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VBG Functions

1 Background—Classical

Let f be a continuous real function defined on the real line that is locally of
hounded variation. Then, using the Jordan decomposition to obtain the total
variation function of f, we can describe a measure Vy which expresses the
total variation of f. This total variation measure Vy allows for many inter-
connections among the differentiation, integration and variational properties
of f. The following are well known and should not need much comment:

Vf([a'-bl) :V(ﬂ [”’: bD (1)

expresses the usual variation V(f, [a, b]) on an interval [a,b] in terms of the
measure;

vy(E) = [ 17 2)

for any Borel set E at cach point of which f has a finite derivative, serves to
tink the measure to differentiation properties of the function; and finally the
de la Vallée Poussin decomposition

t(E) = /EHD |f(t)| dt + Vi(E N D2) (3)

where E is a Borel set and Dy and Dy denote the (Borel) sets at which f has
a finite or, respectively, an infinite derivative, serves to reveal the structure of
the measure in terms of general differentiation properties of {:

In this one paragraph, stating classical properties of a real function, can be
found also in a recognizable and concrete form the usual ingredients of a first
course in measure theory: the Jordan, Hahn and Lebesgue decompositions
and the Radon-Nikodym theorem.

If f fails to have bounded variation on some interval (for example most dif-
ferentiable functions would fail in this way) then such a total variation measure
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would have to be obtained in an entirely different manner. See for example
the abstract of the talk given by Sebastian Lindner in this symposium. His
measure has the feature that it assigns infinite measure at any point at which
the function has unbounded variation; this is a reasonable feature for some
studies, but not desirable in a measure that would carry the differentiation
structure seen in (2) and (3).

For that we might turn to the variational ideas of the 1920’s and 1930’s
studied by Denjoy, Khintchine, Lusin and Saks, which are fully developed in
Saks treatise [3]. Recall one writes

Definition 1.1

V(f,E)=sup > |f(b:) — f(a:)] (4)
and
Vi(f,E) = mémp__@wm@ £ (ys) — f ()] (5)

where the supremum is taken over sequences of nonoverlapping intervals {[a;, b}
with. endpoints in E.

We say f is VBG on a set E if there is a countable partition of E into a
sequence of sets {E,} for each of which V(f, E,) < co. We say f is VBG,, on
a set I if there is a countable partition of E into a sequence of sets {E,} for
each of which V(f, E,) < .

One often remembers these by the phrase “The VBG and VBG, functions
are o-finite analogues of BV functions.” But these expressions are not mea-
sures. While V,(f([a,b]) = V(f,[a,b]) is the usual variation on an interval
there are no statements at all similar to (2) and (3).

These classes of functions play an important role in the study of derivatives
and integrals on the real line, but the expressions V.(f, E) and V(f, E) are
unfortunate tools in expressing these ideas.

There is a simple and natural way to define a total variation measure Vy
that preserves all of the features expressed in equations (1), (2), and (3) and
moreover makes the proposed analogy above quite correct: VBG, functions
are indeed those functions with a o-finite total variation measure.

The VBG functions have not received a similar treatment and it is thal
that now motivates us. Is there an appropriate analog of a total variation
measure expressing the notion of this class of functions and which preserven
in some way the fundamental properties (1), (2), and (3)?
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2 Variational Measures

Here is a shortened version of the usual definition, re-expressed in a way that
‘should not be too unfamiliar to most who use these concepts,
- By a (set-valued) gage we mean a function ¢ : R — 2R

Definition 2.1 For any real function, any set E of real numbers and any gage
& we write

T
V(£,E;8) =sup > |f(y:) — fl:)| (6)
i=1
here the supremum is taken over all nonoverlapping collections of intervals
Ty} with z; € E, y; # x; and y; € 6(x:). (We allow either z; < y; or
< z; so that the interval [z, y;] can also mean [y, z;] in the usual notation
for intervals. )

Define a gage d to be an ordinary gage if d(x) is a neighborhood of & for
wch real z. The total variation measure V} is defined by

