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An integral of the generalized Riemann type is developed which inverts the Schwarz derivative of a
continuous function.

1. Introduction

The second order symmetric derivative of a continuous function F is defined by

the expression

SD
#
F(x)¯ lim

h!
!+

F(xh)F(x®h)®2F(x)

h#

.

This is called sometimes the Riemann derivative or often, with less justification, the

Schwarz derivative. It arises in Riemann’s classical study of trigonometric series and

its use there has kept it as an object of study for nearly a century and a half.

The problem we wish to address is the inversion of this derivative. That is, if

SD
#
F(x)¯ f(x) everywhere for some continuous function F, and f is given, how may

F be determined? This problem arises directly from the coefficient problem

for trigonometric series : if a trigonometric series

a
!
}23

¢

n="

a
n
cos nxb

n
sin nx

converges everywhere to a sum f(x), how may the coefficients of the series be

determined? Of course if f is Lebesgue integrable then one expects the coefficients to

be determined by the usual Fourier formulas using Lebesgue integrals. But such an

f need not be integrable in any of the familiar senses.

The first solutions of this problem are by Denjoy [4], Marcinkiewicz and Zygmund

[10], James [9] and Burkill [3]. All involve the inversion of the derivative SD
#
G(x) or

some natural variant.

It is our purpose in this article to present an integral, defined very nearly as a limit

of Riemann sums, that inverts the second order symmetric derivative of continuous

functions and, hence, that solves the coefficient problem. Since the introduction of the

Henstock–Kurzweil integral some three decades ago, a number of researchers (see,
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for example, [8, p. vi]) have wondered whether analogous ideas could be applied to

these problems. A Riemann-type integral that inverts approximate symmetric

derivatives and also solves the coefficient problem has appeared in [11], based on

covering ideas originating in [6]. In this article we develop the tools needed for a

similar study of the second order symmetric derivative.

2. Some preliminary definitions

2.1. Rectangles and 2-inter�als

Our setting is the real line and the plane. By a rectangle R we mean merely a

product of two closed intervals

R¯ [a, b]¬[c, d ]. (1)

The eccentricity of a rectangle R is the maximum ratio of its two sides,

e(R)¯max (d®c

b®a
,
b®a

d®c* . (2)

If R¯5n

i="
R

i
where R, R

"
, R

#
,… ,R

n
are rectangles and the ²R

i
´ do not overlap, then

we call the finite sequence (R
"
, R

#
,… ,R

n
) a partition of R. Any subsequence of

(R
"
, R

#
,… ,R

n
) shall be called a subpartition of R.

By a 2-inter�al K we mean an ordered pair of intervals of the form

K¯ ([a, b], [ap, b®p]) with a! b, 0! p% "

#
(ab). (3)

Note that this includes the possibility that the second interval of the pair is

degenerate. The center of the two intervals is the same and we denote it as c(K ). For

any 2-interval K with center c we have then

K¯ ([c®h, ch], [c®k, ck])

for some 0%k! h. We write

rKr¯ h and sKs¯ h#®k# (4)

and refer, loosely, to rKr as the length of K and to sKs as the area of K. We refer to

c³h as the outer endpoints of K and c³k as the inner endpoints of K. The 2-interval

K is said to be r-regular if 0%k% rh. For all of our applications r¯ "

$
and so the

condition will read 0% 3k% h.

Every 2-interval K may be regarded as the ‘projection’ of a rectangle R by the

following scheme. Write π : (x, y)! (xy) for the projection from 2# to 2. Then, if

R¯ [a, b]¬[c, d ] is a rectangle, the four corners project to the four points π(a, c),

π(b, c), π(b, d ) and π(a, d ), which can be viewed as the four vertices of a 2-interval.

The points π(a, c) and π(b, d ) form its outer endpoints and the points π(b, c) and

π(a, d ) its inner endpoints. We write π([a, b]¬[c, d ]) for the 2-interval. For example,

if bc! ad, then

π([a, b]¬[c, d ])¯ ([ac, bd ] [bc, ad ]). (5)

Naturally there is a close connection between properties of the rectangle R and its

associated 2-interval π(R). Notice that the center of the 2-interval is given by

c(π([a, b]¬[c, d ]))¯ "

#
(abcd ). (6)
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a + c b + c a + d b + d

(b, d)(a, d)

(a, c) (b, c)

F. 1. A rectangle projecting to a 2-interval.

The area of the 2-interval is

sπ([a, b]¬[c, d ])s¯ "

%
(bd®a®c)#®"

%
(ad®b®c)#

¯ bd®bc®adac¯ (b®a) (d®c)

which latter is exactly the area of the rectangle. Similarly the length of a 2-interval is

rπ([a, b]¬[c, d ])r¯ "

#
(bd®a®c), (7)

which is one quarter of the perimeter of the rectangle. The regularity of a 2-interval

is related to the eccentricity of a rectangle that projects to it ; in particular, if R has

eccentricity no more than e then π(r) is (e®1)}(e1)-regular. We mainly require
"

$
-regularity and this holds for e% 2.

Given any 2-interval K we define a partition into ‘smaller ’ 2-intervals by means

of the projections. If R is any rectangle with π(R)¯K and (R
"
,R

#
,… ,R

n
) is a

partition of R then we shall call

(π(R
"
),π(R

#
),… ,π(R

n
)) (8)

a 2-partition of the 2-interval K. If (R
"
,R

#
,… ,R

n
) is a subpartition of R then we shall

call (8) a 2-subpartition of K. Thus a finite sequence (K
"
,K

#
,… ,K

n
) of 2-intervals is

a 2-partition or 2-subpartition of K if it can be so expressed. While the members of

the sequence (R
"
,R

#
,… ,R

n
) must be distinct in order for them to form a partition of

R, there can easily be duplications in the sequence (8). We also need to be able to refer

to the position of a member in the sequence; for these reasons we must use the

language of sequences here rather than sets.

