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The purpose of this article is to present, in an expository manner, a development 
of the work done in the last thirty-five years on various questions concerning the 
differentiation of integrals in spaces more general than the Euclidean line R,. Perhaps 
the unifying notion would be that of the Fundamental Theorem of Calculus in such 
spaces. A standard theorem in measure theory is the RADON-NIKODYM THEOREM which 
states that with appropriate assumptions on a measure space ( X , M ,p) ,each measure a 
that is absolutely continuous with respect to p can be represented as the integral of 
some function :a(E) = j, fdp for all E E M .The function f is often called the "Radon- 
Nikodym" derivative. But in what sense and under what circumstances is it a deriv- 
ative in the customary pointwise sense? We consider this question in Chapters 2 
and 6. In addition, we consider (i) applications and interpretations of the theory, 
(ii) a number of items concerning the tools of the theory (covering theorems, density 
theorems and halo conditions), and (iii) various topics of miscellaneous sorts. 

Throughout the first five chapters of this article, we shall be concerned almost 
entirely with Euclidean n-dimensional space R,. We shall use the symbol p to denote 
Lebesgue measure of the appropriate number of dimensions, unless we explicitly 
state otherwise. 

Although some of the material in the sequel can be found in one form or another 
in certain books, most of it cannot. We list the books Hahn-Rosenthal [49], Haupt- 
Aumann-Pauc [51], Hayes-Pauc [63], Hewitt-Stromberg [65], McShane [87], 
Monroe [95], Rudin [137], Saks [144], Shilov-Gurevic [148], Zaanen [167], and 
Zygmund [I701 as ones which deal with the differentiation of integrals in spaces 
more general than R,  . Some of the major works relating to our main Chapters 2 
and 6 are Busemann-Feller [21], Denjoy [31], Hayes-Pauc [64], Jessen-Marcinkie-
wicz-Zygmund [71], Morse [97], Pauc [115], de Posse1 [126], and Trjitzinsky 
[I 541, [I 581. 

While most of our dealings will be with the differentiation of integrals, certain of 
the ideas carry over to the differentiation of set functions. We occasionally consider 
such generalizations, but our central theme is the differentiation of integrals, and, 
accordingly, we have taken that as our title. 

For motivation we present Chapter 2 in a less condensed form than the following 
chapters. 

(1) This work was supported in part by NSF Grant GP8253. 

1 



11. DIFFERENTIATION OF INTEGRALS 
IN EUCLIDEAN SPACES 

2.1 Motivation from R,. For motivation, we begin with a brief discussion of 
the well-known one-dimensional setting, and cast this setting in a form suitable for 
generalization. Let f be summable on each compact interval, and define a function F 
by F(x) = Jif f dp , where p denotes one dimensional Lebesgue measure. Then 
Ff(x) = j(x) for almost all x E R,. This means that lim,,,[F(x+ h)-F(x)]/h =f(x) 
a.e., or equivalently 

If we write o(E) = JEfdp for each measurable set E of finite measure, and if 
we let I denote an interval, then we can use the notation Do(x) = lim,,,a(I)/p(I) 
= f(x) a.e The understanding of the symbol I => x (read "I contracts to x") here 
is that x i s  an endpoint of the interval I and 6(1) (the diameter of I) tends to zero. 

Thus Lebesgue's classic theorem can take the following form. 

THEOREM.Iff is summable on sets of jni te  measure and o is the indefinite 
integral off ,  then 

Do(x) = lim,,, -d l )  
= f(x)  a.e. 

r l ( 0  

2.2 The general case of R,, n 2 1 . We wish to generalize the theorem of 2.1 
to Euclidean n-dimensional space R,. For simplicity, we take the case n = 2 and 
note that everything we say in the two dimensional setting has an analogue in n-di- 
mensional space R,. Where such an analogue is not obvious, we shall state it. Other- 
wise, we shall state all our definitions and results for R, and leave it to the reader 
to make the obvious modifications for R,, n >2 .  

In order to generalize the theorem stated in Section 2.1, we want to do two things. 
First, we wish to determine which families of sets 9 are suitable for playing the role 
of the intervals, and then we wish to agree on what meaning we should give to the 
symbol I x. More precisely, we wish to decide what it means to say that a sequence 
of sets in 9 contracts to a point of R,. Once these two questions are decided, the 
idea, as in R, , is to take a function f,summable on the sets of 9 ,  take its average 
over I E 9 ,  and let I contract to x. We would like this limit, lirn,,,a(I)/p(I), to exist, 
where a(I) = J,fdp ,  and to equal f a.e. When the limit exists at a point x (regard- 
less of how I * x) we shall call it the derivative of o at x (with respect to p and 
relative to the differentiation basis (J,$1) and denote it by Do(x). Whether or 



3 DIFFERENTIATION OF INTEGRALS 


not the derivative exists at a point x, we can define the upper and lower derivatives by 

ba(x) = sup lim sup,, ,a(I>-, ga(x) = inflim id,,, -HI),
P(I) 41 )  

where sup and inf are taken over all sequences of sets in 4 contracting to x .  When 
confusion arises because more than one basis is under consideration, we shall in- 
dicate the basis in our notation. In certain cases, it will be desirable to modify our 
notation slightly, but no confusion should arise. 

Let us now return to the two items we mentioned at the beginning of the last 
paragraph. First, there are several natural choices for the family 9 with respect to 
which we wish to differentiate. For example, we might let Y consist of all squares 
(including interior) or of all disks, or of all two dimensional intervals (i.e., rectangles 
with sides parallel to the coordinate axes), or of all rectangles, or of any of a number 
of other families of sets. Once we have a family 9,we must decide what we mean 
by the expression I * x .  Again there are a number of possibilities. For example, 
we might agree that I => x means 

(i) x E I and p(I) -+ 0, 

(ii) X E Iand 6(1)+0, 

or we might modify the requirement that x €1be requiring only that x be in the 
closure of I, or by requiring additionally that x be in a particular position in I .  
Any of these notions generalizes the one dimensional case. A bit of reflection shows 
that if we want the analogue of the theorem of Section 2.1 to hold, the first alternative 
must be discarded at least for many natural choices for 9.For example, if 9denotes 
the family of intervals of R,  ,and iff denotes the characteristic function of the upper 
half plane, then ba 1 while pa = 0 ,  so Da exists nowhere. So, for the time being, 
we shall select alternative (ii). We shall consider other possibilities later. 

That being the case, the situation is as follows. If we take 9 to be the family of 
disks or squares (in which case differentiation relative to ( 9 ,  =.) is often called 
ordinary differentiation), then (*) (see the theorem of Section 2.1) holds for all 
locally summable f 1951, [137], [144]. If we take 9 to be the family of two dimen- 
sional intervals (in which case differentiation relative to (9 ,  =>) is called strong 
differentiation, then (*) holds for all bounded summable f ,  (and some other func- 
tions), but not for all summable functions 1951, [144]. Finally, if we take the family 
9 of all rectangles, then (*) does not even hold for all bounded summable f. In 
fact, (*) does not even hold for all characteristic functions of open sets [21]. What 
is it that causes these differences? This question can be answered at various levels. 
To understand the differences fully, one must understand the proofs and counter- 
examples required to justify the statements. But, short of going into the necessary 
details, let us try to give some sort of indication of what is involved. There are 
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two classical theorems which are of fundamental importance in differentiation theory; 
the LEBESGUE COVERING THEOREM. We state these DENSITY THEOREM and the VITALI 
theorems for the family of squares. Let p* denote Lebesgue outer measure. 

LEBESGUEDENSITYTHEOREM.Let A c R, . For almost every x E A, x is a point 
of density of A; that is, whenever 13 x ,  then 

DEFINITION. Let A c R,  . If 4 *  is a family of squares such that for every x E A 
there exists a sequence {lk(x)) of squares in 4 *  such that Ik(x) - x ,  then we say 
9 *  is a Vitali cover of A. 

VITALI COVERING THEORFM.If 9 *  is a Vital i  Cover of a set A,  and E > 0 ,  then 
there exists a sequence I1,l2, chosen , from 9 * ,  such that 

(i) p(A U 1k) = 0 ,  
(ii) I, nl, = i f  m # n ,  

where A is a measurable cover for A .(iii) p(U 1, - A) < E ,  

The definition of Vitali cover, as well as the two theorems, were given relative to 
the differentiation basis consisting of the squares. Making obvious changes, we 
arrive at the definition of a Vitali cover relative to any basis ( 9 ,  +).If the Density 
Theorem holds for ( 9 ,  *), we say ( 9 , 3 )  has the density property. If the Vitali 
theorem holds for ( 9 ,  3 )  we say ( 9 ,  3 )  has the strong Vitali property. It turns out 
thzt if 9, consists of the squares, 9, of the disks, 9, of the intervals, and 9, of the 
rectangles, then 9 , ,  9, and 9, have the density property, but 4, doesn't, while 
9, and 9, have the strong Vitali property, but 9, and 9, don't. 

We summarize with a chart. 

9 * holds for density and/or Vitaliproperty 
possessed by 4 

9, squares all EL, 
I 

both 
4, disks all f~ L,  both 
4, intervals all f E L,  density property only 
4, rectangles not even all neither 

characteristic 
functions of 
open sets 

The chart tells the story in part. If ( 9 ,  a)possesses the strong Vitali property, 
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then (*) holds for all f E L, .The density property for ( 9 ,  *) is necessary and suffi- 
cient for (*) to hold for all f E L,  . 

In connection with the family J.,, we mention an example due to Nikodym 
[106]. Nikodym constructed a closed set S c R, having positive measure such 
that to almost every point x ES ,  there corresponds a line segment L, whose inter- 
section with S is exactly x.  It is easy to verify that for each such x ,  there exists a 
sequence {R,) of rectangles contracting to x,  each containing a segment of L,, 
such that lim,,,p(S nR,)/p(R,) = 0. Thus, 9, does not possess the density 
property. 

Other proofs that 9, does not have the density property can be found in Buse- 
mann and Feller [21] and Papoules [109]. 

We shall return to the question, "What causes (*) to hold for some bases ( 9 ,  -) 
but not for others?," but we wish to ask this question in a somewhat broader context, 
and it seems desirable to digress for the moment with three comments. After these 
digressions, the last of which is rather lengthy, we shall return to the question at 
hand. 

COMMENT We mentiolied that (*) holds for class of functions somewhat 1. a 
larger than the class L, when 9 = 9,. Zygmund showed in 1934 [I691 that this 
class includes all functions in L, for every p > 1. Then, in 1936, Jessen, Marcin- 
kiewicz, and Zygmund [71] extended this result to the class LlogL of functions f 
such that I f I log+ I f  I EL, , where log+x = max(0, logx). The class Llog L con- 
tains every L, class, p> 1 .  Thus, the class for which (*) holds relative to 9, is in 
some sense large. In another sense, however, this class is very small, thought of as 
a subset of L,.Specifically, Saks [I411 showed that the class of functions whose 
integrals are strongly differentiable at even one point is a first category subset of L, . 
(See also [95].) What Saks actually proved is that there exists a residual subset S 
of L, such that iff ES, then Dsa = + oo ,where dsa denotes strong differentiation 
(i.e., differentiation with respect to Y3). Thus while each absolutely continuous 
Lebesgue-Stieltjes measure is differentiable a.e. relative to J,or J , ,  "most" such 
measures are nowhere differentiable relative to 3,. 

COMMENT The density property can be cast in a Vitali form by weakening 2. 
the conclusion of the strong Vitali property to allow "arbitrarily small" overlap 
of the elements of 9 appearing in the conclusion of the Vitali theorem. This can 
be done in a number of ways (see Section 3.1). For example, de Posse1 [I261 proved 
the following theorem (which holds in abstract spaces as well, see Section 6). 

THEOREM.A necessary and suficient condition that (9 ,  3)possess the density 
property is that (9 ,  =>) possess the weak Vitali property, i.e., the strong Vital i  
property with conditions (ii) and (iii) replaced b y  
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where a is any preassigned positive number less than 1 .  

We note that this condition simultaneously guarantees that both the "total over-
lap" of the sets I, and the "overflow" of u I, over A will be "arbitrarily small". 

COMMENT If one studies Banach's proof [6] of the Vitali covering theorem, 3. 
one sees that essential to the proof is a simple fact about squares in R,. If S, and S, 
are any concentric squares with sides parallel to the coordinate axes such that 
6(S2) 2 96(S1), and x, ES, ,  x, E N S,, then the distance between x, and x, is 
at least twice the diameter of S, . (Similar statements are valid for cubes in R,, the 
number 9 being replaced by the number 33. The important thing is that there exists 
one number which works for all pairs of concentric squares. It is easy to verify 
that the corresponding statement for intervals in R, does not hold-no single con- 
stant works uniformly for all pairs of concentric intervals. 

For purposes of generalization, it is more convenient to state this property in a 
somewhat different form. Let S be any square whose sides are parallel to the coordi- 
nate axes. There is a number (9) such that if H denotes the union of all squares 
which are no larger than S and which intersect S, then p(H)/p(S) 5 9.  The letter 
H is used to suggest the term "halo" because of the appearance of the set H (actually 
of the set H - S). It turns out that the basis (9,=>)possesses the strong Vitali 
property if it possesses a certain halo condition, suggested by, but more general 
than, the halo property of squares mentioned above. 

DEFINITION.A family of sets 9 is said to possess the Morse halo property pro-
vided there is a bounded positive function A defined on 9 such that the "A-halo" 
defined by 

satisfies the inequality 

for some 1< ca and all IE.J. 

THEOREM.Suppose (4,*) possesses the Morse halo property, where 9 consists 
of bounded closed sets and I => x means x E I and 6(1) +0.Then ( 9 ,  =>) possesses 
the strong Vitali property. 

