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§l. Introduction. The notion of set porosity has, in recent years,
found a renewed application to certain problems in thé differenti-
atien theory of real functions. As a Jocal concept it arose origin-
ally in the work of Denjoy some sixty years ago but attracted Tittle
notice until the introduction of the notion of o-porosity by
Dolzenko in 1967. Since then these ideas have been applied in a
number of investigations,

Globally the concept provides a class of exceptional sets (the
O-porous sets, the o= () ~porous sets) that permits a refinement
in many cases of the notion of a first category set, rocally,
porosity can be used to provide certain incights into the differen-

tiability behaviour of real functions.
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In this article we explore some of the applications of porosity

in differentiation theory. Most of the results follow direchy from
the elementary porosity estimates that are made ip section 2. To
describe the results in the most immediate language we have chosen
to introduce the notion of a "porosity derivative", which is a
generalized derivation much 1ike approximate derivation but using
porosity requirements rather than density requirements. Each of
the results presented attempts to show how it is that some infor-
mation about the porosity derivatives of a function may give rise
to information about the ordinary derivates,

The Tanguage is rather technical and so it would seem appro-
priate to illustrate the ideas with some preliminary comments.
Suppose that a continuous function f and a positive number M

are given, and that the sets

are constructed at each point x. If each of these sets Ex contains

SMy# x]

a sequence converging to x, then one can assert, at most, that the
function f has a derived number at each point x whose value is in
the interval [-M,M].

This does not give much information about the function f. . .Pre~
sumably if more infcrmatfon about the sets Ex is available, then
greater knowledge of the behaviour of the function may be deduced.
For example at the extremeltase if each set’ Ex is a (deleted)
neighborhood of x, then it is easy to prove that ihe function

f satisfies a Lipschitz condition

) = f(y) | s Mx - y] .
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If however one is told less, say that each set Ex has upper
density 1 at X, then the function may still be quite ill-behaved:
for example this may occur at almost every point x and yet f
may fail to have an approximate derivative at any point.

There is some informaticn which, at first sight, may appear
marginal and yet from which some reasonable behaviour of the function
f hay be deduced. If each set Ex contains on one side or the
other at x a sequence of points {xn} that converges to  x but

not too quickiy, i.e. so that

1im inf s

then there must be a dense open set G so that f is differen-
tiable almost everywhere on G. In the language of set porosity
this sequence is required to have porosity less than 1; in the
language of_porosity derivatives the function f is required to
have a certain type of derivative that assumes its values in the
interval [-M,M]. (See Theorem (5.3) ff.)

It is concerns of this nature that arise in the article. In
each case information about the derivates of a function is obtained
from some porosity computation, which may always be reduced to
assertions about derived numbers taken relative to certain slowly

convergi ng segquences.

§2. Porosity Computations. We give the necessary definitions of

the porosity notions that we reguire.

(2.1) DEFINITION. Let E be any set of real numbers and let

a<b. By A(E,a,b) we denote the length of the largest sub-
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interval of (a,b) that is compiementary to the set E. Then the
two porosities (left and right) of E at a point x are defined

as the extreme limits

Ty L g ALE,x, x+h)
p (E;x) = Tim sup hs0+ -£~*~ﬁ—v- g

and

p (E;x) = 1im sup D ﬁiﬁ;ﬁ%ﬂ;&l .

Loosely the porosity measures the relative sizes of the gaps
in E. A natural generalization of this is to measure this relative
size in some other appropriate fashion. If 0 < g < 1, then we may

define in a similar way the notion of the (xa) = porosity by writing

e = i [ACE, %, x+h)]”
Py CEix) = Tim sup ol R ;

and

i | _ . 6
Py C(Eix) = 1im sup o LA(E‘; h,x)]

More generally still if $ 1is some nonnegative real function, we

may write

Py (Ex) = Tim sup o WALEX,xeh))

and

P¢-(E;X) = Hmsup o, &Qf(Ejﬁ“h,X))

Note that if we permit as a limiting case that the functien % have

$(0) =0, Y(t) =+ (t> 0), then a set E will have zero

p¢+ (p$“) porosity at a point x if and only if E 1is dense on
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the right {left) at the point Xx.

