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MONOTONICITY THEOREMS

Recently in this Exchange Professor Bruckner [3] has raised the
problem of finding some unified approach to the subject of mono-
tonicity theorems. He has split the attack on this problem into
two categories: reduction theorems and abstract theorems. There
are now some successful and interesting reduction theorems that
do give much insight into the nature of a number of monotonicity
results. Most prominent among these is due to Bruckner himself
and asserts, roughly, that any monotonicity theorem provable

for the class of functions that are continuous and of bounded
variation is extendable to the class of Darboux-Baire 1
functions. For a discussion of this (and a more precise
formulation) and of a reduction theorem due to O'Malley and

Weil the reader is referred to [3, pp. 28-33].

The abstract approach to the monotonicity problem has
so far yielded less significant results. The most promising,
as Bruckner [3, pp. 33-34] points out, lies in the study of the
selective derivatives introduced by O'Malley but it may be that
this class of derivatives is too specialized to Yeveal much about
the structure of many monotonicity theorems. The most obvious

abstract approach would be to invoke the machinery of abstract
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differentiation theory and somehow bring it to bear on this

problem.

Abstract differentiation theory has been under study
now for nearly half a century and has achieved a certain
maturity. It has clarified many of the difficulties of the
differentiation theory of integrals in Euclidean space and most
recently, with the help of the lifting theorem, it has placed
the Radon-Nikodym theorem for abstract measure spaces into a
proper differentiation setting. The best and fastest
introduction to the field would be to consult Bruckner [1] and

then work through the bibliography there.

Unfortunately though not much of this theory has any
bearing on the monotonicity problem. The reason for this is
that the abstract theory has mainly centered its attention on
the Vitali covering theorem and the differentiation theory for
integrals. Thus one encounters properties labelled as strong
Vitali, weak Vitali, y-Vitali, p-Vitali as well as properties
that are motivated by some proof of the Vitali theorem and one
finds the Hardy-Littlewocod operators playing a major role in
the theory. But on the real line, while these concepts make
sense they do nothing to distinguish between various
differentiation bases. For example the Vitali covering
theorem will hold for almost any differentiation basis on the

real line and with respect to any reasonable measure (see




de Guzman [5, p. 27]1}. As it stands then even though all of
the problems of differentiation theory on the real line can be
expressed in the language of the abstract theory, that theory

contains no tools with which to solve them.

Nonetheless we can apply the general program of the
abstract theory: find "geometric" properties of an abstract
differentiation basis that can be used to unify monotonicity
theorems. These properties will mainly be special and peculiar
to the real line setting and so we must consider that what we
are doing here is merely a special and peculiar chapter in
the larger abstract theory of differentiation. This article
contains an expository account of our attempts to initiate this
theory in [10]. Abstract theories can be quite formidable and
forbidding in their full-dress formal presentation as anyone
familiar with the current literature of abstract differentiation
theory will appreciate; even though the basic ideas may be
simple and elegant the notation and terminology alone may be
enough to put off all but the most determined reader. It is
hoped that this informal and motivated account will clarify
our intentions in this study and perhaps encourage others to

follow this program.

1. The program. Let us accept that a proper attack on the
monotonicity problem would be to investigate the subject within

an abstract differentiation theory. Indeed much of the theory
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of generalized derivatives on the real line might be best
developed within such a framework. The simplest account of

such a theory can be given as follows:

= 1et J[a,bl be a fixed interval.
- let I denote the family of all closed subintervals of [a,b].

- let B(x) be, for each x € [a,b]l, a filterbase* on 1 .

This object B , however one wishes to view it, is
our abstract differentiation basis and gives rise to derivatives

and derivates in an obvious manner:

if £ 1is a real-valued function on [a,b] then the extreme

derivates of f with respect to the differentiation basis B

are
Dpof(x) = sup  inf{£(1)/|1] : I € B}
B € B(x)
and
Df(x) = inf  sup{€(D)/|1| : T € B} .
B € B(x)

*By a filterbase on I we mean that each B € B(x) is a
nonempty subset of I and whenever Bl and 82 belong to

B(x) there must be in B(x) an element B; €8, N B,. The theory

is also traditionally developed using nets in place of filters;
we have chosen this present viewpoint as being simpler but no
less general.




Here of course we are writing [I[ for the length of the

interval I and £(I) for the usual increment of f on I .

