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which establishes (3). Equality holds if Ai= n since 02(x) is strictly log-convex. 
Now let 43(x) =(1- x)/x; then +3(x) is log-convex for 0 <x < ' and log-concave for 

2 6?x < 1. Also let A= (A 1,...,A), where 0 <Ai < . Clearly 

As Ai ,.., i ) 

so that 

If(lA,)>[ Al Agn p [n2/AJ 

establishing (4). 
Finally, let A1 = ((n- l)A 1...X(n- l)An) and let A 2 = (l -A 1 -An) where Ai > 0, lAi 1. 

It can be easily verified that A1>-A2. By Theorem 1, g(x)=lli"=1xi is a Schur-concave function. It 
then follows that 

n n n 

(n-lI)n II Ai= II (n- I)Ai < (I (- A), 
i=l i=l i=l 

proving inequality (2). 
It is apparent that many additional inequalities of the Weierstrass product type can be 

formulated and proved by choosing the appropriate log-concave function, forming products to 
obtain a Schur-convex function, and then using Definition 2 above. 

The research for this paper was sponsored by Air Force Office of Scientific Research, USAF, AFSC, under 
AFOSR Grant 74-2581C. Reproduction is permitted for any purpose of the United States Government. 
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REGULATED FUNCTIONS: BOURBAKIS ALTERNATIVE TO 
THE RIEMANN INTEGRAL 

S. K. BERBERLAN 

1. Introduction. At the outset, I hasten to say that I remain a "Riemann loyalist": pound for 
pound, the Riemannian circle of ideas can't be beat for its instructional value to the beginning 
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student of analysis. Consequently, I wouldn't go so far as to suggest that the theory of regulated 
functions replace the Riemann integral in the beginning undergraduate analysis course; how- 
ever, in a graduate course in real variables, the theory of regulated functions can be an 
entertaining alternative to a routine review of the Riemann integral; and it is in some ways a 
more instructive prelude to the Lebesgue theory, as I hope to persuade the reader in this brief 
"comparative anatomy" of integration theories. 

2. Regulated functions. In the following, [a, b] denotes a fixed, nondegenerate closed interval 
of the real line R, and f, g, F,... are real-valued functions on [a, b], assumed to be bounded 
when they need to be bounded. 

In the class of Riemann-integrable functions, Exhibit A is the class of continuous functions; 
Exhibit B is the class of monotone functions (and its linear span, the functions of bounded 
variation). There is a property shared by these two special classes of functions: at every point of 
the interval, the function possesses finite one-sided limits. Such a function is said to be regulated. 
(A rationale for the terminology: such a function is "limited on the left" and "limited on the 
right." The classical term: function with only discontinuities of the "first kind.") The regulated 
functions form an algebra of functions for the pointwise operations, by the algebraic properties 
of limitibility (in other words, by the continuity of the algebraic operations on real numbers). 
Every regulated function is bounded (by an easy contradiction argument based on the 
Weierstrass-Bolzano theorem). The uniform limit of regulated functions is regulated, by the 
"iterated limits theorem" [5, p. 149, Th. 7.1 1]. From the viewpoint of integration theory, the most 
transparent example of a regulated function is a step function, that is, a function with finitely 
many values, each assumed on an interval, possibly degenerate (in other words, a linear 
combination of characteristic functions of intervals, possibly degenerate). Every uniform limit of 
step functions is regulated. In fact, there are no other regulated functions: every regulated 
function is the uniform limit of step functions (by essentially the same argument, based on the 
Heine-Borel theorem, used to show that a continuous function is uniformly approximable by 
step functions) [1, Ch. 2, ? 1, no. 3, Th. 3]; [2, p. 139, Th. 7.6.1]. A step function f comes very 
close to having a continuous anti-derivative: there exists a continuous function F (necessarily 
piecewise linear) whose derivative exists and is equal tof(x) except at the finitely many points of 
discontinuity of f; suggestively, 

3F'(x) = f(x) f.e., 

where "f.e." means "with finitely many exceptions." This implies, by a standard theorem on 
term-by-term differentiation [5, p. 152, Th. 7.17], that for every regulated function f, there is a 
continuous function F whose derivative exists and is equal to f(x) for all but countably many 
values of x; suggestively, 

3F'(x) =f(x) c.e., 

where "c.e." means "with countably many exceptions." 

