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OBITUARY

Ralph Henstock, 1923-2007

Integration theorist Ralph Henstock died on 17 January 2007 in Coleraine, Northern Ireland,
after a short illness.

1. Early life and education

Ralph Henstock (1) was born in the coal-mining village of Newstead, near Nottingham, UK, on
2 June 1923; the only child of mineworker and former coalminer William Henstock and Mary
Ellen Henstock (née Bancroft). On the Henstock side, he was descended from seventeenth-
century Flemish immigrants called Hemstok.

Because of his early academic promise, it was expected that Henstock would attend
Nottingham University, where his father and uncle had received technical education, but as it
turned out he won scholarships that enabled him to study mathematics at St. John’s College,
Cambridge. He studied there from October 1941 until November 1943, when he was sent for
war service to the Ministry of Supply’s department of Statistical Method and Quality Control
in London.

This work did not satisfy him, and so he enrolled at Birkbeck College, London, where he
joined the weekly seminar of Professor Paul Dienes, which was then a focus for mathematical
activity in London. Henstock wanted to study divergent series, but Dienes prevailed upon him
to get involved in the theory of integration, thereby setting him on course for his life’s work.

He was awarded the Cambridge B.A. in 1944 and began research for a Ph.D. in London,
which he gained in December 1948 with a thesis entitled Interval Functions and their Integrals,
an extension of J. C. Burkill’s theory. His Ph.D. examiners were J. C. Burkill and H. Kestelman.
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In 1947, he returned briefly to Cambridge to complete the undergraduate mathematical studies
that had been truncated by his Ministry of Supply work.

2. The Henstock integral

Henstock was a distinguished analyst who specialized in the theory of integration. From initial
studies of the Burkill and Ward integrals, he formulated an integration process whereby the
domain of integration is suitably partitioned for Riemann sums to approximate the integral of
a function. His methods led to an integral on the real line that was very similar in construction
and simplicity to the Riemann integral, but which included the Lebesgue integral and, in
addition, allowed non-absolute convergence.

The difference between absolute convergence and non-absolute convergence is illustrated
by the familiar series Z;’il aj, with aj = (—1)757!. This is conditionally or non-absolutely
convergent. Since Z;‘;l |a;| diverges, the series is not absolutely convergent.

Now consider the function

2usine™2 — 2z teosz™? if0<az <1,
flz)= .
0 if x =0.

This is the derivative of the function

Fla) 2?sinz™? if0<az <1,
1) =
0 if x =0.

In other words, F(z) is the ‘indefinite integral’ of f(z). Therefore, for any a > 0, we expect
that

J': f(z)dr = F(a) — F(0) = a®sina™ 2.

However, f(z) is not integrable in the senses of Riemann or Lebesgue. The problem here is
analogous to the failure of Z;’;l(—l)j 41 to converge absolutely. The integrals of Perron and
Denjoy (2) provide definitions of the integral that admit non-absolute convergence in this case.

However, a simpler resolution of problems such as this is given by the Henstock integral as
follows: the function f(x) is integrable in [0, «] with integral = fg if, given € > 0, for each

x € [0, ] we can find a function 6(x) > 0 defined on [0, o so that

Zf(xj)(uj —uj1)—f| <e
=1

for every partition 0 = ug < uy < ... < u, = « of [0, a], satisfying

xj —0(xj) <uj—1 <z; <uj <aj+0(xj). (1)

This solution to the problem of non-absolute integration is particularly elegant because,
when the variable d(x) > 0 is replaced by the constant § > 0, the definition reduces to the
familiar Riemann integral.

The integral [~ exptx? dz, where t = /=1, is a basic element of the Feynman path integral
formulation of quantum mechanics and quantum field theory. Unlike the function f(z) above,
the function g(x) = expx? is continuous in its domain of integration. It is not absolutely
integrable in the Lebesgue sense but, like f(x), the function g(x) is non-absolutely integrable
in the Henstock sense, with integral (known as Fresnel’s integral) equal to /u.

