their rising on a Cantor set.

Our first theorem gives an indication of the role of Cantor sets in the rising of a nondecreas-
ing function.

"More generally, a set K in a metric space X is said to be a Cantor set if K is homeomorphic to the classical
Cantor set (cf. Exercise 3:12.2).
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Theorem 3.49: Let A C [0,1], and let f : A — IR be a nondecreasing function. If A\.(f(A)) >
0, then A contains a Cantor set.

Proof. We may assume that f is bounded on A. Otherwise, we do our work on an appropri-
ate smaller interval I. We begin by extending f to a nondecreasing function f defined on all of
[0,1]. Let

s\ | inf f, for 0 < z < inf A;

f@) = { sup{f(t) :te€ A, t <z}, forinf A<z <1

Then f is nondecreasing on [0, 1].

Our objective is to find a Cantor set P of positive measure such that P C f(A) and f~!
maps P homeomorphically into A. To do this, we first remove from consideration any points of
discontinuity of f , as well as any intervals on which f is constant. Since f is nondecreasing, its
set D of points of discontinuity is countable. Thus

A(f(D)) = 0. (26)
Now, for each y € f(A), the set f ~1(y) is an interval, since f is nondecreasing. Let Z be the
family of such intervals that are not degenerate. The intervals in Z are pairwise disjoint and
each has positive length. Thus 7 is countable, say Z = {I}. Let G = |J;—, I). Since f is con-
stant on each member of Z, f(G) is countable and

A(f(G)) =0. (27)
Let M = f(A)\ f(DUG). It follows from (26) and (27) that A\,(M) > 0. Let y € M. There
exists x € A such that f(z) = y. We see from the definition of the set M that

ft)<yfort <z and f(t)>yfort>x.
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Thus f~1(y) = {x}. It follows that f~! is strictly increasing on the set M, and f~1(M) c A.
Note that, since M C f(A) and f~Y (M) C A, f~1 = f~1on M.

The set E of points of discontinuity of f~! : M — A is countable. Thus there is a Cantor
set P of positive measure contained in M \ E. Since f~! is continuous and strictly increasing on
P, the set K = f~1(P) is also a Cantor set (see Exercise 3:12.1), and K is a subset of A. It is
clear that f maps the Cantor set K onto the set P of positive measure. |

Exercise 3:13.14 at the end of this chapter shows that we cannot replace the monotonicity
hypothesis with one of continuity in Theorem 3.49.

3.12.2 Bernstein sets

We observed in Section 2.1 how nineteenth century misconceptions about nowhere dense sub-
sets of IR may have delayed the development of measure theory. Cantor sets were not part of
the mathematical repertoire until late in the nineteenth century. Nowadays, Cantor sets appear
in diverse areas of mathematics. Our familiarity with them makes it difficult to visualize an un-
countable set that does not contain a Cantor set, though this is, in fact, possible. We have ear-
lier (e.g., Exercises 1:22.7 and 1:22.8) discussed totally imperfect sets; that is, an uncountable
set of real numbers that contains no Cantor set. We have shown the existence of Bernstein sets
(a set such that neither it nor its complement contains a Cantor set). The existence can be ob-
tained by a cardinality argument (which is especially simple under the continuum hypothesis).

Bernstein sets have a number of interesting properties relative to Lebesgue measure and
Lebesgue-Stieltjes measures. Let f be continuous and nondecreasing on [0, 1], with f([0,1]) =
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[0,1]. Suppose that neither A nor its complement A contains a Cantor set. Then

A(A) = A(4) = 0.
It follows that

A (A) = A\ (A) = 1.
Now f(A) U f(A) = [0,1]. By Theorem 3.49,

A(f(A) = A(f(A)) = 0.
Thus

A (f(4)) = X(f(A4) =1

and the set A cannot be measurable with respect to any nonatomic Lebesgue-Stieltjes mea-
sure except the zero measure. We know, by Exercise 3:13.13, that there are extensions X of A
for which the set A is A-measurable. Similarly, there are extensions ﬁf of any given Lebesgue—
Stieltjes measure for which A is fij-measurable. But such extensions are not Lebesgue-Stieltjes
measures. See the discussion following the proof of Theorem 3.20.

Arguments similar to the ones we have given show that if A is totally imperfect then, for
every nonatomic Lebesgue—Stieltjes measure jiy, either pr(A) = 0 or A is not up-measurable.
Which alternative applies depends on whether A\(f(A)) =0 or A*(f(A)) > 0.

3.12.3 Lusin sets

We turn now to the opposite phenomenon. Are there sets that are measurable with respect to
every nonatomic Lebesgue—Stieltjes measure? Since Lebesgue—Stieltjes measures are Borel mea-
sures, the question should be asked about non-Borel sets.
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To address this question, we construct another example of an unusual set of real numbers
(cf. Exercise 1:22.9), called occasionally a Lusin set.

Lemma 3.50: Assuming the continuum hypothesis, there exists a set X of real numbers such
that X has cardinality c, yet every nowhere dense subset of X is countable.

Proof. We shall construct a set X C [0, 1] so that, if A is a nowhere dense subset of the
space X using the Euclidean metric, then A is countable. To construct the set X, arrange the
nowhere dense closed subsets of [0,1] into a transfinite sequence {F,}, 0 < a < Q, where Q is
the first uncountable ordinal. For each o < 2, consider the difference

Fu\ | Fs.
f<a

Since the interval [0,1] is complete, uncountably many of these differences must be nonempty.
Let X be a set that contains exactly one point from each such difference. Then X has cardinal-
ity c.

We now show that if IV is a nowhere dense subset of [0,1] then N N X is countable. Since
N is also nowhere dense in [0,1], there exists a < € such that N = F,. The construction of X
implies that, for v > a, X N F, N F, = (). Thus

NNnXcC U Fjg,
BLa

so N N X is countable. The same is true of N N X. Since any set that is nowhere dense in X is
also nowhere dense in [0,1], we infer that every nowhere dense subset of X is countable. |

For this space X, we have the following.
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Theorem 3.51: The space X has the following properties.
1. The only finite nonatomic Borel measure u on X is the zero measure.
2. Any nondecreasing function f on X maps X onto a set of measure zero.

3. For every nonatomic Lebesgue—Stieltjes measure iy on the real line, X is py-measurable
and pp(X) = 0.

Proof. Let D be a countable dense subset of X, and let £ > 0. Since p is nonatomic, u(D) =
0. By Corollary 3.15, there exists an open set G containing D such that u(G) < e. The set G
is a dense and open subset of X. Thus X \ G is nowhere dense in X. But for this space X, this
implies that X \ G is countable. Since p is nonatomic, u(X \ G) = 0. It follows that

u(X) = p(G) + (X \G) <e.

Since ¢ is arbitrary, u(X) = 0. This proves (i). The proof of (ii) is similar. We leave it as Exer-
cise 3:12.5. Part (iii) follows directly from part (ii) and Theorem 3.23. [

It is a fact (proved later in Theorem 11.11) that every uncountable analytic set in IR con-
tains a Cantor set. Since all Borel sets are analytic, it follows that every uncountable Borel set
in IR has positive measure with respect to some nonatomic Lebesgue—Stieltjes measure. The
space X is not a Borel subset of IR. It has cardinality ¢, yet has universal measure zero. This
means every finite, nonatomic Lebesgue—Stieltjes measure gives X measure zero. The space
X can be used to show that there is no nontrivial nonatomic measure defined on all subsets of
[0,1]. This gives another proof of Theorem 2.39 of Ulam, here using the continuum hypothesis.
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Theorem 3.52: If pu is a nonatomic, finite measure defined on all subsets of [0,1], then
u([0,1]) = 0.

Proof. Let h be a one-to-one function mapping X onto [0, 1]. Define v on 2% by

v(E) = p(h(E)).
Then v is a finite, nonatomic measure on 2X. By Theorem 3.51 (i), #(X) = 0. In particular,
u([0,1]) = p(h(X)) = v(X) = 0. o
There is nothing special about the interval [0, 1]. The proof of Theorem 3.52 works equally

well for any set of cardinality ¢. Nontrivial finite, nonatomic measures cannot be defined for all
subsets of any set Y of cardinality c. It is perhaps curious that this statement is one of pure
set theory: no metric or topological conditions are imposed on Y. The proof here, however, did
make heavy use of a strange property of the metric space X.

Exercises

3:12.1< Let P C IR be a Cantor set and suppose that f : P — IR is continuous and strictly increasing.
Show that f(P) is also a Cantor set.

3:12.2 Show that any two Cantor sets on the real line are homeomorphic.

3:12.3 In this exercise we introduce the concepts of a connected set and a totally disconnected set in
our context of Cantor sets. We will return to connectedness in Exercise 10:8.6.

Definition A metric space X is connected if it cannot be expressed as a disjoint union
of two nonempty open sets. A subset S of X is connected if S is a connected metric
space.
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Definition A metric space X is totally disconnected if it contains no connected subsets
apart from the empty set and singleton sets. A subset S of X is totally disconnected if
S is a totally disconnected metric space.

(a) Prove that the only connected sets in IR are intervals, singleton sets (i.e., sets containing only
one point), and the empty set.

(b) Prove that a set of real numbers is totally disconnected if and only if it contains no interval.

(¢) Prove that a nonempty set of real numbers is a Cantor set if and only if it is compact, has no
isolated points, and is totally disconnected.

(d) Prove that a Cantor set in any metric space® is compact, has no isolated points, and is to-
tally disconnected.

(e) Prove, in fact, that a set in a metric space is a Cantor set if and only if it is a nonempty
compact set that has no isolated points and is totally disconnected.

3:12.4 Show that if A C [0,1] is totally imperfect then, for every Lebesgue-Stieltjes measure p ¢, either
ps(A) = 0or A is not ug-measurable. [Hint: For the second alternative, apply Theorem 3.23 to A

and its complement A.]
3:12.5 Verify part (ii) of Theorem 3.51.

3:12.6 The only finite, nonatomic Borel measure on the space X appearing in Theorem 3.51 is the zero
measure. If one tries to imitate the proof of Theorem 3.52 to show that every nonatomic, finite
Borel measure on [0, 1] is the zero measure, one step fails. Which is it?

8 As mentioned earlier, a Cantor set in a metric space is one that is homeomorphic to the classical Cantor set.
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3:12.7¢ Let h be continuous and strictly increasing on IR. Prove that h(B) is a Borel set if and only if
B is a Borel set. [Hint: Let S be the family of all sets A C IR such that h(A) is a Borel set. Show
that S is a o-algebra that contains the closed sets. For the “only if” part, consider h~1.]

3.13 Additional Problems for Chapter 3

3:13.1 Let p be a regular Borel measure on a compact metric space X such that u(X) = 1, and let € be
the family of all closed subsets F' of X such that u(F) = 1.