It should be clear how to realize any number of
generalized derivatives within the setting: the Dini
derivatives, the symmetric extreme derivates, the approximate
extreme derivates, etc. permit this characterization while
the preponderant would not. The program is, simply stated, to
find properties of the family {B(x) : x ¢ [a,bl} that permit
various assertions about the corresponding derivates to hold.

For example consider the following "theorem":

A. If for every x € [a,b], quF(x) Z 0, then f must be

nondecreasing on that interval.

This theorem has been proved to hold for the ordinary
derivatives, the approximate derivates, the selective, and the
qualitative derivates; it is not true for the Dini derivatives
or the symmetric derivatives. What then is the geometry of this
theorem? 1Is there some property shared by the differentiation
bases and expressible strictly in terms of the filterbase B(x)
that makes this theorem true for some derivatives and false for
others? A review of the proofs is not particularly revealing
for they commonly employ indirect arguments and use special

properties of the corresponding derivatives. Indeed there is

no reason why this guestion must be answerable,




Fortunately there is a meaningful and simple abstract
version of the above monotonicity result., The:true nature of
the theorem does lie within the geometry of the filterbase
structure. For our purposes though this present formulation
is particularly awkward and lacks much of the flexibility and

notational ease of an essentially equivalent formulation.

The collection {B(x) : x ¢ [a,bl} of filterbases on f
can be better visualized as a single filterbase B on

I x [a,b]. The extreme derivates are written then as

D, £(x) sup int | £(ry/|1]
B EB (T, x)€ B

EBf(x) inf sup . £(1)/]|1] .
BEB (%) €8

This presentation allows us considerable notational
advantage; more than that it is a genuine generalization of
the traditional structure in that it allows us to discuss
uniform derivatives as well as pointwise ones. Even more it
permits us to tie in the theory with the theory of integration
as developed in the works of Ralph Henstock [6]; thus various
theories of generalized derivatives and generalized integrals
emerge from the same structure and the traditional inter-

relations that hold between the two subjects emerge in a




natural and revealing way. Our interest here is restricted to
the monotonicity problem and we shall ask of the reader only
that he be prepared to accept as a rational approach to that
problem the investigation of filterbase structures on

I X [afblo

2. Abstract derivation theorvy. For the reasons outlined

above we have chosen to base the theory on the following

structures:

- [a,b] 1is a fixed interval of real numbers.
- I is the family of all closed subintervals of [a,b].

- B 1is a given nonempty collection of subsets of I X [a,b].

We shall speak loosely of such a B as a derivation basis and

define the extreme derivates for a function f relative to

this basis by writing:

D £x) sup int" “e(ri/[1]
BeERB (I,x) €8

b'Bf(x) inf gap - E(n/lz] .
BE€B, (I,x) €8

The notion of an exact B-derivative could be defined
by the customary device of requiring the two extreme derivates

to be equal. Much better in this setting is to say that g
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is an exact B-derivative of f if for every € > O there is

a B € B with
lgx) - £(@/|z]] < e

for every (I,x) € B . Although we will not be using this idea
in the sequel it is a most interesting generalization of many

derivation ideas.

It is important to realize here that we are making no
assumptions in advance on the collection B beyond the fact
that it is some nonempty collection of subsets of I x [a,b].
Thus, for example, it is not necessary for the upper defivate
EB £(x) to exceed the lower derivate EB Fi(®) ‘wor for'an
exact B-derivative to be unique. In fact the theory is much
more flexible if we avoid any a priori assumptions on B .

The following examples illustrate the scope and intention of

the theory.

(1) (trivial derivation basis]. Let B = {p}. Then in-
variably D_ f(x) =+, EBf (x) = -, and every function

g 1is an exact B-derivative of £ .

(ii) [uniform derivation basis]. Let ¢ > 0 and write 85
as the collection of all interval-point pairs (I,x) with

T el % &1, and [I| €4 . Dafine
g = {86 T ) N
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A function g is an exact U-derivative of f if and only if

g is the uniform derivative of f . The extreme U-derivates

are the ordinary extreme derivates but this is not the best

derivation basis in which to study them.

(iii) [ordinary derivation basis]. Let S be an aribitrary

positive function on [a,b] and define, similarly to (ii)

above,

Bg=1@x) s x€1,xe1, |1 <850}

and take D as the collection of all such BG for positive

functions 6§ on [a,b]. Then gqu(x) and Bbf(x) are the

usual extreme derivates f'(x) and ?“(x) i 9 1is an exact

D-derivative of £ if and only if £'(x) = g(x) (finitely)

everywhere on [a,b].