This theorem was first proved by Morse [97] for metric spaces. He assumed the 
members of 9 to be closed. One can, however, verify (see Alfsen [I]) that the result 
holds if for every finite collection I,,l,,..-, In€#, and X E  - u I,, there exists 
I E 9 such that x E I and I n I, = 0 if k = 1,-..,n . One can't quite have the strong 
Vitali property if one doesn't put some sort of restriction on 9. For example, if 
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one adds a collection of rational points near I to each I E ~in an appropriate 
manner, one can't possibly get the sets (I,} to be disjoint. 

We note that the function A might measure the diameter of the sets in 9 ,  or their 
Lebesgue measure, but these are not the only possibilities. 

It turns out that the Lebesgue density property is equivalent to a different sort of 
halo condition under certain circumstances. 

Let 9 be the family of sets of some differentiation basis. Let U E  (0,l) and let 
p(A) < co . Let A, denote the union of all I E 9 for which p(I n A) > cip(I). 

THEOREM.Let 9 be a family of bounded open sets in R, and suppose 9 is 
closed under homothetic transformations. Let I 3 x mean x E I and 6(I) + 0 .  
Then (9 ,  3 )  possesses the density property if and only i f  ( 9 ,  3 )  possesses the 
weak halo property, namely, for each ci E (0,l) and each A ojfinite measure, the 
set A, has finite measure. 

This theorem is due to Busemann and Feller [21]. 
We have seen that the strong Vitali property and the weak Vitali property (equiv- 

alently, the density property) are related to certain halo conditions. 
Let us now pose our question in a somewhat broader context. Given a family F 

of functions, under what conditions imposed on a differentiation basis ( 9 ,  =>) 
does (*) hold for each j E F? As we already saw, these questions can be answered 
for certain classes F in terms of various types of Vitali, density, or halo properties. 
In order to obtain a more complete answer to this question, we consider several 
other Vitali and halo properties. 

DEFINITION[21]. Let 9 be the family of sets of a differentiation basis. Let 
S c R , ,  O < u <  1, and P > O .  Define a,@(S) by 

DEFINITION. The family 9is said to possess the halo evanescence property, if for 
each decreasing sequence {S,} of bounded measurable sets whose intersection is 
empty, and each decreasing sequence {p,) J 0 of real numbers, p(crapm(Sn)) + 0 for 
all a. 

THEOREM[21]. Let ( 9 ,  3 )  be a diferentiation basis where I => x means that 
x E I and 6(I) + 0.  Suppose each I E 9 is a bounded open set. Then ( 9 ,  *) possesses 
the density property i f  and only if ( 9 ,  *) possesses the halo evanescence property. 

We observe that we do not require 9 to be closed under homothetic transforma- 
tions here as we did in the weak halo property stated above. 

Note also, that in the Morse halo the "nucleus" consists of members of 9 ,  while 
in the Busemann-Feller halo the nucleus consists of arbitrary bounded measurable 
sets. In either case, the rest of the halo consists of unions of sets in 9. We shall 
define one more halo [21], and observe that the nucleus here consists of the union 
of a finite number of measurable sets. 
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DEFINITION. Let 9be a family of sets in R, . Let u,,u,, un be arbitrary positive 
numbers, and let S,, a * . ,  S, be arbitrary bounded measurable sets. Then 

DEFINITION. The family 9possesses the strong-(Busemam-Feller) halo property 
provided for each collection (a,,...,un; S,,...,S,), 

n 

~(H(u~ , . . ' , un :  < C Z akp(Sk),S1,"',Sn)) 
k = l  


where the constant C depends only on J. 

THEOREM.Let 9 be a family of bounded open sets in R,, closed under homo-
thetic transformations. Let I +- x mean x ~ l  forand S(I) + 0 .  Then (*) holds 

every f~ L l  if and only if 9 possesses the strong halo property. 


We state one more Vitali property of "intermediate" strength [MI. 

DEFINITION. Let ( 9 ,  =>) be a differentiation basis in R, and let p 2 1. We say 
( 9 ,  +-) possesses the p-Vitali property if for each set A c R, and 8 > 0,  and 
each Vitali cover 4*of A ,  there exists a sequence {I,}of sets in 9 *  such that 

(i) p(A- U 1,) = 0;  
(ii) J[~,(x)]~dp < E ,  where E,(x) denotes one less than the number of sets in 

{I,} to which x belongs, and the integral is taken over UI,; 
and 

(iii) p*( U 1,-A) < E ,where A is a measurable cover for A. 

Condition (ii) guarantees a small overlap, condition (iii) a small overflow. 

The two theorems stated below indicate the role a p-Vitali property plays in dif- 


ferentiation theory. Both of these theorems can be found in [MI. They apply in 
abstract settings as well as in our present concrete setting. 

THEOREM.If p > 1 and ( 9 ,  3 )  possesses the p-Vitali property, then (*) holds 
for every f~ L,, with l l p  + l / q  = 1. 

THEOREM.If (*) holds relative to ( 9 ,  +-)for every f~ L,, (lip + l / q  = I ) ,  
then 9 possesses the p'-Vitali property for every p' satisfying 1 p' < p .  

We note that these two theorems are not quite converses of each other. We do 
not know whether the direct converse of the first of these theorems is valid. 

Putting together a few of the preceding results, we have the following theorem: 

THEOREM.Let 9 be a family of bounded open sets and let I => x mean X E  I 
and S(1) + 0 .  T h e  following conditions are equivalent: 

1. T h e  Fundamental Theorem of Calculus holds for all f E L, . 
2. ( J ,  3 )  possesses the weak Vitali  property. 
3. ( 3 ,  +-) possesses the Density property. 
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4. ( 3 ,  -) possesses the Halo Evanescence property. 
If, in addition, 9 is closed under homothetic transformations, then condition 5 
below is equivalent to the others. 

5. ( 9 ,  -) possesses the weak halo property. 

The theorem gives an indication of when a basis ( 3 ,  3 )  is suitable for differentia- 
ting all integrals of the entire class L,. If, for example, ( 9 ,  >) has the weak Vitali 
property, it differentiates all integrals of L, functions. But it might differentiate 
integrals of certain additional functions as well, as one can see from the theorem 
of Jessen-Marcinkiewicz and Zygmund. Given an f ,  not necessarily in L, ,we ask 
for conditions under which ( 9 ,  -) differentiateso = J" fdp . The following theorem 
[64] gives an answer to this question. 

THEOREM.If ( 9 ,  -) possesses the weak Vitali property, f E L,, and o = J" fdp, 
then ( 3 ,  -) diferentiates a to f' if and only if ( 3 ,  3 )  possesses the weak Vitali 
property with respect to o. 

This theorem generalizes to abstract spaces. 
Table I on page 10 summarizes our results and provides a partial answer to the 

question raised on page 7. By I => x we mean x E I and 6(I) -t 0 .  
As we mentioned earlier, all of the results of this section have analogues in R,, 

n > 2 .  Many have analogues in abstract measure spaces and we shall discuss some 
of these in Chapter 6. The one result whose n dimensional analogue is not obvious 
(to state) is the result of Jessen-Marcinkiewicz and Zygmund. We now state the 
n-dimensional version [71]. 

THEOREM.1f f(log+l f is summable, then the integral o f f  is strongly 
diflerentiable to f a.e. 

As before, strong differentiability of o means o is differentiable with respect to 
the intervals (n-dimensional rectangular parallelepipeds with faces parallel to co- 
ordinate hyperplanes). 

This result is the best possible in a certain sense. Let 4 be an increasing function 
defined on [0, co) such that +(O) = 0, 4(t) > 0 for t > 0 ,  and such that 
liminft,,4(t)/t > 0 .  Let Lb denote the class of functions f such that 4 (  I f  1) is sum-
mable on the unit n-dimensional cube S .  If for each f E Lb the integral off is almost 
everywhere strongly differentiable, then f(logf I f I)"-' is summable on S .  Thus 

+ m - 1for &(t) = t(1og t) in particular, Lb, is the largest Orlicz class with the property 
that the integral of every one of its members is strongly differentiable a.e. 

A related result can be found in Saks [142]. 
Recently, Zygmund [I711 obtained an extension in a different direction. Suppose s 

is an integer satisfying 1 5 s 5 n .  Then (*) holds, with respect to the family of all 
n-dimensional intervals with at most s different edge lengths, for all f such that 
I f  1 (log'l f 1)" -' is summable. For s = n ,  this is just the Jessen-Marcinkiewicz- 
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Vitali property on ( 9 ,  3) 


strong Vitali 

suffices for (*). 


pt-Vitali for all 

pt  E [I, p) is necessary 

and sufficient for (*). 

( 1 1 ~+ llq = 1). 


Weak Vitali is necessary 

and sufficient for (*).Equi-

valently, density property 

is necessary and sufficient 

for (*). 


halo property on (9 ,  =.) 
(1) Morse halo property suffices for 
(*) if 9 consists of bounded closed 
sets. 
(2) Busemann-Feller strong halo prop- 
erty is necessary and sufficient for 
(*) if 9consists of bounded open sets 
and is closed under homothetic 
transformations. 

(1) Halo evanescence property is 
necessary and sufficient for (*) if 9 
consists of bounded open sets. 

(2) Weak halo property is necessary 
and sufficient for (*) if 9 consists of 
bounded open sets and is closed 
under homothetic transformations. 

(*) (*)A halo property on (9,a)which is sufficient for the differentiation of integrals 
of functions in L, can be found in Hayes [59]. 

Zygrnund theorem, while for s = 1 this is the Fundamental Theorem of Calculus 
for the cubes. 

Another extension of the theorem can be found in Smith [151]. See also the end 
of Section 6.2 below. 

We mention in closing this section that most books dealing with the differentia- 
tion of integrals use Vitali-type theorems and density theorems rather than halo 
conditions to obtain their results. A proof of the Jessen-Marcinkiewicz-Zygmund 
theorem in R,, based on halo properties of the two dimensional intervals, can be 
found in Burkhill [20]. Halo properties relating to classes of functions other than 
LlogL can be found in Hayes [60]. Additional papers dealing with differentiation 
of integrals in R, are [4], [35], and [162]. 
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III. COVERING THEOREMS AND DENSITY THEOREMS 

IN EUCLIDEAN SPACES 


In Chapter 2 we saw one of the reasons that covering properties (and density 
properties) are important in the theory of differentiation; namely, the composition 
of the class of functions whose integrals differentiate back to the function is closely 
related to the type of covering property that the differentiation basis possesses. These 
properties have other uses as well, and it is often convenient to obtain variants of 
the covering theorem for specific purposes. We begin this chapter with a discussion 
of some of the variants possible in R,. We then address ourselves to the notion 
of perfect basis, that is, a basis for which the strong Vitali property holds not only 
with respect to Lebesgue measure, but with respect to every other Lebesgue-Stieltjes 
measure as well. We end the chapter with a few remarks concerning density theorems. 

3.1. Variants of Vitali properties. Let ( I ,  *) denote a differentiation basis in 
R,. Let (E , }  be a sequence of bounded measurable sets. For each k ,  let 
u, = sup{p(E,)/p(l) :I E4, E, c I )  . The sequence {E,} is called regular (with 
respect to 9)provided there is a positive constant u such that a, >u for all k . Now 
suppose ($, 3)is a differentiation basis for R,, where % is a family of closed sets, 
s- has the usual meaning, and for each x E R,, every sequence {J,) of sets in f 
such that J, s- x is regular. 

THEOREM.If (3 ,  3) possesses the strong Vitali property, so does ($, s-). 

Vitali's theorem is sometimes stated for such systems [I441 with I denoting the 
family of cubes. 

Another variant of Vitali's theorem has proved useful in connection with certain 
questions concerning the differentiation of integrals [71], [171], and with certain 
questions in multiple Fourier series [170], [71]. Let 4,,4,, -..,4, be increasing 
functions defined on (0, a)such that lim,,,$i(t) = 0 for all i ,  and 4i(t) > 0 for 
all t >0. Suppose 3denotes the family of all n-dimensional intervals of the form 
{(xl, x,, .--,x,): a l  $ xi 5 bi where bi -ai = +,(t) for some t) . With the usual 
notion of contraction, ( 4 ,  *) possesses the strong Vitali property. One can prove 
this statement directly, or by observing that ( 4 ,  -) possesses the Morse halo property 
with A(1) = p(I). To verify the Morse halo property, we observe that since each of 
the functions 4iis increasing, if A(J) 5 2A(1) for I ,  J E 3,then every edge of J has 
length at most twice that of the corresponding edge of I. Thus H,(I) is contained 
in the union of those K E Y  intersecting I and whose edge lengths are twice the 
corresponding ones of I .  It is easy to verify that if S is this union, then 
p(H,(I)) 4 p(S) < k&(I) where k, is a constant depending only on the dimension 
of the space. 

We observe that the family 9 need not be regular with respect to the family of 
n-dimensional cubes. If, for example, n = 2, and 4, has a vanishing derivative at 
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t = 0 while 4, has an infinite derivative at t = 0 ,  then the family 9 is not regular. 
The weak, strong, and "intermediate" Vitali properties found in Chapter 2 differ 

in the amount of overlap allowed in the sets of the sequence selected to almost 
cover I .  There are various other forms the covering properties might take. For 
example, variation is possible in the manner in which one measures overlap. Thus, 
one might define the overlap of {I,) to be 

~(1 , )- u I,) 
provided y( U I,) < a.When y( U I,) < a , this measure is the same as that stated 
in Chapter 2. The Vitali properties we have considered involve (possibly) infinite 
sequences of sets {I,). By requiring only that y*( U (I, - A)) < E one can replace 
the infinite sequence {I,):='=, by a finite sequence. 

For certain studies it is necessary to measure the overflow and overlap not with 
respect to Lebesgue measure y ,but with respect to another measure o .  For example, 
if o = J" fdp, a number of results can be stated in terms of Vitali properties that 
(3,3 )  may possess with respect to a .  A relatively complete discussion of the rela- 
tionship between Vitali properties of various sorts and the ability of a differentiation 
basis to differentiate integrals and measures can be found in Hayes and Pauc [MI. 
The results obtained in that work apply to abstract measure spaces as well as to 
Euclidean spaces. 