Let δ be a gauge (that is, a positive function) defined on (a, b), let

K¯ ([a, b], [ap, b®p])

be a 2-interval and suppose that (K
"
,K

#
,… ,K

n
) is a 2-partition or a 2-subpartition of

K ; we say that it is δ-fine at the centers if for each i¯ 1, 2,… , n we have

rK
i
r! δ(c(K

i
)) for i¯ 1, 2,… , n.

We need occasionally to measure the fineness of a partition at an outer endpoint of

a 2-interval ; let us say that a 2-interval K
i
is δ-fine at the endpoint a

i
if rK

i
r! δ(a

i
). The

partition is r-regular if each member K
i
is r-regular.

2.2. Functions on rectangles and 2-inter�als

All functions that appear are real-valued functions defined on the real line, the

plane or defined on rectangles or 2-intervals.
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Let F be a real function defined on 2. The expression

∆#
s
F(x, h)¯F(xh)F(x®h)®2F(x) (9)

is called the second order symmetric difference of F at x. Most of our concerns in this

article arise from this difference. We recall some of the terminology that has evolved.

A function F is said to be smooth at a point x if ∆#
s
F(x, h)¯ o(h) as h! 0. For an

arbitrary function F the extreme second order symmetric derivatives are defined as

SD
#
F(x)¯ lim sup

h!
!+

∆#
s
F(x, h)

h#

and SD
#
F(x)¯ lim inf

h!
!+

∆#
s
F(x, h)

h#

.

If these are equal and are finite we write their common value as SD
#
F(x), which is

called the second order symmetric deri�ati�e ; it is this derivative to which the title of

the paper refers and which serves as the underlying basis for the integral that is to be

developed.

There is an evident connection with 2-intervals obtained by associating the 2-

interval ([x®h,xh], [x,x]) with this expression. The connection with arbitrary r-

regular 2-intervals will come about because of the following elementary computation:

if 0%k% rh, then

h#k#% (1r#) h#¯
1r#

1®r#
(h#®r#h#)%

1r#

1®r#
(h#®k#). (10)

We shall use the notation

C
r
¯

1r#

1®r#
. (11)

Throughout the article the only regularity condition imposed will be the use of
"

$
-regular 2-intervals and so r¯ "

$
and C

"/$
¯ "!

)
.

By definition the existence of the derivative SD
#
G(x)¯ f(x) requires that for every

ε" 0 there is a δ" 0 so that

rG(xh)G(x®h)®2G(x)®f(x) h# r! εh#

for 0! h! δ. Now we see easily, using (10) and (11), that this translates into the

requirement that

rG(xh)G(x®h)®G(xk)®G(x®k))®f(x) (h#®k#)r

! ε(h#k#)% εC
"/$

(h#®k#)

for 0% 3k% h! δ.

We can translate this into the language of 2-interval functions. For any 2-interval

K¯ ([c®h, ch], [c®k, ck]) and any real function G we define

∆
K

G¯G(c®h)G(ch)®G(c®k)®G(ck). (12)

Now writing K¯ ([x®h,xh], [x®k,xk]) and using (12) the inequality above

translates directly to the statement that

r∆
K

G®f(x) sKs r! εC
"/$

sKs (13)

for x¯ c(K ), rK r! δ provided that K is "

$
-regular.

For any rectangle R¯ [a, b]¬[c, d ] and any function H of two variables we write

the difference
H(R)¯H(a, c)®H(a, d )®H(b, c)H(b, d ). (14)
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In particular note that if the sequence (R
"
,R

#
,… ,R

n
) is a partition of R then

H(R)¯3
n

i="

H(R
i
), (15)

so that H is interpreted as an additive rectangle function.

If we write H(x, y)¯G(xy), then notice that

H(R)¯∆π(R)
G (16)

for any rectangle R, thus linking (14) and (12). As a result of this we see, using (15),

that if the sequence (K
"
,K

#
,… ,K

n
) is a 2-partition of the 2-interval K then

∆
K

G¯3
n

i="

∆
Ki

G. (17)

3. Co�ering theorems

The integral will be defined as a certain limit of Riemann sums taken over 2-

partitions. Justification for the integral requires that in the setting of the definition

such 2-partitions necessarily exist. This is supplied by covering theorems which are

modifications of one from [1].

In the first theorem (Theorem 8) we obtain the most refined version with an

explicitly determined exceptional set that is ‘splattered’. This version requires strong

assumptions on the gauge that we wish to avoid in defining the integral. The second

version (Theorem 9) is the one we use throughout and is the form useful to us. Note

that the term gauge means merely a positive function; this is the most common

language currently in use in discussions of Riemann-type integrals.

In order to define an appropriate integral it seems we would be required to show

that for any gauge δ on 2 and any 2-interval K there is a sequence (I
"
, I

#
,… , I

n
)

forming a 2-partition of the K that is "

$
-regular and such that each I

i
is δ-fine at the

center. This cannot be exactly true: if it were one could conclude that any function

G that satisfies G(xh)G(x®h)®2G(x)¯ 0 locally satisfies that identity globally,

and this is false (for example, let G(x)¯ sgn (x)). The form of the covering theorem

thus needs a modification allowing extra members of the partition that are not δ-fine.

We show that there is a countable set E¯²x
"
,x

#
,x

$
,…´ with the property: for any

2-interval

K¯ ([a, b], [ap, b®p])

and for any gauge γ on .¬. there is a sequence

(I
"
, I

#
,… , I

n
)

forming a 2-partition of the 2-interval K that is "

$
-regular, such that each I

i
is either

δ-fine at the center or else I
i
has an outer endpoint x

j
in E with rI

i
r! γ(i, j).

