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Abstract

The standard techniques used to prove the Lebesgue differentiation
theorem (that monotonic functions are a.e. differentiable) are presented
in an unusual way that reveals more about their nature and allows
greater generality.

1 Introduction

We have just seen in these pages two elementary proofs of the Lebesgue differ-
entiation theorem. Claude-Alain Faure [2] has presented a clean and elegant
exposition using a rising-sun argument. The presentation is particularly ele-
mentary in the sense that minimal apparatus from measure theory is needed:
only the most rudimentary properties of Lebesgue outer measure are used.
Since the rising sun lemma has several other applications and a very natural
geometric appeal this would be well worth presenting at an elementary level.

John Hagood’s [4] presentation of the same theorem depends on a clever
new covering lemma that is a variant on the Heine-Borel theorem. This proof
is equally elementary, needing only a few facts about measurable sets and
Lebesgue measure. Again by appealing only to a familiar compactness argu-
ment the proof is accessible and attractive at a beginning level.

In particular, in both presentations the Vitali covering theorem is not in-
voked, although the usual growth lemmas (cf. [1, Lemma 7.1 and Lemma 7.4])
are proved and the usual device used to complete the proof. The question
arises as to how to present the “nonelementary” version: if all the apparatus
of measure theory including the Vitali theorem can be used, how should one
present a proof of Lebesgue’s theorem?
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The goal of this paper is to present this program from a different perspec-
tive than the reader is likely to have encountered. The Vitali theorem itself
is (I hope) unrecognizable as it appears here and the Lebesgue differentiation
theorem is stated for a larger class of functions than monotonic functions.
The Vitali covering theorem for Lebesgue measure on the real line is taken
for granted and is the only deep result needed. From it we can deduce much
about the differentiation and variational structure of real functions.

One advantage we find in such a presentation is that it allows Lebesgue’s
program to be carried forward to a more general question. We know that a
function of bounded variation is a.e. differentiable. What variational proper-
ties should a function have on a set E to enable us to deduce its a.e. differen-
tiability on E? Since our growth lemmas apply to a general class of functions
we can answer this question in an economical way.

2 Full and Fine Covers, Partitions and Subpartitions

Vitali covers and a dual notion of covering that is stronger than Vitali coverings
are presented by way of covering relations, i.e., collections whose elements are
pairs ([x, y], z) with x < y and z ∈ [x, y].

We say that a covering relation β is a full cover of a set E if for every z ∈ E
there is a δ > 0 so that every pair ([x, y], z) with 0 < y − x < δ and z ∈ [x, y]
must belong to β. We say that a covering relation β is a fine cover of a set E
if for every z ∈ E and every δ > 0 there must exist at least one pair ([x, y], z)
with 0 < y − x < δ and z ∈ [x, y] that belongs to β.

The full and fine covers play a dual role and can be expressed in a way
that reveals a genuine dual structure. The following pair of theorems (whose
proofs are left to the reader) show this.

Theorem 2.1. A necessary and sufficient condition for a covering relation
β to be a full cover of a set E is that for every fine cover β1 of E and every
z ∈ E there is at least one pair ([x, y], z) in β ∩ β1.

Theorem 2.2. A necessary and sufficient condition for a covering relation
β to be a fine cover of a set E is that for every full cover β1 of E and every
z ∈ E there is at least one pair ([x, y], z) in β ∩ β1.

A finite covering relation π

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n}

is a partition of [a, b] if
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a. any two distinct ([x1, y1], z1), ([x2, y2], z2) elements of π require nonover-
lapping [x1, y1] and [x2, y2], and

b.
⋃

([x,y],z)∈π[x, y] = [a, b].

Partitions themselves play no role in the present theory, but arbitrary
subsets shall. Any subset π of a partition is a subpartition. For a subpartition

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n}

we write `(π) =
∑n

i=1(yi − xi) and refer to this as the total length of the
subpartition (i.e., it is the total length of the intervals that appear in the
subpartition).

