
ON McSHANE’S VECTOR-VALUED INTEGRAL

B. S. THOMSON

E. J. McShane has recently given an abstract version [3] of a generalization
of the classical Riemann integral due (independently) to J. Kurzweil and R.
Henstock. Simultaneously, Henstock’s own abstract version [2] has appeared.
Although there is much in common between these two treatments there are
two distinct ideas which do not overlap in their presentations, namely, Hen-
stock’s notion of "variation" and McShane’s concept of "absolute integrability".

In this paper we show how McShane’s "absolute integrability" can be studied
in a context derived mainly from Henstock’s version of the abstract theory.
In particular the underlying measure theory is shown to emerge quite naturally
from this point of view.

Notation. The notation used is similar to that of the preceding paper except
that the system (T, I, I) will arise out of some algebraic structures and the
resulting theory will then have more algebraic properties. Let B be a nonempty
class of subsets of a set T. We require the following.
B is called a clan if AB B and A k.) B B for all A, B B.
B is called a semiclan if (i) A B B for A, B B and (ii) for every pair

(A, B) of sets of B for which A __. B there exists a finite family {Co, C1, C,
C} of sets of B such that A Co C1 Cn B and C,,C,-1 B

fori 1,2, ,n.
B is called a tribe if (i) AB B for A, B B and (ii) J-i A, B for every

sequence {A, of sets in B.
B is called a semitribe if (i) AB B for A, B B, (ii) A ) B B for A, B B

and (iii) (’., A, B for every sequence {A, of sets in B.

1. Partitioning systems. Let T be a set, a semiclan [1; 7] (semiring) of
subsets of T and the clan (ring) generated by . The sets in will be called
elementary sets. We write I X T. A finite subset D of I is called a parti-
tion if the sets {I: (I, x) D} are disjointed. We write then (D) {I: (I,
x) D} and we call D a partition o] the elementary set (D). A subset S of I
is said to partition E if S contains a partition of E.

For any subset S of I and for any family I of subsets of ! we denote

six] {(, ) s :x}
S(Z) {(/, x) S :I X}
[x] {six] s }
(x) Is(x) :s,}.

Received March 10, 1972. Revision received June 8, 1972.

511



12 B.S. THOMSON

DEFINITION 1. An ordered triple (T, I, I) is said to be a partitioning system
if I is a collection of subsets of I satisfying the following conditions.
(1.1) Every S ?I partitions every elementary set.
(1.2) If (I x) and (I x) belong to an S , then so does (I (’ I x).
(1.3) I is directed downwards by set inclusion.

This is considerably more restrictive than the concept of a division system
or of a division space [2], [4] and [5] but presents the most attractive setting for
the results of this paper. Many of the results stated are true in more general
circumstances but McShane’s concept of absolute integrability is best exploited
under these assumptions.

DEFINITION 2. A partitioning system (T, [, I) is said to be Iully decomposable
(respectively decomposable) if for every family (respectively countable family)
{X:i II of disjoint subsets of T and for every family {S,:i I}

_
[ there

is an S e such that SIX,] S,[X,] for each i I.

In [3] fully decomposable systems are said to be of poinwise character; the
definition and terminology here are due to Henstock [2; 512].

Let # be a function defined on I and with values in a normed linear space 1.
For any subset S of I and for any family of subsets of I we define the variation
of with respect to S and [ as

(1.4) V(, S) sup (D)

where D denotes an arbitrary partition and the sum (D) is with regard to
all (I, x) D, an empty sum being replaced by zero, and as

(1.5) V(, ) inf V(, S).

Henstock [2] has observed that for decomposable partitioning systems
(T, 2, I) the function X *(X) V(, 2[X]) defined for all subsets of T is
an (outer) measure on T. This is true for any function : I -- t. However more
specific results are obtainable for those that are regular [4], i.e., for those which

V(g, I[X]) V(g, [X](E)) -k V(g, [X](E))
is true for all X T, E e . (Here we use E to denote TE.)

If we agree to call a function g’I - E additive (subadditive) and if the func-
tion I -- g(I, x), (I, x) e I, is additive (subadditive) for each fixed x T, then [5]
proves that for partitioning systems (T, /, I) every additive (or nonnegative
and subadditive) function is regular. This result accounts for quite a large
part of the theory. We summarize below. Each of these results is true in more
general circumstances. (By R+r below we mean the set of all nonnegative real-
valued functions on T and ]g denotes the function (I, x) ](x)g(I, x), (I, x) I.)