The lemmas which now follow develop the machinery for such a proof.

3.1. Geometrical arguments

L 1. Let δ be a gauge in the plane which is constant on lines with slope ®1.

Let L be the union of a closed set of lines with slope ®1 and let D denote the complement

of L. Suppose that L« is a union of some subcollection of the lines in L such that L« is
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dense in L. Then, for any a! b and any y there is a c such that "

#
(b®a)% c®y% 2(b®a)

and the rectangle R¯ [a, b]¬[y, c] can be partitioned into subrectangles such that each

rectangle in the partition is of one of the following types:

(α) its center is in L« and its eccentricity is less than or equal to 2,

(β) its interior is in the open set D,

(γ) it is a δ-fine square with center in L.

Proof. We may assume without loss of generality that a¯ 0, b¯ 1 and that

y¯ 0.

Case 1. Some line l in L (and hence also then some line l« in L« ) intersects the

y-axis in the interval ($
%
, $
#
) (see Figure 2).

R

p«

2p«

l «

3
2

3
4

F. 2. Case 1 in Lemma 1.

Then l« also intersects the vertical line x¯ "

#
at some point ("

#
, p« ) where "

%
! p«! 1.

Then if we let c¯ 2p« the rectangle R¯ [0, 1]¬[0, c] has center ("
#
, p« ) and is of type α

so we are done.

For the remaining cases we shall take c¯ "

#
so that R¯ [0, 1]¬[0, "

#
].

Case 2. Some line l in L intersects the y-axis in the interval ("
#
, $
%
] but not

in ($
%
, $
#
) as for Case 1. Let l be that line in L with the greatest y-intercept in ("

#
, $
%
]. Since

l has a y-intercept exceeding "

#
it must intersect the horizontal line y¯ "

%
at some

point (p, "
%
) where "

%
! p% "

#
(see Figure 3). Then, since L« is dense in L, there is a line

l « l

p« p

R1 R2

R

2p« 1

3
4

1
2

1
4y =

F. 3. Case 2 in Lemma 1.

l « in L« that is sufficiently close to l that it intersects the horizontal line y¯ "

%
at

some point (p«, "
%
) where "

#
p"

)
! p«% p. Note that 2p«" p"

%
which is the x-intercept
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of l. Thus R can be partitioned into the two rectangles R
"
¯ [0, 2p«]¬[0, "

#
] and

R
#
¯ [2p«, 1]¬[0, "

#
] with R

"
of type (α) since its center is on the line l « and R

#
of

type (β) by the assumptions on L and the maximality of l.

Case 3. Some line l in L intersects the y-axis in the interval (0, "
#
] but not in

("
#
, $
#
) as for Cases 1 and 2. Let l be that line in L with the greatest y-intercept (0, p) in

(0, "
#
]. We may choose l« in L« so that l« has y-intercept (0, p«) with p®p« as small as

we please (see Figure 4).

l « l

p«
p

S1

S2 R

1

1
2

S3

F. 4. Case 3 in Lemma 1.

Note that for any choice of l« the square S
"
¯ [0, p«]¬[0, p«] is of type (α), while the

squares S
#
¯ [0, p®p« ]¬[p«, p] and S

$
¯ [p«, p]¬[0, p®p« ] have centers on the line l.

(If p¯ p« then the squares are degenerate and can be left out.) The remainder of the

rectangle, that is, R c (S
"
eS

#
eS

$
), has its interior in D and so can be partitioned into

subintervals of type (β). We have then only to choose p« sufficiently close to p so that

squares S
#
and S

$
are δ-fine at their centers (recall that δ is constant on l ). Accordingly

we have partitioned R as required.

Case 4. In the final case no line l in L intersects the y-axis in the interval (0, $
#
).

Then L does not meet the interior of the rectangle R and so R itself if of type (β) and

we are done.

L 2. Let δ, L, L« and D be as in the preceding lemma and let S denote

the square [a, b]¬[a, b]. Then there is a subrectangle R¯ [a, d ]¬[a, b] of S where

d®a& "

"#
(b®a) and R can be partitioned into rectangles each of type (α), (β) or (γ).

Proof. As before we may assume that a¯ 0 and b¯ 1 so that S is the unit square

[0, 1]¬[0, 1].

Case 1. There is a line l in L (and hence also a line l « in L« ) such that its

y-intercept is in ($
%
, 1) (see Figure 5). Such an l « intersects the horizontal line y¯ "

#

at some point (p«, "
#
) where "

%
! p«! "

#
. Then the rectangle R¯ [0, 2p« ]¬[0, 1] is of type

(α) with center (p«, "
#
) in L« and 2p«& "

"#
so that R satisfies the required conditions.

Case 2. Suppose that L does not intersect the y-axis between $

%
and 1 (see Figure

6). Let d¯ "

"#
so that R is the rectangle [0, "

"#
]¬[0, 1]. By the preceding lemma there

is a partition of the desired type for the rectangle R
"
¯ [0, "

"#
]¬[0, c

"
] for some choice

of "

#%
% c

"
% "

'
. Applying the lemma again we partition R

#
¯ [0, "

"#
]¬[c

"
, c

#
] for

some choice of "

#%
% c

#
®c

"
% "

'
. Continue inductively partitioning the interval
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l «

p«

R

2p«

1

1
2

3
4

S

1

F. 5. Case 1 in Lemma 2.

l «
l

p«
p

S1

S2
1

13
12

11
12

S3

1
12

R1

R2

Rn

R«

0

c2c1

cn
cn–1

I

F. 6. Case 2 in Lemma 2.

R
i
¯ [0, "

"#
]¬[c

i−"
, c

i
] for some choice of "

#%
% c

i
®c

i−"
% "

'
until some c

n
` [$

%
, ""
"#

]. This

must occur at some stage since ""

"#
®$

%
¯ "

'
. In this way we have obtained a partition of

the required form for the rectangle

[0, "

"#
]¬[0, c

n
]¯5

n

i="

R
i
.