3 Definition of the Measures L and L∗

We present here two equivalent formulations of the Lebesgue outer measure
on the real line, formulations which arise from the Vitali theorem. The two
measures that shall play a role in the statement of the Vitali covering theorem
are defined by using estimates of the total length `(π) of subpartitions con-
tained in full and fine covers of the set to be measured. If β is an arbitrary
covering relation write `(β) = supπ⊂β `(π) where the supremum is taken over
all subpartitions π that are contained in β.

Then for any set E of real numbers we write

L(E) = inf
β full

`(β) and L∗(E) = inf
β fine

`(β)

where the infima are taken over all covering relations β that are full covers of
E (for the first measure) and fine covers of E (for the second measure).

Lemma 3.1. L and L∗ are metric outer measures on the real line.

The proof is not difficult and is, in any case, well-known, although the
ideas are often expressed in different language. The most elegant and compact
treatment of metric outer measures is Federer [3] (where they are called simply
“metric measures”); a more leisurely treatment is given in [1, Chap. 3].

4 Vitali Covering Theorem

Let λ denote the Lebesgue outer measure on the real line. Our version of the
covering theorem is the assertion that the measures λ, L and L∗ are identical.

Theorem 4.1 (Vitali Covering Theorem). λ = L = L∗.
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Rather than prove the theorem we shall show that it is equivalent to the
usual form of that theorem, namely the following statement:

[VCT] Let E be a bounded set, ε > 0 and β any fine cover of E.
Then there exists a subpartition π ⊂ β,

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n},

so that

λ

(
E \

n⋃
i=1

[xi, yi]

)
< ε.

Let E be an arbitrary bounded set. We show, using [VCT] and elementary
properties of the Lebesgue measure, that λ(E) = L(E) = L∗(E); from this it
follows that the three measures agree on all sets.

Since every full cover of E is also a fine cover of E it follows immediately
from the definitions that L∗(E) ≤ L(E). Let ε > 0 and, using properties of
λ, select an open set G containing E so that λ(G) < λ(E) + ε. Let β denote
the covering relation consisting of all elements ([x, y], z) with z ∈ E for which
[x, y] ⊂ G. Observe that β is a full cover of E. For any subpartition

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n}

contained in β we have each [xi, yi] ⊂ G and hence

`(π) =
n∑

i=1

[yi − xi] ≤ λ(G) < λ(E) + ε.

From this and the way in which L(E) is defined it follows that L(E) ≤ λ(E)+ε.
As ε is an arbitrary positive number we obtain one more inequality: L(E) ≤
λ(E).

The final inequality which will provide the identity among the three mea-
sures is obtained from [VCT]: suppose that we are given an arbitrary fine cover
β of E. Then by [VCT] we may select a subpartition π ⊂ β,

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n},

so that

λ

(
E \

n⋃
i=1

[xi, yi]

)
< ε.

Thus

λ(E) ≤ λ

(
E \

n⋃
i=1

[xi, yi]

)
+

n∑
i=1

[yi − xi] ≤ `(π) + ε.
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Since this is true for any fine cover β of E and any ε, we must have λ(E) ≤
L∗(E).

Putting our three inequalities together gives us

λ(E) ≤ L∗(E) ≤ L(E) ≤ λ(E)

and the theorem follows, at least for bounded sets. Usual measure theoretic
arguments show that the identity is true for all sets.

Conversely let us now show that the identity of the three measures L, L∗
and λ can be used to establish the the assertion [VCT].

For let E be a bounded set and let ε > 0. Choose G open so that E ⊂ G
and λ(G) < λ(E) + ε/2. Let β be an arbitrary fine cover of E. Let β1 denote
the collection of all elements ([x, y], z) of β for which [x, y] ⊂ G. Observe
that β1 is also a fine cover of E. By the definition of L∗(E) there must be a
subpartition π ⊂ β1,

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n}

so that L∗(E) <
∑n

i=1(yi − xi) + ε/2. Using familiar properties of Lebesgue
measure and the fact that each interval [xi, yi] is a subset of G, we obtain

λ

(
G \

n⋃
i=1

[xi, yi]

)
= λ(G)−

n∑
i=1

[yi − xi].