A number of other covering theorems have been used by various authors for special 
purposes. For example, covering theorems which have proved useful in dealing 
with problems in singular integrals have been advanced by several authors. See 
Guzman [48] for statements and applications of such theorems as well as for refer- 
ences to various other related applications. Some of these theorems apply to spaces 
more general than R,. 

3.2 Perfect bases. To this point we have been concerned almost entirely with 
Euclidean spaces furnished with Lebesgue measure and with bases (9,*) for which 
I * x means x E I and 6(I) +0. Most of the results we mentioned apply equally well 
to other measures and to certain other meanings of + . We shall now consider the 
following question: Under what circumstances does a basis ( 9 ,  3 )  have the prop- 
erty that the strong Vitali property hold with respect to every Lebesgue-Stieltjes 
measure? We shall call such a basis a perfect basis and we shall see that the meaning 
of + will, of necessity, be somewhat restricted. 

The first to consider this question was Besicovitch [9], [lo], who showed that if 
9 denotes the family of spheres in R,, and I * x means x is the center of I and 
6(I) + 0 ,  then ( 9 ,  +) is a perfect basis (see also Sikorski [I501 and IsCki [67] for 
similar results in R,). Besicovitch extended this result to bases which are o-regular 
with respect to the spheres, and he was able to drop the requirement that I + x 
means x is the center of I .  However, o-regularity depends on the measure a ,  so in 
this more general setting, Besicovitch's second result applies only to measures which 
satisfy the regularity condition relative to the given basis. 
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Consider, for example, the basis of closed disks in R, , where I e-x means x E 1 
and 6(I) -t 0 .  Let 5 be the completion of that measure a ,  which for any Bore1 set 
A satisfies a(A) = p(A n R1), where p is one dimensional Lebesgue measure. Let 
9 *  consists of the disks tangent to an interval [a, b] of R, . Then 5([a, b]) = b - a ,  
but no denumerable subcollection of 9 *  covers 5-almost all of [a, b] . Thus, ( 9 ,  *) 
does not even possess the weak Vitali property. 

So what does it take for (9,*) to be perfect? Because of Besicovitch's first result, 
one might feel that if the elements of 9are "nearly" spherical, and if I => x involves 
some notion which indicates that x is "nearly" a center of I ,  then ( 9 ,  *) would 
be perfect. We shall see that while this feeling is in part correct, care has to be taken 
to formulate the conditions of "near sphericalness" and "near center" accurately. 
In fact, the perfection of a basis is more closely related to starshapedness than to 
sphericalness. 

The results we are about to discuss, as well as the remarks contained in the preced- 
ing paragraph, are due to Morse [98]. We begin with a bit of terminology. 

DEFINITION. The internal radius of a set B at x is defined to be the supremum 
of the set {r: S(r,x) cB}, where S(r, x) denotes the closed sphere with center x 
and radius r .  The hub radius of B at x is defined to be the internal radius of the 
convex kernel of B at x .  

Now let (9,=>)be a differentiation basis for R,. If 9 consists of closed sets, and 
I, => x means 

6(Ik)-t 0 and lim sup,, , 6Uk) < a ,hub radius of I, at x 

then ( 9 ,  3) is called a star basis. 
For example, if 9 denotes the family of closed spheres in R, and I, * x means 

x is the center of I, and &Ik) -t 0 ,  then ( 9 ,  *) is a star basis. 

THEOREM. Each star basis is perfect. 

Observe that the definition of a star basis imposes a condition on * which indi- 
cates a sense in which I, * x requires x to be a "near center" of I,. If we weaken 
our requirement by requiring only that &Ik)-t 0 and lim sup,,, d(I,)/(inter-
nal radius of I, at x) < a ,  then the basis need not be perfect. In fact, 
Hayes and Morse [Ann. 131 have given an example of a basis ( 9 ,  =>) in R, 
whose members consist of closed starshaped sets, and such that for every x E R, , 
limsupk,,6(Ik)/(interna1 radius of I, at x) = 2 whenever I, * x ,  even though 
( 9 ,  *) is not perfect. The basis ( 9 ,  *)is not even universal; that is, it is not the case 
that ( 9 ,  *) differentiates the integral of every function summable with respect to 
some Lebesgue-Stieltjes measure. (Every perfect basis is universal because the 
appropriate entries in Table I, p. 10, apply to all Lebesgue-Stieltjes measures.) We 
note that in this example, if I, * x ,  then I, contains one sphere about x and is con- 
tained in another sphere about x with the ratio of the radii of these spheres tending 
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to 1as k tends to infinity. Yet the basis is not perfect. As Morse points out, the con- 
dition involving the hub radius requires less in the way of sphere shapedness but 
more in the way of starshapedness. 

Star bases have certain advantages over other types of bases. These are discussed 
in [98, p. 4321. 

Related results, with applications to singular integral equations can be found in 
Guzman [48]. Goffman [47] has used Morse's theorem to obtain a characterization 
of a certain class of linearly continuous functions. 

3.3 Density theorems. We turn now to a discussion of various sorts of density 
theorems. In Chapter 2 we considered the Lebesgue density property and pointed 
out that if (Y, *) possesses this density property, then this basis differentiates 
integrals of bounded summable functions. The underlying measure was Lebesgue 
measure. 

For certain applications, it is desirable to have analogous theorems with respect 
to other measures. An exhaustive study of the types of density theorems which have 
applications to the theory of surface area can be found in Mickle and Rad6 [go]. 

To develop a theory here would take us too far afield, so we shall content our-
selves with a few sample results. We note that some of the theorems below are actually 
differentiation theorems (every density theorem can be interpreted in this way) 
but we include them in this section because the authors looked upon their results 
as density theorems. 

Sierpinski[149] and Besicovitch [7] considered questions of linear density of planar 
sets of points. Let I-denote Carathtodory linear measure in R, . Let C(x, r) denote 
the disk having center x and radius r .  Let A be a linearly measurable subset of R,  . 
We define the upper and lower linear densities of A at x by 

and 
r(A nC(x, r)) DJx, A) = lim inf,,, ---------. 

2r 

Three theorems of Besicovitch will suffice to illustrate the extent to which the 
kbesgue density theorem holds. 

THEOREM1. At r-almost all points x of A 

3s D*(x,A) 5 1 and 0 5 D,(x,A) 5 1 .  

These limits are the best possible in the sense that there exist sets of r-measure 
greater than 0 for which D*(x, A) = 3 or D*(x, A) = 1, or D,(x, A) = 0 or 
D,(x, A) = 1, as the case may be, at r-almost all points of A. 
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THEOREM At r-almost all points in the complement of A, D*(x,A)=D,(x,A) 2. 
= 0. 

THEOREM3. If A c B and T(A) > 0,  then at  r-almost all points of A, 
D*(x, A) = D*(x, B) and D,(x, A) = D,(x, B). 

Theorem 3 generalizes the linear Lebesgue density theorem; for if A c R,, we 
can take B = R,. 

Sierpinski obtained results analogous to Theorem 1 and 2 for sets A which are 
not necessarily linearly measurable. 

We note in these theorems that the denominators in the expressions defining the 
densities are "linear". Related theorems hold with the denominator representing 
the right dimension. Let r be any Carathkodory outer measure, and let p* be 
Lebesgue outer measure in R,. Let 4 be the family of n-dimensional closed spheres, 
where 1=> x means x is the center of 1and 6(1) -, 0. Let E be a p measurable set. 
Then lim,,,T(E nl) /p(l)  = 0 or co for p-almost all points of R, -E .  

If $is an outer measure (not necessarily a Carathkodory outer measure), one can 
only conclude that limsup,,,ll/(E n I)/p(I) = 0 or co for p-almost all points in 
R, - E . (One cannot replace the expression "lim sup" by "lim".) See Mickle-Rad6 
[88] for proofs of these statements. Conditions under which this replacement is 
permissible can be found in [90]. A number of related results (many in the setting 
of metric measure spaces) can be found in this work. See also [89], [41], and [100]. 

IV. APPLICATIONS 

The theory of differentiation of integrals in Euclidean spaces, along with the tools 
of that theory (covering theorems, density theorems, etc.) have uses in a number of 
mathematical fields. In some cases the tools can be used directly to carry out the 
necessary estimates or calculations, and in other cases the problems at hand quickly 
reduce to questions concerning the differentiation of integrals or set functions. In 
the present section we give some indications of how the theory arises in certain 
mathematical areas and indicate some of the results obtainable. In order to avoid 
getting too far afield, we consider only those cases which can be described easily 
and which involve very little technical machinery to describe. In some cases we 
include some of the details of the treatment; in other cases, we do little more than 
indicate how certain notions can be defined or interpreted in terms of derivatives. 
Our setting is that of R,, primarily for n 2 2. We note that several different dif- 
ferentiation bases appear in the examples. 
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4.1 Equivalences of cross partial derivatives. Let 4 denote the family of intervals 
in R,  and let - denote the usual notion of contraction. Let f be summable on, say, 
the square S = [O,l] x [0, 11 ,and let F be defined on S by F(5, q) = J$ J: f dx dy . 
The function F determines an interval function a in the usual way: if 
I = [<,<+ It] x [q,q + k] c S ,  we define a by o(I) = F(5 + h , ~f k) - F(&q + k) 
- F(5: + h ,  q) - F(5, q). Then 

Now suppose the partial derivatives of F exist in a neighborhood of ( 5 , ~ ) .  If a 
is strongly differentiable at the point (t,q), then this limit is just the double limit 
of the displayed expressions. The iterated limits, however, give the cross partials 
aZF/axay and aZF/ayax. I t  follows that if a is strongly differentiable a.e. in S ,  
and F possesses first partial derivatives in S ,  then 

for almost all points (5,q) E S .  In particular, the cross partial derivatives are equal 
almost everywhere in S. 

Now, even if F does not possess first partial derivatives everywhere in S ,  it is the 
case that F possesses first partials a.e. in S .  Thus, if a is strongly differentiable a.e. 
in S, we can still conclude the equality a.e. of the cross partials, provided we relax 
slightly the requirement that a mixed partial can be defined at a point only if the 
first partials exist in a neighborhood of that point. 

Comparable results hold in R,. See [21] for a complete development. 
Now let f be a measurable function in R, .A theorem of Lusin [82] (see also Saks 

11421) asserts that there exists a continuous function F such that F' =f a.e. Certain 
analogous results in R, have been obtained by Saks [142]. For example, if f is a 
measurable function in R,, there exists a continuous measure a such that the strong 
derivative of a equals f a.e. In terms of point functions, the theorem takes the form 
that every measurable f defined on R 2  is a.e. the cross partial derivative of some 
continuous function F. In the one dimensional case, i f f  is summable on sets of 
finite measure, then clearly F can be taken to be the integral o f f .  But in R,, the 
integral off might be nowhere strongly differentiable. What functions F ,  then, have 
the desired property? Saks showed that if f is summable on sets of finite measure, 
there always is an F of the form F= F ,  + F2 , where F ,  is the integral of f and F, 
is continuous and singular, such that a2F/axdy = aZF/ayax=f a.e. Additional 
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restrictions can be put on F. For example, one can require (even iff  is not sum- 
mable!) that F = F1 + F, where F1 is the integral of some bounded function, and 
F ,  has continuous partial derivatives akF,/ai  and akF,/ayk of all orders everywhere, 
and cross partial derivatives a2F2/axay and a2F,/ayax (equal to f) almost every- 
where. 

These results have analogues in spaces Rn of higher dimension. 

A number of additional results of a somewhat related nature can be found in 
Goffman [46] and Easton, Tucker, and Wayment [37]. 

4.2 Multiple Fourier series. A standard theorem in Fourier series asserts that if 
f is in L1[O, 2x1 and periodic with period 2a, then the (C,l) means of f converge a.e. 
to f .  We consider now some analogous questions for summable functions on 
S =- [0,2n) x [0,2n) (extended periodically, of period 2n in each variable, to all 
of R,). Let om,,(f: xo,yo) denote the mnth Fejer mean off at (x,, yo): 

1 xo+n YO+" sin m(x - (sin n(y -y0)/2)'~ ~ ) / 2 ) ~  
omn(f:XO,YO)= 4mnn2-/,,-.S,o-nf(x' Y)( sin(x -xo)/2 sin(y-yo)/f dxdy. 

Let f be a positive function, of period 2n in each variable, which is summable on S 
and for which the upper strong derivative of its integral is identically + oo . Since 
the upper strong derivative is infinite everywhere, it can be computed at each point 
p, with p the center of the intervals contracting to p. Then there exist two sequences 
of positive integers {m,) and {n,) such that m, -,a,nk -+ a,and 

One can verify that the corresponding Fejer means dominate the left side of this 
last expression and thus approach + cx,. Since the Fejer means are just the (C, 1) 
partial sums of the double Fourier series, this shows that the (C, 1) sums converge 
nowhere to f .  

This result is due to Zygmund (see Saks [141], whose proof we reproduced above). 
I f f  E Lp, p > 1, then the (C, 1) means converge to f a.e. [169]. The same is true 
for each f E Llog L [170], [71]. This last result is in a sense the best possible [71]. 

A number of results for multiple Fourier series which involve the differentiation 
of integrals can be found in Zygrnund [170]. For example, if in the question consid- 
ered above we require that m and n tend to infinity in such a way that n/m and mln 
remain bounded, then the (C, 1) means converge to f a.e. Here we require only that 
f E L, . Comparable results hold in R,, n > 2. A proof of this fact can be based on 
the variant of Vitali's theorem (involving the functions 4i) considered in Section 3.1. 
(See also [85].) Note the similarity between these results and certain analogous 
results concerning the differentiation of integrals. In Section 7.2 we shall indicate 
why this similarity is not so surprising as it may at first seem. 
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Another result of interest is that i f f  is summable on S = [O,2n] x [O,2n] and its 
integral is strongly differentiable, then its Fourier series is Abel summable (A*) (see 
[I701 for definition of A* summability) a.e. on S. If, in addition, the integral of 
I f  I is strongly differentiable, then the Fourier series off  is (C, 1) summable a.e. on 
S .  We note that it is possible for the strong derivative of the integral off  to exist 
a.e. while the strong derivative of the integral of I f  1 exists nowhere [108]. 

