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THE RANGE OF A SYMMETRIC
DERIVATIVE

The range of ordinary derivatives is easy enough to sort out. If f is con-
tinuous and has a derivative everywhere, even allowing infinite values, then
f' has the Darboux property. Thus the range of f* must be an interval or a
single point.

For symmetric derivatives these questions are rather more delicate. For
example the continuous function f(z) = |z| is everywhere symmetrically dif-
ferentiable and its symmetric derivative assumes just the three values 0, 1 and
—1. The Cantor function is also continuous and everywhere symmetrically
differentiable and its symmetric derivative assumes just the two values 0 and
+o00. Buczolich and Laczkovich [1, Theorem 5.1, p. 359] show that there is no
possibility of two finile values.

Our purpose in this short article is to present an entirely elementary proof
of this theorem. This is largely to bring this theorem to the attention of those
collectors of symmetric arcana who otherwise might miss this result, buried
as it is in a paper mainly devoted to the structure of certain Borel measures.

The proof we give here uses only three of the most immediate properties of
symmetric derivatives. A continuous function with a nonnegative symmetric
derivative is nondecreasing; this was first proved by Khintchine [2] but requires
nothing more than familiar nineteenth century arguments. At any point the
symmetric derivative is clearly the average of the two one-sided derivatives
when they exist; in fact if any two of SDf(z), fi(z) and f’ (z) exist so does
the other and SDf(z) = 3(f}(z) + f.(z)). Finally any symmetric derivative
of a continuous function is evidently in the first Baire class. From these facts
we construct our proof avoiding some of the heavier artillery called to the front
in [1].

THEOREM 1 (Buczolich-Laczkovich) There is no symmetrically differ-
entiable funclion whose symmeliric derivative assumes just two finite values.
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PRoOF. Our first observation is that the theorem ¢

that there is no continuous functio
work of Larson [3]; he shows that

metric derivative everywhere then

SDf(z) = SDg(z) everywhere.

We assume then, contrary to the theorem, that there is a continuous,
symmetrically differentiable function f whose Symmetric derivative assumes
only the two distinct values @ and 8, a < B. ;Fromthe fact that @ <SDf(z) <
B the monotonicity theorem shows that both f(z) — az and Bz — f(z) are
nondecreasing.

Since SDf(z) is
interval.

the function f is linear with slope a or g,

Let P denote the complement of G. P can have no isolated points. For if
b € P and (a,b), (3, ¢) C G then f is linear with slope a or B in each interval
[a, 8], y¢l. If the slope is the same in the two intervals then f is linear on
[a, ¢] which contradicts the maximality of G. If the slope is different in the
two intervals then SDf(b) = La + 5) and this valye js not allowed for the
symmetric derivative, 5

perfect and, again using the fact
that SDf(z) is Baire 1, there is a point of continuity of SDf(z) relative to P.
Thus there must be a nonempty portion PN (q, b) so that either SDf(z) = a
forall z € PN (a,bd) or SDf(z) = B for all z € PN (a,b).

Let us suppose the latter case; the argument for the former js similar,
Consider some interva] [e, d] contiguous to P in (a,8). In the interval [¢, d] the
function f is linear with slope o or 4. Since SDf(¢) = # and fi(e) is either o
or 3 it follows that JZ(e) exists too. But, since f(z) -~ az and Bz - f(z) are
nondecreasing, o < JL(e) < B. This shows that

F1(c) = 28Df(c) - f' (¢) > 2-p=p

and so f cannot have slope « in [e,d). Thus in this case in every interval
i +b) the function f is linear with slope 8. This means that
= fforall z € (a,b) and hence [ is linear in (a,b) which contradicts

the fact that the portion PN (a, b) is nonempty.
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A symmetric derivative may, as already stated, assume three distinct finite
values. Indeed let a, # € R with a # . Then there is a continuous, symmetri-
cally differentiable function f such that its symmetric derivative assumes just
the three finite values @, # and 3(a+/). (Simply bend the example f(z) = |z|
into the right shape.) Using the arguments of Theorem 1, we can show that
no other configuration is possible.

THEOREM 2 Leta, B, 7y ER witha < v < § and v # }(a + B). Then
there is no symmetrically differentiable function whose symmelric derivalive
assumes just the three values a, # and 7.

PROOF. As in the preceding proof we need only show that there is no

continuous function f with this property. If there is then, as before, both
f(z) — az and Bz — f(z) are nondecreasing.

We show that this cannot happen. Since SD f(z) is Baire 1 there are points
of continuity of SDf(z) in every interval. But at a point of continuity there
must be an interval in which SD f(z) assumes only the value a, # or %; in such
an interval f is linear with slope a, 8 or 4. Thus there is a maximal open set
G so that in every component of G the function f is linear with slope a, 8 or
7

Let P denote the complement of G. Exactly as before P can have no
isolated points. If P is not empty then P is perfect and, yet again using the
fact that SD f(z) is Baire 1, there is a point of continuity of SD f(z) relative to
P. Thus there must be a nonempty portion P N(a,b) so that SD f(z) assumes
just one of the three values a, 8 or v for all z € P N (a,b).

Let us suppose the value assumed is &. Consider some interval [¢, d] con-
tiguous to P in (a,b). In the interval [e, d] the function f is linear with slope
o, B or v. But, exactly as argued in the proof of Theorem 1, it cannot have
slope #. This means that in the entire interval (a,b) the symmetric derivative
assumes only the two values @ or . But by Theorem 1 itself no function can
exist with just two values for its symmetric derivative in an interval. Thus
this case cannot occur. i

In the same way we may suppose that the value assumed is # and again
obtain a contradiction.

Thus we arrive now at the case that SDf(z) assumes just the value v for all
z € PN(a,b). We may suppose, without loss of generality that v > J(a + ).
Consider some interval [c, d] contiguous to P in (a,b). In the interval [¢, d] the
function f is linear with slope a, 8 or 7.

Since SDf(c) = v and f) (¢) is either a, 8 or v it follows that f’ (¢) exists
too. But, since f(z) — az and fr — f(z) are nondecreasing, a < f’ (¢) < S.
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This shows that

Ji(c) =2SDf(c) - fL(e) 22y -B>a

and so f cannot have slope a in {¢,d). Thus in this case in every interval
contiguous to P in (a,b) the function f is linear with slope # or y. This
means that in the entire interval (a,b) the symmetric derivative assumes only

the two values 8 or 4. Again by Theorem 1 no function can exist with just

two values for its symmetric derivative in an interval. Thus this case cannot
oceur.

As we have eliminated all possible cases we see that, as before, P must be
empty so that f can only be linear; this contrad
derivative assumes three distinct values.

Evidently one might continue in this fashion asking for further conditions
on the possible disposition of a symmetric de

doubt, however, many readers could toler
left in any case.

icts the fact that its symmetric

rivative whose range is finite. |
ate much more and few surprises are
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