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5. APPLICATION TO THE PROOF OF INVARIANCE OF THE INTERVAL.
Suppose the coordinates x = (t, x, y, z) in K and x′ = (t ′, x ′, y′, z′) in K ′ are con-
nected by a linear transformation, so x′ = Lx for some 4 × 4 matrix L . Let q(x) =
−c2t2 + x2 + y2 + z2 = xt Qx, where Q is the diagonal matrix with diagonal en-
tries (−c2, 1, 1, 1). Let r(x) = −c2t ′2 + x ′2 + y′2 + z′2 = (Lx)t QLx = xt(Lt QL)x,
so r(x) = xt Rx, where R = Lt QL . Now q is indefinite, and r(x) = 0 precisely when
q(x) = 0, from (∗) above. So the conditions of Theorem 1 are in force, and we may
conclude that r is proportional to q, which is equivalent to the statement from (∗) that
we wanted to prove, namely that s ′2 is proportional to s2.

ACKNOWLEDGMENT. We would like to thank Michael Loss for suggesting looking at Hilbert’s Nullstel-
lensatz for a connection with the topic in this note.
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Monotone Convergence Theorem
for the Riemann Integral

Brian S. Thomson

Abstract. The monotone convergence theorem holds for the Riemann integral, provided (of
course) it is assumed that the limit function is Riemann integrable. It might be thought, though,
that this would be difficult to prove and inappropriate for an undergraduate course. In fact the
identity is elementary: in the Lebesgue theory it is only the integrability of the limit function
that is deep. This article shows how to prove the monotone convergence theorem for Riemann
integrals using a simple compactness argument (i.e., invoking Cousin’s lemma). This material
could reasonably and appropriately be used in classroom presentations where the students are
indoctrinated on this antiquated, but still popular, integration theory.

The monotone convergence theorem is usually stated and proved for the Lebesgue in-
tegral, but there is little difficulty in formulating and proving a version for the Riemann
integral.
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Monotone Convergence Theorem. Let { fn} be a nondecreasing sequence of Rie-
mann integrable functions on the interval [a, b]. Suppose that

f (x) = lim
n→∞ fn(x)

for every x in [a, b]. Then, provided f is also Riemann integrable on [a, b],∫ b

a
f (x) dx = lim

n→∞

∫ b

a
fn(x) dx . (1)

This theorem should have been useful in many calculus presentations, but it does not
appear in any of the usual textbooks. Perhaps the reason is that, because the Lebesgue
version of the theorem is deep, it might follow that this version too is at some deeper
level than the students should be taken. But it is not the identity (1) that is deep in
Lebesgue’s theory, but his conclusion that such a function must be integrable. Here we
are assuming integrability so the theorem is entirely elementary.

Teaching this theorem offers the instructor some real opportunities. First is the
chance to introduce a major theorem of integration theory at an elementary level and
discuss its importance and how it must be improved. Second is the occasion (always
tempting) to launch a polemic against the Riemann integral. The unfortunate hypoth-
esis that the limit function is integrable is essential here, but reduces the theorem to a
curiosity: in most applications we would know nothing more about the limit function
than that it is a pointwise limit of integrable functions and would have serious difficulty
finding some property that would assure Riemann integrability.

The proof is nothing but some manipulations of Riemann sums and surely as acces-
sible as any of the other theorems proved in Riemann integration theory.

We need a few preliminaries. By a partition of an interval [a, b] we mean a collec-
tion

π = {([ui , vi ], wi ) : i = 1, 2, . . . , n}
of interval-point pairs for which each wi ∈ [ui , vi ] and the intervals form a collection
of nonoverlapping intervals whose union is [a, b]. Any subset of a partition is a sub-
partition. The use of the Greek letter π to denote a partition will, no doubt, distress a
calculus class but I am addicted to it.

The Riemann integral, defined as a limit of Riemann sums, possesses also this ap-
parently stronger property:

(�) If the function f is integrable in the Riemann sense on an interval [a, b] then,
for every ε > 0, there is a δ > 0 so that

∑
([u,v],w)∈π

∣∣∣∣
∫ v

u
f (x) dx − f (w)(v − u)

∣∣∣∣ < ε (2)

whenever π is a partition or subpartition of the interval [a, b] such that v − u <

δ for every pair ([u, v], w) ∈ π .