(a) Prove that the intersection of any finite subcollection of £ also belongs to £.

(b) Prove that the intersection H of the sets in £ is a nonempty compact set.

(¢) Prove that u(H) = 1.

(d) Prove that pu(H N'V) > 0 for each open set V with H NV # (.

(e) Prove that if K is a compact subset of X such that u(K) = 1 and (K NV) > 0 for each
open set V with KNV # () then H = K.

3:13.2 Let X be a well-ordered set that has a last element €2 such that if x € X then the set of prede-
cessors of z,
{ye X :y<a},

is countable. Let Y = {y € X : y < Q}, and let M be a o-algebra of subsets of Y that contains at
least all singleton sets. Prove that for any measure on M the following assertions are equivalent:
(a) Foreverya €Y, u({z €Y :z < a}) < co.
(b) The set P ={x €Y : u({x}) > 0} is countable and u(P) < co.
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3:13.3 Let A and B be sets. The set
AAB=(A\B)U(B\A)=(AUB)\ (AN B)
is called the symmetric difference of A and B.

Prove that there exists a countable family A of open sets in [0, 1] with the following property: For
every € > 0 and F € L, there exists A € A with A(AAFE) < e. Thus the countable family A can be
used to approximate all members of £. We shall see later that A(AAB) is “almost” a metric on L.

3:13.4 Let £ be defined as in the proof of Theorem 3.13. Let (X, B, /i) be the completion of (X, B, ).

(a) Show that & D B. [Hint: Use Theorems 2.37, 2.45, and 3.16.]
(b) Use part (a) to improve Theorem 3.22 to give the conclusion uf(E) = i(E) for all E € €.

3:13.5 Let [ be an interval in IR. Show how one can reduce a theory of Lebesgue—Stieltjes measures on
I to the theory that we developed for Lebesgue—Stieltjes measures on IR.

3:13.6 Let f be continuous on [0, 1]. Let 7 consist of () and the closed intervals in [0,1]. Let 7([a,b]) =
|f(b) — f(a)|, and let pj and w3 be the associated Method I and Method II outer measures, respec-
tively.

(a) Is i equal to p3?
(b) What relationship exists between the measure py and the variation of f7
(¢) What is the answer to (b) if f is piecewise monotonic?

3:13.7 Let R° be the unit square. Divide R? into 8 rectangles of height % and width i, as indicated in

Figure 3.4. Now divide each of the rectangles R; into 8 or 10 rectangles, giving rise to the situa-

tion depicted in Figure 3.4 for R2. Continue this process by cutting heights in half and widths into
4 or 5 parts in such a way that R**! ¢ R¥, and R* is compact and connected. Let R = ﬂ;ozl RF.
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I

R! = R1 URy U R3 U Ry.

[

Figure 3.4. The rectangles R, and R; (i = 1...4) in Exercise 3:13.7.

Figure 3.5. The rectangles R? (the shaded region).

Show that this intersection R is the graph of a continuous function g. (The construction of
this function is due to James Foran.)

Show that for each ¢ € [0,1] the set {z : g(z) = ¢} is a Cantor set.

Let 7 consist of () and the closed intervals in [0, 1], and let 7([a, b]) = |g(b
the Method II outer measure obtained from 7 and 7. Calculate uh(E) fo

[Hint: Calculate ([0, 1]).]

Compare your answer to part (c) with your answer to part (b) of Exercise 3:13.6.

) — g(@)l. Let i be
r £ C[0,1].
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3:13.8¢) Prove that there exists aset E C [0,1] with E € L, but F(E) ¢ L, where F is the Cantor
function. [Hint: Use Exercise 2:14.13.]

3:13.9¢ Let f be continuous on [a, b]. Prove that the following statements are equivalent.

(a) There exists E C [a,b] such that E € L, but f(E) ¢ L.
(b) There exists E C [a,b] such that A\(E) = 0, but \*(f(E)) # 0.

3:13.10 Let p3 and py be measures defined on a common o-algebra M. We say that p; is absolutely
continuous with respect to po, written 1 < po, if pq (F) = 0 whenever us(FE) = 0, E € M. Let
M = B, and let F' be the Cantor function. Is up < A7 Is A < pp?

3:13.11< Refer to Exercise 3:13.10. Let 1, be a continuous Lebesgue-Stieltjes measure on 5.

(a) Prove that pg, < X if and only if, for £ € B and A(E) =0, A(g(E)) = 0.
(b) Prove that if A < pg then g is strictly increasing.

3:13.12 Let {L,} be a sequence of pairwise disjoint Lebesgue measurable sets in IR, let L = |~ Ly,
and let £ C IR.

(a) Prove that X*(LNE) =Y, \*(L, N E). [Hint: Let H be a measurable cover for LN E, H,
for L, N E with the sets H,, pairwise disjoint.]

(b) Prove that A (LNE)=> 7" A(L, NE).
[Outline of proof: Let K be a measurable kernel for L N E. Justify the inequalities

M(LNE) = \K) = i)\(LnﬂK)

IA

> MInNE) < M(LNE).

n=1
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3:13.13¢ (Extending £ and \) Let X = [0, 1].
(a) Prove that, for each E C X and L € L,
AL) = A\(LNE)+ X (LNE).
(b) Let E C X, E ¢ L. Let £ be the algebra generated by £ and {E}. Show that £ consists of
all sets of the form
L= (LiNE)U(LyNE) with Ly, Ly € L.
(c) Define X on £ by

XI)=X(IZNE)+A(LNE).
Let T = £, 7 = Xand let (X, f, i) be the measure space obtained by an application of
Method I. Prove that A = A on £. Thus (X, L, i) is an extension of (X, £, \) and contains
sets not in L.
(d) Show that X(E) = A*(E). Thus E has a G5 cover with respect to X. That is, there exists
H € G5 such that H D E and j(H) = i(E) — X\*(E). Does E also have such a cover in Gs?

3:13.14 We stated Theorem 3.49 for nondecreasing functions. That hypothesis cannot be dropped. Let
g : [0,1] — IR be a continuous function all of whose level sets are uncountable’ (e.g., the con-
tinuous function g of Exercise 3:13.7). Show that there exists a totally imperfect set A such that
g(A) = [0,1]. This exercise shows that, unlike monotonic functions, continuous functions can rise
on totally imperfect sets.

[Hint: A proof can be based on the continuum hypothesis and transfinite induction. Let {y,}, a <
Q, be a well-ordering of the interval [0, 1], and let {P,}, o < Q, be a well-ordering of the Cantor

9One might imagine that such functions are rare, but see Exercise 10:8.4.
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sets in [0, 1]. Choose a; such that f(a1) = y1. Now choose by € P; \ {a1}. Proceed inductively. If
we have {ag} C [0,1] and {bs} C [0,1] for all § < «, choose

aa € [0,1]\ | ({ag} U {b5})

B<a
such that f(as) = yo. Then choose

ba € [0, 1]\ | (J{as}u ([ {bs}

BLla B<a
such that b, € P,. Let
A= U {aa} and B = U {ba}
a<Q a<)
Then f(A) = [0,1]. If P is a Cantor set in [0, 1], there exists « such that P = P,. By construction,
bo € P, and AN B = (). Thus b, ¢ A, so A does not contain P.]

3:13.15 Use the continuum hypothesis to prove the existence of a set A of real numbers such that A
and its complement A are both totally imperfect. [Hint: Modify the argument in Exercise 3:13.14
to choose points a, and b, from P, .]



Chapter 4

MEASURABLE FUNCTIONS

We saw in Section 1.20 that the definition of the Lebesgue integral of a function f involves the
measure of sets such as
{z:a< f(z) <8}

We devote this chapter to the study of functions for which these sets, and others defined by
similar inequalities, are necessarily measurable. These will be called measurable functions. We
shall see that, for a given measure space (X, M, u), the class of p-measurable functions is well
behaved with respect to the elementary algebraic operations and with respect to various oper-
ations involving limits. The proofs here will follow readily from our requirement that M be a
o-algebra, together with a bit of set-theoretic algebra. We provide the necessary development in
Sections 4.1 and 4.2.

In Chapters 2 and 3 we saw that, while measurable sets can be quite complicated, one can
under certain circumstances approximate measurable sets, and even nonmeasurable sets, by
simpler sets. For example, when dealing with the Lebesgue-Stieltjes measure space (IR, My, i),

(V)
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we know that every set M € My has a Gs cover and an F, kernel, and we know that for every
e > 0 there exists an open set G' and a closed set F' such that ¥ C M C G and uf(G\ F) < e.
Such approximations have allowed us to deal with measurable sets that might be unwieldy to
combine or manipulate by replacing them with simpler sets that we can handle. Similar simpli-
fications are also available when dealing with measurable functions. In Sections 4.4 and 4.5 we
see that, under suitable hypotheses on a measure space (X, M, p), measurable functions can be
approximated by simpler functions in several ways. In particular, for many important classes of
measure spaces, the approximating functions can be taken to be continuous.

We also need to discuss convergence of sequences of measurable functions. Of the several
notions of convergence that we encounter in Section 4.2, the “preferred” notion may be uniform
convergence. It became apparent in the middle of the nineteenth century that a number of the-
orems that are easy to prove when uniform convergence is assumed in appropriate places are
either false or more difficult to prove when weaker forms of convergence are hypothesized. In
Section 4.3 we show that, on a finite measure space, a sequence { f,,} of measurable functions
that is known to converge in some weaker sense actually converges “almost uniformly,” that is,
uniformly when one ignores a set of small measure.

Thus three fundamental concepts in analysis—set, convergence, and function—allow approx-
imations by more tractable objects. Although one gives up a bit at the stages where one makes
the approximation, the conclusion reached at the end of the argument is still often the best pos-
sible.

4.1 Definitions and Basic Properties

We begin with Lebesgue’s original definition of a measurable function.
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Definition 4.1: Let (X, M, ) be a measure space, and let
f: X — [—o00,00].
The function f is measurable if for every o € IR the set

Eo(f) ={z: f(x) > o}

is a measurable set.

A special case of this definition has its own terminology.

Definition 4.2: Let X be a metric space, and let f : X — [—o00,00]. The function f is a Borel
function or is Borel measurable if the set

Eo(f) ={z: f(x) > o}

is a Borel set for every a € IR.

Observe that measurability of f depends on the o-algebra M under consideration, but not
on the measure . Nonetheless, one often sees phrases asserting that a function f is y-measurable
with no specific mention of the measure space that is assumed.

Example 4.3: Take (IR, £, \) as the measure space. Let f be a continuous function, g be a
discontinuous increasing function, and h = x , for some set A C IR. Then, for every a € R,
E,(f) is open and E,(g) is an interval. Thus both f and g are measurable. For h we find that

0, fa>1,
Eo(h)={ A, if0<a<l,
R, if a<O0.
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Hence h is A-measurable if and only if A € L. If we had taken (IR, B, \) as our measure space,
then f and g are measurable (and hence Borel functions) because open sets and arbitrary inter-
vals are Borel sets, and h is measurable if and only if A is a Borel set.

