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SYMMETRIC VARIATION

E. Freund [4] has recently in this Exchange investigated the structure of func-
tions having zero symmetric variation on an interval. It is our purpose here
to extend that study by addressing some natural related problems. By ele-
mentary methods and by some well-known techniques we are able to present
properties of functions having zero, finite or o—finite symmetric variation on
an arbitrary set.

Let us recall first the definition of the symmetric variation (cf. [4] or [7]).
Let E c IR and let § be a positive function on E. Then we write

Se(f, B) = sup 30| (@i + ho) = Sz = )|

where the supremum is with regard to all sequences {[z; — hi, @i + hi]} of
nonoverlapping intervals with centers z; € E and with h; < 6(z;). We write
then

VS;(E) = inf Ss(f, E)

where the infimum is taken over all positive functions é on E. This expression
is called the symmetric variation of f on E and the set function VSy is called
the symmetric variational measure associated with f. It is not difficult to
see that VS; is an outer measure on the real line.

Freund [4, Theorem 2.3] shows that if VS;((a,b)) = 0 then there is a

constant function g so that

{z € (a,b); f(=) # 9(2)} (1)

is countable and so that each set

{z € (a,b); |f(z) — g(z)| > €} (e >0) (2)




has countable closure. Note that the set in (1) cannot be further described:
any countable set may appear as such for some constant function g and some
f with VS¢((a,b)) = 0.

We now investigate the conditions VS((a,b)) < +o0, VS;(E) = 0 and
VS¢(E) < +oo. The condition VSy((a,b)) < 400 can be handled almost
exactly as in [4]. If we apply the elementary covering theorem from [6] we
can easily prove the following theorem.

THEOREM 1 Suppose that VS¢((a,b)) < +00. Then there is a function
g of bounded variation on (a,b) so that

{z € (a,b); f(z) # g(2)}

is countable.

Moreover it can be shown too that the sets (2) have countable closure as
in the Freund result. Here with a little extra effort more can be said about
the set (1) though. By applying the covering theorem from Freiling [3]
(rather than the simpler one in [6]) we obtain immediately that this set is
splattered. (A splattered set, in Freiling’s colourful language, is a set all of
whose nonempty subsets contain a point isolated on one side at least.) In fact

the set can be shown to be scattered (all of its nonempty subsets contain an

isolated point) by using the same covering theorem but arguing rather more
carefully.

This theorem, especially in its scattered version, is related to a similar
but much older result of Charzynski [2]: Suppose that

limsuph™!|f(z+h)— f(z —h)| <M
h—0+

at every point z € (a,b). Then there is a Lipschitz function g with Lipschitz
constant no more than M so that

{z € (a,8); f(=) # g(2)}

is scattered.

The analogy cannot be pushed too far. One might hope that the condition
limsup;,_o4 27| f(z + k) — f(z — k)| < 400 at every point z € (a,b) would
force f to agree with a reasonable function g except on a small set. The
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example f(z) = cosz~! shows that f cannot agree even with a continuous

function outside of anything fairly small.

Notice that for the function f(z) = cosz™! the measure VS; is not finite
but it is c—finite. One asks then what properties this will impose on f. An
answer is available by applying some techniques due to Charzynski [2].

THEOREM 2 Suppose that VS; is o—finite on an interval (a,b). Then
there is a dense set of subintervals of (a,b) on each of which f has bounded
variation.

PROOF. We begin by observing that f is symmetrically continuous at each
point of (a,b) excepting only the points of a countable set C. This follows
by much the same arguments that show a function of bounded variation in
the ordinary sense has countably many ordinary discontinuities.

Let {A..} be a sequence of disjoint sets covering (a,b) such that each
VSs(Ay,) is finite. Choose a positive function é on (a, b) so that Ss(f, An) <
+o00 for each m. Write

Epm ={z € Ap; 6(z) > 1/n}.

The countable collection {E,.} covers (a,b) and so, by the Baire theorem,
there must be an interval (¢, d) C (a,b) and a set Enxas dense in (c, d), indeed
even second category in each subinterval of (¢,d). We can assume that the
length of (¢, d) is less than 1/N. We shall show that f has bounded variation
on (¢, d); since the collection of intervals with this property is dense in (a, )
the proof is then complete.

Suppose now that {[z;,y:]; ¢=1,2,..., P} are nonoverlapping intervals
contained in (¢, d). We shall show that

P
2 (i) = f(zi)| < 6S5(f, Amr) +2 3)
1=1
and the theorem will follow.
Take [z,y] as any one of these intervals [z;, y;]. We shall construct points
T = &1, T2, T3, T4, L5, Te, T7, T = y from inside the interval [z, y] and write I;
as the interval with endpoints z; and z;4,. Write f(I;) = |f(z;41) — f(z;)]
(7=1,2,...,8) and then we can employ the estimate

1£(y) — f(=)] < 2
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Here are the details of the construction. Choose a point z € Exas close to
the midpoint of [z, y]; since Eny is dense in (¢, d) we can choose such a point,
say in the middle 1/10th of [z, y]. Since Enas is uncountable in this middle
1/10th of [z,y] we can arrange that the points (z + 2)/2 and (z + y)/2 do
not belong to the countable set C, i.e. so that f is symmetrically continuous
at both of these points.