Finally then, using the identity L∗ = λ and the computations above, we have
the inequality in [VCT] that we require:

λ

(
E \

n⋃
i=1

[xi, yi]

)
≤ λ

(
G \

n⋃
i=1

[xi, yi]

)
≤ (L∗(E) + ε/2)−

n∑
i=1

[yi − xi] < ε.

5 The Full and Fine Total Variation Measures of a Func-
tion

We study the differentiation properties of a function F defined on the real line,
by defining measures analogous to the two measures L and L∗ that carry the
variational information about F .

For a subpartition

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n}

we write

V (F, π) =
n∑

i=1

|F (yi)− F (xi)|
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and refer to this as the total variation of F on the subpartition. For an
arbitrary covering relation β we extend this notation by writing also

V (F, β) = sup
π⊂β

V (F, π)

where the supremum is taken over all subpartitions π that are contained in β.
The two measures that are used in the statement of the Vitali property for

a function F are defined by using estimates of the total variation V (F, π) of
subpartitions contained in full and fine covers of the set to be measured. For
any set E of real numbers we write

LF (E) = inf
β full

V (F, β) and LF
∗ (E) = inf

β fine
V (F, β)

where, exactly as before, the infima are taken over all covering relations β that
are full covers of E (for the first measure) and fine covers of E (for the second
measure).

Lemma 5.1. LF and LF
∗ are metric outer measures on the real line.

6 Derived Numbers

The analysis of the differentiation structure of a function F can often be carried
out quite transparently by using the notion of a derived number. A number r
(including ±∞) is a derived number of F at a point z provided there is some
sequence xn → z (xn 6= z) for which

F (xn)− F (z)
xn − z

→ r.

The nature of full and fine covers forces on us also a weaker form of derived
number to analyze: A number r (including ±∞) is a ∗-derived number of F
at a point z provided there are sequences xn → z, yn → z, xn ≤ z ≤ yn

(xn 6= yn) for which
F (xn)− F (yn)

xn − yn
→ r.

Related to this too are the values:

d(F, z) = inf
δ>0

sup
{∣∣∣∣F (x)− F (y)

x− y

∣∣∣∣ : x ≤ z ≤ y, 0 < y − x < δ

}
and

d(F, z) = sup
δ>0

inf
{∣∣∣∣F (x)− F (y)

x− y

∣∣∣∣ : x ≤ z ≤ y, 0 < y − x < δ

}
.
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Some immediate or elementary observations are needed and will also help
to clarify the concepts.

a. If F (x) = |x| then, at the point z = 0, the only derived numbers are
1 and −1 but every number in [−1, 1] is a ∗-derived number of F at 0,
d(F, 0) = 0 and d(F, 0) = 1.

b. Every derived number is also a ∗-derived number.

c. F ′(z) = r (including r = ±∞) if and only if r is the only ∗-derived
number of F at z.

d. d(F, x) and d(F, x) are Borel functions.

e. If r is a ∗-derived number at z of F then d(F, z) ≤ |r| ≤ d(F, z).

f. F ′(z) = r implies that d(F, z) = d(F, z) = |r|.

g. Conversely to (f), if d(F, z) = d(F, z) = |r| 6= ∞ then F is differentiable
at z with |F ′(z)| = r.

h. The identity d(F, z) = d(F, z) = ∞ does not imply in general that
|F ′(z)| = ∞.

i. If F is also continuous or monotonic then d(F, z) = ∞ does imply that
|F ′(z)| = ∞.

Assertion (g) is easy if you also assume that F is everywhere continuous
or is monotonic. Without one of those assumptions (g) requires a geometric
argument to show that there cannot exist a function with both +r and −r as
∗-derived numbers and no other values.