We shall be done if we can also partition the rectangle R«¯ [0, "

"#
]¬[c

n
, 1].

If R« has its interior entirely in D then immediately R« itself is of type (β) and we

are done. If not then there is at least one line l in L which intersects the y-axis at a

point (0, p) where 1% p! "$

"#
.

Let l be that line in L with the least y-intercept (0, p) in [1, "$
"#

). We may choose l «
in L« so that l « has y-intercept (0, p« ) with p«®p as small as we please.

Note that for any choice of l « the square S
"
¯ [p«®1, "

"#
]¬[p«® "

"#
, 1] is of type (α),

while the squares

S
#
¯ [p®1, p«®1]¬[1®p«p, 1] and S

$
¯ [ "

"#
®p«p, "

"#
]¬[p® "

"#
, p«® "

"#
]

have centers on the line l. (Again see Figure 6; this argument is a repetition of the

ideas found in Case 3 of the preceding lemma. Note that if p¯ p« then the squares S
#

and S
$

are degenerate and can be left out.)
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The remainder of the rectangle, that is, R« c (S
"
eS

#
eS

$
), has its interior in D and

so can be partitioned into subintervals of type (β). We have only then to choose p«
sufficiently close to p so that squares S

#
and S

$
are δ-fine at their centers (recall that

δ is constant on l ). Accordingly, we have partitioned R« and hence also R as required.

L 3. Let δ, L, L« and D be as in the preceding lemmas. Let R be any

rectangle, x any point inside π(R) and N any neighborhood of x. Then R can be

partitioned into rectangles, each of type (α), (β) or (γ), together with up to four

rectangles with eccentricity not exceeding 2 that project into N and ha�e an outer corner

that projects to x.

Proof. Quadrasect R by a horizontal line and a vertical line so that P, the

common vertex of the rectangles, projects to x. We show that each of these four can

be partitioned into rectangles, each of type (α), (β) or (γ), together with one further

rectangle, with eccentricity not exceeding 2, that projects into N and has an outer

corner that projects to x. The lemma then follows.

Without loss of generality we may assume that rN r! δ((x, 0)) if x `π(L), and

NZπ(D) if x `π(D).

We illustrate the arguments with the T chosen as that subrectangle with lower

right corner P (that is, T is the northwest rectangle). The southeast rectangle admits

an identical treatment and the remaining two rectangles (northeast and southwest)

are slightly easier.

Let S
"
denote the largest square contained in T and containing the corner of T that

is opposite to P. If S
"
contains the left edge of T we can, by applying Lemma 2, obtain

a partition of a rectangle T
"
ZS

"
where T

"
contains at least the left "

"#
th of S

"
. If S

"

contains the top edge of T we can similarly obtain a partition of a rectangle T
"
ZS

"
,

where T
"
contains at least the top "

"#
th of S

"
. After choosing T

"
we let S

#
be the largest

square contained in the rectangle T cT
"
again containing the opposite corner to P. By

the same procedure there is subrectangle T
#
ZS

#
where T

#
contains at least the left or

the top "

"#
th of S

#
(see Figure 7).

S1
T2

T T T TS2

P P P P

T1

S3
S4

T4T3

F. 7. Partition of T in Lemma 3.

Continuing in this manner we get a sequence of rectangles T
"
,T

#
,T

$
,… each of

which may be partitioned as required. At some stage

T «¯T c (T
"
eT

#
e . . .T

n
)

is a rectangle with eccentricity not more than 2, with a lower right corner P, and that

projects entirely into the neighbourhood N. Note that in this case P is an inner corner

of T « and so we are not done. However had the original rectangle T been chosen as

the northeast or southwest rectangle then this same argument can terminate since P

would, in those cases, be an outer corner of T « and so T « is of the type we require and

thus a partition of T itself of the desired type is obtained.

We continue then. Let S « be the largest square contained in T « and with corner

P. Note that the center of the square also projects to x. If x `π(L) then S « is of type
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(γ), since rN r! δ(x), while if x `π(D) S « is of type (β), since NZπ(D). The remainder

of the rectangle T «,T « cS « now has an outer corner projecting to x and can be treated

as either a northeast or a southwest rectangle which we already know how to partition

in the manner required.

C 4. Let δ, L, L« and D be as in the preceding lemmas. Let R be any

rectangle which intersects the open set D. Then R can be partitioned into rectangles each

of type (α), (β) or (γ).

Proof. Apply Lemma 3 with P any point in the rectangle that lies in D. Then the

four subrectangles of the lemma that have corners at P can be chosen inside D and

so are of type (β).

3.2. Category arguments

L 5. Let L« be the union of a set of lines with slope ®1. Let R be a rectangle

such that L« is dense in R and is co-meager in some neighborhood inside R. Then R can

be partitioned into rectangles of type (α).

Proof. Let P be a point interior to R such that in a neighborhood N of P the

family L« is co-meager. Quadrasect R by a horizontal line and a vertical line so that

P is the common corner of the four resulting rectangles. It will suffice to show that

one of these four can be partitioned as described, as symmetric arguments apply to

the others. Let T be that subrectangle with lower right corner P and let S
"
denote the

largest square contained in T and containing the corner of T that is opposite to P.