In order to provide some substance and insight into the nature
of sets having variocus porosity requirements we consider some
examples. A sequence {hn} converging to zero is said to have
a porosity p 1in one of these senses (right porosity, left porosity,

right (xX¥)-porosity, etc.) if the set of points

{ hlphzshgshfp- o }

has that porosity at the point 0. If { hn } 1is a descending

sequence with T1im hw =0 and if
i

then the sequence has right poresity 1 - r. Thus slowly converging
sequences have zero porosity; similarly a sequence that has porosity

1 must converge to zero quite quickly. In the case of {x")-porosity
the number s (0 £ § £ +=)

e+ 1 o
(hn hn+1)

it
{n

s = 1im sup e

is the right {xa)-porosity of the sequence {hn}. iIf a sequence has
right (x“}-porosity finite (s < +») for some 0 < o < 1, then the
sequence has right porosity 0 in the ordinary sense, and also too
in the (xB)-sense for any o < B8 £ 1.. Thus again while for zero
porosity the sequence must be slowly converging to zero, for the
(xa)wporosity to be finite it must be even more slowly converging

to zero. These concepts allow a precise language for "slowly converg-

ing to zero" together with a tight interrelationship between these

notions and various estimates for the Dini derivatives of variocus classes
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of functions.
We provide an example to show how one may generate sequences

that exhibit certain porosity behaviour.

(2.2) Example. Suppose that P is a continuous strictly increas-

ing function on [0,+°) such that
¥(t) = o(tM/kHly,

We show how a sequence of numbers {xn} may be consiructed that has
zero ()-porosity on the right.
Let a(x) = x - xk+1. For any xe& (0,1) define the sequence

{xn} by wriiing inductively

Xy = afx) -, Xy = a(xl) e !

j = a(xj_l).

We claim that this sequence must have zero (¥)-porosity on the right.

The sequence {kn} is decreasing to zero and so the porosity computa-

tion requires that we establish the limit

Tim QLEJLJELEll

t=0+ t

k+1
t

)

Gt -t&(t)) = Wt

and for t sufficiently close to zero

w(t) < ¢1/ Gk

This gives for small t,

k+1
¥

)

Pt 'tﬂ(t)) = Wt
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¢ (ke D/(kM) - 1 | 1/(2k00)

and the 1imit is established as required.

In order to provide some feeling for the nature of such
sequences we carry through the necessary computations in order to
provide a sequence of numbers which has zero (x%)—porosity. The
sequence {xn} is computed as above using the function

a{x) = x - x93,

n XF‘% Xn XQ Xn

1 -100000000000  .010000000000 . 001000000000 . 000100000000
2 -093000000069  .009999000000 . 000999993000 . 000099999999
3 -098029701062  .009998000300 . 000999998000 . 000099999498
4 -097087653028 . 009997000900 . 000999997000 . 000099399997
9 096172503685  .009996001800 . 000999996000 - 000099999936

Observe that even for Xy = 0.0001, the sequence of numbers

{xn} is already very slowly converging.

The basic computation from which all of our results follows
is a simple estimate on the porosity of a set that arises in the

comparison of the Dini derivatives. It first appears explicitly

as a porosity computation in the article of Evans and Humke [6] but

considerations of this type can be found in a number of theorems.

For example the proof of Mi%ik's theorem in Bruckner [1,p.1547 uses

such an estimate and the sequential derivation problems in Shuklia

[13] and in Laczkovich and Petruska [9] require some such calcula-

tions. Doubtless similar technical details can be found in much
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earlier reports.

(2.3) POROSITY LEMMA. Let f be a monotonic nondecreasing
function such that at a point Xy one has Q+f(x0) g€ r <s. Then

the set of points

[ ) - )
Y = jy: y_-xo %

has right porosity at Xy at least 1 - §i Similariy if
§+f(x0) 2 s > r, then the set of points

_ fly) - f(xy)
Y ® P T xO. -Sr

has right porosity at X at least 1 - E‘

PROOF. The computational details appear in full in Thomson
[15,p.418-419].