To get a sense of how the Henstock Riemann sums converge for this function, for each x
consider the zero z of g(z) that is closest to =, but not equal to =, and thus | — z| > 0. Then
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choose §(z) < |z — 2|. Since the cycles of g(x) = cosx? + tsinz? are alternately positive and

negative, we can go on to ensure that terms of the Riemann sum for g(x) can be grouped
so that the groups of terms are alternately positive- and negative-valued, with successively
smaller absolute values tending to zero, analogously to the non-absolutely convergent series
Z;i1(*1)]j71~

These ideas on a non-absolute version of Riemann integration were developed by Henstock
from the mid-1950s. Independently, Kurzweil (5) developed a similar Riemann-type integral on
the real line. The resulting integral is now known as the Henstock—Kurzweil integral. On the
real line, it is equivalent to the Denjoy—Perron integral, but has a much simpler definition and is
generally much easier to work with. An absolutely convergent version of this integral, equivalent
to the Lebesgue integral on the real line, was developed by McShane (6). In McShane’s
development, instead of the condition (1), we have

xj —0(xy) <uj—1 <uj <xj+6(xy);

in other words, z; may be outside of the interval [u;_1,u;].

In the following decades, Henstock developed extensively the distinctive features of his theory,
inventing the concepts of division spaces or integration bases to demonstrate in general settings
the essential properties and characteristics of mathematical integration in all its forms. His
theory provides a unified approach to many problems that were considered earlier by different
methods using different types of non-absolute integrals [43]. Now many of them can be solved
using different kinds of Henstock integral, just choosing an appropriate integration basis (or
division space in Henstock’s own terminology).

The theory of integration (including measure) is the basis for the study of probability and
random variation. Thus Henstock’s Riemann-type integration theory has relevance to our
understanding of random variation. Henstock addressed this issue in many of his published
works, in which he gave interpretations of probability, of the statistical analysis of data, and
of random processes. His analysis of Feynman’s non-absolute integrals in quantum mechanics
brings this subject properly into the domain of random variation; see (7).

3. Review of Henstock’s work

In a personal report (3) written in 1984, Henstock described his research interests as follows.
My research is in the following pure mathematical fields:

(1) summability of series and integrals,
(2) integration theory,

and especially in problems that link the two. In (1) an essential tool is often the
Banach—Steinhaus theorem of functional analysis, with Sargent’s modification.
For example, if IZ fdg exists for every Baire- or Borel-measurable function, to
prove that g is of bounded variation on [a,b]. Putting a summability factor into
the definition of the integral leads to a generalization of Burkill’s Cesaro—Perron
integrals and the Marcinkiewicz—Zygmund integral. These are of Perron type,
defined by inequalities of the type

z+h z+h
J (F(t) - F(2)} duN (s 1) > J F(@)(t — ) d N b ),
xT x

with similar inequalities for [z — h,x], and the problem is to find the neces-
sary conditions on N. Out of this came the variational integral, which then
led to the Riemann-complete or generalized Riemann integral, the so-called
Kurzweil-Henstock integral. This integral includes the Riemann, Riemann—
Stieltjes, Lebesgue, Radon, Denjoy special, and Perron integrals, using Riemann’s
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original sums but a different limit. Set-valued functions, the integrals of which
have applications in economics. Wiener-type integration has applications to
various stochastic processes such as white noise. Feynman-type integration has
applications in quantum theory. An integral that includes the Paley—Wiener—
Zygmund integral has applications for stochastic integration, as does an integral
equivalent to the It6 integral. The most general form of the generalized Riemann
integral can be used to define all these integrals except those defined by the
functions N.

The theory of integration with which Henstock is associated arose from his study of the
problem of summability described above, but did not completely resolve this problem to his
satisfaction. Therefore, in a sense, his successful mathematical accomplishments are a by-
product of a different project that he felt was incomplete. Such things happen in a life of high
achievement.