If S
"
contains the left edge of T we can select a rectangle T

"
ZS

"
with center in L«,

where T
"
contains at least the left half of S

"
. If S

"
contains the top edge of T we can

similarly obtain a rectangle T
"
ZS

"
, again with center in L«, where T

"
contains at least

the top half of S
"
. After choosing T

"
, we let S

#
be the largest square contained in the

rectangle T cT
"
, again containing the opposite corner to P. By the same procedure

there is subrectangle T
#
ZS

#
, where T

#
contains at least the left or the top half of S

#

and the center of T
#

is in L«.
Continuing in this manner we get a sequence of rectangles T

"
,T

#
,T

$
,… each of

which has center in L« and each with eccentricity no greater than 2. At some stage

T «¯T c (T
"
eT

#
e . . .T

n
)

is a rectangle with a lower right corner P that lies entirely in the neighborhood N.

Next we partition T « into smaller rectangles each having a length bigger than its

height but less than twice the height. It remains to partition each of these smaller

rectangles into rectangles of type (α).

Let T§ be one of these rectangles. We may assume, without loss of generality, that

T§¯ [0, d ]¬[0, 1], where 1! d! 2, and that the square [0, d ]# lies entirely in the

neighborhood N. Write

A¯²2s : (s, "
#
) ` l« for some l« `L« ´.

Because L« is co-meager in N, the set A of real numbers is co-meager in the interval

(0, 2d ). Select a point t in the intersection

Af(A®d )f("
#
, d®"

#
).
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T ««

t

1
2

1
2(   t

.
,    )

1
2

1
2

d – 2

1
2

.(   (t + d ),   ).1
2

F. 8. Partition of T§ in Lemma 5.

Then the rectangles [0, t]¬[0, 1] and [t, d ]¬[0, 1] (see Figure 8) have centers (("
#
t, "

#
) and

("
#
(td ), "

#
) respectively) that lie in L«. Since t and d®t both lie between "

#
and $

#
the

eccentricity of these rectangles does not exceed 2 as required.

We immediately obtain the following from Lemma 5 and Corollary 4.

C 6. Let δ, L, L« and D be as in the statement of Lemma 1 and suppose

that L« is co-meager in L. Then any rectangle R can be partitioned into rectangles each

of type (α), (β) or (γ).

For convenience we state the Baire category theorem in its splattered form (see

[7]). Recall that a set is scattered (clairseme! ) if every nonempty subset has an isolated

point. A set is right [left] scattered if every nonempty subset has a point isolated on

the right [left]. A set is splattered if it may be expressed as the union of a right

scattered set and a left scattered set.

L 7 (Splattered Baire). Let A be an open inter�al of real numbers and

suppose that A¯5¢

i="
A

i
where A

"
ZA

#
ZA

$
… . Then there is a sequence, possibly

transfinite, of open sets G
!
ZG

"
ZG

#
… such that

(i) G
!
¯W,

(ii) Gξ ¯A for some countable ordinal ξ,

(iii) if λ is a limit ordinal then Gλ ¯5η!λ Gη,

(iv) for each ordinal η there is a set A
i
dense in Gη+"

cGη.

The boundary points of the open sets form a splattered set. If the sets A
i
ha�e the

Baire property then ‘dense ’ in (iv) may be replaced by ‘co-meager ’.

Proof. Assertions (i) and (iii) define the sequence initially and at limit ordinals.

Otherwise choose, by the Baire category theorem, an A
i
which is somewhere dense in

A cGη, say in an interval I, and set Gη+"
¯GηeI. (If the A

i
have the Baire property

then I and A
i
may be selected so that, in addition, (I cGη) cA

i
is meager.) It is clear

that the set of right [left] endpoints of the Gη is left [right] scattered. Finally, by the

Cantor–Baire stationary principle, the sequence of open sets will cover A at some

countable ordinal.

3.3. The main co�ering theorems

We now state and prove the first covering theorem.
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T 8. Let δ be a gauge on 2 with the Baire property. Then there is a

splattered set E¯²x
"
,x

#
,x

$
,…´ with the following property: for any 2-inter�al

K¯ ([a, b], [ap, b®p])

and for any gauge γ on .¬. there is a sequence

(I
"
, I

#
,… , I

n
)

forming a 2-partition of the 2-inter�al K that is "

$
-regular, such that each I

i
is either

δ-fine at the center or else has an outer endpoint x
j
in E with rI

i
r! γ(i, j).

Proof. For each natural number i let A
i
¯²x : δ(x)" i−"´ and apply the splattered

Baire category theorem, Lemma 7, to obtain a transfinite sequence of open sets ²Gη´
with the properties stated. Note that because δ has the Baire property the condition

(iv) of Lemma 7 is met with ‘co-meager ’ rather than merely dense.

It is more convenient to translate the theorem to a statement about rectangles. Let

δ «(x, y)¯ δ(xy) ; then δ « is a gauge on 2# that is constant on lines with slope ®1

(so that the lemmas of Sections 3.1 and 3.2 may be applied). Let E¯²x
"
,x

#
,x

$
,…´

be the splattered set of the endpoints of the ²Gη´. We shall show that any rectangle R

that projects to a subset of a set Gη has the following property:

(*) for any gauge γ on .¬. there is a sequence

(R
"
,R

#
,… ,R

n
)

of subrectangles forming a partition of R such that, for each i¯ 1, 2…n, the rectangle

R
i
has eccentricity no more than 2 and either

(i) R
i
is δ «-fine at its center, or

(ii) R
i
has an outer corner that projects to a point x

j
in E with rπ(R

i
)r! γ(i, j).

Since Gη ¯2 at some stage this proves the theorem.

The property (*) can be more conveniently stated in an equivalent form:

(**) for any gauge γ on .¬. there is a sequence

(R
"
,R

#
,… ,R

n
)

of subrectangles forming a partition of R such that, for each i¯ 1, 2…n, the rectangle

R
i
has eccentricity no more than 2 and either

(i) R
i
is δ «-fine at its center, or

(ii) R
i
has an outer corner that projects to a point x

j
in E with rπ(R

i
)r! γ(i, j), or

(iii) R
i
itself satisfies (*).