We give an example to show that the estimate in the lemma is

sharp.
(2.4) Example. For any number 0 < p < 1 take the sequence
SR =L d
h, = (1-p)

and define the function f by setting

FOO = (Phy  (hy <X S h )

and f(x) = 0 otherwise. Then one checks easily that D'f(0)

=1=~p and the set Y,
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f fly) -
Y = Ly G v £(0)

7
ot
Lomearmea—dd

is complementary to the intervals

((-p)h_q,h, 4.

Thus Y bas porosity p on the right at 0, which is just the

estimate that the lemma provides.
This porosity lemma generalizes to much broader classes of
functions. For ordinary Lipschitz functions (i.e. functions f

that satisfy everywhere an inequality of the form

| £00) = f)| £ Mjx -y

for some number M > 0) a generalization is immediately available.

We observe that for such a function f the functions f{x) & Mx

are necessarily monotonic., This Jeads to the following lemma.

{(Alternatively the computations can be done directly (see Thomson

[15,pp.419,4201)).
(2.5) LEMMA. tet f satisfy a Lipschitz condition
£ = f} s Mpxomoy

for some M > 0. If at a point x, one has Q+f(x0) 3058,

then the set of points

[ fly) - flxp) ]
Y= g 2.5

L Y~ %

has right porosity at Xy at least 1 - ﬁwE—E . Similarly if

ﬁ+f(x0) z 8 >vr, then the set of points
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e

. f(y) = flxg) ]

= ly: - P
Y © X

has right porosity at X0 at tTeast 1 - %L$—£ ;

Even more generally the porosity lemma permits a generalization
to the class of continuous functions f that satisfy an inequality

of the form

L) - £ s wtlx - yD

where § 1is a given modulus of continuity. That is to say ¢ is

defined for all nonnegative reals, is increasing,

im0, W) = w(0) = 0

and for all real numbers x and y if x -y <1, then

| 0 - f(y)] étts‘(lx g 7 5y

The class of contipuous functions that permit such an inequality
shall be denoted as C(y). OF course the most interesting special
case occurs with §(x) = mE for 0 <o g 1, and for M 3 positive
real constant.

Note that the extreme case with ¢(t) = + (t > 0) and."”'”
$(0) = 0 1is not permitted by the assertion of the lemma, but that
the lemma is nonetheless true for such a function ¥ since in that
case positive (¢)-porosity of a set A at a point is equivalent to

the nondenseness of the set A at that point.

(2.6) LEMMA. Let f bea continuous function that satisfies an

inequality
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£(x) - fly) S ¥(x - yl)

for a modulus of continuity ¢ that is defined and continuous on
[0,+»), with ¢(0) =0 and with ¢+'(0) = +», Suppose that at

a point x4 one has §+f{xg) < r < s. Then the set of points

fly) - f(x,) 1
¥ = [y : ¢ 2

has right {(y)-porosity at Xq at least s - r. Similarly if

§+f(x0} > s > r, then the set of points

[ ) - g ]
Yo% Vs v

A

¥y~ % )
has right (P)-poresity at X, at least s - r.

PROOF. We prove the first statement of the lemma. Since

Q&fixa} < r, we may select & sequence of positive numbers {hn}

descending to zero so that

f(xﬁ o hn} - f(xg)
i
n

We will show how to choose numbers {Bk}, 0 < ek < 1, and a sub-

sequence {hn } in such a way that @, = 1
k

[gCh (1 - 8.))
o “]

) B 5
k ﬁk J

and
: ({1 - ek)hnk)
1im fores 5 =G

i)
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i
i

Let us suppose for the moment that these numbers can be so
chosen. If so, then we can obtain the porosity estimate promised

in the statement of the lemma. Consider the set of points

Y = 1y

fy) - flxg)
V. ¥ £ S

and the sequence of intervals

fln ¥ B hono g
0 k Ny 0 Ny

We observe that each of these intervals is necessarily disjoint from

Y since if there is given a point y,

X #0R 50 YR XoeeTh e
0 Kk ny 0 My

we must have using the Y-inequality on f that

Fy) = flxg)
¥~ e

f) - P+ b)) fOxg + e ) - fxg)

: Yy~ x : h =X
0 Ny 0
By ~.x, =87
0 M ¥
< + =
Iy % B
¥((1 - 8)h )
< —1'-—- k__nk + r e
M

As each interval (x, + 8. h_ ,x, + h_ ) is now seen to be disjoint
¢ knk 0 N

from the set Y, we compute that the (y)-porosity of Y on the
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right must exceed the number

Q- o, )

hn
k

Tim sup RAes

But, from the way in which these sequences have been chosen, this
limit is s = r which is exactly the porosity which we were required
to obtain.