(iv) [reversed ordinary derivation basis]. Suppose that

to each x € [a,b] there is given a set n(x) <€ [a,b]l which

has x as a point of accumulation; write

B, = {tix,yl,x) : y € nix), y # x}
using the usual convention that [x,y] with y < x means

[y,x]. Let R be the collection of all such Bﬂ for any

choice of functions N having the above stated pProperty.
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Then D f£(x) =%'(x), D f(x) = £'(x), and

g 1is an exact R-derivative of £ if and only if g(x) is a

finite derived number of f at x for every x € [a,b].

The device used here can be applied to any derivation
basis to effectively reverse the roles of the upper and the
lower derivates, and to change an exact derivative to a derived
number in some sense. This is closely related, of course, to
the notion of a Vitali cover or B-fine cover in the language

of abstract differentiation theory.

(v) [approximate derivation basis]. Suppose that 0 p =1
and 0= A= 1. Let n(x) for any x € [a,b] denote a
measurable set that has right density at x exceeding p

(unless p =1 in which case n(x) has right density equal

to 1 at x) and left density at x exceeding A (unless A =1

in which case n(x) has left density equal to 1 at x).

Define for such a function n ,

ﬁ|={um2LXJ=[mZIEI.yé:céz.aMimzélﬂm}.

(p,A)

Let A denote the collection of such subsets Bﬂ of

I x [a,b] for functions n having the above stated properties

for a given pair p and A .,

For measurable functions these derivation bases can

be used to study the extreme approximate derivates and the
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extreme preponderant derivates; A(l'l) gives the usual

approximate derivatives (at least for measurable functions),

A(1/2,1/2}

and the usual preponderant ones. In general the

(p,A)

bases A with p + A 2 1 share most of the important

properties of the approximate and preponderant bases.

These examples should suffice for the reader to place
any of a number of generalized derivatives within this setting.
In fact the scheme is somewhat wider than even these examples
might indicate; as an indication we illustrate with a further

example of a slightly different type.

(vi) For each x € [a,b) let n(x) be a nonempty subset of

(xrb] . mite

w™
il

{(1x,y1,%) : v € n(x)}

and

w
il

{Bn : all such functions n} .

For this derivation basis B the following "monotonicity"

theorem is easily proved:

if f is continuous on [a,b] and _I_J_Bf(x) = 0 everywhere

then F£(b) = fila) .

This places in a familiar form a theorem that at first sight

would not appear to have any relation to a derivation result:
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if £ is continuous on [a,b] and for each x ¢ [a,b)

sup{f( ) - £(x) T RS 105 then - f(b) & £(a).

y = x v

We proceed to a study of the geometry of this
structure B consisting of subsets of I X [a,b]. There are
a number of elementary properties of such structures that can
be used to prove monotonicity theorems and which unify some
classical theorems. We need the following notation to simplify

the assertions:

if B is a subset of T X [a,b] and X C [a,b] then

BIxl s ATV £ 8 v x € x} and Bl = {(T,) EB 21 ¥y

Thus B[X] Jjust picks out from B those pairs (I,x) with the
point x in the set X and B(X) Jjust picks out those pairs

with the interval contained in X .

There are only five properties needed in the theory.

filtering down. B is said to be filtering down if for

from B there is a B in B

. every pair 81 and B 3

2
with B, <8 N8B, .

This is a natural and obvious propefty shared by most important

derivation bases. Examples (i), (ii) and (iii) have this

1,1)

property, while (iv) does not. The basis A is filtering

down but in general the bases A(p'k) are not.
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(2) pointwise character, B is said to have pointwise

character if for every family {Bx : x € [a,b]} c B

there is a R € B with

B{x} c B,

for each x € [a,Db].

At first sight this property may seen formidably abstract; a
moment's reflection should show though that it expresses only
the requirement that the family B be characterized by its
pointwise behaviour. Most derivatives (but not uniform
derivatives) are defined locally and this property merely
formalizes this requirement. For example a statement that

RB f(x) > g(x) everywhere in X means that there exists

for each x € X an element Bx € B with £(I) > g(x)|I| for
every (I,x) € Bx . If B is of pointwise character then
this allows the choice of a B € B such that this same

inequality holds for all (I,x) € B and any X € X . Only

example (ii), the uniform derivation basis, is not of pointwise

character.

