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In most theories of covering systems and derivates some attempt is made to obtain
results analogous to the classical Vitali theorem; within the setting of the theory
formulated in the first paper [2] it appears that Vitali properties are best obtained by a
modification of the methods of A. P. Morse's derivation theory. In this paper we
obtain a Vitali property on the Henstock division systems by adopting an appropriate
halo assumption (for the standard theory see [1; Chapter IV]).

The notation and terminology throughout will be identical with that in [2].
If (T, 91,1) is a division system, N a covering system on (T, % I) and n a real-

valued function on I we have defined three set functions, usually outer measures:

»*{X)= inf
Se2l

NLi*(X) = inf

JKN(/z, X).

We shall be interested in obtaining Vitali conditions on Npi* for, as was seen in [2],
this can serve to establish the relationship between N/x* and N^*. For this purpose
it is convenient to introduce the division system (T, $IN, N) where

We need also the following definitions.

Definition 1. For any bounded non-negative function A on N and any a > 1
we define

# A U X) = [j{J : {J, y) e N, In J # 0 and A(J, 3;) ^ «A(/, *)}.

Definition 2. A covering system N is said to satisfy a halo condition with respect to
H on a division system (T, 2lN, N) if there are real numbers a > 1 and A > 0, and a
bounded non-negative function A on N such that for all (/, x) e N and S e %,

THEOREM 1. Let {T, % I) be a division system, N a covering system on (T, $T, I),
\i a real-valued function on N and X c T. Suppose that

(i) for every (/, x) e N there is an S e 9TN with S [ \ J ] <= S ( \7 ) ,

(ii) N satisfies a halo condition in (T, 9IN, N) with respect to fiy and

(hi) there is a set G <= T and Soe9IN so that S0[X] cz S0(G) and
+00.
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Then there exists a sequence (Ik, xk) c N with the {Ik} disjoint such that

Proof. The construction of the sequence (Ik, xk) is based on a standard technique
for halo conditions (cf. [1]). Let So and G be chosen as in (iii) and suppose that
A, a and X are from the halo condition (Definition 2). We begin by setting

X]: n{J,y) # 0}, A, = sup {A{J,y): (J,y)e J,}

and choosing (^i, j ' J e J j with AiJ^yJ ^ AJa. Since A is bounded and a > 1
this is possible unless Jl = 0 in which case Nn*(X) = 0 and the theorem is trivially
proved.

For any ordinal y we continue inductively be defining

Jy = {(J, y): (J, y) eSQ[X], / I(J , J;) # 0 and J n Jy = 0 for all / < y},

Ay = sup{A(J,y): (J,y)eJy}

and choose (Jy, yy)€ Jy so that A(Jy, ;;y) ^ Ay/a; this is possible up to the point at
which Jy = 0 in which case the process terminates.

Since the sets in the sequence {Jy} are disjoint we have for any non-empty finite
set of indices y that

0 < I l ^ r > ; v ) l < ^ S o ( G ) ) < +oo

so that {(Jy, xy)} is at most countable.
Let {(Ik, xk)} be a rearrangement of the possibly transfinite sequence {(Jy, yy)}

into a conventional sequence: we shall prove the theorem by establishing that

For each natural number n let Sn e 9IN be chosen so that

S n c S 0 and Sn

this is possible by repeated applications of (i).
Suppose that (J, y) belongs to

then either n(J, y) = 0 or else J intersects some member of {Jy}. Let y* be the first
ordinal for which Jy» n J # 0 and let /* be the relabelling for y*. Then (J, y) e Jy.
and so A(J, y) < Ay, < aA(Jy,, yy*) from which it follows that (J, y) e Sn(#A

a(JyV yy.)).
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But from the construction of Sn, J cannot intersect any of lx, ... toIn, so that J* > n.
Considering then an arbitrary division

we have from the above arguments that

(D)H/i(./,)OI ^ !*>„ V(n, S,,(///(/,, xk))) < £k>n v(n, S0(//AU, xk)j)

and, using the halo condition, this is less than ?^.k>n V({i, S0(Ik)). Thus

for all n; but

I^W)a(s(C)) +00

and so letting n -* co in the previous inequality yields

as required.
Condition (i) of the theorem restricts the structure of the system (T, $1,1) without

restricting /<: it is possible to give a condition which relaxes this somewhat while
putting more control over p.. For example, it can be easily shown that (i)' given here
can be substituted in the statement of the theorem.

(i)' n is regular [3; Definition 3] in (T, 9IN, N) and for every division D c N with
E = <r(D),

( ) = 0.

A somewhat different version of the theorem can be stated in those situations where
T has a topology. As in [2] we say that (T, % I) is compatible with the topology if
for every open set G in T there is an S e 31 such that S[C] <= S(G). In this setting
Theorem 1 assumes a similar but more familiar form.

THEOREM 2. Let T be a topological space and suppose that (T, 91,1) is a division
system compatible with the topology on T. If n is a real-valued function on I, X a T, N
/.y a covering system on (T, 9T, I) and

(i) for every (/, x) e N, / is closed and xel;

(ii) N satisfies a halo condition on (T, $TN, N) with respect to n, and

(iii) there is an open set G 3 X with N/i*(G) < +oo,

then there exists a sequence {(Ik, xk)} c N with the {Ik} disjoint such that
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Proof. It is enough to observe that such a system evidently satisfies the hypotheses
of Theorem 1.

We conclude by remarking on the problem of identifying the measures Nn* and

N^+: in general these will be distinct. The system of pairs (/, x) where / is a closed
interval in R2 and xel can be used to obtain an example in which NJJ* is Lebesgue
measure in R2 while N/J* vanishes everywhere. However, Theorems 1 and 2 can be
used in combination with [2; Theorem 2.5] to obtain certain conditions under which

References

1. C. Hayes and C. Pauc, " Derivation and martingales ", Ergebnisse der Math. (Springer).
2. B. S. Thomson, " Covering systems and derivates in Henstock division spaces ", / . London Math.

Soc, 4 (1971), 1C3-1O8.
3. , " A theory of integration ", Duke Math. /., 39 (1972), 503-510.

Department of Mathematics,
Simon Fraser University,

Burnaby 2,
B.C., Canada.