We prove that (*) and (**) are equivalent. It is clear that (*)3 (**). Conversely

suppose R satisfies (**) and γ is a gauge on .¬.. Then there is a sequence

(R
"
,R

#
,… ,R

n
) of subrectangles forming a partition of R such that each R

i
has eccen-

tricity no more than 2 and each is of type (i), (ii) or (iii). We show how to construct a

new sequence (R!

"
,R!

#
,… ,R!

m
) forming a partition of R with each R!

i
having eccentricity

no more than 2 and each of type (i) or (ii). It will follow that R satisfies (*) and we are

done. Each R
i
in the original sequence is treated, in turn, in the following manner. If

R
i
is of type (i) or (ii) then set R!

i
¯R

i
. If R

i
is of type (iii) then choose an appropriate

gauge γ
i
and apply (*) with that gauge to obtain a partition (R

i"
,R

i#
,… ,R

ini

) of R
i
.
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Replace R!
i
¯R

i"
and place (R

i#
,R

i$
,… ,R

ini

) at the end of the sequence so far

obtained. It is easy to select each γ
i
so that the resulting sequence satisfies (ii) with

respect to the original gauge γ.

Now we observe some facts about (*) (or equivalently (**)). The property (*) is

additive. If R¯5n

i="
R

i
is a partition of R and each R

i
has property (*) then so too

does R. This is clear since if this is so then R has property (**) trivially and this has

been seen to be equivalent to (*).

Note too that (*) has a compactness property. If for every α! β the property (*)

holds for each rectangle that projects into the open set Gα, then (*) holds for each

rectangle R that projects into the open set 5α!β Gα. By compactness, R projects into

some finite union Gα
"

eGα
#

…eGα
n

and so R may be partitioned into subrectangles

each of which projects into single Gα
i

. Since each of these has property (*) it follows,

from the additivity property, that R does too.

And finally note that (*) has a closure property. Let (a, b) be an open interval with

endpoints a, b `E. If every rectangle that projects into (a, b) has (*) then so too does

every rectangle R that projects into [a, b]. Let such a rectangle R and a gauge γ on

.¬. be given. If an outer corner of R projects to a or b it can be handled as follows.

If R¯ [c
"
, d

"
]¬[c

#
, d

#
] then it may be partitioned into (S

"
, S

#
, T

"
, T

#
, T

$
) where S

"
¯

[c
"
, c

"
ε]¬[c

#
, c

#
ε] and S

#
¯ [d

"
®ε, d

"
]¬[d

#
®ε, d

#
], for arbitrarily small ε" 0, are

two squares and T
"
, T

#
, T

$
are three rectangles which project entirely into (a, b). The

subrectangles T
i
satisfy (**) (iii) (since they project to subsets of (a, b)) and S

"
, S

#
will

satisfy (**) (ii) if ε is made sufficiently small since the outer corners project to points

in E. By definition R must have property (**) (and hence (*) as well) and we are done.

We show now that for each ordinal η and any rectangle R that projects to a subset

of Gη the assertion (*) holds. For the initial member of the sequence, G
!
¯W there is

nothing to prove. For λ, a limit ordinal, the compactness property supplies the

statement.

Now suppose that we have verified (*) for all rectangles that project into Gη and

we have a rectangle R that projects into Gη+"
. Recall that for some i the set A

i
is co-

meager in Gη+"
cGη. By the additivity property we may assume that rRr! i−".

We apply Corollary 6 with the gauge δ « and with D¯π−"(Gη) and L«¯
Lfπ−"(A

i
), where π is, as before, the projection map π(x, y)¯xy. By Corollary 6

we may partition R into subrectangles of types (α), (β) or (γ). The rectangles of type

(α) or (γ) already have (*) while rectangles of type (β) must have (*) because of the

induction hypothesis and the closure property. By the additivity property then R must

have property (*) as well and we are done.

The following covering theorem will be the one required for most purposes ; here

there is no restriction on the gauge. Note that the exceptional set is merely countable.

T 9. Let δ be a gauge on 2. Then there is a countable set E with the

following property: for any 2-inter�al

K¯ ([a, b], [ap, b®p]) for 0! p% "

#
(ab)

and for any gauge γ on E¬. there is a sequence (I
"
, I

#
,… , I

n
) forming a 2-partition of

the 2-inter�al K that is "

$
-regular, such that each I

i
is either δ-fine at the center or else

has an outer endpoint x in E with rI
i
r! γ(x, i).

Proof. We repeat the arguments used in the proof of Theorem 8 identically, up

to the application of Corollary 6, with the following exceptions. Since the gauge need
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not have the Baire property we are assured only that the sets A
i
are dense, rather than

co-meager, in the portion required; that is, A
i
is dense (merely) in Gη+"

cGη. For this

proof we let E¯²x
"
,x

#
,x

$
,…´ be the splattered set of the endpoints of the ²Gη´

together with the addition of any countable dense set.

As before we have a rectangle R which projects into Gη+"
and we may assume that

rRr! i−". Since E is dense, choose a point P in the rectangle R such that π(P)¯
x
j
`E. Let N be a neighborhood of x

j
smaller in length than γ(x

j
, i) for i¯ 1, 2, 3, 4. Use

Lemma 3 to partition R into rectangles of type (α), (β) or (γ) together with up to four

rectangles of eccentricity no more than 2 which project into N and have an outer

corner projecting to x
j
. These four rectangles are satisfactory for the first four

elements of a partition of R by the definition of N. The remaining rectangles, since

they are of type (α), (β) or (γ), satisfy (*). Accordingly R satisfies (**) and hence (*),

as required.