The terminology is lifted from McShane [7] in a

different but related context; Henstock [6] uses decomposable

for an equivalent idea, and exploits a weaker concept in his

integration theory.
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(3) finer than the topology. B is finer than the topology if

for every 80 € B and every open set- G C [a,b] there is

a B E€B with

BIG] € B,(G1 .

The uniform derivation basis (example (ii)) does not have this
property, nor does the peculiar example (v), but all genuine
derivatives should have this property. It expresses only that
the limit of the gquotient f(_I}/|I[ is taken somehow in terms

of smaller and smaller neighbourhoods of the point ¥ .,

(4) partitioning property. B is said to have the partitioning

property if for every interval J € I and every 3 ¢ B

there is a pointed-partition T o T SR B o

T = {{Ii;xil s B AL s VRS RTY S

Ii and Ij do not overlap if i # j, and
Certainly the uniform derivation basis, example (ii), has this
property for it is exactly the setting for the Riemann integral.
It is rather more surprising that this same property is shared
by the bases for the ordinary (iii)), the approximate and
preponderant (i.e., example (iv) with p + A = 1), the

selective, and the qualitative derivatives. It represents the
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simplest and most interesting geometric Property to emerge in

this general theory; it plays, of course, a key role in the

general theory of Riemann-type integrals,

(5) Young decomposition. B

is said to permit a Young

decomposition if for every X < [a,b] and for every R € B

there is a sequence of sets {xn} covering X such that

B[Xn} contains a pointed-partition of every interval with

endpoints in Xn

This property is admittedly more technical than the pPreceding

and a little harder to motivate. 1t is an abstraction of a

common device in derivation theory; for example the decomposition

in the proof of Theorem 4.1 in (2, p. 63] or Theorem 10.8 in

(9 . 2371 is pPrecisely of this type. We have chosen to

label it with the name of an illustrious family of mathematicians
because it is the key property in eéstablishing a generalization

of two theorems for the Dini derivatives eéstablished by

W.M. Young and G.cC. Young in 1908 and 1912, The abstract

versions are:

I. [Theorem of G.C. Young] IE Bl and B2 are families of

subsets of [ x [a,b] both of which have the Young
decomposition pProperty and are of pointwise character then,

with at most countably many exceptions,




II. [Theorem of W.H. Young] If B, and .B, are families

& 2

of subsets of I x [a,b] both of which are finer than the
topology, filtering down, of pointwise character, and

have the Young decomposition property then for any

continuous function £ ,

and D_ f(x) =D_ £(x)
El B2

for all but a first category subset of [a,b].

If B, and B, are taken as the derivation bases for the left
and right Dini derivatives these theorems are exactly the

classical theorems of the two Youngs.

These five properties are enough now to start an
attack on the monotonicity problem and in the next section we
will show how they can be employed to give an indication of why

some monotonicity theorems work.

3. Elementary monotonicity theorems. Not all monotonicity

theorems can be approached with this minimum of structure that

we have presented so far. We can however give the beginnings

of the theory without further complications. By an

"elementary' monotonicity theorem we shall mean one that flows
without much difficulty directly from the partitioning property.

It is remarkable that this one property can be carried so far.

224




We state the three basic theorems.

THEOREM A. Let B be a family of subsets of ’I X [a,b] with
the properties:

pointwise character and the partitioning property.

Then if _Q_Bf(x) Z 0 everywhere on [a,h], f must be non-

decreasing on that interval.

THEOREM B. Let B be a family of subsets of I x [a,b] with
the properties:

pointwise character, finer than the topology, and the
partitioning property.

Then if EB f(x) 2 0 a.e. in [a,b] and ng(x) >

everywhere on [a,b]l, f must be nondecreasing on that interval.

THEOREM C. Let B be a family of subsets of I ><‘ [a,b] with
the properties:

pointwise character, filtering down, finer than the topology,
Young decomposition, and the partitioning property.

Then if £ is a Darboux Baire-l1 function on [a,b] for which
Dyf(x) =D, f(x) holds everywhere in [a,b] with at most
countably many exceptions, and Dyf(x) 2 0 holds almost

everywhere, f must be continuous and nondecreasing on [a,b].