Example 4.4: If M = {), X}, only constant functions are measurable, while if M = 2% all
functions are measurable. In particular, if X is countable and each singleton set is measurable,
then every function on X is measurable.

Theorem 4.5 shows that there is nothing special about the specific inequality we chose in
Definition 4.1.

Theorem 4.5: Let (X, M, u) be a measure space. The following conditions on a function f are
equivalent.

1. f is measurable.

2. For all a € IR, the set {z : f(z) > a} € M.
3. For all o € IR, the set {z : f(x) < a} € M.
4. For all a € IR, the set {z : f(z) < a} € M.

Proof. Suppose that f is measurable and let o € IR. Observe that

{:U:f(:c)Za}:fjl{:c:f(x)>a—:L}.
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Since f is measurable, each set in the intersection is measurable and, hence, so is the inter-
section itself. This proves that (i)=-(ii). The implication (ii) = (iii) follows directly from the
equality
{z:flx)<a}=X—{z: f(z) > a}.
The implication (iii) = (iv) follows from the equality
o
1
{z: f(z)<a}= ﬂ {iL‘:f(.’IJ)<Oé+}.
n=1 n
Finally, the implication (iv) = (i) follows by complementation in (iii). It now follows that all
four statements are equivalent. |

Simple arguments show that various other sets associated with a measurable function f are
measurable, for example, the sets

{z: f(x)=a} and {z:a < f(z) <pg}.
Note that measurability of a function f is related to the mapping properties of f~!. In fact,
measurability of f is equivalent to the condition that f~! take Borel sets to measurable sets.
(The proof is left as Exercise 4:1.2.)

Theorem 4.6: Let (X, M, p) be a measure space and f a real-valued function on X. Then f is
measurable if and only if f~1(B) € M for every Borel set B C IR.

Our next example shows that we cannot replace Borel sets with arbitrary measurable sets
in this theorem. It also shows that the mapping properties of f (as opposed to f~!) may be
quite different for measurable functions. (The reader may wish to consult Exercises 2:14.13
and 3:13.8 to 3:13.10 before proceeding with this example.)
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Example 4.7: We work with the Lebesgue measure space (IR, £, \). Let K be the Cantor
ternary set, and let P be a Cantor set of positive measure. Write a = min{z : x € P} and
b = max{z : z € P}. Exercise 4:1.13 shows that there exists a strictly increasing continuous
function h that maps [a, b] onto [0, 1] and maps P onto K.

Let A be a nonmeasurable subset of P, and let E = h(A). Since E C K, A(E) = 0 and, in
particular, E is Lebesgue measurable. It follows that

1. h"1(E) = A. Thus, even for the strictly increasing continuous function h, the inverse
image of a measurable set need not be measurable.

2. The function A~ ! is also continuous and strictly increasing. It maps the zero measure set
FE onto a nonmeasurable set.

3. Let f = h~! and let ps be the associated Lebesgue-Stieltjes measure on [0, 1]. Then py is
not absolutely continuous with respect to A, since A(K) = 0, but by Theorem 3.23

py(K) = Af(K)) = A(P) > 0.
Observe that part (i) offers another proof that there are Lebesgue measurable sets that are

not Borel sets. The set E is Lebesgue measurable. If it were a Borel set, then A = h~1(E)
would also be measurable by Theorem 4.6.

4.1.1 Combining measurable functions

We next consider various ways that measurable functions combine to give rise to other measur-
able functions. Note first that, because we are allowing infinite values for our functions, expres-
sions such as f 4+ ¢g and fg require some caution. We cannot interpret oo — oo nor 0 x oco. Thus
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we will require some comment assuring us that the functions are defined. Often this is taken for
granted.

Theorem 4.8: Let (X, M, ) be a measure space. Let f and g be measurable functions on X.
Let ¢ : IR — IR be continuous, and let ¢ € IR. Then, provided the following functions are
defined,

1. cf is measurable.
2. f+ g is measurable.
3. ¢ o f is measurable (where f must be finite-valued).

4. fg is measurable.

Proof. The proof of (i) is trivial for finite-valued functions. We interpret ¢ x +oo = £oo for
¢ > 0and ¢ X £oo = Foo for ¢ < 0. Then cf is easily shown to be measurable for all ¢ £ 0
and any measurable function f. Just work separately on the (measurable) sets X1 = {z € X :
—00 < f(x) < oo}, Xo={z € X :—00= f(x)}, and X3 ={z € X : f(z) = 00}.

To verify (ii) for finite-valued functions, observe first that for, any a € IR, the function o — g
is measurable. Now let {gx} be an enumeration of the rational numbers. Then

{z: f(z) +9(z) > a} ={z: f(z) > a—g(z)}
= {z: f(z) > @} n{z:g9(x) > a—q}).

k=1
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This set is clearly measurable. Since this is true for all « € IR, f + g is measurable. For func-
tions that are permitted to assume values +0co some extra bookkeeping would be needed, left as
Exercise 4:1.7.

In statement (iii) we cannot allow infinite values since ¢(f(x)) would not be defined if f(z) =
+o00. To verify (iii) then, let @ € IR, and observe that

(@0 f) (@, 00) = f7Hd™ ((a; 0))).

Since ¢ is continuous, the set G = ¢~ !((a, 00)) is open, and since f is measurable, f~1(G) €
M. This verifies (iii).
Let us prove part (iv). Suppose first that f and g are finite-valued. Then

Af(2)g(z) = (f(z) + g(2))* = (f(2) — g(2))? (1)

at every point x € X. From parts (i) and (ii) we see that f + g and f — g are measurable. Take
the continuous function ¢(t) = ¢?> and apply part (iii) to conclude that both (f+g¢)? and (f—g)?
are measurable. Finally, then, parts (i) and (ii) applied again to the identity (1) shows that the
product fg is measurable. The case for functions that are permitted to assume values 4oo is

left as Exercise 4:1.8. [ |

In part (iii) of Theorem 4.8, note the order of composition: the function f maps X to R
and the continuous function ¢ maps IR to IR, thus ¢ o f is defined, while f o ¢ may not be. If
X = IR then the latter composition f o ¢ would also be defined. Must it, too, be measurable?
Exercise 4:1.10 shows that it may not be.
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Exercises

4:1.1 Let (X, M, pu) be a measure space. Show that for an arbitrary function f on X the class {A C R :
f71(A) € M} is a o-algebra.

4:1.20 Let (X, M, 1) be a measure space. Show that a function f : X — IR is measurable if and only if
{ACTR: f~1(A) € M} contains all Borel sets.

4:1.3 Let (X, M, ) be a measure space and suppose that f : X — IR U {—oco} U {+o0}. Show that it is
possible for f to fail to be measurable and yet the family
{ACR: f7Y(A) e M}
contains all Borel sets. Compare with Exercise 4:1.2. Give a correct formulation of the statement
in Exercise 4:1.2 that permits f to assume infinite values.

4:1.4 Suppose that, for each rational number ¢, the set {x : f(x) > g} is measurable. Can we conclude
that f is measurable?

4:1.5 Let Sy be a family of subsets of IR such that all open sets belong to the smallest o-algebra con-
taining So. If f~1(E) is measurable for all E € S then f is measurable. Apply this to obtain
another proof of the preceding exercise and another proof of Theorem 4.5.

4:1.6 Show that there exists a function f:IR—1IR such that, for each a € R, the set {z : f(z) = a} is in
L, but f is not Lebesgue measurable.
[Hint: Map a nonmeasurable set onto (0, 1) and its complement onto (1,2) in an appropriate man-

ner.|

4:1.7 Complete the proof of Theorem 4.8, part (ii) by discussing the case where f and g are permitted
to have infinite values.

4:1.8 Complete the proof of Theorem 4.8, part (iv) by discussing the case where f and g are permitted
to have infinite values.
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4:1.9 Provide conditions under which a quotient of measurable functions is measurable.

4:1.10 Give an example of a continuous function ¢ and a Lebesgue measurable function f, both defined
on [0,1], such that f o ¢ is not measurable. Give an example of a nonmeasurable function f on
[0,1] such that |f| is measurable. [Hint: See Example 4.7.]

4:1.11 Let (X, M, u) be a measure space. Suggest conditions under which there can exist a nonmeasur-
able function f on X for which |f| is measurable.

4:1.12 Show that a measurable function f defined on [0, 1] has the property that for every £ > 0 there is
a M. > 0 so that
A({zel0,1]: [f(z)| S Mc}) > 1—¢

if and only if f is finite almost everywhere.

4:1.13) Let E and F be any two Cantor sets in IR. Let Z = {I;} and J = {J} be the sequences of
intervals complementary to £ and F', respectively.

(a) Show that to each pair of distinct intervals I; and Iy in 7 there exists an interval I; € 7
between I; and I},.

(b) Use part (a) to show that there exists an order-preserving correspondence between Z and 7.
That is, there exists a function v mapping Z onto J such that if I,I’ € Z and J = ~(I),
while J’ = ~(I'), then J is to the left of J’ if and only if I is to the left of I’.

(¢) For each I; € Z, let f; be continuous and strictly increasing on I;, and map I; onto the inter-
val v(1;). Use the functions f; to obtain a strictly increasing continuous function f mapping

Uiz, L onto U;=, J;.

(d) Extend f to be a continuous strictly increasing function mapping IR onto IR and F onto F.
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4:1.14 Let T consist of () and the open squares in IR?, and let 7(T') be the diameter of T". Use Method I
to obtain an outer measure p©* and a measure space (IRZ, M, p). TIs every continuous function f :
IR? — IR measurable with respect to M? What would your answer be if we had used Method IT
instead of Method I?

4:1.15 Let f: IR — IR be continuous.

a) Show that f maps compact sets to compact sets.

(
(

b) Show that f maps sets of type F, to sets of the same type.

(¢) Show that, if f is also one-one, then f maps Borel sets to Borel sets.

(d) Show that, if f is also Lipschitz, then f maps sets of Lebesgue measure zero to sets of the
same type.

(e) Show that, if f is Lipschitz, then f maps Lebesgue measurable sets to sets of the same type.

(We have seen in Example 4.7 that a one-to-one continuous function f : IR — IR need not map
Lebesgue measurable sets to Lebesgue measurable sets. We mention that, without the assumption
that f be one to one, we cannot be sure that f maps Borel sets to Borel sets. It is true that a con-
tinuous function f maps Borel sets onto Lebesgue measurable sets. Proofs appear in Chapter 11.)

4:1.16 Let (X, M, u) be a complete measure space with X a metric space.
(a) Prove that if all Borel sets are measurable each function f that is continuous a.e. is measur-

able.