Thus it remains for us to prove that these seguences may he
selected in the way that we have 5téted. Consider in the (&,y)
plane for 0 £ £ £ 1 the straight line

y=s&E-r

and for any h > 0, the curve

y = E W - Eh)
For fixed £ < 1,

O - G-y ) = e

Tim h0
Note that the line passes through the point (1,s-r), and the
curve passes through the point (1,0). This allows us to select
points gl,gz,gg, ... and indices N1sNoyNy, ... inductively so
that Ny = 1, and

(1~ &.)h
il 8 ¥ : Ehy)

K - £ph, )
5&1 -pr < E :
L

gz il Ty ;'53
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¢((1 ki gz)hn )
ng i, R < s
0

and so on in this fashion so that {gj} and {hn.} are obtained

J
and satisfy the inequalities

P((1 ~ ﬁj)h
J h

niey)

(1 - £j+1)hnj+1) :
s£j+1 i i R

Since ¢ is continuocus, we may choose numbers {ej+1} from the

intervals (gj,gj+1) so that

({1.~:8. 3B b
7 j+l nj+1
hn

565+1 i

j*l
and it is clear that these sequences are precisely what was required

in order to complete the proof.

§3. Estimates for the Dini derivatives. Our estimates require a

generalized version of the Dini derivative. We shall consider this
a porosity version of the usual Dini derivative and we define it in
a way that should be familiar to the reader. (For example compare

with the definition of thelapproximate Dini derivatives in Saks

{12,p.219]).

(3.1) DEFINITION. Let f be a rea) function and let 0 < p < 1.

Then at any point x we define the four porosity Dini derivatives,
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with index p, as

5ﬁp+f(x) = inf{ y: [t:iig%egiil < y] has right purosity.é p at x},

ggp+f(x} = supf{ y: [t:fié%gégﬁl > y] has right porosity £ p at X},

?ﬁp'f(x) = faf{'y: [t:iii%ééiil < y] has left porosity $ p at x},
and

A

Egp_f(y»} = iﬁf{ y: [t:f(tt!::gxz > y] has left pGFUSity <p at X}.

Similarly using (x*)-porosity and any number 0 2 t < 4= we may
ofd : : = + 1oy - A o
define the versions PDa’t f(x), PDa,t f{x), ggu,t f(x), and

PO, t“f(x)i more generally still using an appropriate function

and a number 0 £ t < +» we may define the versions §§¢ t+f(x),
pra— - 4 . ] :
Py, ¢ f(x), PO, ¢ f(x), and PD, 4 f(x) wusing g-porosity.

For any indices 0spsqgs1l one must have the inequalities

A
A

DT (x) ﬁﬁq*f(x) §§p*f<x) < B e(x)
and

D F(x)

i

E§p+f(x) < ggq*f(x) < 0 F(x) .

Note, however that there need be no relation between the upper and
lower porosity derivatives themselves; indeed the Tower may exceed
the upper.

The basic estimates on the Dini derivatives that we require
are contained in the next few assertions. Each is just an easy

consequence of the porosity computations of the preceding sect{on,

but expressed in terms of a porosity version of the Dini derivatives.
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(3.2) LEMMA. Let f be monotonic nondecreasing on a neighborhood

of a point x, and let p be a number, 0 < p < 1. Then at x
0 0

one has the inequality

L i + o 3 +
(1 p)EQp f(xﬂ) D f(xo) <D f(xo) < T Fﬁp Fx

o) -

PROOF. Suppose that Q+f(x0) < r. Then by the porosity lemma (2.3)

the set of points

fy) - flxg)

Y= y: = gs>r

has right porosity at Xgs exceeding 1 - g. If Egp+f(x0) e
then this set Y needs to have porosity less than p. This then

requires that

or equivalently

(L ~p)s «<r.

