CONTENTS

Pl	PREFACE		
1	BA	CKGROUND AND PREVIEW	1
	1.1	The Real Numbers	3
		1.1.1 Sets of real numbers	4
		1.1.2 Open sets and closed sets	6
	1.2	Compact Sets of Real Numbers	12
		1.2.1 Cousin covering theorem	12
		1.2.2 Heine-Borel and Bolzano-Weierstrass theorems	13
	1.3	Countable Sets	16
		1.3.1 The axiom of choice	18
	1.4	Uncountable Cardinals	21

7	7	1

1.5	Transfinite Ordinals	25
	1.5.1 A transfinite covering argument	29
1.6	Category	30
	1.6.1 The Baire category theorem on the real line	31
	1.6.2 An illustration of a category argument	32
1.7	Outer Measure and Outer Content	35
1.8	Small Sets	39
	1.8.1 Cantor sets	40
	1.8.2 Expressing the real line as the union of two "small" sets	42
1.9	Measurable Sets of Real Numbers	44
1.10	Nonmeasurable Sets	50
	1.10.1 Existence of sets of real numbers not Lebesgue measurable	53
1.11	Zorn's Lemma	56
1.12	Borel Sets of Real Numbers	59
1.13	Analytic Sets of Real Numbers	61
1.14	Bounded Variation	64
1.15	Newton's Integral	69
1.16	Cauchy's Integral	71
	1.16.1 Cauchy's extension of the integral to unbounded functions	72
1.17	Riemann's Integral	75
	1.17.1 Necessary and sufficient conditions for Riemann integrability	76
1.18	Volterra's Example	78
1.19	Riemann–Stieltjes Integral	82
1.20	Lebesgue's Integral	87

_				vii
	1.01	mı (0.1
			Generalized Riemann Integral	91
	1.22	Addıt	tional Problems for Chapter 1	95
2	ME	ASUF	RE SPACES	100
	2.1	One-I	Dimensional Lebesgue Measure	101
		2.1.1	Lebesgue outer measure	104
		2.1.2	Lebesgue inner measure	105
		2.1.3	Lebesgue measurable sets	106
	2.2	Addit	tive Set Functions	110
		2.2.1	Example: Distributions of mass	112
		2.2.2	Positive and negative variations	113
		2.2.3	Jordan decomposition theorem	115
	2.3	Meas	ures and Signed Measures	119
		2.3.1	σ -algebras of sets	121
		2.3.2	Signed measures	121
		2.3.3	Computations with signed measures	122
		2.3.4	The σ -algebra generated by a family of sets	124
	2.4	Limit	Theorems	126
		2.4.1	Limsup and liminf of a sequence of sets	126
		2.4.2	Monotone limits in a measure space	127
		2.4.3	Liminfs and limsups in a measure space	129
	2.5	The J	Jordan and Hahn Decomposition Theorems	131
		2.5.1	Jordan Decomposition	131
	2.6	Hahn	Decomposition	134

viii

3

2.7	Complete Measures	137
	2.7.1 The completion of a measure space	138
2.8	Outer Measures	141
	2.8.1 Measurable sets with respect to an outer measure	143
	2.8.2 The σ -algebra of measurable sets	144
2.9	Method I	148
	2.9.1 A warning	151
2.10	Regular Outer Measures	153
	2.10.1 Regularity of Method I outer measures	155
	2.10.2 Regularity of Lebesgue outer measure	156
	2.10.3 Summary	157
2.11	Nonmeasurable Sets	159
	2.11.1 Ulam's theorem	160
2.12	2 More About Method I	164
	2.12.1 Regularity for Method I outer measures	165
	2.12.2 The identity $\mu(T) = \tau(T)$ for Method I measures	167
2.13	3 Completions	170
2.14	4 Additional Problems for Chapter 2	174
ME	ETRIC OUTER MEASURES	179
3.1	Metric Space	180
	3.1.1 Metric space terminology	182
	3.1.2 Borel sets in a metric space	184
	3.1.3 Characterizations of the Borel sets	185