4.3. Boundary behavior of harmonic functions. Let u be a positive harmonic 
function defined in the unit disk I z I < 1. A standard theorem of Fatou's guarantees 
that u has radial limits a.e. Specifically, limr,,u(reie) = u(8) exists for almost every 
8 between 0 and 2n. A result which gives some sort of indication of the radial be- 
havior at every 8 can be formulated in terms of differentiation of measures. 

We begin by recalling a few facts about representation of harmonic functions 
[137]. If a is a Bore1 measure on the circle I z I = 1,  and Pr(8- t) denotes the Poisson 
kernel, 

then the function 

is harmonic in the open unit disk 1 z 1 < 1 .  In fact, given a harmonic function u 
such that 

there exists a measure a such that the representation above is valid. 
Let 9 be the family of arcs on the unit circle 1 z 1 = 1 ,  and for fixed 8 take 

I ;.eis to mean that eie is the center of the arc I and S(I) + 0.  Let p denote Lebes- 
gue measure on I z I = 1, and let Do, go ,  and Da denote the upper derivative, lower 
derivative, and derivative of a with respect to p relative to the basis (Y, *), i.e., 
the symmetric derivative. 

THEOREM.Under the conditions described above, for each 6 ,  

~ a ( e ' ~ )  _I lim sup,, ,u(reie) =< da(eie)5 lim infr,,u(reis) 

I n  particular, a t  every point of differentiability ( 9 ,  a)of a ,  the radial limit 
limr,,u(rke) , exists and equals ~ a ( e ' @ ) .  

Certain comparable results are valid for harmonic functions defined on a half 
plane and for harmonic functions of several variables. We mention part of one such 
result. 

mailto:~a(e'@)
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THEOREM.Let u be a positive harmonic function in the upper half space 
{(x y z): z > 0) .  There exists a measure a defined on the Lebesgue measurable 
subsets of the plane P = {(x, y, z): z = 0) such that if (x,, y0,O)€P and the sym- 
metric derivative of a with respect to Lebesgue measure exists at (x,, y,,O), then 
lim,,,u(x,, yo, z) exists and equals that symmetric derivative evaluated a t  (x,, yo, 0). 
In particular, u possesses vertical limits at almost all points of P .  

The symmetric derivative as usual denotes 

where I, is the disk {(x, y, 0): x2 + y2 5 a2) and I, =. (x,, yo, 0) means a -,0 .  
We mention that the validity of this theorem can be checked by carefully following 

the proof of Theorem 1, Section 5 of Carleson [22]. 

4.4 Complex analysis. Let f be a continuous function of a complex variable 
defined on a domain G c R2. For each interval I c G ,  let [I] denote the boundary 
of I .  Write 

The function o, and a, are continuous additive interval functions, satisfying 

for all I and k = 1,2. Now, even though o, and a, are not measures, these functions 
are defined over the sets of 9,the family of squares in R2,  so we can define the 
derivatives of a, and o2 with respect to p (relative to 4 in the obvious manner, 
where I s z means z E I and 6(1) + 0 .  One can show then [I441 (by using a bit 
more machinery concerning the differentiation of interval functions than we have 
developed), that if 

1 a 1 (z) = liminf,,, -l a (0  l = 0 for almost all z E G 
P(I) 

and ' <bIa l ( z )  = limsup - except, perhaps, for a denumerable set, 
P(I) 

then f is holomorphic in G .  
Further theorems whose conclusions are that f is holomorphic and whose proofs 

can be based on differentiation theory, can be found in Saks [144, p. 195 ff.]. 
Results analogous to those stated in Section 4.3 apply to bounded analytic functions 

defined on the open disk I z I < 1. Each such function f is the Poisson integral of some 
complex measure a defined for the Bore1 subsets of 1 z ( = 1 ,  and the radial limit 
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lirn,,, f(reie) exists if and only ifthe symmetric derivative of a with respect to Lebes- 
gue measure p exists at eie [81]. In fact, the symmetric derivative in this case exists 
at eie if and only if either one-sided derivative exists at eie [12]. 

4.5 Vector analysis. Many of the terms appearing in what one might call vector 
analysis involve derivative of the type under consideration. We give a few examples. 

Let v be a continuous vector field defined in a neighborhood of a point p, in R ,  . 
Let C,(p,, r) denote the circle with center p, and radius r ,  lying in the plane through 
p, normal to n ,  oriented by the right-hand rule. We define the upper circulation 
per unit area of v at p, in the direction n by 

1* D, v(p,) = lim sup - v . tds ,  
nr2 Jcn(po.r) 

where t denotes the unit tangent and ds the differential of arc length. The lower 
circulatioa per unit area is then defined in the obvious way, and if the upper and 
lower circulations are equal and finite at p,, their common value is designated by 
D,v(p,) and called the circulation per unit area of v at po in the direction n. 

It is easy to interpret this circulation as a derivative. Fix n .  Let 9 denote the 
family of all disks K,(p,, r) whose boundaries are of the form C,(p,, r) as described 
above. Let I 2 x have obvious meaning: x is the center of I and 6(1) + 0 .  Let a 
be defined by 

a(1) = v tds, where I = K,(p,, r). 

Then D,v(p,) is just the (9,5 ) derivative of a (with respect to two dimensional 
Lebesgue measure). 

The curl of v is then defined in terms of circulations. 
The divergence of a vector field can also be interpreted in terms of derivatives. 

For example, in R , ,  if V(p) = [A(p), B(p)] is a continuous vector field in a neigh- 
borhood of p,, we define the upper divergence by 

div* V(p,) = lirn sup,,, -

with a similar definition for div,V(p,) and the obvious definition for div V(p,), 
when it exists. The interpretation of div V as a derivative (9 ,  3)is similar to the 

interpretation of the circulation as a derivative. (We could have used 
squares instead of disks as our differentiation basis.) We can also define an approxi- 
mate divergence operator in terms of derivatives. Some interesting results concerning 
the curl, divergence and approximate divergence can be found in Shapiro [145], 
[146], and [147]. For interpretations of the gradient as a derivative, see Pauc [I181 
and [120]. 
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4.6. Surface area. Just as differentiation theory plays an important role in the 
theory of arc length, so does it play an important role in the theory of surface area. 
To give a simple example of how differentiation arises in connection with surface 
area, we give a formula for the area of the surface corresponding to a continuous 
function F defined on an interval 1, c R,. The notation we use is essentially that 
found in Saks [144], where all the necessary details can be found. See also [139], 
[140]. 

Let F be continuous on lo= [al,b,] x [a,,b,]. Define GI,  G2, and G, the 
expression of de Geocze, by 

and 

where p denotes two dimensional Lebesgue measure, and 1 is an arbitrary interval 
in lo.Define a by a(J) = JJG(F;l), the integral being a Burkhill integral. It turns 
out that a(J) is the surface area of the graph of F over J .  Let (9,5 )be the differ- 
entiation basis consisting of the squares with the usual notion of contraction. Then 

for almost all points (5,q) E ZO. Thus, in order that the surface area be given by 
the elementary formula 

for all intervals J c lo,it is necessary and sufficient that a be absolutely continuous 
with respect to p .  The absolute continuity of the interval function a is equivalent 
to the function F being absolutely continuous in the sense of Tonelli. 

4.7 Change of variables in integration. Certain formulae for change of variables 
(or measures) in multiple integrals can be expressed in terms of derivatives with 
respect to the cubes. 

Suppose first that o is an absolutely continuous measure defined on the (Lebesgue) 
measurable subsets of R,. Let us write daldp for the derivative of a with respect 
to p relative to the basis of cubes with the usual notion of contraction For any f. 
for which J, fdo  exists for a measurable set E ,  we have 
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This change of measure formula is valid also in abstract measure spaces (see Chap- 
ter 6) provided the Radon-Nikodym derivative can be represented as a derivative 
relative to some differentiation basis (3,-). In Section 6.4 below, we shall learn 
that every complete sigma-finite measure space has such a basis. 

Now let T be a mapping from an open set V in R, to R,, and let A be a linear 
mapping of R, into itself. If for each E > 0 there exists a 6 > 0 such that the in- 
equality 11 T(x + h) - T(x) -Ah 11 5 E 11 h 11 holds for all h ER, such that 11 h 11 < 6, 
we say that Tis differentiable at x with derivative A .  The symbol 11 11 designates 
the norm 11 x 11 = max, 4i,<n 1 xi I, where x = (x,, x,, ...,x,). If T is differentiable for 
every x in V, we say Tis differentiable on V. 

A standard change of variable formula for integrals of functions defined on open 
subsets of R, takes the following form [137], 

THEOREM.Let T be differentiable on an open set V c R,. Suppose 
(i) W = T(V) is a bounded open subset of R,, 
(ii) T is one-to-one and T-' is continuous. Then, for each f summable on W ,  

where J,(x) is the Jacobian of T at x .  

Now, it is not difficult to prove that if 9 is the family of open cubes in R, and 
I => x means x E I and S(1) -+ 0, then, for all x , 

where a(E) = p(T(E)) for all measurable sets E. If we once again write doldp for 
Da, we see that the change of variables formula can be written 

We note that the conditions we placed on T are somewhat more restrictive than 
necessary. Several theorems far more delicate than ours can be found in Rad6 and 
Reichelderfer [131: 363-3651. In addition, that text contains a number of results 
which indicate the ways in which Jacobians and generalized Jacobians can be inter- 
preted as derivatives of the type we consider in this article. We shall not include 
the details, which involve a number of notions and definitions which would take 
us too far beyond our present purposes. 
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4.8. Mean value integrals. Sometimes a statement about real functions can be 
proved easily and by elementary techniques, provided the functions under con- 
sideration are sufficiently smooth. In certain cases, the same statement can be proved 
about functions not satisfying the smoothness conditions by suitably approximating 
the functions by sufficiently smooth functions for which the statement has already 
been proved. In this section we briefly discuss one such approximation method 
which has proved to be useful in a number of applications, and which involves the 
differentiation of integrals. 

Let f be summable on compact subsets of R,. For each positive integer n,  define 
a function f, by 

where I,(x, y) is the square ( (5 ,~) :  x 5 5 5 x + l /n ,  y 5 q 5 y + l /n) .  The func- 
tion f, is called the mean value integral of f of index n. If a is the integral o f f ,  
o(E) = J, f dp for all bounded measurable sets E, then it is clear that 

for all n and all (x, y) ER,. Since the basis (3,*) of squares, where I + (x, y) 
means (x, y) is the lower left corner of the square I and 6(1) + 0,possesses the strong 
Vitali property, it follows that f,+f a.e. 

Mean value integrals have uses in a number of fields. For example, for applica- 
tions to surface area theory see Cesari [24], Saks [144], Bray [13], Rad6 [129], 
[130], and Morrey [96]; for applications to potential theory, see Evans [39], [40], 
and Riesz [135]; for applications to transformations T from R, to R,, see Rad6 
and Reichelderfer [131]. We mention that in some applications it is more convenient 
to require the squares to be centered at the point or to replace the squares with 
disks. 

We state one sample theorem of Radb [I441 to give an example of the type of 
approximation theorem we mentioned in the introduction to Section 4.8. 

RAD~'S Let f be a continuous function dejihed on R, and let {f,) beTHEOREM. 

the sequence of integral means determined by f .  Then, for each interval I, c R2, 
S(f;I,) = lim,,,S(f,;I,), where, for example, S(f;l,) denotes the area of the 
surface given by z = f(x, y) over the interval I,. 

Now each of the functions f, has continuous partial derivatives (since f is con- 
tinuous), so the surface area formula works for each f,. Thus, Rad6's theorem 
tells us in particular that the surface area corresponding to a surface of the form 
z = f(x, y), with f continuous, is given as the limit of a sequence of surface areas 
of functions whose areas can be computed by the standard formula. 
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V. MISCELLANEOUS RESULTS 

5.1 .  Generalizations of theorems on derivates in R, .  Certain classical theorems 
involving differentiations of functions of one real variable have analogues in the 
higher dimensional setting. We begin with a few examples of this sort. 

It is a well-known fact that the derivative f' of a differentiable function f defined 
on R ,  has the Darboux or intermediate value property: if f"(x l )  = a ,  f' ( x , )  = B, 
and y is between a and jl,then there exists a point x between x ,  and x, such that 
f ' ( x )  = y . This result generalizes to derivatives of integrals, or, more generally, to  
derivatives of additive interval functions. 

THEOREM(Misik [91]). Let (3,=>) denote the differentiation basis of cubes 
or  of intervals in R, with the usual notion of contraction. Let a be a Lebesgue-Stieltjes 
measure, or ,  more generally, an additive interval function, which is differentiable 
(9,-) everywhere in R , .  For each I E 9 there exists a point x in the interior of 
I such that Do(x) = a(l)/p(l). Furthermore, for x ,  E I ,  x ,  E I and y between Du(xl )  
and Do(x,), there exists x ,  E I such that Da(x,) = y .  

See also Neugebauer [104], Kametani [73], and Ridder [133] for related results. 

S. Marcus posed certain questions concerning Darboux properties of Jacobians 
and hyperbolic derivatives. Since the former can sometimes be interpreted as deriv- 
atives with respect to cubes and the latter are just strong derivatives, Misik's re-
sults give partial answers to the problem posed by Marcus. 

In addition to having the Darboux property, every derivative is also in the first 
class of Baire; that is, the limit of a sequence of continuous functions. In fact, every 
bounded derivative has a much more restrictive property called M ,  by Zahorski 
[168]. This property is too complicated to state here, but we mention that Misik [94] 
showed that the comparable property holds for derivatives of additive interval 
functions in R,. The basis here can consist of cubes or of all intervals. In particular, 
such derivatives are in the first class of Baire. 