7 Growth Lemmas

The pair of growth lemmas [1, Lemma 7.1 and Lemma 7.4] mentioned in
the introduction are restricted to monotonic functions and have proofs which
depend on the Vitali covering theorem. The growth lemmas we now present
apply to any function and, making no appeal to the Vitali covering theorem,
are entirely elementary. By stating them for the measures L and L∗ rather
than for λ we are stressing that their proof is not using the Vitali theorem,
although we shall certainly take advantage of the identity L = L∗ = λ when
we need to.

Lemma 7.1. If d(F, z) < r for every z ∈ E then LF
∗ (E) ≤ rL(E).
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Proof. Assume that L(E) < ∞ and choose any t so that L(E) < t. Choose
a full cover β of E so that `(β) < t. Let β1 denote the collection of all pairs
([x, y], z) for which z ∈ E and |F (y) − F (z)| < r|y − z|. It is easy to check
that β1 is a fine cover of E and that β ∩ β1 is too. Note that if

π = {([xi, yi], zi) : i = 1, 2, 3, . . . , n}

is a subpartition contained in β ∩ β1 then

V (F, π) =
n∑

i=1

|F (yi)− F (xi)| ≤
n∑

i=1

r(yi − xi) ≤ r`(β) < rt.

From this it follows that LF
∗ (E) ≤ V (F, β ∩ β1) ≤ rt, and the conclusion of

the lemma then follows.

There are three other growth lemmas corresponding to the remaining con-
figurations in the associated inequality. The proofs are nearly identical except
for swapping full for fine or reversing an inequality. We give the details as
these lemmas, even while elementary, are the key tools in the theory.

Lemma 7.2. If d(F, z) > r > 0 for every z ∈ E then rL∗(E) ≤ LF (E).

Proof. Assume that LF (E) < ∞ and choose any t so that LF (E) < t.
Choose a full cover β of E so that V (F, β) < t. Let β1 denote the collection
of all pairs ([x, y], z) for which z ∈ E and |F (y)− F (z)| > r|y − z|. It is easy
to check that β1 is a fine cover of E and that β ∩ β1 is too. Arguing as in
Lemma 7.1 we note that `(π) < r−1t for all subpartitions π ⊂ β ∩ β1. From
this it follows that L∗(E) ≤ `(β∩β1) ≤ r−1t, and the conclusion of the lemma
then follows.

Lemma 7.3. If d(F, z) < r for every z ∈ E then LF (E) ≤ rL(E).

Proof. Assume that L(E) < ∞ and choose any t so that L(E) < t. Choose
a full cover β of E so that `(β) < t. Let β1 denote the collection of all pairs
([x, y], z) for which z ∈ E and |F (y) − F (z)| < r|y − z|. It is easy to check
that β1 is a full cover of E and that β ∩ β1 is too. As before, we obtain

LF (E) ≤ V (F, β ∩ β1) ≤ rt,

and the conclusion of the lemma then follows.

Lemma 7.4. If d(F, z) > r > 0 for every z ∈ E then rL(E) ≤ LF (E) and
rL∗(E) ≤ LF

∗ (E).
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Proof. Assume that LF
∗ (E) < ∞ and choose any t so that LF

∗ (E) < t.
Choose a fine cover β of E so that V (F, β) < t. Let β1 denote the collection
of all pairs ([x, y], z) for which z ∈ E and |F (y)− F (z)| > r|y − z|. It is easy
to check that β1 is a full cover of E and that β ∩ β1 is then a fine cover of E.
Repeating our technique once again, we show that

L∗(E) ≤ `(β ∩ β1) ≤ r−1t,

and the conclusion rL∗(E) ≤ LF
∗ (E) of the lemma then follows. The assertion

that rL(E) ≤ LF (E) is proved the same way substituting “full” for “fine”
throughout.

Lemma 7.5. If d(F, z) = ∞ for every z ∈ E then L∗(E) = 0.