THEOREM 1. Let (T, , I) be a decomposable partitioning system and let
u’I -- E be additive (or nonnegative and subadditive). For X T and ] Iir+ we
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define *(X) V(g, I[X]) and N,(]) V(]#, I). Then the Iollowing hold.
(1) * is a measure on T.
(2) For any increasing sequence o] sets X1 X in T, *(J., Xk)
lin *(X.).

(3) I] N(]) < + , then N(D supE. V(g, I(E)).
(4) The ]unction ] --> N(]) is an upper integral on Rr+

ProoI. For a proof see [4].

DEFINITION 3. The integral of a function #’I --. E on an elementary set E
with respect to a partitioning system (T, 9A, I) is defined as follows. Let (, S, E)
denote the set of all elements in E which can be written as (D) (I, x) where
D S is an arbitrary partition of E. Clearly {(g, S, E)’S I} is a base for
a filter in E whose limit, if it exists, is denoted by f(s).

If f(E) exists for every E and lims f()u exists (in the sense of the net
on directed upward by set inclusion), then # is said to be integrable and we
write fr lim f() .

In particular if T itself is an elementary set, then certainly
We state the results we require in a lemma.

LEMMA 1. Let (T, I, I) be a partitioning system and suppose :I - E /s
additive. Then the ]ollowing hold.
(1) I] f(E) exists ]or all E e , then E f(s) is finitely additive on and

(2) If fg exists for all E , E is complete and V(g, ) < + , then
exists and lf.il v(.,

(3) I1 and g are integrable, then so is + and fr(g + ) rg +
Proo]. (See [2] and [3].) The proof offers no difficulty and is omitted.

Assertion (2) simply uses the regularity of g to show that the net {f(s)g E }
is Cauchy in E.

2. Absolute integration theory. Throughout the remainder of the paper
(T, /, I) will denote a fixed but arbitrary partitioning system. The exposition
is intended to establish the relationship the present theory has with the tradi-
tional measure-theoretic treatment [1] of the Lebesgue integral for vector-valued
functions.

DEFINITION 4. Suppose g is a function on I with values in a normed linear
space. A set X T is said to be g-measurable in (T, ?I, I) if for every e > 0
there is an S /such that

(2.1)

and

(2.2) (D,[X] x D,[\X]) 2 I[,(Z C , x)li _<
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for all partitions D1 and D2 contained in S. (The summation is with regard to
all (I,, x) D,[X] and all (I, x) D.[.X].)

In particular if is independent of x T, i.e., if (I, x) (I) for (I, x) I,
then (2.1) and (2.2) reduce to the simpler assertion that

The collection of all -measurable sets in (T, t, I) is denoted (u); clearly
)() contains at least the set 2 and T. The subfamily of !!() consisting of
all u-measurable sets on which * is finite is denoted !lto(); clearly o().

LEMM. 2. Let be an additive/unction on I with values in a normed linear
space. Then () and o() are clans; i/in addition (T, I, I) is decomposable,
then j(u) is a tribe and Jo() is a semitribe.

Proo].
follows.

We first prove that !() is a clan; that o() is also a clan then
If X and Y belong to !l() and D and D2 are any partitions, then

D[X .) Y/ X D[(X %) Y)] (DI[X] X D2[X])) (D[Y] X D2[Y])
from which, using the additivity of , it is easy to show that X k.) Y (u).
By the symmetry of Definition 4, ilk(u) is clearly closed under complementation
and so it follows that () is a clan.
Now suppose (T, I, I) is decomposable and that X ). X, where the

{X} are disjointed and belong to !l(). Choose an S I so that the sums
in (2.1) and (2.2) for X: are smaller than e/2; proceeding inductively choose
S t, n > 1, so that the sums in (2.1) and (2.2) for X. are smaller than e/2
and so that S. Sn-.
By the decomposability property we select S I so that S[X] C S[X],

i 1, 2, .... Then given any pair of divisions D and D. contained in S

D,[X] X D[X]

_
J (D,[X,] X D[X.])

and an obvious argument yields

(D[X] X )[\Z]) I1(I, n Z,  ,)li _<
with the corresponding sum in (2.2) also not exceeding e. Thus X !l() and
() is tribe; that !ffto() is a semitribe is now clear and the lemms is proved.

DEFNITON 5. [3; 15] A function g on I with values in a normed linear
space is said to be absolutely integrable in (T, I, I) if for every e > 0 there is an
S e ?I such that

(2.3)

for every pair of partitions D and D contained in S.