4. The integral

Our goal is to introduce an integral which inverts the second order symmetric

derivative. Suppose that F is a continuous function for which SD
#
F(x)¯ f(x)

everywhere and f is given. How can we recover F? Equivalently, how can we recover

the expression
∆

Kp

F¯F(a)F(b)®F(ap)®F(b®p) (18)

for all 2-intervals K
p
¯ ([a, b], [ap, b®p]) ? For most applications, however, it is

more to the point to recover the expression

Λ
F
(a, b)¯ lim

p!
!+

F(a)®F(ap)®F(b®p)F(b)

p
(19)

which can also be written as

Λ
F
(a, b)¯ lim

p!
!+

∆
Kp

F

p
. (20)

The discussion in Section 2.2 and other considerations lead us to the following

definition for the integral. Let δ be a gauge and let

K
p
¯ ([a, b], [ap, b®p])

be a 2-interval. Let us say that a countable set E is an associated exceptional set for

δ if the conclusion of Theorem 9 holds for the pair. Thus for any gauge γ on E¬.

there is a 2-partition of K
p

where each element is "

$
-regular and each is δ-fine at its

center or else has an outer endpoint in E and is γ-fine at that endpoint.

D 10. Let the function f be defined everywhere on an interval (a, b) and

let K
p
¯ ([a, b], [ap, b®p]) be a 2-interval. Then f is said to be 3 #-integrable on K

p

with value I( f,K
p
) if for every ε" 0 there is a gauge δ so that for any associated

exceptional set E¯²x
"
,x

#
,x

$
,…´ there is a gauge η on E¬. such that for any

sequence
(K

"
,K

#
,… ,K

n
)

forming a 2-partition of the 2-interval K
p

that is "

$
-regular, and such that each K

i
is

either δ-fine at its center or else has an outer endpoint x
j
in E with rK

i
r! η(x

j
, i) we

have )3n
i="

«f(c(K
i
)) sK

i
s®I( f,K

p
))! ε

where 3 « indicates that the sum is taken only over the K
i
that are δ-fine at the center.
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It is not immediately clear that the integral is well defined. The main covering

theorem, Theorem 9, supplies this.

L 11. Let the function f be defined e�erywhere on an inter�al (a, b) and let K

be a 2-inter�al. If f is 3 #-integrable on K with �alue I( f,K ) then I( f,K ) is unique.

Proof. If I( f,K )¯ c
"

and I( f,K )¯ c
#

and ε" 0 then, applying the definition,

there are two gauges δ
"
and δ

#
for which the statement of the definition holds. Let E

be the countable exceptional set from Theorem 9 using δ¯min ²δ
"
, δ

"
´. Continuing

in the definition, there are gauges η
"
and η

#
on E¬.. Let η¯min ²η

"
, η

"
´. Then, by

Theorem 9, there exists a sequence (K
"
,K

#
,… ,K

n
) forming a 2-partition of K that is

"

$
-regular, and such that each K

i
is either δ-fine at its center or else has an outer

endpoint x
j
in E with rK

i
r! η(x

j
, i). This sequence can be used with c

"
or c

#
to show

that )3n
i="

«f(c(K
i
)) sK

i
s®c

j)! ε for j¯ 1, 2

and hence that rc
"
®c

#
r! 2ε. Since ε is arbitrary, the conclusion follows.

The ‘ integral ’ I( f,K
p
) taken over the 2-interval K

p
may be converted to an

ordinary first order integral by the following definition.

D 12. A function f defined on an interval (a, b) is said to be 3-

integrable on [a, b] and we write

(3 )&b

a

f(x) dx¯ lim
p!

!+

I( f, ([a, b], [ap, b®p]))

p

if this limit exists.

Notice that, in order for the integral (3 )!b

a
f(x) dx to be defined, the integral

I( f,K
p
) must exist for K

p
¯ ([a, b], [ap, b®p]) and all sufficiently small p" 0 and

the limit in the definition must exist.

The 3-integral is easily shown to generalize the Kurzweil–Henstock, or Riemann-

complete integral. It therefore also generalizes the Lebesgue integral and is strong

enough to invert ordinary derivatives.

However, as stated in the introduction, our main objective is to invert second

symmetric derivatives of continuous functions. The next theorem will present an

integrability criterion which will be used to show that the 3 #-integral realizes this

objective. This criterion is also useful for connecting the 3 #-integral to more familiar

Perron type integrals, which are also based on the second symmetric derivative, but

we shall not give the details here.

T 13. A sufficient condition that a function f be 3 #-integrable on a 2-

inter�al K
p
¯ ([a, b], [ap, b®p]) is that there is a continuous function G on [a, b] so that

for e�ery ε" 0 there is a con�ex function H with ∆
Kp

H! ε and there is a gauge δ such

that
rG(xh)G(x®h)®G(xk)®G(x®k)®f(x) (h#®k# )r

%H(xh)H(x®h)®H(xk)®H(x®k)

for all x ` (a, b) and 0% 3k% h! δ(x). In that case I( f,K
p
)¯∆

Kp

G.
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Proof. Note first that if the inequality of the theorem holds then, writing

K¯ ([x®h,xh], [x®k,xk]), we have

r∆
K

G®f(x) sKs r%∆
K

H (21)

for 0% 3k% h! δ(x).

Let ε" 0 and suppose that δ, K
p
, G and H are as in the statement of the theorem.

Let E¯²x
"
, x

#
, x

$
,…´ be any exceptional set associated with δ. Since G is continuous

we may select positive numbers c
ij

so that

r∆
J
G r! ε2−i−j (22)

whenever J is a 2-interval with an outer endpoint x
j
`E and rJ r! c

ij
. Define the gauge

η(x
j
, i)¯ c

ij
for each x

j
`E and i `..