It is easy to see why the partitioning property
should carry a number of monotonicity results. For example

3t _l:l]3 f(x) > 0 everywhere on [a,b] where B is assumed
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to have pointwise character and to have the partitioning
property then there must exist a B € B for which - £(1) 2.0
for every (I,x) € B . But any interval J € I permits the

existence of a pointed-partition T € B of J and this gives

£{3) = Z(I,x) Ep LS
Consequently f must be strictly increasing on ([a,b]. Both
A and B are proved using this idea. Theorem C can be
proved by following very closely the proof of the Goldowski-
Tonelli theorem in [9, p. 206] and then applying the
reduction theorem of Bruckner referred to in the introduction

above.

Each of these theorems applied to the derivation
bases for the ordinary, the approximate, the selective, and
the qualitative derivatives. The one-sided (Dini) derivation
basis and the symmetric derivation bases do not have the
partitioning property and a more subtle approach is needed.
This leads us to the notion of a variational measure associated

with an interval function and a derivation basis.

4. Total variation measures. We wish to present a notion

of a measure that somehow reflects the total variation of a
function. The most familiar concept that carries this idea

is the Lebesgue-Stieltjes measure associated with any function

226

— TR

T




of bounded variation. As we very definitely do not want to
restrict our attention to such a narrow class of functions we

will need to depart from the usual constructions.

Various considerations from integration theory and
from classical variational ideas lead one to define for any

function
hoi I % Ja,b]l +' &5
and for any subset B of I x [a,b],

V(h,B) = sup{Z |n@@,x)| : ™ c B}

(Tox) &7
where the supremum is with'regard to all pointed-partitions T
contained in B , i.e., finite subsets T = {(Il,xi) :
i=1,...,n} with I, and I, nonoverlapping if i #3j .
Where there are no such partitions we set V(h,8) = 0 . This
expresses compactly (much too compactly perhaps) a vast array
of technical ideas that are commonly used in analysis.

Without presenting the details let us say only that all of the
variational computations that appear in Saks [9] can be
expressed in this language as well as notions involving upper

integrals in various senses. The examples below illustrate.

For any nonempty family B of subsets of I X [a,b]

and any such interval-point function h we write
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h,(X) = inf V(h,BIX]) (X S [a,b])
B €B -

and refer to hB as the total variation "measure" associated

with h for the derivation basis B

Example (a). Let U be the uniform derivation basis,

example (ii) above, and set m(I,x) = |I|. Then m (X)) is

the classical Peano-Jordan content of the set 5, G

If h(I,x) = £(x)|I| for a bounded function £ then

b
h,(la,b]) = J |£(x) |ax is the upper Darboux integral of £ |,
a

Example (b). Let D be the derivation basis for the ordinary
derivative, example (iii) above, and let m(I,x) = [I[ and

h{l,x) = f(x)[I| as before. Then mD(X} is the Lebesgue

outer measure of X and h_(X) = J |£(x)|@x is the upper
X

Lebesgue integral of |f[ pel G

For a continuous function F on [a,b], considered

as defined on I X [a,b] by the device F(I,x) = FP(I), the
measure FD reflects a number of familiar ideas: FD is

finite if and only if F has bounded variation, and FD is

o-finite if and only if F is VBG, ; F 1is AC (respectively

ACG,) if and only if FD is finite (resp. o-finite) and

absolutely continuous with respect to Lebesgue measure.



These two examples indicate the considerable scope
and power of these variational tools. The theory derives
mainly from Henstock's attempts to unify much of classical
integration theory; see [6] and earlier works of Henstock.

The following theorem is essentially his.

THEOREM. Let B be a nonempty family of subsets of

I x [a,b] and h a real-valued interval-point function. If
B has pointwise character then hB is an outer measure on
[a,bl. If moreover B 1is finer than the topology then hB
is a metric outer measure on [a,b] (i.e., all Borel sets

are hB-measurable].

We can now explain how these variational ideas can
be brought to bear on the monotonicity problem. Let f be a
real-valued function on [a,b], considered as usual as an
interval function f : I + R . Define the negative part of

£, £ , by writing
£7(1) = max{o, -£(1)} .