Proof. Note that if LF
∗ (E) < ∞ then L∗(E) = 0 is an immediate conse-

quence of Lemma 7.4. The same is true if LF
∗ is σ-finite. (For a function F

that is continuous or which has the Darboux property one can prove that LF
∗

must be σ-finite.)
This is enough for the purposes of this paper and as far as we can go with

the simple Vitali arguments of this section. Nonetheless we point out that the
lemma is true in general. Appealing to the methods in Saks [5, p. 270] one
can prove that for any function F the set of points z where d(F, z) = ∞ has
measure zero. The essential feature of the argument is that the graph of the
function has at every such point (z, f(z)) a vertical tangent and the projection
of that set onto the x-axis has then measure zero.

8 Functions with the Vitali Property

Now, in contrast to the Vitali covering theorem, the identity of LF and LF
∗

becomes a definition describing the class of functions that are of interest in
the theory. Note that, in general, LF

∗ ≤ LF because every full cover is also a
fine cover. When there is equality there are considerable implications about
the differentiation properties of F and that is what motivates the definition.

Definition 8.1. A function F is said to have the Vitali property on a Borel
set E if the outer measures LF and LF

∗ agree on every Borel subset of E.

Our first main theorem shows how intimately related is the Vitali property
of a function to its differentiation properties.

Theorem 8.2. Let F have a finite derivative at every point of a Borel set E.
Then F has the Vitali property on E and, moreover,

LF (E) = LF
∗ (E) =

∫
E

|F ′(x)| dx.
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Proof. We can suppose that E is bounded making some of the computations
more transparent. Let r > 1. Since F has a derivative at every point z in E
we can use the fact that d(F, z) = d(F, z) = |F ′(z)|. Use the notation

Ek = {x ∈ E : rk−1 < |F ′(x)| ≤ rk}

and
Z = {x ∈ E : |F ′(x)| = 0}.

Then E is expressed as a countable disjointed union of a sequence of Borel
subsets, namely the sets Z, {En} (n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ).

Note first that LF (Z) = 0. This follows easily from the third growth lemma
(Lemma 7.3) since, for any ε > 0, we obtain LF (Z) ≤ εL(Z) ≤ εL(E) and we
have assumed that E is bounded so that its Lebesgue measure is finite.

We know then, since these are metric outer measures and all these sets are
Borel, that

LF
∗ (E) =

∞∑
k=−∞

LF
∗ (Ek) and LF (E) =

∞∑
k=−∞

LF (Ek) .

Thus we have, using once again Lemma 7.3 and the identity of L and λ
that

LF (E) =
∞∑

k=−∞

LF (Ek) ≤
∞∑

k=−∞

rkL(Ek)

≤ r

( ∞∑
k=−∞

∫
Ek

|F ′(x)| dx

)
= r

∫
E

|F ′(x)| dx.

Similarly using Lemma 7.4 and the identity of L∗ and λ we obtain that

LF
∗ (E) ≥

∞∑
k=−∞

LF
∗ (Ek) ≥

∞∑
k=−∞

rk−1L∗(Ek) ≥ r−1

∫
E

|F ′(x)| dx.

Since these two inequalities are true for all r > 1 and since in general
LF
∗ (E) ≤ LF (E) the identity of the theorem must follow. As this identity

holds as well for all Borel subsets of E we have also established that F has
the Vitali property on E.

9 Lebesgue’s Differentiation Theorem

We can now give our version of Lebesgue’s theorem, stated not merely for
monotonic functions but for any function possessing the Vitali property. The
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proof is quite simply the usual one (cf. [1, p. 288] or [2, Theorem 9]) using the
growth lemmas Lemma 7.1 and 7.2, which now apply to any function. The
Vitali-type identities LF = LF

∗ and L = L∗ = λ supply the final step.

Theorem 9.1. Let F have the Vitali property on a Borel set E. Then F has
a finite derivative at L-almost every point of E and at LF -almost every point
z either F has a finite derivative F ′(z) or else d(F, z) = ∞.

Proof. It is enough to prove the theorem under the assumption that E is
a bounded Borel set. We examine the Borel subset

A = {z ∈ E : d(F, z) < d(F, z)}.