One of the outstanding problems dealing with ordinary derivatives is the problem 
of characterizing derivatives in terms of metric, topological, or measure-theoretic 
language. A discussion of the problem can be found in [168], [17], [14]. Not every 
function in the first Baire class and possessing the Darboux property is the deriv- 
ative (everywhere) of some other function. It is natural to ask whether there exists 
some property which distinguishes the class of derivatives from other members of 
the class of Darboux-Baire 1functions. (The question is analogous to a comparable 
one for integrals. The feature of the class of integrals which distinguishes an integral 
from an arbitrary continuous function of bounded variation is that every integral 
satisfies Lusin's condition (N).) While no completely satisfying answer to the 
question has been given, Neugebauer [I021 has answered the question in terms of 
properties of interval functions. An analogous solution for the comparable question 
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stated for derivatives of measures (or at least for additive interval functions) has been 
obtained recently by Misik [93]. We shall not state Misik's result here. 

Let f be a function of a real variable, and let a be the associated interval function: 
a([a, b]) = f ( b )  -f ( a ) .  The Dini derivatives of f can be defined in terms of a .  
Let ( 9 ,  r)be the basis of closed intervals, where I 7 x means x is the left-hand 

end point of I and 6(1) -,0 .  The Dini derivates D+f and D+f are just the upper 
and lower ( 9 ,  =>) derivates of a .  A similar interpretation exists for left Dini deriv- 
ates, giving rise to a differentiation basis ( 9 ,  T).  Two theorems comparing Dini 

derivatives (of opposite sides) are due to Young [I651 and Neugebauer [103]. 

YOUNG'S THEOREM. For any function f ,  the upper derivate on one side is less 
than the lower derivate on the other side except, perhaps, for a denumerable set. 

THEOREM.I f f  is continuous, then the two upper derivates 
equal except for a set of thejirst category. T h e  same is true of the two lower deriv- 
ates. 

NEUGEBAUER'S are 

In our language, these two theorems compare the derivates of a with respect 
to the two bases ( 9 ,  7 )and (9,F). Both of these theorems admit of generalization 

[15], a (slightly simplified) version of which we now state. 

Let 9 be the family of sets homothetic to a fixed bounded open set I, in R,. Fix 
two positions on the boundary of I,. For I E 9 ,  write x E I ( xE I )  if x is the point 

1 2 
on the boundary of I corresponding to the first (resp., second) position. Let I F x 

(I x )  mean that x is in the first (resp., second) position on the boundary of I 
and 6(I) -* 0 .  

THEOREM.Let ( 4 ,  7 )  and ( 9 ,  T) be as above, and let a = 1f d p .  If both 

bases possess the weak Vitali  property and both derivates equal f a.e., then 

(a) T h e  upper ( 9 ,  7 )derivate of a is no less than the lower ( 9 ,  T) derivate 

except on a set which contains at most a denumerable number of pairwise disjoint 
non-degenerate continua. 

(b) T h e  two upper derivates are equal except on a set of the j r s t  category. 

We caution that the term non-degenerate continua has the usual meaning in 
R2 but an unusual meaning in R,, n # 2 .  We shall not elaborate on this meaning. 

The conditions placed on ( 9 ,  *) and a in the preparation for this theorem were 
more restrictive than was necessary. 

The theorem above also generalizes a related theorem concerning symmetric 
derivates found in [16]. 

Part (b) of the theorem is valid if one considers two different differentiation bases 
satisfying certain conditions. In particular, one can take 9 to be the squares and j 
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to be the intervals in R , .  Thus, one can show that the set where the ordinary and 
strong upper derivates of an integral are unequal is a set of the first category. In 
view of Saks' result (Chapter 2) that for "most" L, functions f the strong upper 
derivate of the integral a off is identically +a,and in view of the classical result 
that the ordinary derivate of a equals f a.e., we see that for "most" f in L, the or 
dinary upper derivate of a equals f on a set of the first category and of full measure, 
and equals + w on a residual null set. 

An interesting structure theorem is due to Besicovitch [8]. 

THEOREM.Let f be summable in a domain D c R,. Let a be the integral of f .  
Let ba and Qa denote the strong upper and lower derivates o j a .  For almost 
all x E D ,  there are only four possibilities with respect to the diferentiation of a :  

(i) ba(x) = ea(x) = f(x) , 
(ii) ba(x) = + w , &(x) = f (x) , 
(ii i) ba(x) = f (x), ea(x) = - w , 

and 
(iv) ba(x) = + oo , pa(x) = - co . 
This theorem is reminiscent of the Denjoy-Young-Saks theorem for Dini's deriv- 

ates of functions of a real variable. 

5.2 Approximate continuity. Let f be defined in R,. A point xo is said to be a 
point of approximate continuity o f f  relative to ( 9 ,  =.) provided for each e > 0, 
the set {x: I f(x) -f(x,) I < E }  has xo as a point of density. The bounded approxi- 
mately continuous functions can be used to characterize regular derivatives ( 9 ,  =.), 
that is, derivatives computed with respect to differentiation bases ( f ,  3) that are 
regular with respect to 9 (see Chapter 3). 

THEOREM[136]. Let f be a bounded summable function in R,. Then f is ap- 
proximately continuous ( 9 ,  =.) if and only if f is the derivative of its integral 
with respect to every basis which is regular with respect to (9,3). 

This theorem is true pointwise; that is, f is approximately continuous at x, if 
and only i f f  is the derivative of its integral at xo with respect to every sequence 
{E , }  + x ,  which is regular. 

We note that the boundedness o f f  in the statement of the theorem cannot be 
dropped. 

The theorem is valid without assuming any Vitali property for ( 9 ,  *). If, for 
example, 9 denotes the family of all rectangles (sides not necessarily parallel to 
the coordinate axes) in R,, the theorem is still valid. Thus, as we mentioned in 
Chapter 2, there is a characteristic function f of a closed set K of positive measure 
such that the derivative of the integral of the characteristic function of K equals f 
almost nowhere on K .  The pointwise version of the theorem still guarantees that the 
(9,, *) derivative of the integral will equal f a t  every point of approximate con- 
tinuity. 
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5.3. Differentiation of interval functions. Most of the preceding material dealt 
with the differentiation of integrals. A good deal of this material carries over to the 
differentiation of measures and of (countably) additive set functions. This follows 
readily from the Lebesgue decomposition theorem and the fact that singular measures 
have vanishing ( 9 ,  2 )  derivatives a.e. if ( 9 ,  -) differentiates integrals. In order for 
our notion of differentiation to have meaning, however, it is not necessary that a 
be defined with respect to any sets other than those of the differentiation basis. Nor 
is it really necessary that a be additive, although a number of theorems depend on 
the additivity of a .  

Let, for the moment, ( 9 ,  3)be the family of intervals in R, with the usual meaning 
of contraction. If a is an additive interval function of bounded variation, much of 
the preceding material applies. A development of the theory in this setting can be 
found in Saks [ l a ,  Chapter 41. If a is not assumed to be of bounded variation, 
the situation is somewhat more complicated. A. J. Ward [160], [I611 obtained 
results for arbitrary interval functions which extend the results of Besicovitch 
mentioned in Section 5.1 above. Proofs of these results can also be found in [ l a ;  
p. 133 ff], and an extension can be found in Saks [143]. 

A real valued function a defined on the family of n-dimensional intervals is called 
additive if a(I, U I,) = a(1,) + 41,) whenever I, uI, is an interval and I, and I, 
don't overlap (i.e., have no interior points in common). 

THEOREM.If a is a n  additive interval function in R,, then 

(a) a is differentiable with respect to the cubes at  almost al l  points at  which 
either extreme derivate is finite. 

(b) a is differentiable with respect to the intervals (s trongly differentiable) 
at  almost all  points at  which both extreme strong derivates aref in i te .  

The differentiation of arbitrary functions defined on the sets of certain types of 
differentiation bases has been considered by Wright and Snyder [164]. These authors 
obtained necessary and sufficient conditions for certain types of derivates to be 
finite a.e., to be bounded a.e., and to be summable. 

5.4. Special differentiation bases. We have already encountered certain special 
differentiation bases which appear frequently in the differentiation of integrals, 
measures, or interval functions: the families of spheres, cubes, and intervals. We 
shall consider another special type of basis called a net structure in Section 6.3. 
Certain other bases have desirable properties. For example, the star bases mentioned 
in Section 3.2 have the property [98] that if T is a continuously differentiable one- 
to-one mapping of R, into itself, with nonvanishing Jacobian, then T transforms 
any star basis into a star basis. Certain other special types of bases have been studied 
by Hayes [58] and Hayes and Morse [61], [62]. For example, in [61] a condition 
on a basis ( 9 ,  2 )  for R, is given which will guarantee that if q5 is a Lebesgue-Stieltjes 
measure in R,, there exists a sub-basis (2,2 )  of ( 9 ,  2 )  such that the strong 
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Vitali theorem holds for ( 8 ,  =>) with respect to 4. (Compare with the perfect bases 
discussed in Section 3.2.) 

5.5. Extensions to infinite dimensional spaces. We shall now consider an extension 
of the developments of the previous sections to a natural infinite dimensional analogue 
of R,, or, more precisely, to its half open unit cube. 

Let S be an infinite set and let [O,l)S denote the family of functions from S to 
[O, 1) furnished with the product topology. Let s,, s,, -..,s, be a finite subset of S 
and let a,, a,, a,, b,, b,, b, be numbers such that 0 6 ai < b, c 1. The set . a + ,  

I = {x E [0,1)S: a ,  6 ~ ( s , )6 bl ,  ..-,a, 5 x(b,) 5 b,) is called a closed interval. 
Similar definitions give rise to the open or balfopen intervals. Define a measure p 
on the intervals by p(1) = nl=,(bi - ai) .The interval function p can then be extended 
to a measure on the sigma algebra generated by the intervals. Let 9 denote the 
family of all intervals and let I * x mean that x E I and for each s E S , the length 
of the s th coordinate of I converges to 0. 

It turns out [69], [70], [34] that the basis ( 9 ,  =>) is not suitable for diflerentiation 
even if S is the set of positive integers, because (4,*) does not possess the density 
property. By considering a suitable sub-family of 9 ,  however; one can obtain a 
basis ( 8 ,  a)for which the strong Vitali property holds [la],[38]. 

We shall now construct such a basis. For each positive integer m, let 9, be the 
finite set of intervals whose ith component interval for i 5 m is of the form 
[ki/2",(ki + 1)/2"), where ki is an arbitrary positive integer less than 2". The i th 
component interval for i > m is the entire interval [O,l). There are 2"2 such inter- 
vals. For each x E [O,l)S and each m , there is exactly one interval in the class 9, 
containing x .  Let 9 = U,"=,9, and let I, =- x mean that 1, is the element of 
9, containing x .  The basis ( 9 ,  3)forms what is called a net structure (see Section 
6.3) and possesses the strong Vitali property. One can use this fact (along with the 
fact that the Fundamental Theorem of Calculus holds for differentiation with respect 
to nets) to prove an interesting theorem of Fubini type for the space [O,l)s. A state- 
ment and proof of this theorem can be found in Saks [la;p. 157ff]. The space 
[0, llShas applications in probability theory. 

VI. DIFFERENTIATION OF INTEGRALS IN ABSTRACT 

MEASURE SPACES 


The first to have studied the differentiation of integrals in abstract measure spaces 
appear to be Feller [42] and de Posse1 [I251 [126]. These early works, particularly 
de Possel's, have been the starting point of a number of investigations by many 
authors. Among the major subsequent contributors to the development of the sub- 
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ject are Morse, Denjoy, Pauc, Hayes, Haupt, and Trjitzinsky. See in particular the 
works of these authors quoted in the introduction. 

In his elegant and easy-to-read article, de Possel [I261 furnished the notion of a 
differentiation basis ( 9 ,  3) in abstract spaces. He then considered certain Vitali 
type properties and density properties that a basis might possess and proved the 
equivalence of five conditions on (9 ,  =>) including a weak Vitali property, the 
density property, and the Fundamental Theorem of Calculus for integrals of L, 
functions relative to ( 4 ,  =>). The other authors mentioned above obtained more 
delicate results, including also various halo properties. Whereas de Possel's article 
[I261 is easy to read, that statement cannot be made of many of the other works on 
the subject. This is true partly because of the massive amount of technical machinery 
necessary to obtain certain desirable results (see for example the very general theory 
developed by Kenyon and Morse [75]), and partly because some of these authors 
had their own individual styles and made little use of the works of their predecessors. 
For example, in [31] and [154], [I581 one finds no mention of de Possel's work. 

In Section 6.1 we indicate the basic approach to diflerentiation theory in the ab- 
stract setting along with indications of certain modifications useful for special pur- 
poses. In Section 6.2 we discuss types of Vitali, density, and halo properties which, 
as in the Euclidean spaces, are necessary, or sufficient, or both, for a suitable theory 
of differentiation. We then consider two very simple types of bases in Section 6.3, 
and, in Section 6.4, consider the question of existence of bases which are suitable 
for differentiation. Section 6.5 contains a few miscellaneous remarks and results. 

6.1. Differentiation bases. Let (X, A, p) be a measure space with a complete 
measure p .  For our purposes it is generally convenient, (though not necessary [76]) 
to assume that the space is totally o-finite, and we shall make that assumption 
throughout Chapter 6 unless we explicitly state otherwise. We wish to impose a 
differentiation basis ( 4 ,  3 )  on (X, A, p) as we did in Chapter 2. To do so, we 
seek a family 9 of sets in ,M and a notion 3 of contraction of sets of 9 to points 
of X which are suitable for purposes of differentiation. We see immediately that 
certain problems exist in our selection of * in the abstract setting that did not 
exist in the concrete setting. In R,, we (generally) took I 3 x to mean that x E I E4 
and 6(1) -+ 0.In the abstract setting, the notion of diameter is not available to us. 
We could, of course, say I 3 x means that x E I E4 and p(I) -,0. This is a possi- 
bility, but it is somewhat too restrictive. Different authors have solved this problem 
in different ways, and we shall discuss some of these ways shortly. But first we wish 
to observe that while sequential contraction of sets in 4 to points of X was generally 
sufficient in the Euclidean setting, it is often necessary in the abstract setting to deal 
with a more general notion of contraction, say, in the Moore-Smith sense. 

