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Theories which have been developed to carry out a program of differentiation
for set functions normally proceed by imposing conditions on the differentiation basis
similar to those encountered in Euclidean space. Thus,' for example, a density theorem
such as the classical Lebesgue result that for almost every x outside of the set A

lim J L = 0
/•>* | / |

as the intervals / shrink to x (see [1]), is commonly generalized to an abstract setting
by replacing the intervals by a differentiation basis which retains the key Vitali
property or some weaker version of it.

In this paper we show how a different viewpoint can be assumed: using an abstract
differentiation basis, we construct certain auxiliary measures on the space and then
state density theorems with regard to these measures. Should the basis possess
appropriate Vitali properties it will turn out that the measures, so constructed, are
equivalent to the original measure and that the density theorems are equivalent to
standard ones in the literature.

We begin by listing the main definitions that we require:

(1) F is a differentiation basis on a set T provided that for every te T, F(V) is a
filterbase of families of subsets of T. (cf [3, p. 93]).

(2) If T is a topological space then it will moreover be assumed that F is finer than
the topology in the sense that for every neighbourhood /? of a point t e T there
is an F e ¥(t) with a c /? for every a e F.

(3) If F is a differentiation basis on T then for any A c T w e write

F[A] = {a: a e F for some / e A and F e F(f)}.

(4) A subset G of F[T] is said to be a Vitali cover of A if G n F # 0 for every
teA and every FeF(0-

(5) By an outer measure /x on T we shall mean a non-negative, extended real-
valued function defined on all subsets of T with the properties that fi(0) = 0

00 00

and fi(A) < £ KBd whenever A a [j n(Bt).
i l i l

From an outer measure n on a set T and a differentiation basis F on T we
construct further outer measures denoted by \iv and \ix (1 ^ A < + oo). These
constructions are motivated by the Vitali covering property and by a weaker version
of that property introduced by Sion in [2].

DEFINITION 1. For any outer measure fi on T and any family G of subsets of T
we define V{fi, G) = sup {^aeF ju(oc): F cz G} where the supremum is with regard to
all countable, disjoint subsets F of G (an empty supremum being taken as zero).
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For any A c T we define also

liv{A) = inf V(n,G)

where the infimum is with regard to all Vitali covers G of A relative to some fixed

differentiation basis.

DEFINITION 2. For any outer measure /.t on T, any family G of subsets of T and any
real number X, 1 ^ X < + oo, we define

Sx(n, G) = sup £ n(a): F czG
UeF

where the supremum this time is with regard to all countable subsets F of G having the
property that

aeF

for every /? c T.

For any A c T we define also

(ix(A) = inf SA(^, G)

where the infimum is again with regard to all Vitali covers G of A relative to some
fixed differentiation basis.

THEOREM 1. Let n be an outer measure and F a differentiation basis on T. Then
liy and fix for 1 < X < + oo are outer measures on T and nv < fix. If T is also a
topological space, A c T, and n(A) = inf {n(G): Gopen, G 3 A} then nv{A)
and pik{A) ^ Xn{A).

00

Proof. To show that (iy is an outer measure suppose that A <= [j B(, that
e > 0, and that Vitali covers Gt of each Bt have been chosen so that <=1

00

for each i. Then G = \J Gt is a Vitali cover of A and so
i = l

, G) ^ £ V(n, Gd < £

As e > 0 is arbitrary we have the required countable sub-additivity of nv; since
Hv(0) = 0 is obvious it follows that fiv is an outer measure. Similar arguments
apply to each fix.

The inequality [iv < fix follows directly from the trivial inequality

i, G) ^ SX(II, G).

Finally the inequalities nv(A) ^ ^(^4) and nx(A) ^ Xfi(A) are easy consequences of
the property (2) which relates the differentiation basis to the topology.

It can be verified that the outer measures n and fiv coincide in the presence of the
Vitali covering property (V) of Sion [2, Definition 4.3] while the outer measures
fi and nx vanish together if the weaker covering property (V) of [2, Definition 3.7]
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holds. To illustrate the use to which these measures may be put we prove a density
theorem which generalizes the classical Lebesgue density theorem. Note that our
theorem and its corollary compare to Sion's [2] Theorems 4.2 and 4.7 respectively,
and indeed reduce to those theorems when appropriate conditions are imposed on
the differentiation basis.

The limits, lim and lim sup, are to be taken below in the sense of the filterbase

F(x) and, as usual in these kind of theorems, we take 0/0 = 0.

THEOREM 2. Let n be an outer measure and F a differentiation basis on a topo-
logical space T. Suppose that A c T, that 1 < X < +oo, and that

inf {n(A\K) :KczA,K closed} = 0.
Then

fijAnW)
lim = 0

for fix —almost every x in T\A.

Proof. For any 6 > 0 and any natural number n choose a closed set K <=. A so
that fi(A\K) < s/nX. Let Xn denote the set

[xe T\A : lim sup fi(A n W)/n(W) > l/n .
I w^x j

The proof is completed by showing that Hx(Xn) = 0 for the set X,

X = \XE T\A : lim n{A n W)/n(W) * oj,

is the union of the Xn (n = 1, 2, ...) and so is of /jA-measure zero as required.
Let G denote the family of all sets a e F [ X J with a <= T\K and

It is straightforward to verify that G is a Vitali cover of Xn and therefore that

fix(Xn) ^ Sx(fi, G).

Now if F is any countable subset of G with the property that

aeF

for all ji <= T, then we must have

aeF aeF

= n £ fi(<xn(A\K))
aeF

< E

and hence that ii^(Xn) ^ Sx(n, G) < E. As e > 0 is arbitrary it follows that each set
Xn is of /^-measure zero which completes the proof of the theorem.

COROLLARY. Let ^i and v be outer measures and F a differentiation basis on a
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topological space T. Suppose that A c T and that

M{n(A\K) :KaA,K closed} = 0
and

inf {v(A\K) :KczA, K closed} = 0.

Then lim v(A n W)ln(W) = Ofor \iv-almost every x in T\A.

Proof. Set cj){P) = v(j9 n A) for all 0 c T and apply Theorem 2 to the outer
measure /t + 0. Then we have

lim = 0

almost everywhere in T\A for any outer measure (fi+^)^, but

so that this limit is true, a fortiori, /v-almost everywhere in T\A. Also by the
theorem we have

H(AnW) ii{AnW)
lim ^ lim = 0

— almost everywhere in T\A.
Putting these together shows that

.. <KAnW) }(W)
lim = lim = 0

and hence also that

lim J^~L = 0
)

/^-almost everywhere in T\A as required.
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