The first inequality in the theorem now follows; the last can be

obtained in a similar fashion.

The remaining lemmas are similarly proved using the other

versions of the basic porosity computations. We omit the details.
£3.3) LEMMA. et f satisfy a Lipschitz condition,

[T - f] ¢ Mjx - y]
2nd let p be a number, 0 g P <1l Then at any point Xo oﬁe

has the inequalities
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= £ i * 5 _...},:._
Mp + (1-p)PD, f(xg) s Dflxy) s D flxg) 1_pPD

(3.4) LEMMA. let f satisfy an inequality of the form
& £ < e >
1£(x) - FO s Mlx - y[® (x-y s

some numbers M > 0 and 0 <a <1, and let t be a number,

< t < +», Then at any point Xq one has the inequalities
+ e =+
-Mt + PD f(xo} s D f{xo) =D f(xG} < PDG ¢ f(xG) + Mt.

(3.5) LEMMA. let f be a continuous function that satisfies an

inequality of the form

Lf0) = f(y)] swllix - yl)  (x-y|

where ¢ 1is a continuous increasing function on [0,+=) for which
$(0) = 0 and for which y _'(0) = +=. Suppose that t is a number,

0 €t < += Then at any point x, one has the inequalities

y
<% *. Pl T(xa) =D f(xﬂ) o f(xg) & PD

PBy ¢ f(x0} ¥ 5.

gt

§4. Basic results. Each of the results in this section is a direct

and easy consequence of the preceding estimates. It is a remarkable
fact that so many observations can be made to rely directly on

these elementary computations.

(4.1) THEOREM. Let f be monotonic or Lipschitz. Then at every

point the four Dini derivatives and the four poresity zerc Dini

derivatives agree:
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PO, f(xg) = D f(xg),  PDy"flxg) = Df(xy),

and
?DD f(xo) = D f(xﬁ), ggo f(xo) =0 f(xo).
PROOF. With p=0 in lemma (3.2) and (3.3) this is immediate.

(4.2) THEOREM. Let f be monotonic nondecreasing at a point g
and suppose that 0 s p < 1. If Egp+f(x0) = +», then it must be
the case that f' (x;) = +=; if ﬁﬁp+f(x0) = 0, then it must be

the case that f'+(x0) = 0.
PROOF. This too is an immediate consequence of lemma (3.2).

These results apply immediately to provide some well known
estimates for the approximate derivative and approximate derivates
of monotonic functions. This gives us a theorem of Khintchine [8]
and of Misik [10]. We write f'ap(xg) for the approximate deriva-
tive of a function f at a point x,, and we write gap+f(x0),
Eap-f(*o)’ etc. for the approximate Dini derivatives of f at
this point.

(4.3) THEOREM. [Khintchinel Let f be monotonic or Lipschitz.
If f‘ap(xo} exists at a point X then f must be differen-

tiable there.

PROOF. This follows directly from the observation that sets having
density 1 at a point must have porosity zero at that point. Conse-

guently at any point the inequalities
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§+f£x}

A
A

4+
gap f(x)

-
RQQ f(x)

and

B f(x) ﬁap*f(x) 2 PB, " £(x)

AR

must hold, along with similar assertions for left hand derivatesi

The proof is then completed by an application of theorem (4.1).

(4.4) THEOREM. [MiSik] Llet f be either a monotonic or a

Lipschitz function. Then at any point Xq
Ve G < : ) + E
D f(xy) = Bap f(xg), D flxg) = Eap f(xﬁ;,
sy S ::‘m— e - \ x - o
D flxg) Dap Xy, D f(xy) gap flxg)-

PROOF. The same observations that were used in the preceding theorem
supply the proof.

There are several results that are merely restatements of the
fact that a function that is monotonic or Lipschitz and differentiable
at a point Xg relative to a set that is nonporous at Xq Mmust be

differentiable. In each case the proof is obvious and is omitted.

(4.5) THEDREM. Let f be monotonic or Lipschitz and differen-
tiable relative to a set E at each point of E, d.e. at each

% €F the limit

() - £(x)

Hn VX, ye'E y=y

exists. Then f 1is differentiable at each point of E with the

possible exception of a porous set.