(b) Prove that if every continuous function f : X — IR is measurable then M D B.

[Hint: Let G be open in X. Let f(z) = dist(z, X \ G). See Section 3.2. Show that f is con-
tinuous and f~1((0,00)) = G.]

(c) Let X =[0,1], M = {0, X}, and let f(z) =z. Is f measurable?
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4:1.17 Suppose that there exists' a Lebesgue nonmeasurable subset E of IR? such that E intersects ev-
ery horizontal or vertical line in exactly one point. Use this set to show that there exists a func-
tion f:IR* — IR such that f is Borel measurable in each variable separately, yet f is not Lebesgue
measurable. Note also that the restriction of f to any horizontal or vertical line has only one point
of discontinuity. Compare with Exercise 4:1.16 (a).

4:1.18 In part (iii) of Theorem 4.8 we had to assume f finite. Otherwise the function ¢ o f is not de-
fined on the set {x : f(z) = £oo}. Suppose that (X, M, u) is complete. Since the measurability
of a function does not depend on its values on a set of measure zero, one can discuss the measur-
ability of functions defined only a.e. Formulate how this can be done, and then prove part (iii) of
Theorem 4.8 under the assumption that f is finite a.e.

4:1.19 Let (X, M, 1) be a measure space and Y a metric space. Give a reasonable definition for a func-
tion f : X — Y to be measurable. How much of the theory of this section and the next can be
done in this generality?

4.2 Sequences of Measurable Functions

Several forms of convergence of a sequence of functions are important in the theory of inte-
gration. T'wo of these forms, pointwise convergence and uniform convergence, form part of the
standard material of courses in elementary analysis. We assume that the reader is familiar with
these forms of convergence. We discuss two other forms in this section: almost everywhere con-
vergence and convergence in measure. We first show that the class of measurable functions is
closed under certain operations on sequences.

1This can be proved under the assumption of the continuum hypothesis. For the construction of such a set
without assuming CH, see E. K. van Douwen, Fubini’s theorem for null sets, Amer. Math. Monthly 96 (1989),
no. 8, 718-721.
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Theorem 4.9: Let (X, M, ) be a measure space, and let {f,} be a sequence of measurable
functions on X. Then each of the functions sup,, fn, inf, f,, limsup, f, and liminf, f, s
measurable.

Proof. Since
{o:wp o) <af - m{x fole) < o,
the function sup,, f,, is measurable. That inf,, f,, is measurable follows from the identity
inf f, = —sup(—fp).

The identities

lim sup T = 1nf sup f, and hm it = Sup 1nf fn
n>k

supply the measurability of the other two functions. |
It follows that the set

n

{x :limsup fp(z) = liminf fn(ac)}

n
is a measurable set. This is precisely the set of convergence of the sequence {f,}. Here one
must allow the possibility that f,(z) — 4oo. It is also true that the set on which {f,} con-

verges to a finite limit is measurable. See Exercise 4:2.4. It follows readily that if {f,(z)} con-
verges for all x € X then the limit function f(z) = lim,, f,(x) is measurable.
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4.2.1 Convergence almost everywhere

We shall see in Chapter 5 that the integral of a function f does not depend on the values that

f assumes on a set of measure zero. It is also true that one can often assert no more than that
the sequence {f,} converges for almost every x € X. This form of convergence suffices in many
applications. We present a formal definition.

Definition 4.10: Let {f,} be a sequence of finite a.e., measurable functions on a measurable
set £ C X. If there exists a function f such that

lim |fn(x) — f(z)| =0
n—oo
for almost all z € E, we say that {f,} converges to f almost everywhere on E, and we write
lim f,, = f [a.e] or f,— f[ae] on E.
n
The usual slight variation in language applies when £ = X.

It is now clear that if f,, — f [a.e.] then f is measurable. A bit of care is needed in inter-
preting this statement if the measure space is not complete. Removing the set of measure zero
on which {f,} does not converge to f leaves a measurable set on which the sequence converges
pointwise, and f is measurable on that set.

We mention that some authors provide slightly different definitions for convergence [a.e.].
For example, the concept makes sense without the functions being measurable or finite a.e., so
more inclusive definitions are possible. We shall rarely deal with nonmeasurable functions or
with functions that take on infinite values on sets of positive measure. By imposing the extra
restrictions in our definition, we focus on the way convergence [a.e.] actually arises in our devel-
opment. Observe that if f,, — f [a.e.] then our definition guarantees that f is finite a.e.
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4.2.2 Convergence in measure

We turn now to another form of convergence, closely related to pointwise convergence.

Definition 4.11: Let (X, M, u) be a measure space, and let £ € M. Let {f,} be a sequence
of finite a.e., measurable functions on E. We say that {f,} converges in measure on E to a
measurable function f and we write

lirlgn fn = f [meas] or f, — f [meas] on E

if for any pair (g,7) of positive numbers there corresponds N € IN such that, if n > N, then

pu({z € E: |fa(z) — f(2)] 2 n}) <e.
Equivalently, f,, — f [meas] if, for every n > 0,

limp({z € B : |fale) ~ £(2)] 2 0}) =0.

These notions of convergence are used, too, in probability theory. There convergence a.e. is
called “convergence almost surely” and convergence in measure is called “convergence in prob-
ability.” We shall see in Section 4.3 that, when u(X) < oo, convergence [a.e.|] implies conver-
gence [meas|. Thus in probability theory where the space has measure 1, almost sure conver-
gence always implies convergence in probability. In general, this is not so, as the next example
shows.

Example 4.12: Let

s
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Each function f,, is finite and Lebesgue measurable on IR. One verifies easily that f,, — 0 [a.e.],
but {f,} does not converge in measure to any function on IR.

Our next example shows that it is possible for f,, — 0 [meas] without {f,(z)} converging for
any x. This example also illustrates a feature of this convergence that will play a role in inte-
gration theory. Even though the sequence has no pointwise limit, we can still write

1

1
lim [ fnd\=0= / lm fn d,
0 0 m—00

m—00

provided that lim,, . f, is taken in the sense of convergence in measure.

Example 4.13: (A sliding sequence of functions) For nonnegative integers n, k, with 0 <
k< 2" and m = 2" + k, let

Let f1 = X[0,1) and, forn > 1, f,, = Xg,, - We see that
f2 = Xjo,1]" f3 = X1
fa = Xjo,1]" fs = X fGZX[%%]v f?zx[%’u,
fs = Xjo,1]"

'8

Every point = € [0, 1] belongs to infinitely many of the sets E,,, and so
limsup fp,(z) =1,
m
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while
liminf f,,(x) = 0.

Thus {fn,} converges at no point in [0, 1], yet A(E),) = 27" form = 2" + k. Asm — oo,
n — oo also. For every n > 0,

1
Mz fml(@) 2 0}) < o
It follows that f,, — 0 [meas| on the interval [0, 1].

4.2.3 Pointwise convergence and convergence in measure

If we study Example 4.13 further, we might note that, while the sequence { f,,} converges at no
point, suitable subsequences converge [a.e.]. For example, fon(x) — 0 for each = # 0. It is true,
in general, that such convergent subsequences exist. This is the first of our attempts at finding
relations among the various notions of convergence.

Theorem 4.14: If f,, — f [meas|, there exists a subsequence {f,,} such that f,, — f [a.e.].

Proof. For each k € IN, choose n; € IN such that

w({z:10@ - 1012 2 }) < 3

for every n > ny. We choose the sequence {ny} to be increasing. Let

Ac={2 5 @) = 1@ 2 |
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and let A = limsupy, Aj. Since > 72, u(Ax) < 1 < oo, it follows that pu(A) = 0 by the Borel-
Cantelli lemma (Exercise 2:4.8). Let x ¢ A. Then x is a member of only finitely many of the
sets Ag. Thus there exists K such that, if £ > K,

1

[Fra @) = F(@)] < 5.

It follows that {f,, } — f [a.e.]. [ |
In Section 4.3 we shall introduce yet another form of convergence and obtain some more

relations that exist among the various modes of convergence.

Exercises
4:2.1 Let {f,} be a sequence of finite functions on a space X, and let @ € IR. Prove that

{leirglinffn(x)>a}: [j G ﬁ {m:fn(x)—a>nl%}.

m=1k=1n=~k
Use this to provide another proof of the fact that a pointwise limit of measurable functions is mea-
surable.

4:2.2 Let {A,} be a sequence of measurable sets, and write f,(z) = x, (z). Describe in terms of the
sets {4, } what it means for the sequence of functions {f,} (a) to converge pointwise, (b) to con-
verge uniformly, (¢) to converge almost everywhere, and (d) to converge in measure.

4:2.3 Characterize convergence in measure in the case where the measure is the counting measure.

4:2.4 Show that if {f,} is a sequence of measurable functions then the set of points = at which {f,(x)}
converges to a finite limit is measurable.
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4:2.5 Prove that if, for each n € IN, f,, is finite a.e. and if f,, — f [a.e.] then f is finite [a.e.].

[Hint: This is a feature of Definition 4.10 and may not be true for other definitions of a.e. conver-

gence.]
4:2.6 Verify that the sequence {f,} in Example 4.12 converges to 0 [a.e.], but does not converge [meas].
4:2.7 Prove that if f,, — f and g, — g both in measure then f,, + g, — f + ¢ in measure.
4:2.8 (a) Prove that if f,, — f [meas], g, — ¢ [meas], and u(X) < oo then f,g, — fg [meas].

[Hint. Consider first the case that f, — 0 [meas] and g, — 0 [meas].]
(b) Use fn(z) = x and g,(z) = 1/n to show that the finiteness assumption in part (a) cannot be

dropped.

4:2.9 Let X = IN, M = 2N and p({n}) = 2=". Determine which of the four modes of convergence
coincide in this case. [Hint: Uniform and pointwise do not coincide here.]

4:2.10 Let (X, M, u) be a measure space with u(X) < co. Prove that f,, — f [meas] if and only if every
subsequence {f,, } of {f,} has a subsequence {fnk_j} such that fn, = — f [a.e.].

4:2.11 Let {f,} be a sequence of measurable functions on a finite measure space (X, M, u), and let o,
be a sequence of positive numbers. Suppose that

Y n({z € X : |fu(@)] > an}) < co.
=1l

Prove that

—1 <liminf =——= < limsup ——= < 1

n—oo (079 n— oo Qp

for p—almost every x € X.
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4.3 Egoroff's Theorem

We saw in Section 4.2 that neither of the two forms of convergence, convergence a.e. and con-
vergence in measure, implies the other. We now develop a third form of convergence that is
stronger than these two, but weaker than uniform convergence. If {f,,} converges uniformly to
f on X, we write

li{n fn = f [unif] or f, — f [unif].