In order not to commit ourselves at the start, we shall, with de Possel and others, 
take an axiomatic view towards -. Let 4 be a family of sets of positive measure, 
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and let 3 be a notion of contraction of certain generalized sequences of sets in 9 
to points of x such that the two conditions below are met: 

(i) If x E X ,  there exists at least one (generalized) sequence (in the sewe of 
Moore-Smith) of sets of 9 which contract to x :  in symbols I => x or I ,  3 x .  

(ii) Every (cofinal) subsequence of a sequence contracting to x also contracts 
to x .  

If 9 is a family of sets of positive measure and * satisfies (i) and (ii), then ( 9 ,  3)  

is called a differentiation basis for (X, A ,  p). This is obviously a very general notion 
of differentiation basis, but for many purposes it is entirely appropriate for dif- 
ferentiation. We do not assume, incidentally, that if I ,  * x ,  then X E I ,  for all (or 
any!) a .  Nor do we assume that the meaning of I = x is in any way related to the 
meaning of I 3 y if x # y . Tn a sense, each x E X has contracting sequences of sets 
in 9 attached to it. 

Now let n be any real valued function defined on the members of 9 ,  and define 
the upper derivate of n with respect to p at a point x E X  by 

where the expression in brackets denotes the limit superior for any one sequence 
I, contracting to x ,  and the supremum is taken over all such sequences. The lower 
derivate &(x) is defined analogously and, when these two derivates are finite and 
equal at x ,  we denote their common value by Dn(x) and call this value the derivative 
of a at x (with respect to p and relative to ( 9 ,  2 ) ) .  

A number of authors have used the approach outlined above, in some cases with 
minor modification, to obtain a number of diiferentiation theorems analogous to 
those given in Chapter 2. 

For some purposes it is desirable to be more specific in the meaning given to 2 .  

Some authors have required contractions to be tied in with a parameter which 
plays the role of diameter in R,. Thus, suppose A is a positive finite function on 
.Y c A. We write I 3 and A ( I )  -+ 0 .  Under certain circum- x provided X E  I E ~  
stances [64] the suitability of a diiferentiation basis of this type can be described 
in terms of an analogue of the halo evanescence condition considered in Chapter 2. 

Another approach to contraction which a number of authors have considered is 
the following. For X E X ,  let 9, be the members of 9 containing x. Suppose 9, 
can be directed by downward inclusion. We define I, 2 x to mean I, E 9, for each 
a ,  and the generalized sequence I ,  is cofinal with 9,. We shall use the phrase con-
traction by inclusion to describe this type of contraction. This notion of contraction 
by inclusion has several advantages. For one thing, as we shall see in Section 6.4 
below, every complete totally or finite measure space has a difFerentiation basis 
( 9 ,  a)of this type, for which the strong Vitali theorem holds. Another advantage 
to contraction by inclusion is that if (X, A,p) is topologized by 9and all members 
of F a r e  measurable and of positive finite measure, then, by taking 9= Y,one has 
a natural notion of contraction tied in with the topology. 
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In a sense, however, this notion of contraction is not sufficiently general in that 
it does not include all the classical cases. For example, if 4 consists of the closed 
intervals in R ,  with the usual notion of contraction, then this is not a special case 
of contraction by inclusion (unless we assume I 3x implies x is an interior point 
of I). 

Various other special notions of => are possible, but we shall not consider any 
more such notions at this time. We mention that one often puts restrictions on the 
family 4 when certain special situations are involved (see Section 6.3). Actually, 
for ( 9 ,  3 )  to be suitable for differentiation, certain restrictions (in terms of Vitali, 
density, or halo conditions) on the pair ( 9 ,  3 )  are necessary. 

6.2. Vitali, density, and halo conditions. In Chapter 2 we saw the intimate tie-up 
between the ability of a differentiation basis to differentiate integrals and the types 
or strengths of Vitali, density, and halo properties the basis possessed. In the abstract 
setting there are analogues to all of the theorems implied by the chart found near 
the end of Chapter 2. The Vitali properties can be stated in manners entirely anal- 
ogous to those stated in Chapter 2. No specific assumptions about the basis are 
necessary. Thus, no confusion should arise when we use terms such as "strong 
Vitali property". 

The same is true of the density property. Halo properties generally require certain 
special restrictions on the measure spaces as well as on the individual sets in 9. 
Under proper circumstances, analogues for the halo theorems in Chapter 2 are pos- 
sible. We do not go into the details here, but instead refer the reader to [64] where 
he can find an exhaustive study of various halo properties. In this same work, one 
can also find a number of Vitali properties of varying strengths and with a number 
of ways of measuring overlap. We shall not spell out the details, which are similar 
to those in R,. We shall, however, indicate four approaches to covering theorems, 
three of which differ from those mentioned in Chapter 2. Each of these is motivated 
by part of Banach's proof [6] of the Vitali covering theorem in R,. (See also [144].) 
Note that Morse's halo property is also related to an idea found in Banach's proof. 

(A) Perhaps the most direct generalization of the Euclidean notion of a Vitali 
covering is the following: Let ( 9 ,  a)be a differentiation basis for a measure space 
(X, Jz', p). A subset $ of 9 is a Vitali covering of a set A c X provided for each 
x EA there is a generalized sequence { J , }  of sets in $ such that J ,  3x . This is 
essentially de Possel's approach and has been used, perhaps with modifications, by 
a number of authors. We consider this our basic notion of Vitali cover. 

(B) A somewhat different approach, which has a number of virtues, is due to 
Alfsen [I]. Consider, for a moment, Banach's proof of the Vitali covering theorem 

[61-
Suppose A is a set which is covered by (for simplicity) closed cubes in the Vitali 

sense. The construction of a disjoint sequence (I,) from the cover which almost 
covers A ,  involves an induction step. Suppose I,,I,,-.., I, are sets from the cover 
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which are pairwise disjoint and cover part of A. One then uses the fact that the cover 
is a Vitali cover to observe that if x E A Ui=l lk, there is an I E 9 suchN 

that x E I and I is disjoint from U",,I,. It is easy to verify, more generally, that 
if x E A and I,, I,, --.,I, are sets of the cover, then either x E I1UI, U...u I, or 
there exists an I in the cover which contains x and is disjoint from each of the sets 
I,, I,, ...,I,. Alfsen takes this notion as his "starting" point in defining a Vitali 
cover. Thus, let (X, A, p) be an arbitrary measure space. A collection K of sets 
of positive finite measure is a Vitali cover of A,  provided for x E A and any finite 
collection K,, K,, K, of sets in X, either x E K, uK ,  u uK,, or therea * . ,  

exists K E X such that k E K and K is disjoint from K, uK, u v K,. 
Alfsen proves a number of Vitali type theorems, the first of which has an interesting 

corollary-a Morse halo condition. 

THEOREM.Let Z be a Vital i  covering of a set A in a totally finite measure 
space and let A be a bounded positive function on 31r. Define the Morse halo HA(K) 

by 

H,(K) = U {N: N E X ,  N n K  #a,A(N) s 2A(K)). 

If there exists a number 2 < co such that for all K E X ,  p*(HA(K)) 5 Ap(K), 
then there exists a denumerable disjoint subcollection of X which covers almost 
all of'A .  

We note that Alfsen's development does not explicitly employ a differentiation 
basis. Nevertheless, the Vitali type theorems he obtains can be used to check whether 
or not certain differentiation bases have the Vitali property. For example, he shows 
how the classical Vitali covering theorem, as well as a Vitali covering theorem for 
locally compact groups [25], follow easily from his results. 

(C) A very general covering theorem of a somewhat different type has been 
established by Mickle and Rad6 [89]. Once again, motivation for this theorem can 
be found in Banach's proof of the Vitali covering theorem. Recall that Banach's 
proof, say, for the case of R,  with 9being the squares, involves an inductive selection 
of a sequence of squares (I,) which satisfy the conclusion of Vitali's theorem. The 
n th square, I,, is disjoint from U",;I, and has the property that among all squares 
in the cover which are disjoint from U,"Z:I,, none has diameter greater than twice 
that of I,. 

We shall state thc Mickle-Rad6 theorem and indicate its relationship to the 
Vitali theorem. We mention that some of the abstract covering theorems of Morse 
[97] 	 are special cases of this theorem. 

Let Y be a nonempty set (of any type). Let y and 6 be two binary relations over 
Y .Write S'yS" (S16S") to mean that the elements S' and S" of cYsatisfy the relation y 
(6 resp.). For S E .Y define N,(S) = {S': S' E Y,S'yS} ,N,(S) = {ST: S' E 9,Sf6S). 
and N(S)= N,(S)nN,(S). For dcY, write N , ( b )  = U,,,N,(S), N,(Q)= Ufi8.N8(S) 



DIFFERENTIATION OF INTEGRALS 

and N(8) = Use,N(S), all these sets being empty if 8 is empty. Suppose 
(i) y and 6 are reflexive, 
(ii) y is symmetric, 
(iii) if d c9,B # 0 ,  there exists S EB such that 6 c N,(S) . 
A subset d of Y is called scattered if d contains no pair of distinct elements 

S' and S" such that S'yS". 

THEOREM. Under the circumstances described above, there exists a scattered 
subset 8 of Y such that Y = N(&). 

To interpret this theorem as a Vitali type theorem in R,, let .40 be a family of 
squares covering a set A in the Vitali sense. Let S'yS" mean S' nS" # 0,and 
let S16S" mean the diameter of S' is no more than twice the diameter of S". It is 
easy to verify that conditions (i), (ii), and (iii) above are satisfied. A scattered set 
with the present interpretation is just a disjoint family of squares from the Vitali 
cover Y. From the theorem, one can infer the existence of a disjoint collection d 
of squares in 9'such that if S EY ,  there exists S' EB such that S n S' # fa and the 
diameter of S is no greater than twice the diameter of S' . This result, by itself, is 
of course considerably weaker than the conclusion of Vitali's theorem. Nevertheless, 
it is useful in obtaining Vitali type theorems. The theorem does, however, apply 
under very general circumstances. See [89] for an application to metric spaces. 

(D) Another approach to Vitali type theorems has been developed by Denjoy 
[31]. This approach generalizes the fact that the classical Vitali theorem applies to 
differentiation bases which are regular (see Section 3.1) with respect to a basis for 
which the Vitali theorem holds. 

Denjoy considered two associated differentiation bases-to each element of one 
corresponds an element of the other, and vice-versa, with a regularity condition 
built in. His notion of contraction is in terms of the measure of the sets in the basis 
converging to 0, and he does not quite require that the point be in these sets. We shall 
not go into the details here. An outline of the results can be found in a series of 
papers [26], [27], [28], [29], [30], appearing in the Comptes Rendus of the French 
Academy of Science, a complete development (along with motivation) is contained 
in [31], and expository treatments of his development can be found in [32] and [33]. 

Another covering lemma, again based on Banach's proof of the Vitali covering 
theorem, has proved useful in applications. 

LEMMA [152], [5]. Let Y be a family of spheres in a metric space. Let S(x, r) 
denote the sphere with center x and radius r .  If (i) there is a number R such that 
for every S(x, r) E 9, 

O < r < R ,  

and (ii) for every disjoint sequence (S(x,,r,J] of spheres in 9,  
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then there exists a disjoint sequence {S(x,,rn)) of spheres in Y such that 
U {S:S E ~ )c (J S(xn,4rn). 

This lemma was used by Smith [I521 to obtain generalizations of the Hardy- 
Littlewood inequalities for functions in LP, p > 1, and L logL. These inequalities, 
of course, have many applications in a number of branches of analysis, including 
the theory of the differentiation of integrals. For example, Smith [I521 used his 
general inequality (for L 1ogL) to prove the generalization of the Jessen-Marcin- 
kiewicz-Zygmund theorem stated below. 

Other covering lemmas have been used for various purposes by a number of 
authors. See, for example, Aronszajn and Smith [5], Edwards and Hewitt [36], 
Guzman [48], Hormander [66], Rauch [132], and Wiener [163]. 

Let (XI, dl,pl) and (X,, .I,,p,) be two measure spaces furnished with differen- 
tiation basis (9 , ,  7)and (9,, z) .It is possible for each of the bases to possess 

the strong Vitali property without the same being true of the product basis in the 
product measure spaces. We saw an example of this in Chapter 2: the strong Vitali 
property is not possessed by the family 9, of two dimensional intervals with the 
usual notion of contraction. In R,, however, the family 9, does possess the weak 
Vitali property, since that property is equivalent to the Lebesgue density property. 
Haupt and Pauc [53] have shown that this result holds in general: if ( 9 , ,  7 )and 

(9,, F) possess the weak Vitali property, then the same is true of the product basis 

9, x 9, in the product measure space. 
Even though the strong Vitali property is not preserved under cartesian products, 

the theorem of Jessen-Marcinkiewicz-Zygmund concerning strong differentiation 
carries over to spaces more general than R,. A theorem of this sort has been advanced 
by K. T. Smith [152]. 

This theorem states that if two metric spaces M b  and M ,  are furnished with 
measures satisfying certain natural conditions (on relations between diameters and 
measures of spheres), and if I f  1 log+ I f  ( is summable over M, x M, furnished 
with the product measure, then the integral off  is "strongly" differentiable a.e. to 
f .  Here, as expected, "strong" differentiability is with respect to the basis 
4 = 9, x Y,, where 9, (4,) consists of the closed spheres in MI (M, resp.), and 
contraction has the usual meaning. 