(4.6} THEOREM. Let f be monotonic or Lipschitz and differen-
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tiable relative to each of & sequence of sets {En}, i.e. at each

point x € En and for any n = 1,2,3,... the limit

fly) -~ f{x

HMWhyEEn Y~ X

exists. Then f is differentiable at each point in the union of

the sets {En} with the possiblie exception of a o-porous set.

Note in particular that as a consequence of this if such a
function f is differentiab1e relative to each of a sequence of
sets that covers the entire real line, then it must be differentiable
everywhere except on a o-porous set. Also if P is a perfect null
set that is not o-porous (because of Zajifek [17] we know that sucﬁ
sets exist) and a monotonic function f is not differentiable at
any point of P, then certainly, by (4.6), P may not be expressed
as a union of a sequence of sets {En} so that f is differentiable

relative to esach member of the sequence.

(4.7) THEOREM [Evans-Humke] Let f be monotonic or Lipschitz.

Then at every point x with the possible exception of a G-porous

set the relations

5 F(0) D f(x)

DF(x)

it

D'F(X) = DTf(x) = Df(X)

must hold.

PROOF. As in most theorems of this type one considers the set of

points

X = [x s DTf(x) < r < & < ﬁ'f(x)]
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for r,s rational. This set is partitioned into a sequence
{err§ in a familiar way (cf. Saks [12,pp.237-238]1) so that for

pairs of points X,y € X, x < y the ineguality

holds. Then the porosity Temma applies to show that each set ern
must have positive porosity at each of its points. As the excep-
tional set of the theorem may be expressed as a denumerable union
of such sets the theorem follows.

Theorem (4.4) generalizes easily and with an identical proof
to apply to the class of functions C(y) for a fixed modulus of

continuity ¢. Again we assume that ¢ 1is a continuous increasing

function for which ¢(0) =0 and ¢+‘(0) = e

(4.8) THEOREM. tet f be a function in ciass C(y). Then the

relations

=3
-'}
o,
=
et

M

0 ()

i

BF(x)

i
i

D' F(x) = D f(x) = DF(x)

hold at every point x with the possible exception of a g-(¥)~-

porous set.

§5. Generalized YounQWEvahs-Humke theorem. The Evans-Humke theorem

as given above together with its generalization to the class C(u)
in theorem (4.8) really belongs in a hierarchy of theorems ranging

from a theorem of W.H.Young [16] that for a continucus function f
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the set of points of right and left disagreement
[x : D0 # 0 () or DFOO # g'f(x)]

is first category, through the various classes C(§) each time
improving the exceptional set beyond merely first category to some
o-(y)-porous set.

 This class of theorems permits yet another type of generali-
zation. In place of discovering a comparison between the right and
left ordinary Dini derivatives one can ask how far this extends te
thinner derivates. For example Pu,Chen and Pu [11] have checked
that this theorem of Young extends to the approximate Dini deriva-
tives and Zaji¢ek [17] has pushed it (and'the Evans-Humke theorem)
further to accomodate extremely small density derivatives. Possibly
the correct version involves just the porosity Dini derivatives.
For continuous functions this was proved in Thomson [14], and for
monotonic functions it was announced without proof in Thomson
[15,p.340]. Here we prove that this theorem is available for any
class C(y) with an exceptional set that is o-(¥)-porous. Note
that at the extreme end of the spectrum where (0) = 0,
$(x) =+ (x>0 ) the exceptional set that is o-({)-porous is
required merely to be first category as is the case in the original

theorem of Young.

(5.1) THEOREM. Let f belong to C(y), that is to say f is

a continuous function that satisfies an inequality of the form

ex) - fonl swtix -y (x=~yl gD

where ¢ is a continuous increasing function on [0,+2) for
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which ¢(0) = 0 and ¢ '(0) = +. Then at every point x with
the possible exception of a set that is o-(Y)-porous, and for every

05 p <k

ﬁﬁp'f(x} Bf(x)

i
"

PO p“'”f(x}

and

H
i

+ -
PD_ f(x) .
0, f(x) PO, £(x) DF(x)

PROOF. We shall show that for any fixed q < p < 1 and pair of

rational numbers r,s the set of points

TS e 1
er = [x : Pﬁq+f(x} S s A Y f(x}j

js o-(y)-porous whenever f & C{y). In view of the weaker
version of this theorem given earlier (theorem (4.8)) this is
enough to cobtain a proof.