Almost uniform convergence is just uniform convergence off a set of arbitrarily small measure.

Definition 4.15: Let (X, M, 1) be a measure space. Let {f,} be a sequence of finite a.e., mea-
surable functions on X. We say that { f,} converges almost uniformly to f on X if for every

e > 0 there exists a measurable set E such that u(X \ E) < ¢ and {f,} converges uniformly to
f on E. We then write

liTILn fon=/flau] or f, — f [au].

It is instructive to compare convergence [a.u.] with convergence [meas]. Suppose that f, —
f [meas] on X. Let € > 0. Then there exists N € IN such that, for all n > N,

[fn(z) = flz)| <e
for all x in a set A, with u(X \ A,) < €. The sets A, can vary with n. In Example 4.13, the
sets X \ A,, “slide” so much that {f,(z)} converge for no = € [0,1]. Convergence [a.u.] requires
that a single set E suffice for all sufficiently large n: the set E¥ does not depend on n.
Almost uniform convergence, in general, implies both convergence [a.e.] and convergence
[meas]. (We leave verification of these facts as Exercise 4:3.1.) Neither converse is true. Exam-
ple 4.13 and the functions f,(z) = z/n, € IR, show this.
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On a finite measure space convergence [a.u.] and convergence [a.e.] are equivalent. This is
a form of a theorem due to D. Egoroff (1869-1931) (also transliterated sometimes as Egorov).
One obtains the immediate corollary that, when u(X) < oo, convergence [a.e.] implies conver-
gence [meas]. If the measure space is not finite then different conditions are needed?.

Theorem 4.16 (Egoroff) Let (X, M, u) be a measure space with u(X) < oo. Let {fn} be a
sequence of finite a.e., measurable functions such that f, — f [a.e.]. Then f, — f [a.u.].

Proof. For every n,k € IN, let

= 1
Ank = 2 | fml@) — — .
e= () {#: @)~ s < £}
The function f is measurable, from which it follows that each of the sets A, is measurable.
Let

E = {a; : hrrln|fn(a:) — f(z)| = O}.

Since f, — f [a.e.], E is measurable, u(E) = p(X), and for each k € IN, E C (J;2 | Apg. For
fixed k, the sequence {A,} -, is expanding, so that

lim pu(An) = p <U Ank) > W(E) = u(X).

n=1
Since pu(X) < oo,
lim (X \ Ani) = 0. 2)

2See R. G. Bartle, An extension of Egorov’s theorem. Amer. Math. Monthly 87 (1980), no. 8, 628-633.
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Now let € > 0. It follows from (2) that there exists ny € IN such that
WX\ Auy) < e27%, 3)
We have shown that for each ¢ > 0 there exists ny € IN such that inequality (3) holds. Let
A=) Ank-
k=1

We now show that u(X \ A) < ¢ and that f,, — f [unif] on A. It is clear that A is measurable.
Furthermore,

X\ 4) = p (U <X\Ankk>> <SS X\ Anp) <Y o =c
k=1 k=1 k=1

We see from the definition of the sets A, that, for m > ny,

1
@) — 1(@)] < 1
for every x € Ay, 1 and therefore for every € A. Thus f, — f [unif] on A as we wished to
show. |

One often restricts one’s attention to some measurable subset £ of X. It is clear how the
concepts and results of this section apply to this setting. For example, if u(E) < oo, then f,, —
f [a.u.] on E whenever f, — f [a.e.] on E, even if u(X) = oc.
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[unif]
[meas] la.e]

Figure 4.1. Comparison of modes of convergence in a general measure space.

4.3.1 Comparisons

We summarize our comparison of the modes of convergence with two figures.® In each case,
we assume that {f,} is a sequence of finite a.e., measurable functions on X. Figure 4.1 shows
the situation in a general measure space. Figure 4.2 gives the implications that are valid when
w(X) < oco. Where an arrow is missing, a counterexample is needed. The sliding sequence of
Example 4.13 shows that convergence in measure does not imply any of the other forms of con-
vergence, even when (X)) < oco. The sequence {z"} shows uniform convergence is not implied
by any other form of convergence. Finally, the sequence {x/n} shows that convergence [a.e.]
does not in general imply convergence [a.u.] or convergence [meas].

We view the implications given in the figures as preliminary comparisons of four forms of
convergence. In Chapter 5, we shall study a fifth form of convergence, called mean convergence,

3These figures have been popular for many years, since appearing in M. E. Munroe, Introduction to Measure
and Integration, Addison-Wesley (1953).
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[unif]

\
[a]
/)w
[meas] «—— [a.e]

Figure 4.2. Comparison of modes of convergence in a finite measure space.

and indicate its “place” in the diagrams. We shall also provide a third diagram that applies
even when p(X) = oo if functions in the sequence are suitably dominated by some integrable
function. Exercise 4:3.4 provides an example in this spirit, but not expressed in the language of
integration.

Exercises
4:3.1 Prove that if f,, — f [a.u.] on X then f, — f [a.e.] on X and f,, — f [meas] on X.

4:3.2 By quoting results of this section or by other means, verify each implication appearing in the fig-
ures. Also verify that no additional implications can be added to the diagrams.

4:3.3 Let a,, be a sequence of positive numbers converging to zero. If f is continuous, then certainly
f(x — ) converges to f(z). Find a bounded measurable function on [0, 1] such that the sequence
of functions f,(z) = f(x — «,) is not a.e. convergent to f.

[Hint: Take the characteristic function of a Cantor set of positive measure.]
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4:3.4¢ Let {f,} be a sequence of Lebesgue measurable functions on [0, 00) such that |f,(z)| < e™* for
all z € [0,00). If f,, — 0 [a.e.], then f,, — 0 [a.u.].

[Hint: The only place where we used our assumption that u(X) < co in the proof of Theorem 4.16
was to obtain the limit in equation (2).]

4:3.5 Prove another version of Egoroft’s theorem:

Theorem Let (X, M, u) be a finite or o-finite measure space. Let {f,} be a sequence
of finite a.e., measurable functions such that f, — f [a.e.]. Then there is a partition of
X into a sequence Ey, By, Es, ...of disjoint measurable sets such that u(Ey) = 0 and

fn — [ uniformly on each E;, i > 1.

4.4 Approximations by Simple Functions

A recurring theme in our development has been to find approximations to complicated objects
by simpler ones. Naturally, we wish to do the same for measurable functions. The simplest
measurable functions in a general space are those that are linear combinations of characteristic
functions of measurable sets. In this section we show that these simple functions can be used to
approximate general measurable functions. The simplest measurable functions in a metric space
are continuous. In the next section we show that all measurable functions in a metric space fur-
nished with an appropriate measure can be approximated by continuous functions.

We have not seen many examples of measurable functions and may not appreciate just how
they come about or just how complicated they may, at first, appear. Thus it is instructive to
begin with an example that exhibits some interesting features.
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Example 4.17: We work on the interval Iy = (0,1). Each x € Iy has a unique base 2 expan-
sion x = .aja9 ... that does not end in a string of 1’s. For each 7 € IN, a; is a function of z with
only a finite number of discontinuities. Thus a; is Borel measurable. For each n € IN, let

£ () = @) T @) ot an(@)

n

Finally, let
F(z) = lim sup fu(2).

One verifies easily that f is Borel measurable. Observe that, while f,,(z) depends only on the
first n bits in the binary expansion of x, f depends only on the “tail” of the expansion. If

T =.a1az... and y = .bibs...

and if there exists j, N € IN such that
bi+; = ap forall k> N,

then f(x) = f(y). One can also verify that, for every nondegenerate interval I C Iy, f maps I
onto the interval [0,1]. For example, any = whose expansion has the tail .1000 will map onto i
(decimal), and the set of all such x is dense in Iy. (Some other features of f and related func-

tions appear in Exercise 4:4.2.)

Notice one remarkable feature of the Borel measurable function f: it takes every one of its
values on a dense set.* Despite this apparent complexity, we can still approximate such a func-
tion by much simpler functions, indeed by a continuous function as we will see in the next sec-
tion.

4Functions with this property can arise quite naturally. See Exercise 7:8.15.
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Definition 4.18: Let E1, Es, ..., E, be pairwise disjoint measurable sets, and let ¢, co, ..., ¢,
be real numbers. Let

f:ClXE1 t-tenXpg -
Then f is called a simple function.

We can deduce that a simple function is one that takes on only finitely many values, all
real. Each value is assumed on a measurable set. Our restriction that the sets E; be measurable
guarantees that simple functions are measurable. If the sets 1, Es, ..., E, are measurable but
not assumed to be pairwise disjoint the definition would be equivalent, but it is less transparent
then exactly what values the function assumes.

Theorem 4.19 (Approximation by simple functions)
Let (X, M, p) be a measure space, and let f be measurable on X. Then there exists a sequence
{fn} of simple functions such that

1171111 fa(z) = f(x) forall x € X.

If f(x) > 0 forallx € X, the sequence {f,} can be chosen to be a nondecreasing sequence, so
that fr(x) < fo+1(x) for allm € IN and x € X. If f is bounded on X, then f, — f [unif].

Proof. Suppose first that f is nonnegative. Fix n € IN. For each k =1,2,...,n2", let
k—1 k
=)

%, if f(x) € Jy;

n, otherwise.

Sy

Let
fnte) = {
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The intervals J are pairwise disjoint, and

n2™

U 7k =0,n).
k=1

Since f is measurable, so is the function f,. It is clear that f,, is a simple function and that
fu(z) < f(x) for all z € X. It is also clear for every x € X, that fu,+1(x) > fn(z). Also
Frsa (@) = fal®) < sty
if f(z) <n, and
fn-&-l(x) - fn(x) <1
if n < f(z). It follows that
lim f,(z) = f(z)
and that the convergence is uniform if f is bounded. [Indeed, if 0 < f(z) < M for all z € X,
then

1
fata(@) = f(@) < o
for all n > M, so that the convergence is uniform.|
In the general case, f need not be nonnegative. Let
+ooy ) f@), if f(z) 2 0;
Fr@) = { 0, if f(z) <0;
and let

_ | —f(=z), if f(z) <0;
f@) = { 0, if f(z) > 0.
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Then f = f™—f~. Each of the functions f™ and f~ is measurable and nonnegative. Thus there
exist sequences {g,} and {h,} of simple functions having the desired properties with respect to
fT and f~, respectively. For each n € IN, let

Jn=9gn — hn.
The sequence {f,,} has all the required properties. |

4.4.1 Approximation by bounded, measurable functions

Our next result provides a sense of how measurable functions that are finite a.e. can be approx-
imated by bounded measurable functions. Since these, in turn, can be approximated uniformly
by simple functions, we are close to an understanding of the structure of arbitrary measurable
functions.