As usual in arguments of this type introduce rational numbers 0 < r < s and
the further Borel subsets

Ars = {z ∈ A : d(F, z) < r < s < d(F, z)}.

Since A is the countable union of this collection of sets (taken over all rationals
r and s with r < s) the measure arguments are simple.

By the two growth lemmas and the identity L = L∗ = λ we easily obtain

LF
∗ (Ers) ≤ rL(Ers) ≤ sL∗(Ers) ≤ LF (Ers).

Our assumption that F has the Vitali property on E gives the identity LF =
LF
∗ on Borel subsets of E. None of these numbers are infinite, r < s and

so the inequality makes sense only in the case that LF (Ars) = L(Ars) = 0.
Consequently LF (A) = L(A) = 0.

At every point z in E \A we know that either d(F, z) = d(F, z) = r (finite)
or else d(F, z) = d(F, z) = +∞. In the former case (as observed in Section 6)
F ′(z) exists and is ±r. Thus we have proved that at each point z ∈ E \ A
either F ′(z) exists (finitely) or else d(F, z) = +∞. Lemma 7.5 then completes
the proof since the set of points at which d(F, z) = +∞ has measure zero.

Remark. In Saks [5, p. 125 and p. 230], proving similar theorems, one finds
the conclusion that the function F has a derivative (possibly infinite) every-
where except at a set N for which λ(N) = λ(F (N)) = 0. In the version here
the exceptional set has λ(N) = LF (N) = 0. In general λ(F (N)) ≤ LF (N)) so
it would seem that we have proved a sharper result. However if F is assumed
to be continuous and VBG∗ on a set N then the two assertions λ(F (N)) = 0
and LF (N) = 0 are known to be equivalent. Since the condition VBG∗ (as we
shall see below) is exactly equivalent to the Vitali property we might better
present the exceptional set as having the property

λ(N) = λ(F (N)) = LF (N)) = 0
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with the understanding that the latter two parts of the identity state the same
thing.

10 Differentiation of Monotonic Functions

The original differentiation theorem of Lebesgue applies to monotonic func-
tions. To obtain it here we need to show that such functions enjoy the Vitali
property.

Theorem 10.1. Let F be a continuous monotonic function. Then F has the
Vitali property on every Borel set.

Proof. We begin with the proof for the simpler case that F is strictly
increasing. Let λF be the usual Lebesgue-Stieltjes outer measure associ-
ated with F , so that in particular for an open interval (a, b) we must have
λF ((a, b)) = F (b)− F (a). Note that LF ((a, b)) ≤ F (b)− F (a).

Let β be a fine cover of an interval (a, b). Then define β1 as the collection
of all pairs ([F (x), F (y)], F (z)) corresponding to pairs ([x, y], z) ∈ β. Since
F is continuous and strictly increasing it is clear that β1 is a fine cover of
the interval (F (a), F (b)). Thus, by Theorem 4.1, for any ε > 0 there is a
subpartition π ⊂ β1

π = {([F (xi), F (yi)], F (zi)) : i = 1, 2, 3, . . . , n},

for which

`(π) =
n∑

i=1

(F (yi)− F (xi)) > F (b)− F (a)− ε.

But that supplies a subpartition π′ ⊂ β,

π′ = {([xi, yi], zi) : i = 1, 2, 3, . . . , n},

for which

V (F, π′) =
n∑

i=1

(F (yi)− F (xi)) > F (b)− F (a)− ε.

We deduce that

F (b)− F (a)− ε < LF
∗ ((a, b) ≤ LF ((a, b) ≤ F (b)− F (a).

This proves the identity of the measures LF , LF
∗ , and λF on all open

intervals. From that follows the identity on all open sets, all closed sets and
then all Borel sets by properties of these measures (e.g., [1, pp. 133-135]).
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If F is merely nondecreasing then a similar argument works but one has to
take account of the countable set C of points x at which F−1(x) is an inter-
val and in constructing β1 dispense with pairs ([F (x), F (y)], F (z)) for which
F (x) = F (y). Then β1 becomes a fine cover of the set (F (a), F (b))\F (C) and
the proof continues unchanged.