In particular note that any function on I which is independent of x T is
absolutely integrable.
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THEOREM 2. Let be absolutely integrable in (T, 92, I). A set X T belongs
to 93() i] and only i] xx is absolutely integrable; ff7() contains every set X ]or
which *(X) O. I] in addition is additive and (T, , I) is decomposable,
then * is countably additive on j().

ProoI. Suppose firstly that xx is absolutely integrable and let S I be
chosen so that

for arbitrary D1, D

___
S. On replacing D1 by DI[X] and D by D.[X] we get

(D,[X] X D.[\X]) I!(I, F , z)ll _< .
A similar argument applied to xr\xv xxv (which is also absolutely

integrable) yields the statement

which together with the above proves that X is #-measurable.
Conversely suppose that X is #-measurable and that the sums in (2.1) and (2.2)

do not exceed /3 for partitions D1 and D. contained in an S 9A and suppose
also that the sum in (2.3) does not exceed e/3 (This is possible because # is
absolutely integmble by hypothesis.).
Then for D, D contained in this S

+ (D,[X] X [NX]) I(Z, I, ,)11
+ (D[X] X ,[XX]) I1( Z, )11

so that x is absolutely integrable as required.
Now suppose X T with *(X) 0; we will show that X (). Choose

S so that V(, S[X]) e/2 and so that the sum in (2.3) for does not exceed
/2.
Then if D andD are contained in S so is every (I I, x) for (I, x) D

and (I, x) D (Definition 1 (2)); hence
(D,[X] X D[X]) II(Z, Z, x,)ll (, SIX]) /

and

(D,[X] X D=[XX]) i(Z, Z, )11
(D,[X] X D[XX]) I,(Z I=, ,)11
+ (D,[X] X D[X]) II(Z, Z, ) ,(Z, I, ,)11

so that X is -measurable as required.
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To obtain the final statement of the theorem we observe that * is finitely
additive at least on () (See [5; Theorem 6] which is easily extended to I111
subadditive in our context.) and the result on countable additivity follows in
a standard manner from Theorem 1 (2).

Tv.oREr 3. I] is an absolutely integrable additive Junction on I with values
in a Banach space, then f(E) exists or every E r. . I also V(, ) < -q-,
then fr exists.

Proof. It can easily be shown [3; 17] that the filter generated by
{(, S, E)’S ?I} (notation as in Definition 3) is Cauchy and so the theorem
follows from Lemma 1.

DFNTON 6. Let be an additive absolutely integrable function on I
with values in a Banach space F. The function ’ "o() -- F is defined by

(x) x
That is defined follows from Theorems 2 nd 3.

TEom 4. Let # be an additive absolutely integrable unction on I with values
in a Banach space F. Then " is a finitely additive set ]unction on the clan Jo()
and ll’(Z)ll

_
*(Z), Z e Jo(). I] in addition (T, I, I) is decomposable,

t* is a vector-valued measure, i.e., countably additive, on the semitribe )o().

Proo]. The additivity of ’ on o() follows from Lemma 1(3); the in-
equality follows from Lemm 1 (2).

If (T, I, I) is decomposable and X .J=, X., where {X.} is a disjointed
sequence of sets in !ffo(), then

’(x)

and this tends to zero as N -- 0o because * is countably additive on
(Theorem 2). This proves the countable additivity of *. It might be noted
as well that the inequality of the theorem shows thut * has "finite variation"
[1; 32] on

Tx.om 5. Let I be an additive absolutely integrable ]unction on I with
values in a Banach space G. I] an elementary set E satisfies

V(, A[E](E)) V(, A[E](E)) 0,

then E is t-measurable, *-measurable (Carath$odory sense), t*(E) V(t, A(E))
and * (E) f(E), provided *(E) < -q- o.

Proo]. In [4] it is shown under much more general hypotheses that/z*(E)
V(, A(E)) and that E is *-measurable (Carthdodory sense). It remains
to prove that E, il)() and that/* (E) f



ON MCSHANES VECTOR-VALUED INTEGRAL 517

For the first of these statements choose an S, 9/so that V(g, S[E](XE)) _<
,/3, so that V(g, S[E](E)) _< /3 and so that (2.3) is smaller than /3 for g.
Consider

These sums are not decreased by insisting that each D D be contained
in S(E) S(E) (Use the additivity of and Deflation 1(1) and (2).).