п	•	2

3.2	Measu	ures on Metric Spaces	189
	3.2.1	Metric Outer Measures	191
	3.2.2	Measurability of Borel sets	192
3.3	Metho	od II	196
	3.3.1	Method II outer measures are metric outer measures	197
	3.3.2	Agreement of Method I and Method II measures	199
3.4	Appro	eximations	203
	3.4.1	Approximation from inside	203
	3.4.2	Approximation from outside	205
	3.4.3	Approximation using \mathcal{F}_{σ} and \mathcal{G}_{δ} sets	206
3.5	Const	ruction of Lebesgue–Stieltjes Measures	207
3.6	Prope	rties of Lebesgue–Stieltjes Measures	217
	3.6.1	How regular are Borel measures?	219
	3.6.2	A characterization of finite Borel measures on the real line	221
	3.6.3	Measuring the growth of a continuous function on a set	221
3.7	Lebess	gue–Stieltjes Measures in \mathbb{R}^n	224
3.8	Hausd	orff Measures and Hausdorff Dimension	227
	3.8.1	Hausdorff dimension	231
	3.8.2	Hausdorff dimension of a curve	234
	3.8.3	Exceptional sets	237
3.9	Metho	ods III and IV	240
	3.9.1	Constructing measures using full and fine covers	243
	3.9.2	A regularity theorem	246
3.10	Mini-V	Vitali Theorem	249

		3.10.1 Covering lemmas	250
		3.10.2 Proof of the Mini-Vitali covering theorem	255
	3.11	Lebesgue differentiation theorem	256
		3.11.1 A geometrical lemma	258
		3.11.2 Proof of the Lebesgue differentiation theorem	260
	3.12	Additional Remarks on Special Sets	264
		3.12.1 Cantor sets	264
		3.12.2 Bernstein sets	266
		3.12.3 Lusin sets	267
	3.13	Additional Problems for Chapter 3	272
4	ME.	ASURABLE FUNCTIONS	278
	4.1	Definitions and Basic Properties	279
		4.1.1 Combining measurable functions	283
	4.2	Sequences of Measurable Functions	289
		4.2.1 Convergence almost everywhere	291
		4.2.2 Convergence in measure	292
		4.2.3 Pointwise convergence and convergence in measure	294
	4.3	Egoroff's Theorem	297
		4.3.1 Comparisons	300
	4.4	Approximations by Simple Functions	302
		4.4.1 Approximation by bounded, measurable functions	306
	4.5	Approximation by Continuous Functions	309
		4.5.1 Tietze extension theorem	310

			xi
		4.5.2 Lusin's theorem	311
		4.5.3 Further discussion	314
	4.6	Additional Problems for Chapter 4	317
5	INT	TEGRATION	322
	5.1	Introduction	323
		5.1.1 Scope of the Concept of Integral	323
		5.1.2 The Class of Integrable Functions	325
		5.1.3 The fundamental theorem of calculus for Riemann	integrals 327
	5.2	Integrals of Nonnegative Functions	330
		5.2.1 The integral of a nonnegative simple function	332
		5.2.2 The integral of a nonnegative, measurable function	334
	5.3	Fatou's Lemma	337
		5.3.1 A convergence theorem for integrals of nonnegative	e functions 339
		5.3.2 Properties of integrals of nonnegative functions	340
	5.4	Integrable Functions	344
		5.4.1 Properties of integrals	346
		5.4.2 The Lebesgue dominated convergence theorem	347
	5.5	Riemann and Lebesgue	350
		5.5.1 Approximation by step functions	353
		5.5.2 Upper and lower boundaries of a function	355
		5.5.3 Lebesgue's characterization of Riemann integrabili	ty 358
		5.5.4 Fundamental theorem of the calculus for Lebesgue	integrals 359
	5.6	Countable Additivity of the Integral	365