Another ancillary problem, which he addressed at various times in the course of his life,
was the mathematical analysis of random variation. He first encountered this subject in a very
practical way when, in November 1943, he was withdrawn temporarily from his mathematical
studies at St. John’s College, Cambridge, and assigned to the British Ministry of Supply to do
statistical work.

His experience as a civil servant generated in him a visceral dislike of working for the
Government; but he retained a life-long interest in the analysis of random data. Therefore
he took a course of study in stochastic theory from M. S. Bartlett in 1947, and in 1958 he
became a Fellow of the Royal Statistical Society.

Henstock’s approach to the theory of integration builds on the nineteenth-century theory
of Riemann, and is conceptually different from and independent of the early twentieth-
century integration theory of Lebesgue. Thus one can imagine that the mathematical theory of
probability founded on the work of Kolmogorov (as described in, for instance, Foundations of
the theory of probability (4)) could conceivably have been based on a Riemann-type integration
rather than the Lebesgue approach used by Kolmogorov and his successors in probability
theory.

Henstock’s writings give a strong sense of how such an alternative development of probability
theory should be accomplished. His 1963 book (Theory of integration [18]) includes a chapter
on probability, as does his Lectures on the theory of integration [38]. Here, Henstock reviews
three different interpretations, including Kolmogorov’s, of the probability concept. Placing
emphasis on the role of actual statistical data, he discusses the classification or partitioning
of numerical data into disjoint real intervals {I}, which is often the first practical step in the
numerical analysis of such data. He provides two ways to define the probability that a numerical
measurement = takes a value in a set X. Accordingly, Prob(X) can be taken to be

Prob(X) = Jio 1x(z)dP = JX dpP (2)
Prob(X) =V (P; X). (3)

If we take (3) (the P-variation of the set X; see (7, p. 26)) as the definition of probability,
then every set X has a mathematical probability. If we take (2) (the Henstock integral of P
in the set X) as the definition, then, as in the Kolmogorov theory, only certain sets X have a
probability measure (and, for those sets, (3) gives the same value). In that case, if the function
P is a probability measure in the sense of Kolmogorov, then Henstock’s approach gives exactly
the same measurable sets as Kolmogorov’s.

The underlying simplicity of the Henstock-Kurzweil integral has reinvigorated the subject
of mathematical integration and the theory now has many practitioners and exponents. It has
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proved useful in differential and integral equations, harmonic analysis, probability theory, and
quantum mechanics, where the random variables of Feynman integration are not absolutely
integrable and therefore are not amenable to the methods of Lebesgue integration and classical
probability theory. Numerous monographs and texts have appeared since 1980 and there have
been several conferences devoted to the theory; but the simplicity of the underlying concept
can sometimes give rise to naive expectations of the subject, which is, in reality, deep and
subtle.

Initially a research specialism, it is nowadays increasingly taught in standard courses in
mathematical analysis.

4. Career and publications

Henstock was the author of 46 journal papers during the period 1946-2006. He published four
books on analysis (Theory of integration [18]; Linear analysis [24]; Lectures on the theory of
integration [38]; The general theory of integration [43]). He wrote 171 reviews for MathSciNet.
In 1994, he was awarded the Andy Prize of the XVIII Summer Symposium in Real Analysis.
His academic career comprised the following stages: he began as Assistant Lecturer, Bedford
College for Women, 1947-48; then Assistant Lecturer at Birkbeck, 1948-51; Lecturer, Queen’s
University Belfast, 1951-56; Lecturer, Bristol University, 1956-60; Senior Lecturer and Reader,
Queen’s University Belfast, 1960-64; Reader, Lancaster University, 1964-70; Chair of Pure
Mathematics, New University of Ulster, 1970-88; and Leverhulme Fellow 1988-91.

Henstock married Marjorie Jardine in 1949 and is survived by their son John. A devoted
Methodist, he had an abiding interest in poetry, and the lasting impression he made was one
of gentle sincerity, kindness, and amiability. The integrity and conscientiousness he displayed
in his scientific work were mirrored in his generous relationships with colleagues, collaborators,
and students. As a mathematician and as a man, his loss is deeply felt by all of them.
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