At each point x €X define the set S, as

5 e [y : fﬁﬁlwémiiﬁl < P]
% T

and note that the set Sx has right porosity at x no larger

than @ < p. Thus we may choose for each such point x a positive

number &(x) so that
h(Sx,x,x+t) < pt

whenever 0 < t < 8(x}. The function & then induces, in a familiar
way (cf. Bruckner, 0'Maliey and Thomson [2]) a partition of er
into a sequence of sets {ern§ so that each pair of points

%yya € has satisfies
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!x - y| < min [8(x),8(y)].

We show that each set er has positive (y)-porosity at

n
each of its points. Suppose, in order to obtain a contradiction,
that this is not so. Then at some point Xg in X o this set
has (§)-porosity zero at Xg Thus we can find a positive number

n so that

P{ALX - t,xé)) < vt

X
rsn®0

for 0<t<n, where v is taken as follows: firstly we define

numbers 6 and t from the interval (0,1) in such a way that
T < (s=r}l~8)

and
6> pll +1).

Since s> r and 0 <p <1 these are simple linear inequalities

that may be solved. Then we take

1+t

Take any point X4 in X

rsp With Xy € Xgs and Xy > Xq "N ;

we claim that the inequality

fxg) = flxq)
e B

#
o

must hold at these points. As will be shown later this ineguality
will provide the (¥)-porosity estimate on Xrgn' Most of the rest

of the proof is devoted to proving the inequality.
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To verify this inequality we define

{z2) - f(xl)
X, = sup {Z € (xl,xo} 2 £ 5

Z Xl

and we prove that Xy = X As f is continuous this forces the

required inequaliuy

f(xg) = £(x)
e W .9 B

0 1
and our claim is proved. We obtain this now by a contradiction;

if contrary to this h = Xqg = %y > 0, then we consider the interval
(x, = 4 H(th),x,)
2 Sy

where <t 1is as chosen above and ¢w1 is the inverse function to
5. We will take it so that mwl(th) < th which requires that =t
has been chosen sufficiently small.

Using the porosity condition on er and the inequality

il

-1
g Lo eny] oo iR ¥
h+y iy R

we see that there must be points of ern in the interval

{x2 - $_1{th),x?}. Thus let Xq be any point from stn in that

interval.

Again the set Sx satisfies a porosity requirement in the
3

interval (x3,xa) :  the interval (xo - ah,xe) has relative
length at least

gh 3 ¢

e e A L
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B i ———

so that there must be a point X3 in SX from the interval
3

(xo * Bh,xo).
We will obtain our contradiction by proving that

o S |

and since Xq is evidently greater than Xy this contradicts the
definition of Xy and our desired inequality will have been proved.

Putting our various computations together and using the

Lipschitz condition, we obtain the inequalities

flxy) = £0x) = [f(x,) - f(x4)] + ff{X3) = f(x)1 + [f(x,) - f(Xl)]
$orlx, - %g) + (lx, - x2l) + s(x2 - xl).

This leads to the inequalities

f(x4) - f(xl) g r(x4 - x3) i o M s(xz & xl)
4 r(x4 - xz) + th + s{x2 - xlj
g r(x4 = xz) % sl =8 + s{xz - Xi)
. r{x4 s xz) * {5 = r}{x4 - xzj + s{x2 - xl)
b s(xQ = xi)

as required.

Thus we may concTude_that for %y in ern, Xq < Xgs and

sufficiently close to Xg the inequality

f(xﬂ} - f(xl)
Xq = %4

5 2

S8

must hold. However we know that at Xqs ﬁﬂf(xo) > s; thus by the

porosity lemma (2.6) the set Hrs must have {(y)-porosity positive

i
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at the point X,. As this contradicts our earlier assertion we
have exhibited each set ern as having positive (¥)-porosity at

each point and the theorem is now proved.

As a corollary we may apply this theorem to certain density
derivatives. We follow Zajifek {1?} here in that we express the
result as the existence of a type of path derivative along sets of
upper density, but essentially this is nothing more than the obser-
vation that sets having positive lower (inner) density must have

porosity less than 1.