Now consider any sequence (K
"
, K

#
,… ,K

n
) forming a 2-partition of the 2-interval

K
p

that is "

$
-regular, and such that each K

i
is either δ-fine at its center or else has an

outer endpoint x
j
in E with rK

i
r! η(x

j
, i)¯ c

ij
. We use the notation 3 « to indicate a

sum taken over the K
i
that are δ-fine at the centers and 3§ to indicate the remaining

sum where K
i
has an outer endpoint x

j
in E. We have then, using (17), (21) and (22),

that )3n
i="

«f(c(K
i
)) sK

i
s®∆

Kp

G)%3
n

i="

« r f(c(K
i
)) sK

i
s®∆

Ki

G r3
n

i="

§ r∆
Ki

G r

!3
n

i="

«∆
Ki

Hε%∆
Kp

Hε! 2ε.

The last inequalities use just the convexity of H (that is, the fact that ∆
K

H& 0 for

every K ). By definition then, f is 3 #-integrable on K
p

and the value of the integral is

∆
Kp

G, as required.

T 14. Suppose that G is a continuous function on [a, b] and that

K
p
¯ ([a, b], [ap, b®p]) is a 2-inter�al. If SD

#
G(x)¯ f(x) exists e�erywhere on (a, b),

then f is 3 #-integrable on K
p

and

I( f,K
p
)¯∆

Kp

G.

Proof. If SD
#
G(x)¯ f(x) exists everywhere on (a, b) then for every η" 0 there

is a gauge δ with

rG(xh)G(x®h)®2G(x)®f(x) h# r! ηh#

for a!x! b and 0! h! δ(x). It follows then, using (10) and (11), that

rG(xh)G(x®h)®G(xk)®G(x®k))®f(x) (h#®k# )r! ηC
"/$

(h#®k#)

for all x ` (a, b) and 0% 3k% h! δ(x).

Accordingly, we may use H(x)¯ ηC
"/$

x#, where ηC
"/$

¯ ε in the statement of

Theorem 13 and the theorem follows.

For the first order integral (3 ), this theorem takes on the following form.

C 15. Suppose that G is a continuous function on [a, b] such that

Λ
G
(a, b) exists and that SD

#
G(x)¯ f(x) exists e�erywhere on (a, b). Then f is

3-integrable on [a, b] and

(3 )&b

a

f(x) dx¯Λ
G
(a, b).
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Proof. This follows directly from (20), Theorem 14 and the definition of the

integral.

5. An application to trigonometric series

Our main tool in this series is the following classical observation of Riemann. If

the trigonometric series

a
!
}23

¢

n="

a
n
cos nxb

n
sin nx (23)

converges everywhere to a function f, then the second formal integral of the series

converges to a continuous function G, and the second symmetric derivative of G is f.

From this and Theorem 14 one shows easily that everywhere convergent trigonometric

series are 3-integrable and may be expressed in Fourier form.

T 16. Suppose that the trigonometric series (23) con�erges e�erywhere to

a function f. Then f is 3-integrable on e�ery period and

a
n
¯

1

π& c+#
π

c

f(t) cos nt dt, b
n
¯

1

π& c+#
π

c

f(t) sin nt dt

in the sense of that integral.

Proof. Let G denote the continuous function represented by the second formal

integral of the series. Then, G(x)®x#a
!
}4 is 2π-periodic, and since SD

#
G(x) exists

everywhere, G is smooth. Let g(x)¯x#a
!
}4 and then from (19) we easily compute that

Λ
G
(c, c2π)¯Λ

G−g
(c, c2π)Λ

g
(c, c2π)

for any real c. Since G®g is smooth and periodic, the first term on the right is zero,

while the second is easily calculated to be πa
!
. Since SD

#
G(x)¯ f(x) everywhere,

Corollary 15 supplies the correct formula for a
!
, that is, that

(3 )& c+#
π

c

f(t) dt¯Λ
G
(c, c2π)¯πa

!
,

as required.

In the same way we obtain a formula for the remaining coefficients ; multiply the

series a
!
}23¢

n=!
a
n
cos nxb

n
sin nx by coskx, use elementary trigonometric

identities for cos nx coskx and for sin nx coskx, and rearrange the series to obtain a

trigonometric series that converges everywhere to f(x) coskx. For example the term

corresponding to a
n
coskx cos nx is replaced by

a
n
(cos (nk)xcos (n®k)x)}2

before rearrangement. (This is exactly the argument in [10, p. 41] where they point out

that it follows from the Rajchman theory of the formal multiplication of trigonometric

series.)

As before, the twice formally integrated series converges uniformly and has

everywhere f(x) coskx for its second symmetric derivative. Consequently (much as

before) f(x) coskx is integrable and we may integrate it over a period [c, c2π] for

every c. Since the constant term in the series for f(x) coskx is a
k
}2 this gives the

required formula for a
k
. A similar argument supplies the formula for b

k
.
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This theorem can be expressed directly in terms of our 3 #-integral over 2-

intervals, but it assumes a less familiar form (cf. [12, Vol. II, pp. 90–91]).

T 17. Suppose that the trigonometric series (23) con�erges e�erywhere.

Then f is 3 #-integrable on the 2-inter�al ([®2π, 2π], [0, 0]) and the coefficients may be

gi�en by the formulas

a
n
¯

1

π#

I( f(t) cos nt, ([®2π, 2π], [0, 0])), b
n
¯

1

π
#

I( f(t) sin nt, ([®2π, 2π], [0, 0]))

in the sense of that integral.

Other variants and properties of the integrals can be established using standard

techniques.
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