3. An elementary integration theory. The foregoing discussion suggests this definition: call F 
a primitive of f if (1) F is continuous, and (2) 3F'(x) =f(x) c.e. (More precisely, one could say 
that F is a "c.e.-primitive" of f. If F'(x) =f(x) for all x, one calls F a strict primitive of f; we 
remark that the range off must then be an interval [5, p. 108, Th. 5.12].) As noted above, every 
regulated function has a primitive. (The converse is false; see Section 6 below.) 

If f has a primitive F, one is tempted to define 

fbf = F(b)-F(a). 

This' is a legitimate definition, since any two primitives of f must differ by a constant, by virtue 
of the following result [1, Ch. 1, ?2, no. 3, Cor. of Th. 2]: If H is continuous and if 3H'(x)=0 
c.e., then H is constant. (Indeed, it suffices to suppose that H is continuous and that 3H,'(x) = 0 
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c.e., where Hr' denotes right derivative.) One has here the makings of an elementary theory of 
integration: call a function f: [a, b]-*R integrable if it has a primitive F in the above sense, and 
then define f bf= F(b) - F(a). The integrable functions form a linear space (but not a linear 
algebra, as noted in Section 6); the uniform limit of integrable functions is integrable, by the 
theorem on term-by-term differentiation mentioned earlier. In this integration theory, the class 
of "primitives" is the class of functions F: [a,b]-*R such that (1) F is continuous, and (2) 
3F'(x) c.e. Examples: F continuous and monotone; more generally, (i) F continuous and of 
bounded variation [6, p. 1071, or (ii) F continuous and convex [1, Ch. 1, ?4, no. 4, Prop. 8]. 
(Incidentally, if f is monotone (hence f has a primitive), then every primitive of f is convex [1, 
Ch. 2, ?1, no. 3, Prop. 4].) 

REMARK. If f is integrable and g =f c.e., then g is integrable (with the same primitives as I); 
this follows trivially from the definitions. 

4. The Lebesgue integral. Lebesgue's "fundamental theorem of calculus" gives a succinct 
characterization of Lebesgue-integrability [6, pp. 198, 201]: A functionf is Lebesgue-integrable if 
and only if there exists an absolutely continuous function F such that F'(x) =f(x) a.e.; one then 
has f lf(x)dx = F(b) - F(a). Relevant here is the following fact: If H is absolutely continuous 
and H'(x)=0 a.e., then H is constant [6, p. 205]. (Incidentally, one cannot weaken "absolutely 
continuous" to "continuous of bounded variation," as is shown by Lebesgue's famous example 
of a nonconstant continuous increasing function whose derivative vanishes almost everywhere 
[3, p. 96].) In Lebesgue's theory, the class of "primitives" is the class of absolutely continuous 
functions (such a function always possesses a derivative a.e.). 

REMARK. If f is Lebesgue-integrable and g =f a.e., then g is Lebesgue-integrable (with same 
"6absolutely continuous, a.e.-primitives" as J). 

5. The Riemann integral. Here f denotes a bounded function, Df its set of points of 
discontinuity. The succinct criterion for Riemann-integrability is that of Lebesgue: f is Rie- 
mann-integrable if and only if Df is Lebesgue-negligible [6, p. 142]. Then the formula F(x)= 
f Af(t) dt defines an absolutely continuous (indeed, Lipschitz) function, with F'(x) =f(x) a.e. 
and in particular for x z Df. 

The class of "primitives" F for this theory is somewhat clumsy to describe: (1) F is Lipschitz 
(hence absolutely continuous, with bounded derivative), and (2) there exists a bounded function 
f: [a, b]--R, continuous a.e., such that F'(x) =f(x) a.e. 

The Riemann-integrable functions form an algebra of functions, closed under uniform limits; 
this is easy to see, for instance, from Lebesgue's criterion. 