A consequence of this theorem is the following complete account of the
differentiation structure of continuous monotonic functions, following imme-
diately from the preceding material. The measure LF is usually called the
Lebesgue-Stieltjes measure associated with F and the display in the last line
of the corollary is attributable to De La Vallée Poussin.

Corollary 10.2. Let F be a continuous nondecreasing function. Then F is
differentiable almost everywhere on [a, b] and has a finite or infinite derivative
LF -almost everywhere. Moreover, if D denotes the set of points where F
has a finite derivative, D∞ denotes the set of points where F has an infinite
derivative and E is any Borel set then

LF
∗ (E) = LF (E) =

∫
E∩D

F ′(x) dx + LF (E ∩D∞).

What do we do with discontinuities in this setting? Perhaps the simplest
way to dispense with them is to observe what happens for a monotonic saltus
function.

Theorem 10.3. Let F be a nondecreasing saltus function with jumps occur-
ring only in the countable set C. Then LF

∗ (R \ C) = LF (R \ C) = 0 and
F ′(x) = 0 almost everywhere.

Proof. It is easy to establish that LF (R \C) = 0. Lemma 7.2 then quickly
shows that the set of points x ∈ R \ C at which d(F, x) > 0 has L∗-measure
zero.

11 Characterization of the Vitali Property

The usual presentation of the Lebesgue differentiation theorem seems to end
with the observation that functions of bounded variation are a.e. differentiable.
Certainly the methods do not suggest that more can be done. (In fact, as
readers of Saks [5] well know, the methods can be lifted somewhat arduously
to the class of VBG∗ functions.)

Here we are under an obligation to ask for more: what class of functions
has the Vitali property on a given set E? The answer is quite clean and
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natural. (Again readers of Saks will expect that the class of VBG∗ functions
offers an equivalent expression of this property.) Details, along with a large
set of equivalent conditions, can be found in [6].

Theorem 11.1. Let F be continuous and let E be a Borel set. A necessary
and sufficient condition that F should have the Vitali property on E is that
the measure LF be σ-finite on E.

It follows then from Theorem 9.1 that, for a continuous function F for
which LF is σ-finite on a Borel set E, F is differentiable almost everywhere in
E and has a finite or infinite derivative LF -almost everywhere in E.

12 Criteria for the Vitali Property

Since the Vitali property for a function F is generally equivalent to continuity
plus the VBG∗ property it might be useful to mention some classical criteria
under which it can be established that a function is VBG∗ on a set. This will
also allow us to bypass the classical proofs and reveal the structure of what is
happening a bit more clearly. We are concerned with estimates on the derivates
of a function which will ensure finiteness, σ-finiteness or absolute continuity
of LF . These will replace the familiar versions in Saks [5, pp.234–235].

Theorem 12.1. If −r < DF (x) ≤ DF (x) < r at every x ∈ E, then LF (E) ≤
rλ(E).

Proof. This follows directly from Lemma 7.3.

Theorem 12.2. If −r < D+F (x) ≤ D
+
F (x) < r at every x ∈ E, then there

is a countable set N so that LF (E \N) ≤ rλ(E).

Proof. By an early theorem of G. C. Young (eg., Saks [5, p. 261]) the set
of points where D−F (x) > D

+
F (x) or D

−
F (x) < D+F (x) is countable. Let

N denote this set. Then F satisfies the hypotheses of Theorem 12.1 on the
set E \N and so the conclusion then follows.

Theorem 12.3. If DF (x) < ∞ at every x ∈ E, then there is a sequence of
closed set {Ci} covering E so that each LF (Ci) < ∞.