xii

5.7	Absol	ute Continuity	368
	5.7.1	Absolutely continuous functions	369
	5.7.2	A characterization of absolutely continuous functions	371
	5.7.3	Absolute continuity and Lebesgue-Stieljtes measures	373
5.8	Rador	n-Nikodym Theorem	377
	5.8.1	Motivating the proof of the Radon–Nikodym theorem	378
	5.8.2	The proof of the Radon–Nikodym theorem	380
	5.8.3	The Vitali-Lebesgue theorem	384
	5.8.4	Properties of Radon–Nikodym derivatives	385
	5.8.5	The Lebesgue decomposition	387
5.9	Conve	ergence Theorems	390
	5.9.1	Convergence in the mean	390
	5.9.2	A more illuminating proof using the rectangle principle	393
	5.9.3	Comparison of convergence conditions	394
	5.9.4	Dominated convergence and uniform absolute continuity	397
5.10	Relati	ons to Other Integrals	400
	5.10.1	The Cauchy process and Lebesgue integration	401
	5.10.2	The generalized Riemann integral and Lebesgue integration	402
5.11	Integr	ation of Complex Functions	408
5.12	Addit	ional Problems for Chapter 5	414
FUI	BINI'S	THEOREM	420
6.1	Produ	act Measures	423
	6.1.1	The measure of rectangles	424

6

			xiii
		6.1.2 Preliminary version of the Fubini theorem	430
	6.2	Fubini's Theorem	435
	6.3	Tonelli's Theorem	438
	6.4	Additional Problems for Chapter 6	440
7	DIF	FFERENTIATION	444
	7.1	The Vitali Covering Theorem	445
		7.1.1 Growth properties of real functions	445
		7.1.2 The Vitali covering theorem	447
		7.1.3 Proof of the growth lema	448
		7.1.4 Elementary proof of the Vitali theorem	451
		7.1.5 Banach's proof of the Vitali theorem	454
	7.2	Lebesgue's Differentiation Theorem	458
		7.2.1 Constructing a monotonic function with an infinite derivative	460
		7.2.2 Integrating a derivative	461
	7.3	The Banach–Zarecki Theorem	465
	7.4	Determining a Function by a Derivative	470
	7.5	Calculating a Function from a Derivative	473
	7.6	Total Variation of a Function	484
		7.6.1 Growth lemmas	489
		7.6.2 VBG _* Functions	491
	7.7	Approximate Continuity and Lebesgue Points	500
		7.7.1 Approximately continuous functions	501
		7.7.2 Lebesgue points	505

X	1	7	7

	7.8	Additional Problems for Chapter 7	509
8	DIF	FFERENTIATION OF MEASURES	520
	8.1	Differentiation of Lebesgue–Stieltjes Measures	521
		8.1.1 The ordinary derivative using the cube basis	522
		8.1.2 Mixed partial derivatives	524
		8.1.3 The strong derivative using the interval basis	526
	8.2	The Cube Basis	528
		8.2.1 Vitali's covering theorem for the cube basis	529
		8.2.2 Differentiability of Lebesgue–Stieltjes measures on \mathbb{R}^n	531
		8.2.3 A theorem of Fubini	533
		8.2.4 The fundamental theorem of the calculus	535
	8.3	Lebesgue Decomposition Theorem	538
	8.4	The Interval Basis	541
		8.4.1 The Lebesgue density theorem for the interval basis	542
		8.4.2 Approximate continuity	545
		8.4.3 Differentiation of the integral for bounded functions	546
		8.4.4 Mixed partials	548
		8.4.5 Additional remarks	549
	8.5	Net Structures	553
		8.5.1 Differentiation with respect to a net structure	554
		8.5.2 A growth lemma	555
		8.5.3 An analog of de la Vallée Poussin's theorem for net structures	557
		8.5.4 Further remarks	560