(5.2} COROLLARY. Let f be a continuous function that satisfies

an inequality of the form
ey - fo)) s wdx-vh  dx-yl 5D

where § is as described in the theorem. Then al every point x

with the possible exception of a g-{¢)-porous set there are measurable

sets ax and Bx each having upper density 1 at x and so that

f(y) = )= E+f(x) =0 f(x) = Df(x)

s o
My ye A, ~ ¥y - X

and

lin e p S = 000 = 07100 = 0F00

PROOF. 1If at a point X such a set Ax could not be found, then

we can show that the set of points

o = fix - ®
[y 3 Y = X SR R Df(xi]




must have some positive lower density, and so must have porosity

P < 1. This would then give that
?ﬁpf{x) < ¢ < Df()

and we know from the theorem that the cﬁ]lection of such points
has the asserted porosity requirement.

Let us conclude with several further applications of theorem
(5.1) to the study of the differentiability properties of continuous
functions.. The fact that the porosity derivatives of a continuous

function are residually the same as the ordinary Dini derivatives

Teads us to the following observations.

(5.3) THEOREM. Let f be continuous and have residually one of
the four porosity derivates 5ﬁﬁ+f(x), ﬁﬁb“f(x), Egp+f(x), or
Egp_f(x) finite for some value of p < 1 (p may depend on x).

Then there is a dense open set G so that f 1s a.e. differentiable

on G.

PROOF. By theorem (5.1) we know that residually the upper or lower
bilateral derivates Df(x) or Df(x) must be finite. In fact then
on a residual set one or other of the "sharp extreme derivates"

5% (x) or g$f(x) must be finite where these derivates are

defined as
ﬁsf(x) = 1‘|r1f6>0 [sup' ﬂ!,%_%.(}_l iy e(x-&,x+6),y¢z]
gsf(x) = sup6>al}nf I£X%~§~£$El 2 y,2 € (x~6,x+6),y¢z]

{This is a result of Bruckner and Goffman; see Bruckner [1,p.681).

It is easy to check that if one of these derivates is finite at a
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point, then f must be a.e. differentiable in some neighborhood
of that point. Consequently f 1is a.e. differentiable on some

dense open set as required.

Similar arguments apply to prove the following theorem which

is related to a theorem of Garg [7].

(5.4) THEOREM. Let f be a continu.us, strictly increasing,
singular function (i.e. f(x) = 0 a.e.). Then there is a residual

set at each point of which

+ -
PDY f(x) = P =
4L (x) = PD pf(X) 0
B0 f(x) = PD__f(x) = +o
p p

for every p Tless than 1.

PROCF. For such a function f it is the case that at every point
x the lower sharp derivate g$f(x} must vanish. For if not,

then there would be an interval (c,d) 1in which the quotient

fy) - f(2)

y

is bounded away from zero, and this cannot happen for this function

f. In exactly the same way it follows that the uppper sharp derivate
§$f(x) must be at every point +w=. The theorem then follows directly
from theorem (5.1) since residually the porosity derivates agree with

the sharp derivates.

Another consequence of theorem (5.1) is that a continuous
function which has at every point of &n interval [a,b] a path

derivative (finite or infinite)
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fEx‘(x) o YoX,y € B ; 3 - : 5
along a path Ex that is nonporous at x (has right and left
perosity 0 at x) must be in fact differentiable (finitely or
infinitely) at each point of an open dense subset of the interval.
If the path derivatives are given to be finite on the interval {a,b]
then there is a sequence of intervals {In} whose union is dense in

[a,b] and such that f satisfies a Lipschitz condition,
[T =] s m |x =y,

on each interval I.. For the special case of the sequential
congruent derivatives this was first established by Laczkevich and
Petruska [9].

By way of contrast note that it is generally Tess informative
to have such a path derivative along sets that satisfy some density
property. Indeed a typical Continuous function will permit at almost
every point x the existence of a path Ex that has upper density
1 at x and for which the derivative as above exists and is finite.
But it follows from an observation of Jarnik (see Bruckner [1,p.2147)
that such functions may be nowhere differentiable or even nowhere

approximately differentiable,
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