Theorem 4.20: Suppose that f is finite a.e. and measurable on X with u(X) < oo. Let e > 0.
Then there exists a bounded measurable function g such that

p({z:g(@) # f(z)}) <e.
Proof. Let
Ao = {z : | f(2)| = o0},
and for every k € IN let
A =A{z: |f(z)| > k}.
By hypothesis, 11(As) = 0. The sequence { Ay} is a descending sequence of measurable sets,
and Ao, = (pe; Ak. Since pu(X) < oo, it follows from Theorem 2.21 (ii) that

lim pu(Ay) = p(Ass) = 0.
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Thus there exists K € IN such that pu(Ag) < e. Let

_ [ f(@), ifz¢ Ax;
g(m)_{o, ifxEA;

Then g is measurable, and |g(z)| < K for all x € X. Now
{z:g9(x) # f(2)} = Ak

and u(Ag) < e, so g is the required function. [

Exercises

4:4.1 Show that the following statement is equivalent to (but different from Definition 4.18): A func-
tion f is a simple function if there exists collections Fy, Es, ..., E, of measurable sets and real
numbers ¢q, ¢s, ..., ¢, such that

f=eaxg + - +eaxg, -
4:4.2$ Let f be the function on (0, 1) defined in Example 4.17.
(a) Prove that f(I) = [0,1] for every open interval I C I. That is, for every ¢ € [0, 1], the set
f~Y(c) is dense in .
(b) Prove that the graph of f is dense in Iy x [0, 1].
(¢) Let

f(x), if f(z) #
9(”):{ 0, if f(z) =

Show that g has the properties of f given in (a) and (b).
(d) Show that the graph of g is not a connected subset of IR?.
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(e) Show that h(z) = g(z) — x does not have the Darboux property.

We have mentioned that some nineteenth century mathematicians believed that the Darboux
property (intermediate-value property) should be taken as a definition of continuity. They obvi-
ously were not aware of functions such as f and g above, nor of the function h(z) = g(x) — . The
function A is the sum of a Darboux function with a genuinely continuous function.

4:4.3 Show that the class of simple functions on a measure space is closed under linear combinations
and products.

4:4.4 Characterize those functions that can be expressed as uniform limits of simple functions.
4:4.5 Let Iy, I5, ..., I, be pairwise disjoint intervals with [a,b] = UZ:1 Ix, and let ¢y, ca, ..., ¢, be real
numbers. Let f=>"}_; kX, - Then f is called a step function.
(a) Show that every step function is a simple function for Lebesgue measure.

(b) Show that the proof of Theorem 4.19 applied to the function f(z) = z on [a,b] shows that f
can be expressed as a uniform limit of step functions.

(¢) Can every bounded measurable function on [a, b] be expressed as a uniform limit of step
functions?

(d) Characterize those functions that can be expressed as uniform limits of step functions. (This
is harder.)

4:4.6 Let f : X — [0, +00] be measurable, and let {r;} be any sequence of positive numbers for which
ry — 0 and Y 7 | 7% = +o00. Then there are measurable sets {Ay} so that

F@) =Y mx, (@)
[h=1l
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at every x € X.

Hint: Inductively define the sets Ay =<z € X : f(z) > 1, + E TiX 4. (T)
J
j<k

4.5 Approximation by Continuous Functions

We turn now to the problem of approximating a measurable function by a continuous one. We
shall show that, under suitable hypotheses, we can redefine a measurable function f on a small
set so that the new function g is continuous.

Throughout this section we take X to be a metric space and p to be a Borel measure with
u(X) < oo. We also assume the following.

4.21: If E is measurable and € > 0, then there exists a closed set F C E such that u(E \ F) <
€.

We recall that when E is also a Borel set this inner approximation by a closed set is always
available (see Corollary 3.15). The force of this assumption is that all measurable sets are as-
sumed to have the same property. For example, if p is a Lebesgue—Stieltjes measure on IR with
u(IR) < oo, Theorem 3.20 (iii) can be used to show that assertion 4.21 applies.

Before we embark on our program of approximating measurable functions, even badly be-
haved ones like the function f of Example 4.17, by continuous functions, we discuss briefly the
notions of relative continuity and extendibility.
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Suppose that X is a metric space, and S C X. Let f : X — IR, and let s9 € S. The
statement that f is continuous at sy means that

Tim f(z) = f(s0).

It may be that f is discontinuous at sp, but continuous at sy relative to the set S, that is
rmines 1% =150

In other words, the restriction of the function f to the set S is continuous at sg. It is possible

that f|S is continuous, but cannot be extended to a function continuous on all of X. For exam-

ple, f(x) = sinz~! is continuous on S = (0, 1], but cannot be extended to a continuous function
on [0, 1]. For that, one needs f to be uniformly continuous on S.

4.5.1 Tietze extension theorem

We make use of the Tietze extension theorem that we will establish in Chapter 9 in greater gen-
erality for functions defined on metric spaces. We prove it here only for the case of functions on
the real line.

Theorem 4.22 (Tietze extension theorem) Let S be a closed subset of a metric space X
and suppose that f : S — IR is continuous. Then f can be extended to a continuous function g
defined on all of X. Furthermore, if |f(z)| < M on S, then |g(z)| < M on X.

Proof. For X = IR, this is easy to prove. Let {(an,b,)} be the sequence of intervals comple-
mentary to S. Define g to be equal to f on S, and to be linear and continuous on each interval
[an,by] if —00 < ap, < b, < o0. Ifa, = —oc0 or b, = o0, we define g to be the appropriate
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constant on (—oo, by] or [a,,c0). One verifies easily that ¢ is continuous on IR. Note also that if
|f(xz)] < M on S then |g(x)] < M on IR. [

We shall use the Tietze extension theorem in conjunction with “inside” approximation of
measurable sets by closed sets. For this we shall use Corollary 3.15. We approximate X by
closed sets. On these closed sets we shall obtain continuous functions that approximate our
measurable function f. These functions can, in turn, be extended to functions continuous on
all of X. We shall obtain a succession of theorems, each improving the sense of approximation
of f by continuous functions. Each of these theorems is of interest in itself.

4.5.2 Lusin’s theorem

The theorems just discussed culminate in an important theorem discovered independently by
Guiseppe Vitali (1875-1932) and Nikolai Lusin (1883-1950). It is almost universally called
Lusin’s theorem. It asserts that for every € > 0 there is a continuous function g defined on X
such that g = f except on a set of measure less than e. (Lusin, often transliterated as Luzin,
was a student of Egoroff, who is known mainly for the theorem on almost uniform convergence
that we have just seen in the preceding section.)

Since we have not yet proved the Tietze extension theorem in a general metric space, the
reader may wish to take X in the theorem to be an interval [a, b] in IR.
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Theorem 4.23: Let (X, M, u) be a finite measure space with X a metric space and p a Borel
measure. Suppose that M satisfies condition 4.21. Let f be finite a.e. and measurable on X .
Then to each pair (€,m) of positive numbers corresponds a bounded, continuous function g such
that

p{z : [f(z) —g(x)] = n}) <e.
Furthermore, if | f(z)| < M on X, then one can choose g so that |g(x)| < M on X.

Proof. Suppose first that |f(z)] < M on X. By Theorem 4.19 there exists a simple function
h, also bounded by M, such that

[h(z) = f(z)| <n  (x€X).

Let ¢q,..., ¢y, be the values that A assumes on X, and for each i = 1,...,m let
E;={z:h(x) =c¢}.
The sets E; are pairwise disjoint and cover X. Choose closed sets F1, ..., F},, such that, for each

i=1,...,m, F; C E; and
€
Let
F=Ru..-UF,.
Then F is closed, F' C X and u(X \ F) < e. Furthermore, the restriction of h to F;, h|F;, is
constant for ¢ = 1,...,m. It follows that h|F is continuous.

To see this, we need only note that, if g € F; and x,, — ¢ with x,, € F for all n, then for
n sufficiently large x,, € F;, a set on which h is constant. By the Tietze extension theorem the
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function h|F can be extended to a function g continuous on X with |g(z)| < M on X. Since
WX\ F) <e,

g is the desired function.
The general case in which we do not assume f bounded now follows readily from Theo-
rem 4.20. |

Theorem 4.24: Let (X, M, ) be a finite measure space with X a metric space and p a Borel
measure. Suppose that M satisfies condition 4.21. Let f be finite a.e. and measurable on X .
There exists a sequence {gr} of bounded, continuous functions for which g — f [a.u.].

Proof. It follows immediately from Theorem 4.23 that there exists a sequence {f,} of con-
tinuous functions for which f, — f[meas|. By Theorem 4.14, there exists a subsequence {f,, }
such that f,, — f [a.e.]. The desired conclusion now follows from Egoroff’s theorem, by defin-

ing gk = f ny - u
We are now ready to state and prove the main theorem of this section.

Theorem 4.25 (Lusin) Let (X, M, u) be a finite measure space with X a metric space and
a Borel measure. Suppose that M satisfies condition 4.21. Let f be finite a.e. and measurable
on X, and let ¢ > 0. There exists a continuous function g on X such that f(x) = g(x) for all
x in a closed set F with (X \ F) < e. If |f(x)| < M for all x € X, we can choose g to satisfy
lg(x)| < M for allx € X.
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Proof. By Theorem 4.24, there exists a measurable set E such that u(X \ E) < /2 and a
sequence {gi} of continuous functions on X such that g — f [unif] on E. By condition 4.21,
there exists a closed set F' C E such that u(X\F) < e. Since gx — f [unif] on E, the restriction
f|F of f to F is continuous. By Tietze’s theorem, this function can be extended to a function g
continuous on all of X, so that g and f have the same bounds on X. |

4.5.3 Further discussion

Let us return for a moment to Example 4.17. How complicated must a continuous function g be
to approximate the function f of that example in the Lusin sense? A theorem in number theory
asserts that almost every number in [0, 1] is “normal”.® This means that for almost all € [0, 1]
the binary expansion of z has, in the limit, half the bits equaling zero and half equaling one.
More precisely, for almost every z in the interval [0, 1] with 2 = .ajagas ... the binary expan-
sion of x, it is true that

. a1+t ay

lim ——

n n

1
oF

Thus the function f in Example 4.17 satisfies f(x) = % a.e. In other words, we can choose g =
% and conclude that f = g a.e. The approximation was not so difficult in this case! Here we
have a much stronger result than Lusin’s theorem guarantees. The exceptional set has measure
Zero.

When we approximate measurable sets by simpler sets, we get the following results. If we
are willing to ignore sets of arbitrarily small measure, we can take the approximating sets to be

open or closed. If we are willing to ignore only zero measure sets, we must give up a bit of the

°See Hardy and Wright, An Introduction to the Theory of Numbers, Oxford (1938).
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regularity of the approximating sets—we can use sets of type Gs on the outside and sets of type
Fo on the inside.