8.6	Radon–Nikodym Derivative in a Measure Space	562
	8.6.1 Liftings	565
	8.6.2 Growth lemmas	569
	8.6.3 The Radon–Nikodym derivative as a genuine derivative	571
8.7	Summary, Comments, and References	575
8.8	Additional Problems for Chapter 8	581
VO	LUME TWO	583
MI	ETRIC SPACES	583
9.1	Definitions and Examples	584
	9.1.1 Euclidean Space	585
	9.1.2 The Discrete Space	586
	9.1.3 The Minkowski Metrics	586
	9.1.4 Sequence Spaces	589
	9.1.5 Function Spaces	591
	9.1.6 Spaces of Sets	595
9.2	Convergence and Related Notions	597
	9.2.1 Metric space terminology	597
9.3	Continuity	602
	9.3.1 Urysohn's Lemma	605
	9.3.2 Proof of Tietze's theorem	605
9.4	Homeomorphisms and Isometries	609
9.5	Separable Spaces	615

xvi

	9.5.1 Examples of separable metric spaces	615
9.6	Complete Spaces	618
	9.6.1 Examples of complete metric spaces	620
	9.6.2 Completion of a metric space	624
9.7	Contraction Maps	627
9.8	Applications	630
	9.8.1 Picard's Theorem	636
9.9	Compactness	640
	9.9.1 Continuous functions on compact metric spaces	643
9.10	Totally Bounded Spaces	645
9.11	Compact Sets in $C(X)$	648
	9.11.1 Arzelà–Ascoli Theorem	648
9.12	Application of the Arzelà–Ascoli Theorem	653
9.13	The Stone–Weierstrass Theorem	657
	9.13.1 The Weierstrass approximation theorem	660
9.14	The Isoperimetric Problem	662
9.15	More on Convergence	667
9.16	Additional Problems for Chapter 9	672
10 BA	IRE CATEGORY	677
10.1	The Banach-Mazur Game on the Real Line	678
10.2	The Baire Category Theorem	680
	10.2.1 Terminology for applications of the Baire theorem	682
	10.2.2 Typical properties	683

		xvii
10.3	The Banach–Mazur Game	687
	10.3.1 The typical continuous function is nowhere monotonic	691
10.4	The First Classes of Baire and Borel	695
	10.4.1 The identity of \mathcal{B}_1 and $\mathcal{B}or_1$	698
10.5	Properties of Baire-1 Functions	703
	10.5.1 Weak convergence of measures	708
10.6	Topologically Complete Spaces	710
	10.6.1 Alexandroff's Theorem	712
	10.6.2 Mazurkiewicz's theorem	714
10.7	Applications to Function Spaces	716
	10.7.1 Continuous Nowhere Differentiable Functions	717
	10.7.2 Differentiable, Nowhere Monotonic Functions	722
	10.7.3 The Space of Automorphisms	726
10.8	Additional Problems for Chapter 10	734
	ALYTIC SETS	740
	Products of Metric Spaces	741
	Baire Space	744
11.3	Analytic Sets	748
11.4	Borel Sets	753
	11.4.1 Projections of closed sets	754
	11.4.2 Lusin's separation theorem	756
	11.4.3 Continuous one-one images of closed sets	757
11.5	An Analytic Set That Is Not Borel	761

xviii

	11.6	Measurability of Analytic Sets	763
	11.7	The Suslin Operation	767
		A Method to Show a Set Is Not Borel	770
	11.9	Differentiable Functions	775
	11.10	Additional Problems for Chapter 11	781
f 12	BAN	NACH SPACES	784
	12.1	Normed Linear Spaces	785
		12.1.1 Metric linear spaces	786
		12.1.2 Sequence spaces	787
		12.1.3 Function Spaces	789
	12.2	Compactness	794
		12.2.1 The unit sphere in an infinite dimensional space	794
		12.2.2 Riesz's theorem	795
		12.2.3 Best approximation problems	797
	12.3	Linear Operators	799
		12.3.1 Bounded linear operators	801
		12.3.2 The space of bounded linear operators	803
	12.4	Banach Algebras	806
		12.4.1 Existence and uniqueness of solutions of an integral equation	808
	12.5	The Hahn–Banach Theorem	811
		12.5.1 Banach's version of the Hahn–Banach theorem	813
		12.5.2 Hahn's version of the Hahn–Banach theorem	816
	12.6	Improving Lebesgue Measure	818