Write z = z — 2s, y = 2 4 2t and choose s/, t' > 0 so that z 4+ t' € Enyy,
z—s' € Enum, z + t' is sufficiently close to z + t/2 so that

|f(z+2t—2t") — f(z+2t")| < 1/P (4)
and z — s’ is sufficiently close to z — s/2 so that
|f(z —2s8") — f(z —2s +2s")| < 1/P. (5)

The inequalities (4) and (5) just employ the symmetric continuity of f at
the points z + ¢ and 2z — s by making |t — 2¢| and |s — 2’| small. Now write

Ty = z(=2z-—28),
Ty, = z—28"+2s,
T3 = 2z—2s8+2s,

Tyime 228

Qg

Te = z+2t,

z7 = z+2t-2¢,

zg = z+2t'—2t,

As long as [t — 2¢'| and |s — 24| are not too big each of these points
is inside the interval [z,y]. Thus we have produced 8 subintervals of [z, y]
and (because of (4) and (5)) we have arranged for f(Is) < 1/P and for
f(Is) < 1/P; notice that the centers of the remaining intervals I, I I, I
I7, and Iy are in the set Enp. Evidently we can do this same construction
for each interval in {[z;,3:]; ¢ = 1,2,..., P} and, using an obvious notation,
we produce intervals {I;;; i =1,2,..., P, j=1,2,...8} with f(I3) < 1/P
and f(Iis) < 1/P. All the remaining intervals have midpoints in Exys and
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they can be split into 6 subcollections of nonoverlapping 1ntervals each of

length less than 1/N. Thus

8

z |f(y:) — Z Z I;;) < 6Ss(f, Am) + P(1/P + 1/ P)

=1

which supplies the inequality (3) that we wished to prove.

Note that the set complementary to the intervals in Theorem 2 where
f has bounded variation may have positive measure. Indeed there is an
everywhere differentiable function f whose set of points of non bounded
variation has positive measure; [1, p. 73] indicates how to construct such a
function.

We turn now to the conditions VS;(E) = 0 and VS;(E) < +oo for
a measurable set £. A preliminary lemma carries most of the information
needed to relate the measure VS; and the differential structure of f. SD f(z)
and SD f(z) denote the upper and lower symmetric derivates of f.

LEMMA 3 If at each point = of a set E one of the two inequalities
—a>8Df(z) or SDf(z)>a
is true then VS;(E) > a|E|.

PROOF. We may assume that E is bounded. Let § be any positive function
on E and let C denote the class of all intervals [z, y] for which

1f(y) = f(2)| > a(y—2), y—z<é((x+y)/2), (z+y)/2€E.

If either —a > SD f(z) or SD f(z) > « is true at each point ¢ € E then C
is a Vitali cover of E. For any # < |E| choose a nonoverlapping collection
{[zi — hi,zi + hi]} C C so that

B < E2h _a_122ah

=1

< a7t ) |f(zi+ hi) = fzi - ki)l < a7'S5(f, B).
i=1
From this it follows that a8 < VS;(E) and finally that o|E| < VS;(E) as

required.
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THEOREM 4 Let f be a measurable function and let E be a measurable
set. If VS;(E) < +oo then the ordinary derivative f'(z) ezists for almost
every z € E. If VS;(E) =0 then f'(z) =0 for almost every z € E.

PROOF. For any natural number n write

An={m€E; SD f(z) < —n or ﬁf(:c)>n}

and
By = {:c € E; —n™' > SD f(z) or 5D f(z) > n!
Note that
A={$EE; SD f(z) = —co or gﬁf(a:)=+oo}: ﬂAn
n=1
and

B={z € E; SD f(2) # 0} = | ] B..
n=1

It follows directly from the lemma that n|A,| < VS,(E) and that |B,| <
nVSs(E). Thus in the case that VS;(E) < +oo the set A has measure zero
and it follows that the symmetric derivates of f are finite almost everywhere
in E. By a well known theorem of Khintchine [5] f/(z) exists for almost
every z € E. In the case that VS;(E) = 0, B has measure zero and it follows
that the symmetric derivative of f vanishes almost everywhere in E and so
f'(z) = 0 for almost every z € E.

Removing the measurability hypotheses of this theorem would require

some much less elementary machinery. The article [8] can be consulted for
such ideas.
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