The analogous situation for the approximation of measurable functions would suggest some-
thing similar. If we are willing to ignore sets of arbitrarily small measure, we can choose the ap-
proximating functions to be continuous. This is Lusin’s theorem. Observe that for a continuous
function g the associated sets

{r:a<g(z) <B} and {z:a<g(z)< B}
are open and closed, respectively. One might expect that, if one is willing to ignore only sets
of measure zero, we can choose the approximating functions g in the first Borel class; that is,
one for which the corresponding associated sets are of type F, and Gs, respectively. This is not
quite the case. Instead, g can be taken from the second Borel class where the associated sets
are of type G5, and F5, respectively. Exercise 4:6.2 at the end of the chapter deals with the
Borel and Baire classes of functions and with how one can approximate measurable functions by
functions from these classes.

Exercises

4:5.1 Complete the proof of Theorem 4.23 for the case f unbounded.

4:5.2 Show that Lusin’s theorem is valid on (IR, M, itr), where yy is a Lebesgue—Stieltjes measure, even
if pr(IR) = oo.
4:5.3 Let X =Qn[0,1] and M = 2¥.
(a) Let u be the counting measure on X, let @1 and Q2 be complementary dense subsets of X,
and let f = Xo, Show that the conclusion of Lusin’s theorem fails. What hypotheses in
Lusin’s theorem fail here?



316 Measurable Functions  Chapter 4

(b) Let 7y, o, 73, ...be an enumeration of the rationals, and let u be the measure that assigns
value 27 to the singleton set {r;}. Let f be as in (a). Show how to construct the function g
called for in the conclusion of Lusin’s theorem.

4:5.4 The purpose of this exercise is to show the essential role that the regularity condition 4.21 plays
in the hypotheses of Lusin’s theorem. Let E be a subset of [0, 1] such that both E and its comple-

ment E are totally imperfect (see Section 3.12). Let f = Xp - Let g be Lebesgue measurable, and
suppose that L = {x : f(x) = g(x)} € L.

(a) Show that A\.(F) =0 and \*(E) = 1.
(b) Show that
EnL={z: f(x)=1}NnL={z:g9(x)=1}NL
and hence that £ N L € L. Similarly, show that ENLEeL.
(¢) Show that ENL C E and A\«(E) = 0, and hence that A\(E N L) = 0. Similarly show that
MENL)=0and A(L) = 0. (Recall that E denotes the complement of E.)

We have shown that if \.(E) = 0 and \*(E) = 1, for E C [0,1], then the function x, is not
A-measurable on any set of positive Lebesgue measure. We now use this fact to show that Lusin’s
theorem can fail dramatically when the condition 4.21 is not hypothesized.

Refer to Exercise 3:13.13. Let A be the extension of A to the o-algebra generated by £ and
{E}. Note that the measure space ([0, 1], M, \) does not satisfy the assertion 4.21.

(d) Show that A(L) = A(L) = 0.

Thus the A-measurable function f does not agree with any function that is A-measurable even
on a set of positive Lebesgue measure. In particular, if ¢ is continuous and f(z) = g(z) for all z in

a closed set F, then A\(F) = \(F) = 0.
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Figure 4.3. Construction of f in Exercise 4:6.1.

(e) Give an example of a A-measurable function g (even a continuous one) such that i({x s f(x) = g(a
1.

4.6 Additional Problems for Chapter 4

4:6.1 Let K be the Cantor ternary set, and let {(a,,b,)} be the sequence of intervals complementary to
K in (0,1). For each n € IN, let ¢, = (an + b,,)/2. Let f = 0 on K be linear and continuous on
[an, cn] and on [c,, by,], with the values f(c,,) as yet unspecified (see Figure 4.3). What conditions
on the values f(c,) are necessary and sufficient (a) for f to be continuous, (b) for f to be a Baire
1 function, or (c) for f to be of bounded variation? (See Exercise 4:6.2).

4:6.2¢ (Baire functions and Borel functions) For this problem, all functions are assumed finite
unless explicitly stated otherwise. Let By consist of the continuous functions on an interval X C

IR. We do not assume X bounded.
(a) For n € IN, let B,, consist of those functions that are pointwise limits of sequences of func-

tions in B,,_1. The class B, is called the Baire functions of class n or the Baire-n functions.
Prove that if f € Bj then, for all o € IR, the sets {x : f(z) > a} and {z: f(z) < a} are of

type Fo.
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Show that, if f € By, then for all a € IR the sets
{z: f(z)>a} and {z: f(z) <a}
are of type Gs,.

Show that a function f : X — IR that is continuous except on a countable set is in Bj.
(Compare with Exercise 4:1.16.)

Let f = Xg- Show that f € By \ Bs.
Prove that B; is closed under addition and multiplication.

Let {M,} be a sequence of positive numbers and suppose that > > | M, < oo. Let {f,} C
By with | f,(z)] < M, for all n € N and all z € X. Prove that > " | f, € Bi.

Prove that if f,, — f [unif] and f,, € By for all n € IN then f € B;.

[Hint: Choose an increasing sequence {ny} of positive integers such that limy ny = oo and
| (2) — f(x)] < 27% on X. Then apply (f) appropriately.]

Prove that the composition of a function f € B; with a continuous function is in Bj.

Prove the converse to part (a): If for every o € IR the sets {z : f(z) > a} and {z: f(z) < a}
are of type F,, then f € B;.

Prove that if f is differentiable then f’ € B;.
Prove that if {f,,} C By then sup f, € By. [This assumes that sup f, is a finite function.]

Prove that if {f,} C Bg then limsup,, f,, € Bs. [This assumes that limsup f, is a finite
function. ]

Prove that if f is finite a.e. and measurable on X then there exists g € By such that f = ¢
a.e..
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(n)

(p)

Give an example of a finite Lebesgue measurable function on IR that agrees with no g € B;
a.e..

[Hint: Using Exercise 2:14.9, let f = x, where A(I N A) > 0 and A(I \ A) > 0 for every open
interval I. Show that if g € By and g = f a.e. then {z: g(z) = 0} and {x : g(z) = 1} are
disjoint, dense subsets of IR of type Gs. This violates the Baire category theorem for IR.]

The smallest class of functions that contains By and is closed under the operation of taking
pointwise limits is called the class of Baire functions. It is true, though difficult to prove,
that for each n € IN there exists f € By+1 \ B,. Show that there exists a Baire function g on
X = [0,00) that is not in any of the classes B,.

[Hint: Let g € Bpt1 \ Bn on [n,n+1).]

This function is in the class B,,, where w is the first infinite ordinal. One then defines
B.+1 as those functions that are limits of sequences of functions in B,,. Using transfinite
induction, one obtains classes B, for every countable ordinal. One can show that for every
countable ordinal v there exist functions f € B, \ Ug., Bs. One can also show that the class
of Baire functions on the interval X is exactly the class of Borel measurable functions.

Use the fact that there are Lebesgue measurable sets that are not Borel sets to show that
there are Lebesgue measurable functions that are not Baire functions.

4:6.3 Show that a function f : IR* — IR that is continuous in each variable separately is a Baire 1
function. (This is the original problem that led Baire to this line of research.)

[Hint: Define

if 127

Fn(:r7y) = f((Z + 1)27n7y)[x - 12777,] - f(7’27n7y)[‘r - (l + 1)27’”]

" < 2 < (i +1)27™ for some integer 4. Show that F), is continuous on IR? and 2"F,, — f

pointwise. |
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4:6.4 Construct a function f : [0,1] — [0, 1] as follows. Let {I,,} be an enumeration of the open intervals
in [0, 1] having rational endpoints. For each n € IN, let K,, C I,, be a Cantor set of positive Lebes-
gue measure such that the sequence {K,} is pairwise disjoint and > > | A\(K,,) = 1. Define f,, on
K,, to be continuous on K, nondecreasing, and such that f,(K,) = [0, 1]. Let

| falw), ifxe Ky
f@) = { 0, if 2 € [0,1] \UpZ, Kn.

Show that f is Lebesgue measurable.

Show that f(I) = [0,1] for every open interval I C [0, 1].

(a)
(b)
(¢) Using the sets K, find continuous functions on [0, 1] that approximate f in the Lusin sense.
(d) Refer to Exercise 4:6.2. Does there exist g € B; such that g = f [a.e.]?

(e) Give an example of a function g € By for which f = g [a.e.]. [Hint: Easy.]

4:6.5 Measurability can be expressed as a separation property. Let u* be an outer measure on a space
X. Show that a function f : X — [—o0, +00] is measurable with respect to p* if and only if

() 2 (TN o € X & f(@) <ah) +p*(T N {z € X : f(z) > b))
forall T'C X and all —0co < a < b < 0.
4:6.6 Let (X, M, ) be a measure space and, for every measurable function f : X — [—o0, +00], define

£l = inf {r:p({z: [f(@)] >r}) <r}.

(2) Show that u ({z: £(@)] > I£1l,}) < If1l
(b) Check the triangle inequality || f + gl|,, < [[fll, + llgll,,-
(c) Show that f, — f in p-measure if and only if || f, — f||, — 0.
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()

Show that, if f = x,, then [lcf[|, = inf{c, u(A)} for any 0 < ¢ < oo. In particular, it is not
true in general that [cf||, = c[[f] .-

Show that, for ¢ > 0,
lesll, < max {I£1l, el £1l, }
and hence that |[cf|, — 0 as | f[|, — 0.
Show that if u({z : f(z) # 0}) < oo and p{z : [f(z)| = oo} = 0 then [[cf||, — 0 as ¢ — 0.

Show that every Cauchy sequence {gx} in measure has a subsequence that converges both
p—almost everywhere and in measure.