6.3. Net structures. We turn now to a consideration of a special type of differen- 
tiation basis. Suppose (X, M, p) is a separable a-finite measure space with p a 
complete measure. The separability means that there exists a sequence (A,) of 
sets in A such that for E > 0 and M E  M ,  there exists a k such that the symmetric 
difference A,AM has measure less than E ;  equivalently, L,(X) is a separable metric 
space. Tt is then possible to construct on X a particularly simple type of basis called 
a net structure. 

A net is a finite or denumerable disjoint collection of measurable sets which cover 
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X.  The individual sets in the collection are called cells. A sequence {Nk} of nets 
is called monotone provided for every k ,  each cell of Nk+,is a subset of some cell 
of Nk. The family .N = is called a net structure. If x E X, there exists UF==,A 
for each k exactly one cell of JY;, containing x. We take Nk =>x to mean that 
XE N k 6 N k  and k + co. Under the above hypotheses on the space, it is always 
possible to construct such a net structure for which the strong Vitali theorem 
holds. For development of the theory of differentiation with respect to net structu- 
res, see [49], [95], [144], [148], and [167]. 

Net structures form a special type of cell structure studied by a number of authors, 
[78], [116], [119], [121], [117], and [92]. Since even a short introduction would 
involve a number of axioms and definitions, we do not provide any details here and, 
instead, refer the reader to Rutovic and Pauc [I381 for a detailed treatment. We 
mention only that the basic idea is to generalize the notion of interval function. 
In [I381 one finds generalizations of the theorems of Ward mentioned in Section 
5.3 to abstract measure spaces. In spite of the generality of the setting, Misik [92] 
has shown that certain of the mean value theorems and Darboux properties for 
derivatives of cell functions hold under quite general conditions. 

6.4. Existence of differentiation bases with Vitali properties. Since the ability of 
a differentiation basis to differentiate integrals of a class of functions is closely re- 
lated to the type of Vitali property the basis possesses, it is natural to ask whether 
every a-finite measure space possesses a basis for which the strong Vitali property 
holds (relative to definition (A) of a Vitali cover). We already mentioned in Section 
6.3 that if the space is separable, it possesses a net structure possessing the strong 
Vitali property. In [74] Kametani and Enomoto constructed basis with the strong 
Vitali property for an arbitrary locally compact a-compact metric space. But what 
about the general case? Kolzow has proved that each a-finite measure space has a 
differentiation basis of a certain specific type for which the strong Vitali property 
holds. In fact, one need not even assume that the space be a-finite! Kolzow obtained 
a number (12) of equivalent conditions on a measure space, one of which being the 
existence of a differentiation basis with the strong Vitali property. (Kolzow's 
measure spaces have the property that the measure is its own CarathCodory extension 
and therefore is complete.) 

Since Vitali properties are so fundamental to this article, we shall give a proof 
of the fact that a complete a-finite measure space (X, A, p) has a differentiation 
basis. Suppose we wished to prove this statement. A k s t  attempt might go along 
the following lines. We observe that the a-finiteness assumption allows us, without 
loss of generality, to assume p(X) < co. Consider now the family A+ of all sets 
of positive measure. We would like, if possible, to find a notion of G- for which 
(d',3)has the strong Vitali property. A natural first attempt would be, for each 
x EX, to order those sets in A+containing x by downward inclusion: I ,  is beyond 
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I, provided I, c I,. If A: denotes the family of all such sets, we would like 
to take - to be contraction by inclusion as defined in Section 6.1. We immediately 
see a difficulty-we do not have a directed system, because the intersection of two 
sets of positive measure containing a point might fail to be of positive measure. 

We can handle this difficulty as follows. A theorem of von Neumann-Maharam 
[105], [83] states that every complete measure space of finite measure possesses a 
linear lifting. More precisely, there exists a mapping L: A -,A such that 

(i) p(MAL(M)) = 0 for all M E A , 
(ii) L(M,) = L(M,) whenever p(MlAM,) = 0 ,  

(iii) L(Ml nM,) = L(M,) n L(M,) for all MI ,  M, E A, 

(iv) L(Ml u M2) = L(Ml) u L(M,) for all MI,  M, EA, 


( 4  L(0 )  = @ , L(X) = x -

Thus, L picks out one member from each equivalence class of measurable sets 

in such a way as to be "linear" on finite intersections and unions, as well as to 
preserve the empty set and the whole space. 

Now, instead of considering the class &+,consider the class 9 = {I €&+: 
1 = L(I)) . It is easy to verify that for every M E A ,  L(L(M)) = YM); thus, 9 
consists of all "lifted" sets. For x E X ,  let 9, consist of those I E 9which contain x . 
That this family can be directed by inclusion follows immediately from conditions 
(iii) and (v). Thus, we take I, * x to mean x E I, E XX, and the sequence {I,} is co- 
final with 9,;in our language, 3 is "contraction by inclusion". 

We now show that ( 9 ,  3) possesses the strong Vitali property, a Vitali cover 
being in accord with definition (A) of Section 6.3. 

Let A c X with p*(A) > 0 ,  where p* denotes the outer measure determined 
by p .  Let $ be a Vitali cover of A .  Let A be a measurable cover for A and let 
B = L(A) .Let x E A n B .Then B E 9,. Since $ is a Vitali cover for A, there exists 
J E $ such that x E J c B. We have shown that there exists J E$ such that J c B . 
Consider the family at' of all sets in f which are contained in B. A subfamily dlcd 
is called admissible if each pair of its members is disjoint. Partially order the ad- 
missible subfamilies by (upward) inclusion: d, is beyond d, if d,z d,. Since 
p(B) c co, each admissible family is at most denumerable. Now each chain of 
admissible families has an upper bound (its union) which is also an admissible family, 
and therefore denumerable. By Zorn's Lemma, there exists a maximal admissible 
family. Denote its members by I,, I,, .... We show that the sequence {I,} has the 
desired properties. It is clear that the members of {Ik} are pairwise disjoint. We 
show p(B -- UI,) = 0. Since UIk is a finite or denumerable union of sets in 
9 and B is measurable, the set B-- UIk is also measurable. Suppose p(B - UIk) 
were positive. Let M = Y B  - UI,). Then M is a set of positive measure 
disjoint from each I,, because p(M) = p(B - UIk), and the set M as well as 
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each I,, is a lifted set. (If two lifted sets intersect, they intersect in a set of positive 
measure.) Let y EM n A .  Then M E  4, and Y M )cB. Thus, the family M, I,, 12,.-. 
is an admissible family, contradicting the maximality of the family I,, I,, . . a .  

Observe that UI, c B and B is equivalent to A ,  a measurable cover for A .  Thus, 
the sequence I,,12,..-has a zero measure ooerjow. We have proved the following 
theorem. 

EXISTENCE p) is any complete totally a-finite measure space, THEOREM.If (X,-.#, 
there exists a diferentiation basis for which the strong Vitali theorem holds. The 
&-overflow requirement can be replaced with a zero overflow requirement. 

Kolzow [76] actually showed that a measure space which is its own Carathkodory 
extension and meets a certain non-triviality condition, has a strong Vitali basis if 
and only if the space admits of a linear lifting. One need not assume a-finiteness. 
A number of other conditions are equivalent to these two. One such condition is 
that the space be decomposable; that is, there exists a disjoint family of sets of positive 
measure with the property that each set of positive measure intersects one of these 
sets in a set of positive measure. Another equivalent condition is that a specific 
version of the Radon-Nikodym theorem holds. 

Thus we have answered the question posed in the introduction: In what sense 
and under what circumstances is the Radon-Nikodym derivative a pointwise deri- 
vative? The answer, briefly, is that every complete measure space for which the Radon- 
Nikodym theorem holds, admits a differentiation basis which differentiates the 
integrals of every summable function to its Radon-Nikodym derivative. 

6.5. Miscellaneous remarks. We end Chapter 6 with a few brief remarks. 

Several authors have considered the notion of approximate continuity of func- 
tions in the abstract setting, [136], [84], [54], [151]. The definitions parallel those 
in the classical setting, and we shall not present a development here. We mention 
only that an analogue of the theorem stated in Section 5.2 holds in metric measure 
spaces with the differentiation basis of "closed spheres centered at the point" [136]. 
It is not difficult to verify that the theorem applies in more general settings as well. 

We already mentioned in Section 6.3 that Darboux properties for derivatives of 
set functions have been established in abstract spaces. 

In addition to the works cited already in Chapter 6, a number of other results 
dealing with differentiation in abstract spaces can be found in [2], [3], [Ill ,  1231, 
[43], [44], [45], [501, [55], [561, [571, [681, [771, C791, C801, [107l, C1101, [1111, 
[112], [113], [114], [122], [123], [124], [134], [153], [166]. 
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W.APPLICATIONS 

The theory of differentiation of integrals and measures has certain applications 
to other parts of mathematics. We already saw, in Chapter 4, application of the 
theory in Euclidean spaces, and in Section 5.5 we gave a brief introduction to an 
infinite dimensional space that has uses in probability theory. We now consider 
further applications of the theory in the abstract setting. 

7.1. Continuity in measure spaces [18]. An abstract measure space does not neces- 
sarily come furnished with a topology, so one does not in general have a notion of 
continuous function. Nevertheless, one can use a differentiation basis to obtain a 
reasonable notion of continuous function. Consider for a moment the one dimensional 
Lebesgue space furnished with the usual bases ( 9 ,  3 ) .  Let f be summable on sets 
of 9,and let a(E) = J, f dp for each E of finite measure. Then lim,,xa(I)/p(I) =f (x) 
a.e. Even if the equality holds everywhere this does not imply that f is continuous. 
It only implies that f is everywhere a derivative. Suppose, however, that we write 
E a x if x EE, p(E) > 0,  and 6(E) + 0.  It is then easy to verify that f is continuous 
if and only if lim,,,a(E)/p(E) = f(x) for every x .  (Compare with the relationship 
between approximate continuity and regular derivative. In the present case, no 
regularity is assumed.) In considering other standard examples of topologized 
measure spaces, one observes similar results. These observations motivate us to a 
general notion of continuity. 

Let (X, A?, p) be a measure space furnished with a differentiation basis (9,3 ) .  
Let V be the class of functions f ,  summable on sets of 9, for which 
limEmS,a(Ea)/p(E,) =f (x) for all x E X. Here E, a x means for each u there exists 
I, E 3such that E, c I, and I, * x . 

Now, let z be the smallest topology on X for which every function in V is con- 
tinuous. One can prove without difficulty that V is exactly the class of z-continuous 
functions. 

Because of the extreme generality of 3,a great deal of pathology can exist, even 
if ( 3 ,  3 )  possesses the strong Vitali property. For example, .r might be trivial. Under 
certain circumstances, however, the class of continuous functions is large. For 
example, if (X, A?, p) is a separable measure space, one can construct a net structure 
on X such that the resulting topology generated by the family V is pseudometrizable 
and compatible with p .  Here the term "compatible" means that each Bore1 set 
is measurable, the measure p is "almost" regular, and the class V is sufficiently large 
for the following form of Lusin's theorem to hold. 

THEOREM.Under the conditions stated above, iff is measurable and 8 >O, 
there exists a measurable set A and a continuous functon g ,  such that p(X-A) < E 

and g =f on A .  
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One cannot, however, require the set A to be closed in the statement of the theorem. 
We mention that the de la VallQ Poussin theorem [I#: p. 1551 is valid: 

THEOREM.If a is a finite countably additive set function deJined at least on 
the Borel sets, if Da denotes its derivative with respect to the net structure mentioned 
above, and if E, = {x: Da(x) = co}, E - ,  = {x: Da(x) = -co}, then for every 
Borel set E,  

a(E) = a(E nE,) f ,)-EAa(E+ J. 
 DHx) d p  . 
In particular, if a is singular so that Da = 0 a.e., and if X is non-atomic with 

respect to a ,  one sees immediately from the de la Vall6e Poussin theorem that Da 
must be infinite on a non-denumerable set. 

The de la Vallte Poussin theorem does not hold with respect to arbitrary differen- 
tiation bases. For example, if for every Borel set E ER2,a(E) is the one dimensional 
Lebesgue measure of E r\ X ,  where X is the "x-axis" and (3,a)is the basis con- 
sisting of closed disks, where I * x means x E I and 6(I) -+ 0,  then DHx) is never 
infinite. In fact, Do = 0 off X ,  b a  = +a,and Qa = 0 on X .  Thus if the theorem 
held, we would have a E 0 ,  a contradiction. 

We saw in Section 6.4 that every complete a-finite measure space has a differentia- 
tion basis possessing the strong Vitali property. If the space is already topologized 
by a topology F * ,  it may or may not be the case that the topology 9-obtained from 
the basis is the same as F * .  We pose the problem: Under what circumstances does a 
topological measure space with topolgy Y*possess a differentiation basis that gives 
rise to F *  and which possesses the strong Vitali property? 

7.2. Functional differentiation systems. Let us begin this section by casting the 
classical Lebesgue theorem in a somewhat different form which is suggestive of a 
certain type of generalization. Using the notation of Section 2.1, we write 

where +I denotes the characteristic function of I, and the symbol j denotes inte- 
gration over the whole space. Thus, the Fundamental theorem takes the form 
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where a is the indefinite integral of f ,  9,is the family of characteristic functions of 
intervals containing x ,  and lim,, means that the limit is taken as I * x .  

The reason for writing our theorem in such a manner is that the result holds in 
many cases when the familiesgx are different from the ones appearing above. For ex- 
ample, if for each x E [O,2n) we let Pr(x, .) denote the Poisson kernels centered at 
x, we know from Fatou's theorem (Section 4.3) that 

limp+ = lim,,, = .f(x) a.e. 

Similar results are valid for many other kernels which are approximate identities, 
and each of these results can be cast in a form involving a limit of a quotient of 
integrals of "kernel" functions with respect to two different measures that are a.e. 
the Radon-Nikodym derivative of the measure appearing in the numerator with 
respect to the measure appearing in the denominator. 