If we assume this, then

+ (D,[E]() X [E](E)) I(Z, Z, ) (Z, Z,

Symmetric arguments ve the other result (2.2) and so E is -measable
as required.
To show that ’ (E) fs we choose S so that the following hold.

(ii) V(, S[E](E)) e/5.
(iii) V(, S[E](E)) e/5.
We choose an E so that
(iv) ll,.,x- x,ll /5
and a partition D of E contained in S(E) W SE) (This is possible by
Definition 1 and the additivity of .) so that

Then if D is any partition of E contained in S we have

(D) Z: ,(, x) f
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And so it follows from the definition of f() that f(g) frxn "(E) as
required thus completing the proof of the theorem.

Suppose now that t, F and G are normed linear spaces with a bilinear mapping
li X Y --* G, denoted (a, b) ab, a F,, b , satisfying
For any functions 1: T -- t and :I --, " we define the function ]#:I -- G by
I: (I, x) I(x)(I, x).

DEFINITION 7. With the notation as above .() denotes the collection of
all functions 1: T -, E such that 1 is absolutely integrable in (T, I, I) and for
which N,([ II! i) < + (see Theorem 1).

() is clearly a linear space and shall be considered equipped with the
topology supplied by the seminorm ] --.

TIEOaEM 6. I] F. is a Banach space and (T, , I) is decomposable, then
.() is complete and N.([I/[I) 0 q and only i] ](x) 0, *-almost everywhere.

Proo]. See [5; Theorem 7] and [2; 524].

TttEOREM 7. Let G be a Banach space and suppose that is additive. Then
fr 1 exists ]or every ] E() and ] fr ] is a continuous linear mapping ]tom
() into G.

Proo]. See Theorem 3 and Lemma 1.

3. Integration with respect to finitely additive measures. More specific
results are obtainable when the function on I is independent of x T and so in
effect is defined on the clan . In fact we will write (I) #(I, x), I !, in
this case and consider an additive function on I as a finitely additive measure
on !. Some warning should be taken however. The integral Jr 1 defined
with respect to is not the traditional one defined for finitely additive measures;
for decomposable systems (T, I, I) it is the countably additive measure that
is the underlying measure. Theorem 9 gives an instance when these coincide.

DEFINITION 8. Let # be a function on I with values in F, where t, F and G
are as in the previous section, and independent of x T. A function 1: T I
is said to be strongly absolutely -integrable if for every e > 0 there is an S I
such that

for every pair of partitions D and D2 contained in S.

Note that if ] is strongly absolutely -integrable, then is absolutely inte-
grable and so Definition 8 is a stronger requirement than Definition 5.

Let () denote the collection of all : T --. I which are strongly absolutely
-integrable and for which N(II]II) < +. If I is the scalar field, then ()
and f() coincide.
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LEMMA 3. Let (T, I, I) be decomposable and suppose F is a Banach space.
Then () is a closed subspace o] B().

Proo]. A slight modification of the proof of [5; Theorem 7] shows .() is
complete and the lemma thus follows.

THEOREM 8. Let (T, I, I) be a decomposable partitioning system and suppose
that E, F and G are Banach spaces and that ’I -- F is additive and independent
o] x T. Then every ] in () is measurable with respect to the tribe (). Con-
versely i] F, is separable, every ()-measurable ]unction ] with N.(]IIII) < " ’
belongs to () and the integral fr ] is equal to the integral f ](x) d (x) with
respect to the vector-valued measure .

The proofs in [3; 35] are valid here.

THEOREM 9. Let :I --. be additive and independent o] x T and suppose
F is a Banach space. I] ]or every set E , *(E) < - and

0,

then is contained in o() and is an extension o] .
Proo]. See Theorem 5.
We conclude this section by remarking on the following problem. If (),

then [[]1[ ([[[I) R([[g[[), this corresponding to the "absolute integrability"
of every ] (). However as l]gl[ is in general not additive Theorem 7 does
not yield the existence of the integral fr []][[" [[[[

This can be circumvented as follows. The functional ] N(]) defined for
] ([[g[[) with ] _> 0 is additive ([5; Theorem 6] can be proved in our context
for subadditive set functions.) and so in a unique way can be extended to a
function on all of ([[1[) (as in [5]) and this we shall call the integral
This integral is consistent with the integral defined in 1.

This supplies the following classical result in a simpler form. If ] (),
then !1711 (illt) and
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