[Hint: Pick an increasing sequence N (k) so that
||g’L _ g]Hy, S 2_n

whenever i > j > N(k).]
Show that if

o0

Z llgk+1 — grll, < o0

k=1
then {gi} converges to some function g p—almost everywhere, and [|gx — g||,, converges to 0.
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A, 104
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ls, 590
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1 (mutually singular), 136
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R, 3

R, 3
R[a, b], 592
[unif], 297
Z, 3

absolute variation, 114, 136
absolutely continuous

Cantor function is not, 371
absolutely continuous function, 69, 370, 371
absolutely continuous measure, 275
absolutely continuous signed measure, 368
accumulation point, 183, 598
additive set function, 47, 111
adjoint operator, 976
adjoint space, 828
aleph, 17
Alexandroff’s theorem, 712
Alexandroff, A. D., 711
algebra of sets, 46, 111
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approximate continuity, 502
approximate eigenvalue, 999
approximate eigenvector, 990
arc, 736
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Baire functions, 319
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Baire’s theorem, 32
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Baire-1 function, 32, 319, 695
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closed, 182
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Banach space, 786

reflexive, 832

second dual, 832

Banach, S., 448, 467, 627, 687, 717, 784, 812,
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Banach—Mazur game, 687
Banach—Tarski paradox, 825
Banach—Zarecki theorem, 467
Bari, N., 1003
Barnsley, M. F., 675
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differentiation, 522

for a topology, 670
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orthonormal, 958
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Bernstein set, 96, 160, 266, 783
Bernstein’s theorem, 22, 24
Bernstein, F., 22
Besicovitch function, 722
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Bessel’s inequality, 963
Bessel, F., 963
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Blokh, A. M., 760
Bohnenblust, H. F., 812
Boltyanski, V. G., 666
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Borel, E., 35
Borel-Cantelli lemma, 130
Borel-1 function, 695
boundary of a function

upper and lower boundaries, 356
boundary point of a set, 5, 183, 599
bounded derivative

typical, 739
bounded linear operator, 802
bounded set, 182, 598
bounded variation, 66, 257, 417
Burckel, R. B., xxiii
BV, 66

C, 3
co, 789

not reflexive, 832
Cla, b], 789

not reflexive, 832
Cantelli, F. P., 130

Cantor function, 98, 137, 177, 215, 264, 275,
327, 344, 388, 463, 464, 471, 472, 479,
538, 540, 573, 576

Cantor function is not absolutely continuous,
371

Cantor set, 6, 98, 233, 264, 364, 371, 388, 540,
573, 600, 735, 750

Cantor set in a metric space, 264

Cantor set of positive measure, 41

Cantor space, 590, 614

Cantor ternary set, 8, 137, 233, 614

Cantor theorem, 12

Cantor’s uniqueness theorem, 1066

Cantor, G., 12, 98, 1066

Cantor-Bendixson theorem, 20

Cantor—Lebesgue theorem, 1068

Carathéodory, C., 143, 227, 415

cardinal arithmetic, 23

cardinal number, 21

cardinality Ng, 16

cardinality n, 16

Carleson, L., 1052
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Cauchy integrals, 74, 438, 440

Cauchy sequence, 4, 618

Cauchy’s integral, 71

Cauchy, A., 71
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cell, 553, 554
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CH, 23, 435, 443
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characteristic function, 126
Ciesielski, K., 162
circle group, 1004
closed ball, 182, 598
closed graph theorem, 872, 931
closed set, 5, 598, 669
closure of a set, 5, 183, 599
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co-analytic set, 770
collage, 675
collage theorem, 674
comonotone, 442
compact metric space, 641
compact operator, 810, 975
compact set, 12
compact space, 641
compactness

weak sequential, 928
compactness argument, 14
complete measure, 137

complete space
complete measure space, 137
complete metric space, 619
topologically complete, 711
completion of a measure space, 170
complex functions, 408
complex homomorphism, 922
complex measure, 419
component of an open set, 10
condensation of singularities, 328, 856
conjugate index, 879
conjugate space, 828, 955
conjugate-linear, 943, 956
connected set, 734
connected space, 271, 736

construction of discontinuous derivatives, 363

content

inner content, 45

outer content, 36

Peano—Jordan content, 36
continued fraction, 748
continuity

absolutely continuous function, 370

absolutely continuous signed measure, 368

approximate continuity, 502, 545
equicontinuity of measures, 399
relative continuity, 309
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uniform absolute continuity, 398 convolution, 919

uniform continuity, 643 coordinate-wise convergence, 742
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continuous function, 602 countable ordinals, 27
continuum, 736 countable subadditivity, 142
continuum hypothesis, 23, 24, 27, 28, 96, 161, countably additive, 47, 106

266, 268, 276, 277, 289 countably subadditive, 109, 123

contraction map, 627 counting measure, 125
contramonotone, 442 Cousin theorem, 13
convergence Cousin, P., 12

almost uniform convergence, 297 cover

convergence a.e., 291 fine, 243, 485

convergence in measure, 292, 350 full, 243, 469, 485

convergence in probability, 292 measurable, 153

in p—norm, 928 open cover, 641

in a metric space, 597 Vitali, 243, 529, 567

mean convergence, 390 covering family, 149

uniform convergence, 16, 80, 392, 394 cube

weak, 928 Hilbert cube, 799

weak convergence in Hilbert space, 968 curve, 234
convergence of sets, 127 curve length, 234
convex

body, 842 Darboux property, 308, 734

function, 812 Darboux sums, 354

hull, 848 Davies, R. O., 403

set, 842 Day, M. M., 912

convex set, 950 de Guzman, M., 541
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degree of a trigonometric polynomial, 1004
Denjoy, A., 94, 491, 511, 722
Denjoy—-Lusin theorem, 1072
Denjoy—Young—Saks theorem, 492, 511
dense set, 5, 183, 599
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derivative, 569
lower derivative, 569
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strong derivative, 526
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upper derivative, 569
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derivatives
discontinuous, 363
derived number, 446
ordinary, 522
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differentiability of Lipschitz functions, 510
differentiable

signed measure, 523, 569
differentiation basis, 522, 579
dimension

of typical compact set, 686

Hausdorff dimension, 233
Dini derivates, 464, 511
Dini’s test, 1045
Dini, U., 464, 722, 1045
Dirichlet kernel, 1013
Dirichlet’s theorem, 1044
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discontinuous derivatives, 363
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distribution function, 213
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Euclidean space, 900, 946, 984
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Fatou’s lemma, 337, 338
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Fejér kernel, 1018

Fejér theorem, 1021

Fejér, L., 1017
Fejér—Lebesgue theorem, 1024
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fine cover, 243, 485

finite measure space, 170
finite-dimensional, 997

finitely additive measure, 47, 111, 112
finitely additive set function, 47, 111

first category, 30, 682
at a point, 694
Fischer, E., 1059
fixed point, 627
Foran, J., 274
Fort’s theorem, 34
Fourier coefficients, 961, 1006
Fourier series, 959, 961, 1006
divergence of, 1049
in Hilbert space, 1055
real form, 1009
term-by-term integration, 1042
uniform convergence, 1027
uniqueness of coefficients, 1029
Fourier transform, 923
Fourier, J., 632, 1002
Fréchet, M., 82, 784, 954
fractal image compression, 674
Fredholm equation, 634, 809, 903
Fredholm operators, 985
Fubini theorem, 430, 435
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Fubini, G. C., 421
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additive set function, 47, 111
approximately continuous, 502
Baire functions, 319
Baire functions of class n, 317
Baire property, 783
Baire-1, 32, 319, 695
Borel measurable, 280
Borel-1 function, 695
bounded variation, 66, 113
Cantor function, 98, 264, 388
characteristic function, 126
complex, 409
connected graph, 734
continuous, 602
convex, 812
countably additive set function, 47
distribution function, 213
essentially bounded, 792
integrable, 345
integrable complex-valued, 411
Lipschitz condition, 67, 239, 376
lower boundary, 356
lower semicontinuous, 11, 363, 709
measurable, 280, 409

monotonic, 264

monotonic type, 718

nonangular, 720

nondecreasing at a point, 717
nonmonotonic type, 718
nonnegative integrable, 334
nowhere differentiable, 717, 718, 732
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oscillation of, 9, 77, 356, 375, 417, 703
property of Baire, 783

simple function, 304

singular, 480
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step function, 308, 353

summable, 345

uniformly continuous, 643
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BV]a, b], 594, 792
Cla, b], 592, 789
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C(X), 840
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linear functional, 800
Minkowski functional, 843
positively homogeneous, 812
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fundamental theorem of calculus, 72, 327, 360,
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Hardy’s Tauberian theorem, 1021
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Hausdorff measure, 231
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Hayes, C. A., 572
Heine, H., 1066
Heine-Borel property, 641
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Holder’s inequality, 587, 880
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inner measure integration by parts, 86, 509
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inner product, 897, 942 interior point, 5, 598
inner product space, 900, 942 intermediate-value property, 16, 70, 308
integrable complex function, 411 intervals in IR", 526
integrable function, 334, 345 irrationals, 748
integral isolated point, 5, 183
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integration by parts, 86 isometry, 610
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Lebesgue density theorem, 501, 510
Lebesgue differentiation theorem, 498
Lebesgue dominated convergence theorem, 339,
348, 400, 413
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Lebesgue outer measure, 36
Lebesgue point, 505, 1024
Lebesgue’s integral, 87
Lebesgue, H., 35, 81, 87, 784
Lebesgue—Stieltjes measures, 113, 208, 213
Lebesgue-Stieltjes signed measure, 216, 376
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length of a hike, 239

level set of a function, 735
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Liaponoft’s theorem, 175
Liaponoff, A. A.; 176

lifting, 565

lim inf, 127

lim sup, 127

limit ordinal, 28

limit point, 5, 183, 598
Lindel6f theorem, 10, 617
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linear equations, 630

linear functional, 800

linear isometry, 849

linear operator, 800

linear segment, 842
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Lipschitz condition, 67, 376, 636

Lipschitz constant, 636

Lipschitz function, 239
differentiability of, 510

Lipschitz, R., 67

lower boundary, 356

lower derivate, 248
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lower semicontinuous, 11, 363, 709

lower variation, 114
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Lusin’s condition (N), 467

Lusin’s problem, 1052
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measurable function, 90, 278, 280, 409
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measurable set, 121
measurable space, 343
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complex-valued, 419
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finitely additive measure, 47, 112
Hausdorff measure, 231
inner Lebesgue measure, 105
Lebesgue, 106
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mutually singular measures, 136, 387
nonatomic, 175, 217
outer Lebesgue measure, 104
outer measure, 36, 142
product measure, 423
Radon measure, 195
signed measure, 121
space, 121
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vector measure, 175

measure space, 121
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finite, 170
o-finite, 170
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Method II, 197

Method III, 240

Method IV, 240
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discrete, 586
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Hausdorff metric, 596, 686
induced by the norm, 786
invariant metric, 786

Minkowski, 586

metric linear space, 787
metric outer measure, 191, 434
metric space, 181, 584

accumulation point, 598
Borel sets, 184
boundary point, 599
bounded set, 182, 598
Cauchy sequence, 618
closed ball, 182, 598
closed set, 182, 598
closure of a set, 599
compact set, 641
complete metric space, 619
connected, 271, 736
continuity, 602
contraction, 627
convergence in, 597
dense set, 599

discrete space, 586
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embedding, 625
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Euclidean space, 585
function space, 591, 789
interior, 598
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nonabsolute integral, 73
nonangular function, 720
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operator norm, 802
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normed linear space, 786
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operator
adjoint, 976
approximate eigenvalue, 999
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bounded linear operator, 802
closed operator, 871
compact, 810, 975
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finite-dimensional, 997
Fredholm operator, 985
linear, 800
linear operator on a Hilbert space, 974
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operator calculus, 999
operator norm, 802
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shift operator, 997
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operator calculus, 999
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orthogonal, 898, 904, 945
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