Vi(E) = it V (f. ;) (7)

where the infimum is taken over all ordinary gages d.
" The set function Vy is what is usually called an outer measure or metric
uter measure or Carathéodory measure. Restricted to the Borel sets or to
measurable sets it is a measure in the usual sense of that term. Proper-
(1), (2) continue to hold in general and property (3) remains valid in the
er class of continuous VBG, functions. VBG, functions are exactly those
ctions with a o-finite total variation measure. These properties, and many
e, clearly suggest that this is the “right” way to develop the variational
of Denjoy, Lusin, Khintchine and Saks.
We propose the following two variants on the total variation measure as-
ciated with a function f. Each is an attempt to mimic some feature of the
BG theory. The first idea flows from the fact that the VBG concept is (as
apparent from the version in Saks [3]) tightly linked to the approximate
rivative and the second idea is to mimic directly the structure of the VBG
efinition.
Jefinition 2.2 A gage ¢ is said to be an approximate gage if for each x the
L 6(z) has inner Lebesque density 1 at .

Jefinition 2.3 A4 gage § is said to be an T-gage if there is a countable col-
petion of sets X = {X1, X5, X3,...} covering the real line and a numerical
age 1 so that

(@ = n(z),z +n(z)) N X C é(z)




Jor every X € X and every x € X,

Definition 2.4 The approximate variation of a real function [ on a set E is
defined by
ViP(E) = inf V(f, B; ) ®)

where the infimum is taken over all approzimate gages 4.
Definition 2.5 The T-variation of a real function f on a set E is defined by

Vi (E) = nf V(f, E;6) (9)
where the infimum is taken over all T-gages §.

The approximate version has received some attention. The T-variation
is named after Tolstov [2] who worked on a related problem in the setting
of Perron-type integrals and the Denjoy-Khintchine integral. It is partially
related to this structure. In [1, Exercise 42.9, p. 222] there was a similar
attempt at using Tolstov's ideas in this setting but the author, in a later
paper, pointed out the error.

It is easy to check that Vi is a metric outer measure (using the same ar-
guments as for V); that Sm, is also a metric outer measure requires somewhat
different methods.

We might expect, naively, since the variational measure 5@ ? is so inti-
mately connected to the process of approximate differentiation and since the
concept VBG plays such a key role in the Saks [3] development of the approxi-
mate derivative, that it would follow that there is a close relation between the
measure and the VBG concept. Indeed there are connections but not as inti-
mate as those connections between the ordinary variation Vi and the VBG,
concept: for example, recall that a continuous function fis VBG, on a set £
precisely when V is o-finite on E.

Theorem 2.6 Let f be a real function and suppose that VPP is a-finite on a
set E. Then f is VBG on E.

But the converse fails, even for simple examples. Indeed there is even a
continuous VBG (in fact ACG) function f so that Vi*? is not o-finite. A
similar example and for a similar purpose was given by Tolstov.

On the other hand the T-variation does indeed characterize the VBG con-
cept as the next theorem shows.

Theorem 2.7 Let f be a real function. Then f is VBG on a set E if and
only if Sﬂ is o-finite on E.

But this is of Hetle tuterest I the variational measure has no merits or
sther applications of s own. The problem here is not merely to characterize
e class of VBG functions by n measure-theoretic statement, but to find a
ssibly useful tool for their study. Our test of that usefulness is whether
ere are statements analogous to (1), (2) and (3) in the introduction.

One might begin to worry if one notes the obvious fact that if any function
[ with countable range is VBG and so a\w: is o-finite as we just learned. But
for such a function ﬂm. vanishes on every set and so carries no variational
information about the function f and certainly no statement such as (1) need
be true.
~ For continuous functions f the variational measure ﬂm: does compute the
ordinary variation on an interval.

Theorem 2.8 Let f be a continuous real function and [a,b] an arbitrary
closed interval. Then

VF (la,8)) = V(£.[a,B).

| A development of the analogues to (2) and (3) requires introducing an
Appropriate generalized derivative arising from this structure. Space allowed
here, however, does not allow us to begin.
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