This well-known property is seldom proved in calculus courses although it is only a
simple computation using Riemann sums. It should be proved in any case since, from
(2), one immediately deduces∑

([u,v],w)∈π

ω f ([u, v])(v − u) < 2ε (3)
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which is Riemann’s famous characterization of integrability expressed in terms of the
oscillation ω f of the function f on subintervals. That, in turn, allowed Lebesgue to
easily formulate his more famous characterization. Thus there is a lot of narrative
potential in (�).

While the proof of (�) is elementary it is sufficiently subtle that a student might
have trouble attempting it without coaching. The method in [2, p. 77] works here and
can be attributed to Saks [3] who used it in his study of the Burkill integral.

Now we may present the proof of the monotone convergence theorem. For each
integer n, let gn = f − fn . The sequence of integrable functions {gn} is nonnegative
and monotone decreasing with limn→∞ gn(x) = 0 at each x .

Let ε > 0 and write η = ε/(b − a + 1). For each integer n, use (�) to choose a
positive number δn so that

∑
([u,v],w)∈π

∣∣∣∣
∫ v

u
gn(x) dx − gn(w)(v − u)

∣∣∣∣ < η2−n

whenever π is a partition of the interval [a, b] such that v − u < δn for every pair
([u, v], w) ∈ π . Choose, for each x ∈ [a, b], the first integer N (x) so that

gn(x) < η for all integers n ≥ N (x)

and, for j = 1, 2, 3, . . . , let

E j = {x ∈ [a, b] : N (x) = j}.

We use these sets to define δ(x) = δ j whenever x belongs to the corresponding set E j .
Take any partition π of the interval [a, b] for which v − u < δ(w) for every pair

([u, v], w) ∈ π . That such partitions exist is the conclusion of Cousin’s lemma. That
lemma plays the same role as, and is equivalent to, the nested interval property on the
real line. Many of the theorems of the calculus can conveniently use either argument.
(See the discussions in [1], [4], and [5].)

Let N be the largest value of N (w) for the finite collection of pairs ([u, v], w) in π .
We carve the partition π into a finite number of disjoint subsets by writing

π j = {([u, v], w) ∈ π : w ∈ E j }

for integers j = 1, 2, 3, . . . , N . Note that π = π1 ∪ π2 ∪ · · · ∪ πN and that these col-
lections are pairwise disjoint.

Now let m be any integer greater than N . We compute

0 ≤
∫ b

a
gm(x) dx =

∑
([u,v],w)∈π

(∫ v

u
gm(x) dx

)

=
N∑

j=1

⎛
⎝ ∑

([u,v],w)∈π j

(∫ v

u
gm(x) dx

)⎞
⎠ ≤

N∑
j=1

⎛
⎝ ∑

([u,v],w)∈π j

(∫ v

u
g j (x) dx

)⎞
⎠

≤
N∑

j=1

⎡
⎣ ∑

([u,v],w)∈π j

g j (w)(v − u) + η2− j

⎤
⎦
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<

N∑
j=1

⎡
⎣ ∑

([u,v],w)∈π j

η(v − u) + η2− j

⎤
⎦ < η(b − a + 1) = ε.

The identity ∫ b

a
f (x) dx − lim

n→∞

∫ b

a
fn(x) dx = lim

n→∞

∫ b

a
gn(x) dx = 0

follows.
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A Proof of a Version of a Theorem of Hartogs

Marco Manetti

Abstract. It is proved that a formal power series in s complex variables is convergent, if it is
convergent on each line through the origin.

A formal power series in s variables

f =
∑

i1,... ,is≥0

ai1,... ,is zi1
1 · · · zis

s

with complex coefficients ai1,... ,is ∈ C is called convergent if is absolutely convergent
in a neighbourhood of 0. This means that there exists a positive real number r such
that

f =
∑

i1,... ,is≥0

|ai1,... ,is |r i1+···+is =
+∞∑
n=0

( ∑
i1+···+is=n

|ai1,... ,is |
)

r n < +∞.

The aim of this note is to prove that the convergence of a formal power series can
be established by checking convergence only on the lines passing through the origin
of C

s .
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