	xix
12.6.1 Extension of Lebesgue measure to a finitely additive measure	820
12.6.2 The Banach–Tarski paradox	825
12.6.3 A translation invariant improvement of Lebesgue measure	826
12.7 The Dual Space	828
12.8 The Riesz Representation Theorem	833
12.9 Separation of Convex Sets	841
12.10 An Embedding Theorem	848
12.11 Uniform Boundedness Principle	852
12.11.1 Convergence of sequences of continuous linear operators	854
12.11.2 Condensation of singularities	856
12.12 An Application to Summability	857
12.12.1 Toeplitz's theorem	859
12.13 The Open Mapping Theorem	864
12.13.1 Equivalence of norms on a Banach space	867
12.13.2 Perturbations in differential equations	868
12.14 The Closed Graph Theorem	870
12.15 Additional Problems for Chapter 12	874
$f{3}$ THE L_P SPACES	877
13.1 The Basic Inequalities	878
13.1.1 Hölder's inequality	879
13.1.2 Minkowski's inequality	881
13.2 The ℓ_p and L_p Spaces $(1 \le p < \infty)$	885
13.3 The Spaces ℓ_{∞} and L_{∞}	889

13.3.1 Hölder's inequality for $p = 1, q = \infty$	891
13.4 Separability	892
13.5 The Spaces ℓ_2 and L_2	896
13.5.1 Continuous linear functionals on $L_2(X, \mathcal{M}, \mu)$	901
13.6 Continuous Linear Functionals on $L_p(\mu)$	904
13.7 The L_p Spaces $(0$	910
13.7.1 Day's Theorem	911
13.8 Relations	914
13.9 The Banach Algebra $L_1(\mathbb{R})$	919
13.10 Weak Sequential Convergence	927
13.11 Closed Subspaces of the L_p Spaces	931
13.12 Additional Problems for Chapter 13	937
14 HILBERT SPACES	940
14.1 Inner Products	941
14.2 Convex Sets	950
14.3 Continuous Linear Functionals	954
14.4 Orthogonal Series	957
14.4.1 Best approximation	961
14.4.2 Bessel's inequality	963
14.4.3 Parseval's identity	963
14.4.4 Maximal orthonormal systems in a separable Hilbert space	964
14.5 Weak Sequential Convergence	968
14.6 Compact Operators	974

	xxi
14.7 Projections	979
14.8 Eigenvectors and Eigenvalues	984
14.9 Spectral Decomposition	991
14.10 Additional Problems for Chapter 14	997
15 FOURIER SERIES	1001
15.1 Notation and Terminology	1003
15.2 Dirichlet's Kernel	1011
15.3 Fejér's Kernel	1016
15.4 Convergence of the Cesàro Means	1021
15.4.1 Almost everywhere convergence of the Cesàro means	1024
15.4.2 Uniform convergence of the Cesàro means	1027
15.5 The Fourier Coefficients	1028
15.5.1 The mapping $f \to \hat{f}$	1030
15.6 Weierstrass Approximation Theorem	1032
15.6.1 Approximations in $L_p(T)$	1034
15.7 Pointwise Convergence	1036
15.7.1 Jordan's criterion for pointwise convergence	1038
15.7.2 Term-by-term integration of Fourier series	1041
15.8 Pointwise Convergence: Dini's Test	1045
15.9 Pointwise Divergence	1049
15.10 Characterizations	1052
15.11 Fourier Series in Hilbert Space	1055
15.12 Riemann's Theorems	1060

xxii

15.12.1 Riemann's first theorem	1061
15.12.2 Riemann's second theorem	1065
15.13 Cantor's Uniqueness Theorem	1066
15.13.1 Schwarz's lemma for a vanishing symmetric derivative	1070
15.14 Additional Problems for Chapter 15	1072
ndex	1074
SUBJECT INDEX	1074