In [I271 and [I281 de Possel gave conditions, in a very abstract setting, that a 
deriving filter of kernels sums all functions in certain classes, that is, reproduces the 
Radon-Nikodym derivative as a limit of a quotient as described above. We shall 
state one of de Possel's results and indicate how it can be used to obtain theorems 
concerning summability methods. 

Let (X, A%', p) be a sigma-finite measure space which (for simplicity) we assume 
to be complete. Let A' denote the class of sets of finite measure. For any set A ,  
we shall denote by A a measurable cover for A and by 4, the characteristic function 
of A .  Let U denote the family of finite non-negative measurable functions f which 
vanish outside some set of A' and for which j f dp > 0.  Let S denote a system of 
filters obtained by associating to each point x E X a filter PXon U , and let o denote 
an absolutely continuous vector valued measure taking values in a Banach space. 
If a(E) = j, g d p  for every E E A%'', we ask for conditions under which 

When this equality holds we say S derives a .  If S derives every a for which 
11 o(E) lI/p(~) is bounded, we say S is a weak differentiation system. If S derives 
every absolutely continuous a ,  we say S is a strong differentiation system. In [127], 
de Possel gave conditions that a system S be a strong or weak differentiation system. 
His conditions are a bit complicated, but some insights to the conditions can be 
obtained by considering the case where the functions in the filters SXare charac- 
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teristic functions of sets in a differentiation basis, with convergence of the filters 
induced from contraction of the sets. In that case, the conditions reduce to density 
or Vitali type conditions. 

THEOREM1. The  following conditions are equivalent: 
(A) S is a weak diferentiation system. 
( B )  For each system V obtained by  associating with each point X E  A a set F,  

of functions meeting all the sets of F,,where A S  X is any set satisfying 
0 <p(A) < co , and for E > 0 ,  there exists a point x E A ,  a function JI  in F,, and 
a number L > 0 such that 

(C) For each I/, A and E as in (B),  there existfinite sets ofpoints x i€  A , junctions 
JI i  E F,, , and numbers li> 0 such that 

De Possel also stated a somewhat more complicated condition for a system to be 
a strong differentiation system, and, in [128],he d veloped an even stronger notion 
of complete differentiation system, in which the measure a does not have to be 
absolutely continuous and for which the set function v given by v(E) = o(E)- S,gdp 
is singular. We do not give any details here. 

Theorems of the de Possel type take much simpler forms if one specializes the 
conditions somewhat. 

THEOREM2 [19]. Let (9,*) be a diferentiation basis for the finite measure 
space ( X ,  A,p) .  Suppose with each point xo E X  there is associated a generalized 
sequence {$,(x0; x): a E A,,} of functions in L, (X)  . Suppose further that 

(i) IC/,(x,;x) 2 0 for xOE X and a E A,, , 
(ii) lim, jX*,(xO; x)dp = 1 for all xO E X . 

Then a necessary and suffcient condition that for every f E L,(X) 

for almost every x ,  E X (respectively, for each point x ,  of approximate continuity 

o f f )  is 

(iii) 
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for almost every point of each measurable set M (respectively, 

(iii') 

for every measurable set M having x, as a point of density). 

We note that conditions (i) and (ii) correspond to conditions often required of 
approximate identities in classical settings, while conditions (iii) or (iii') replace the 
standard conditions that eventually the kernels "become small" outside any interval 
containing x,, with the condition that eventually the kernels become small outside 
any set having x, as a point of density. 

We indicated near the end of Section 4.2 that there is a striking similarity between 
strong and ordinary differentiation on the one hand, and unrestricted and restricted 
(C, 1) summing of multiple Fourier series on the other. Similar results hold in other 
areas of analysis, involving the possibility of taking limits in an unrestricted or 
restricted manner. 

One can look at these similarities in terms of functional differentiation systems. 
Consider, for example, the case of the square [0,27c] x [O, 2x1. The Fejer kernels 
and the differentiation kernels &/p(I), where 4, is the characteristic function of the 
interval I, possess similar properties as functional differentiation systems. If one 
considers all characteristic functions of two dimensional intervals, or all Fejer 
kernels, the resulting systems are weak (but not strong!) differentiation systems. 
On the other hand, if one considers only the characteristic functions of intervals 
whose side lengths s and t satisfy, say, 1/N = s/t 5 N ,  for some positive integer 
N ,  or if one considers only those Fejer kernels K,, for which 1/N $ n/m 4 N ,  
then the resulting systems are strong differentiation systems. The similarity that one 
sees between certain results one obtains in the differentiation of integrals and certain 
results obtained where approximate identities are involved (e.g., the roles the class 
L log L plays in the theorem of Jessen-Marcinkiewicz and Zygmund and in multiple 
Fourier series) might be less surprising when viewed in terms of the de Posse1 theory 
outlined above. 

Results relating summing by approximate identities to differentiation theory in terms 
of the "shapes" of the kernels can be found in [19]. They indicate that if the kernels 
have certain shapes relative to (9,=), then they sum whenever the differentiation 
kernels sum. The results are analogues of the classical theorems of Romanovsky 
and Faddeyev (see Natanson [loll). The theorems are a bit too complicated to state 
fully here. Roughly speaking, they state that under rather general conditions on 
(X, A,p) and (3,*) and rather standard conditions on the kernels, if each kernel 
$(xo ;x) associated with x, E X is increasing, then the kernels sum each f E L,  (x) 
at every point x, for which lim,,,,l/p(l) I, If(x,) -f (x) 1 dp = 0 (i.e., at every 
Lebesgue point). The term "increasing" means that if 1 and J are in a generalized 



DIFFERENTIATION OF INTEGRALS 

sequence contracting to x, with I beyond J and J I> I, then 

(This is an analogue of Romanovsky's theorem. An analogue of Faddeyev's theorem 
is also valid. Here one requires only that the kernels have increasing majorants, 
where the integrals of the majorants associated with each x, are uniformly boun- 
ded.) As a corollary, one has that such increasing kernels will sum all L, functions 
if (3,+) has the strong Vitali property and will sum all L,  functions if (3,+) has 
the weak Vitali property. Thus the class of functions such increasing kernels will 
sum is closely related to the class of functions whose integrals (9,=>) differentiates. 
Actually, one obtains the conclusion on a set of points which satisfy a property that 
is less restrictive than the property of being a Lebesgue point. 

One can also prove a product theorem [19] which states that, under rather general 
circumstances, if a family of kernels sums all f~ L,(X, A, p) a.e. and another 
family of kernels sums all f E L,(Y, 4 v) a.e., then the product kernels sum all L, 
functions in the product of the two spaces a.e. In particular, the result applies to R 
with the usual interval basis, Lebesgue measure, and the Fejer kernels, thereby 
verifying that the double Fourier series of an arbitrary f essentially bounded on the 
square [O,2n] x [O, 2x1 converges unrestrictedly (C,1) to f a.e. Similar results hold 
for the Poisson kernel, thereby obtaining a weak form of a theorem of Tsugi [159; 
p. 1401. Applying the product theorem to the differentiation kernels, one obtains a 
weak form of the product density theorem mentioned near the end of Section 6.2. 

Further indications of the role differentiation theory plays in the theory of approxi- 
mate identities can be found in a number of places. We mention in particular Edwards 
and Hewitt [36]. In that article the setting is that of a locally compact group. The 
differentiation basis consists of a sequence of sets, measurable with respect to a left 
Haar measure, and its translates. If this sequence satisfies certain conditions, then a 
theory (involving such thlngs as a covering lemma, a Hardy-Littlewood maximal 
theorem, and the like) can be developed. In particular, sequences satisfying these 
conditions exist in every Lie group and in every finite dimensional compact group. 
The differentiation theory is then used to obtain a number of theorems concerning 
the pointwise limits of sequences of convolution operators. 

In closing this section, we mention that the author is indebted to Professor C. Y. 
Pauc for calling to his attention the role of functional diflerentiation systems. See 
also Pauc's remarks in [120: p. 147-81. 

7.3. Other applications. We mention briefly certain other areas of applications o 
the abstract theory. 

Using differentiation bases, Trjitzinsky [155], [157], [I581 has extended the 
notion of Denjoy-Perron integration to abstract measure spaces. The referenced 
works are very technical in nature, and the type of differentiation theory used is re- 
lated to the Denjoy approach [31] (cf. Section 6.2D). We shall not develop any 
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details of the theory here. We mention only that many of the classical results on the 
Denjoy and Perron integrals have analogues in the abstract setting. 

For relationships between differentiation theory and the theory of martingales, 
see Krickeberg and Pauc [80], and Hayes and Pauc [63]. 

In addition, a number of the tools of differentiation theory (covering theorems, 
Hardy-Littlewood maximal function, etc.) have uses in many situations involving 
abstract spaces as well as in situations involving the Euclidean spaces. 

VIII. PROBLEMS 

We close with a discussion of several problems which appear to be unsolved and 
which can easily be stated in terms of the material presented in Chapters 1-7 above. 
The numbers in parentheses indicate the sections in which relevant discussion can 
be found. 

(2.2) To the best of the author's knowledge, Table 1 on page 10 includes all known 
relations among Vitali properties, halo properties, and the class of functions whose 
integrals a given basis differentiates. There are, therefore, a number of questions 
remaining to be answered. For example, is there a Vitali or halo property which is 
necessary and sufficient for a basis to differentiate the integral of every L, function, 
with 1< p c co? What kinds of halo properties are relevant if one drops or weakens 
the requirements on the differentiation bases which appear in the chart (e.g., openness 
or closedness of the sets in 9,the closedness of 9under homothetic transformations 
etc.)? 

(3.2) What is a necessary and sufficient condition for a differentiation basis to be 
perfect? Similarly, what are necessary and/or sufficient conditions for a basis to 
have the density property with respect to every Lebesgue-Stieltjes measure? 

(5.1) In Section 5.1 we indicated how several properties possessed by derivatives 
of real functions generalize when we deal with derivatives of measures. There are, 
of course, many more questions of this type. We shall list three such questions. 

a) S. Marcus [86] posed the problem of determining what type of Darboux 
properties Jacobians and hyperbolic derivatives possess. Since the hyperbolic deriv- 
ative is (in our language) just the strong derivative, we know that hyperbolic 
derivatives possess the kind of Darboux properties contained in Misik's result. 
Similarly, the Jacobian, J,, of a transformation T: R, -+ R, possesses certain 
Darboux properties if J, can be looked upon as a derivative with respect to the 
family of cubes. This will happen if T is suitably behaved, but not in general. Whether 
the Jacobian of every transformation (where the Jacobian is defined at each point) 
has such a Darboux property, seems to be an open question. 
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There are also a number of other questions we can ask concerning Darboux 
type properties. For example, Morse 1991 has found a certain property of this type 
for Dini derivates of continuous functions. What are the analogues for the extreme 
derivates of continuous measures? 

b) The problem of characterizing those functions which are derivatives (or 
upper or lower derivates) of some measure, in terms of metric or topological prop- 
erties, is open. See [I71 for a discussion of the problem for derivates of real functions. 
The problem of characterizing those functions which are almost everywhere deriv-
atives of some continuous measure has been solved by Saks [I421 for derivatives 
with respect to the intervals basis in R,,  but not for differentiation bases in general 
(cf. Section 4.1). 

c) Analogues of the theorems of Young, Neugebauer and Denjoy-Young-Saks 
discussed in Section 5.1 have been found only under rather restricted conditions 
on (3,s).It should be possible to obtain similar results in much more general 
settings. 

(5.2) In giving conditions under which the bounded approximately continuous 
functions can be characterized as the bounded regular derivatives, Rosenthal dealt 
with metric spaces and with a specific meaning for contraction. To what extent 
do his results hold in more general settings? 

(7.1) In addition to the problem posed at the end of Section 7.1, one can pose 
a number of problems. A list of such problems appears in [18: p. 2561. 

(7.2) Since the theory of differentiation of integrals can be looked upon as a 
special case of the theory of approximate identities, many differentiation theorems 
have possible analogues in the more general theory. We list a few such problems. 

a) As de Posse1 [127], 11281 showed, certain Vitali type theorems have analogues 
in the setting of approximate identities. De Possel's results were very general. There 
appear to be many questions here that are still open. For example, are there ana- 
logues of all the Vitali and halo type theorems which appear in Section 2.2? It seems 
likely that there should be a number of such theorems, particularly if one places 
certain restrictions on the kernels which "tie them down" to a differentiation basis. 

b) Can the product theorem mentioned in Section 7.2 be improved? Specifically, 
are there conditions under which the product kernels sum at every Lebesgue point? 

C) The Fourier series of the function f defined by 
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converges to f everywhere. The same is true of the symmetric derivative of the 
integral off .  Now f is not a Darboux function. On the other hand, if the ordinary 
derivative of a function exists everywhere, this derivative must have the Darboux 
property. In terms of approximate identities, there is therefore a difference between 
the symmetric differentiation, Dirichlet, or Fejer kernels on the one hand and the 
differentiation kernels on the other. One immediately apparent difference is that 
the symmetric derivative kernels are biased towards the center of an interval, whereas 
the differentiation kernels are not. In other words, the differentiation kernels as- 
sociated with a point x, include many of the symmetric differentiation kernels which 
are associated with nearby points, and it is this property which makes it much harder 
for a derivative to exist than for a symmetric derivative. 

A similar situation exists when one is dealing with analytic or harmonic functions 
defined on an open disk in R , ,  and is concerned with radial limits on one hand 
and Stolz angle (or unrestricted) limits on the other. In this latter case, one point 9, 
"borrows" some of the Poisson kernels associated with nearby points. There are a 
number of questions that can be asked. For example, under what conditions on a 
family of kernels will the limit functions, assumed to exist everywhere, have a Dar-
boux property? An answer might involve some sort of overlap of the kernels asso- 
ciated with nearby points. 

d) The converse of Faddeyev's theorem holds in R ,  . Under what circumstances 
does it hold in the general setting? 
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