Proof. For each integer n consider the set En of points z for which DF (z) <
n. Write G(x) = nx−F (x). Let β be the collection of all pairs ([x, y], z) with
z ∈ [x, y] and F (y)−F (x) ≤ n(y−x), i.e., so that G(y)−G(x) ≥ 0. Certainly
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β is a full cover of En. Choose η(z) for each z ∈ En so that y − x < η(z)
implies that ([x, y], z) ∈ β. Define for integers m, k

Emnk = {x ∈ En : η(x) > 1/m} ∩
[

k

m
,
k + 1

m

]
.

Note the following feature of this construction: if [x, y] is a subinterval of
[k/m, (k + 1)/m] and if [x, y] contains at least one point z of Emnk then,
since y − x ≤ 1/m < η(z), necessarily ([x, y], z) ∈ β and so, in particular
G(y)−G(x) ≥ 0.

Define a = inf Emnk and b = supEmnk. Because of this feature we have
noted we can deduce that

V (G, β[Emnk]) ≤ G(b)−G(a). (1)

Then, since |F (y)− F (x)| ≤ |G(y)−G(x)|+ n|y − x| it follows from (1) that

V (F, β[Emnk]) ≤ G(b)−G(a) + n/m.

Again, because of the feature noted above, it is easy to see that β is a full
cover of Emnk. From this it follows now that

LF (Emnk) ≤ V (F, β[Emnk]) ≤ G(b)−G(a) + n/m < ∞.

Thus the theorem is completed by taking for the sequence of closed sets {Ci}
covering E a relabeling of the countable collection {Emnk}.

13 One-Sided Vitali coverings

The one-sided derivates have an unusual geometry that is not available for
bilateral derivates and not available in any other setting that I know, certainly
not in higher dimensions. Both papers Faure [2] and Hagood [4] exploit this
geometry, the former by using the rising-sun lemma and the latter by a simple
compactness argument that arises from one-sided versions of Vitali covers.

It should be noticed that the version in Hagood [4] could be reframed as
a special Vitali argument available for this particular geometry. This may be
worth doing in an introductory course to introduce a simplified Vitali cover-
ing argument as a prelude to more advanced material. Here are two lemmas
illustrating how this might work. The first uses Hagood’s method, the sec-
ond an old method of Lebesgue. This latter method (employing transfinite
chains of intervals) was the basis for Lebesgue’s early (1903) analysis of the
differentiation of monotonic functions and the integration of their derivates.
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Lemma 13.1. Suppose that C is a collection of closed intervals with the prop-
erty that to each point x in a compact set K there is at least one interval [x, y]
in C. Then for any t < 1 there is finite collection of nonoverlapping intervals
{[xi, yi]} from C so that

∑
i(yi − xi) > tλ(K).

Proof. Augment C by adding to it, for every [x, y] ∈ C all intervals [s, y] for
which s ≤ x and t(y− s) < (y−x). By Hagood’s lemma (Hagood [4]) there is
a finite collection of nonoverlapping intervals [si, yi] from the augmented col-
lection that covers K so that, in particular, there correspond nonoverlapping
intervals [xi, yi] from C for which∑

i

(yi − xi) >
∑

i

t(yi − si) > tλ(K).

Lemma 13.2. Suppose that C is a collection of closed intervals with the prop-
erty that to each point x in a compact set K there is at least one interval [x, y]
in C. Then there is a finite or infinite sequence of nonoverlapping intervals
from C that covers K.

Proof. Let a = inf K, b = sup K. Inductively define a transfinite sequence
[known as a Lebesgue chain] by starting with x0 = a and choosing x1 so that
[x0, x1] ∈ C. For x2 we have two cases: case (i) x1 ∈ K in which case choose
[x1, x2] ∈ C, or case (ii) x1 6∈ K in which case choose x2 = inf K ∩ [x1, b] so
that, in particular [x1, x2)∩K = ∅. For every ordinal α, xα+1 is determined as
in cases (i) and (ii). At any limit ordinal α we set xα = sup{xγ : γ < α}. This
process stops in a countable number of steps when xα > b. The countable
collection of nonoverlapping intervals [xα, xα+1] covers [a, b] and removing all
of the case (ii) choices results in a subcollection of C that covers the compact
set K as required.
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