To establish that f is nondecreasing on [a,b] is
equivalent, trivially, to showing that the corresponding
subadditive interval function £~ vanishes identically. Most
frequently this can be proved by showing instead that the
associated variational measure £ _ itself vanishes. Thus we

B

have the ingredients of a monotonicity theorem: (i) a setting
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in which the vanishing of f-B requires the vanishing of £

and (ii) conditions which ensure the vanishing of SRR

should be clear now why the following definition is needed.

DEFINITION. Let H be a given class of nonnegative sub-
additive interval functions. Then a family B of subsets of
I x [a,b] is said to be H-complete if hB({a,b]} = 0 and

h € H together imply that h = 0 .

Any derivation basis that has the partitioning
property is evidently H-complete for any choice of H . The
most interesting application of this concept is with H = C ;
the class of all continuous subadditive interval functions.
The derivation bases for the one-sided derivative and for the
symmetric derivatives are (-complete and yet do not have the

partitioning property.

5. General monotonicity theorems. In order to capture a

great many monotonicity theorems we need a systematic method
of handling the exceptional sets that frequently arise. The
device suggested by the ideas of the previous section is to
introduce appropriate measures and then the exceptional sets
more or less take care of themselves. Everything we need is
contained in the following two observations, each of which is

quite elementary:
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(1) Let B be a family of subsets of ] x [a,b] that has
pointwise character. TIf D,f(x) 2 0 for every «x

in a set X then f'B{x) =0,

(1) Let B be a family of subsets of I x [a,b] that has
pointwise character and is finer than the topology. If

P'B f(x) 2 0 for almost every x ina set X and

ng(x} > =-® for every x in X _then f-B{X}. =0 .

In many settings all that is needed in order to show that f is
nondecreasing is that f"B([a,b]) = 0 . Thus we have a number
of monotonicity results merely in terms of null sets for the

measures f -B 5

THEOREM A!. Let B be a family of subsets of I x [a,bl]
that has pointwise character and is H-complete for a family H
of nonnegative subadditive interval functions. Then if

EBf(x) 2 0 for f-B-almost every X in [a,b] and

£ € H, f must be nondecreasing on [a,b] .

THEOREM RBR'. Let B be a family of subsets of I X [a,b]
that has pointwise character, is finer than the topology,

and is H-complete for a family H of nonnegative subadditive
interval functions. Then if EBf(_x} £ 0 a.e. inlda,Bl;

_D_Bf(x) > = for f_B—almost every x in [a,b], and

f €H, £ must be nondecreasing on [a,b].
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The Goldowski-Tonelli-Zahorski theorem that was
given before using the partitioning property can be proved

with the weaker one of C-completeness.

THEOREM C'. Let B be a family of subsets of I x [a,b]
with the properties:

pointwise character, filtering down, finer than the topology,
Young decomposition, and C-complete.

Then if £ is a Darboux Baire-l1 function on [a,b] for which
RB £lx) = BBf (x) holds everywhere with at most countably many
exceptions, and <2B:Euﬂ =Z 0 a.e. in [a,b], f must be

continuous and nondecreasing on [a,b].

These three theorems capture a wide array of
monotonicity theorems. In some cases it is easier to prove
the monotonicity result directly by invoking properties of
the corresponding derivative rather than verifying that the
corresponding derivation basis has the listed properties. For
example it is proved in [2, p. 189] by quite simple means
that the following monotonicity theorem for the upper Dini
derivative is true:
if £ s bontipndus; "D E{z) 240 dAves  and DECR) 5 -
everywhere except possibly on a countable set, then f is
nondecreasing,

It is nonetheless remarkable that this theorem is a direct

corollary of our Theorem B!.
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For more difficult monotonicity results it may be

better to invoke the general theory, in particular for results

that need delicate conditions on the exceptional sets. For

example Burkill [4] proved that:
2E £ iE approximately continuous, gjap(x) Z 0 a.e. and

gjap{xj > = ® everywhere then f is nondecreasing.

O'Malley [8] has:

if f is measurable, -£Iap(x) = 0 a.,e. and f£! P(x) >
everywhere then f isg nondecreasing,

Then using the general Theorem B' one can allow easily an
exceptional countable set in Burkill's result, and make more

delicate assertions in O'Malley's result: an excepticnal

countable set is permitted there provided only that at each

of its points f is upper approximately semicontinuous on the

left and lower approximately semicontinuous on the right. Such
an improvement might be harder to make directly.
We resist the temptation to construct a complete

IisEins monotonicity theorems embraced by these three general

theorems.
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