REMARK. If f is Riemann-integrable and g =f c.e., it does not follow that g is Riemann-inte- 
grable. (For example, letf be the function identically zero, g the characteristic function of the set 
of rational numbers in [a, b].) Of course all is well if "c.e." is replaced by "f.e." Thus, in a sense, 
in the Riemann theory the natural "negligible" sets are the finite sets; and, in this sense, the 
"c.e." theory described in Section 3 above is more flexible. 

If f is continuous c.e. and is bounded, then f is Riemann-integrable (by Lebesgue's criterion) 
and the function F(x)= f?(t)dt is a c.e.-primitive of f (and is absolutely continuous-even 
Lipschitz). Example: f any regulated function [1, Ch. 2, ? 1, no. 3, Th. 3]. 

6. Miscellaneous examples. Let us write C for the class of continuous real functions on [a, b], 
BV for the functions of bounded variation, L for the regulated functions, R for the Riemann-in- 
tegrable functions, L' for the Lebesgue-integrable functions, and I for the class of functions 
"integrable" in the sense of Section 3. One has the diagram, shown in Figure 1, where the lines 
represent inclusion relations (all of them proper, as we shall see). 

L cR properly: Let (x,) be a sequence in [a, b], a <xn < b, such that x,,->a, and let f be the 
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C BV 

FIG. 1 

characteristic function of the set S ={x,x2, x3,... ). The set of discontinuities of f is S, thus 
f E R; however, f(a +) does not exist, thus f e L. 

L c I properly: If one had L = I, then I would be an algebra of functions; thus, it will suffice 
to exhibit functions f, g in I such that fg i I. Let [1, Ch. 2, ?2, Exer. 4] f and g be functions on 
[a, b] that possess strict primitives, and for which there exists a continuous function H: [a, b]-*R 
such that (i) 3H,'(x)=f(x)g(x) on [a,b), and (ii) the set {x:H is not differentiable at x) is 
uncountable. It follows that fg has no primitive; for, if K were a primitive of fg, one would have 
(H - K)'(x) = 0 c.e.; then H would differ from K only by a constant, which contradicts property 
(ii). (Incidentally, consideration of the identity fg =[(f+ g)2 -f2 - g2] shows that there exists a 
function h such that h admits a strict primitive but h2 admits no primitive.) 

It is straightforward to see that the remaining inclusions in the diagram are proper. (Here is a 
devious way of seeing that R cL' properly: If one had R =L', then L' would be an algebra of 
functions; then f e L' would imply f2 e L'; that is, f e L2; but LIZL 2 (look at the function 
x -1/2 in the unit interval).) 

No inclusion relation exists between R and I, as the following remarks show. 
I Z R: Indeed, there exists a function that possesses a strict primitive but is not Riemann-in- 

tegrable [3, p. 43]. 
R Z I: Let f be the characteristic function of the ternary Cantor set in [a, b] = [0, 1]. It is easy 

to see that the set of discontinuities of f is the Cantor set, consequently f E R. However, f i I. 
For, if f had a primitive F in the sense of Section 3, one would have F(x) = f xf(t) dt + F(O) for 
all x [4, p. 299, Exer. 18.4 1(d)]; since f(t) = 0 a.e., this means that F is constant. Then F'(x) = 0 
for all x; but, by hypothesis, F'(x) =f(x) for all but countably many values of x, consequently 
F'(x) = 1 for uncountably many x, a contradiction. 

Finally, there is no inclusion relation between I and L'. On the one hand, L' Z I (better yet, 
R Z I). On the other hand, let F be a continuous function on [a, b] such that F'(x) exists on 
(a,b) but is not Lebesgue-integrable [4, p. 299, Exer. 18.42]; if f is the function such that 
f(x) = F'(x) on (a, b) and (say) f(a) =f(b) = 0, then f E I but f e L 1. 

Based on a talk presented at the meeting of the Texas Section of the Association at Stephen F. Austin State 
University in Nacogdoches (March 31-April 1, 1978). 
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