
Canad. Math. Bull. Vol. 24 (3), 1981 

ON THE TOTAL VARIATION OF A FUNCTION 

BY 

B. S. THOMSON 

1. Introduction. There are a number of theories which assign to a function 
defined on the real line a measure that reflects somehow the variation of that 
function. The most familiar of these is, of course, the Lebesgue-Stieltjes 
measure associated with any monotonie function. The problem in general is to 
provide a construction of a measure from a completely arbitrary function in 
such a way that the values of this measure provide information about the total 
variation of the function over sets of real numbers and from which useful 
inferences can be drawn. 

One standard strategy is to employ a construction of Carathéodory (known 
nowadays as "Munroe's method II" after Munroe [9]) which has been used to 
yield Lebesgue-Stieltjes and Hausdorff measures. One writes 

M X ) = inf[l \f(K)-f(ak)\: U W, b^X, bk-ak<^ 

for each natural number n, and then 

f t f ( X ) = l i m ^ ( X ) . 
n—>oo 

Such a construction yields an outer measure with the property that every Borel 
set is measurable (i.e., a metric outer measure in the sense of Munroe [9]). If / 
has bounded variation on an interval [a, fo], then it can be checked that 
lif([a, b]) is exactly the variation of / on that interval; this would lead one to 
expect that (JLf(X) describes the variation of / on the set X in some sense and 
that the study of [if in general should have some import. 

In fact, though, the measure ju,f may vanish if the function / is too highly 
oscillatory: Ellis and Burry [5] have constructed an example of a continuous / 
that is not of bounded variation on [0,1] for which fif ([0,1]) = 0. Bruckner [2] 
has gone on to show that this behaviour is typical, namely that except for a first 
category subset of the space C[0,1] every such iif must vanish. 

Browne [1] uses essentially the same construction with some minor modifica
tions. Bruneau [4] introduces many interesting ideas and can be considered a 
sourcebook on the subject; one of his main ideas is to construct the variation 
vf(K) for a function / on a compact set K by comparing / with functions of 

Received by the editors, July 26, 1979 and, in revised form, February 21, 1980. 

331 



332 B. S. THOMSON [September 

bounded variation and then extending vf to a measure on the Borel sets by 
familiar methods. 

There is really no unique or canonical way of assigning a variation measure 
to an arbitrary function and so the problem depends on the type of application 
one has in mind. Our main motivation rests in the study of the derivation 
properties of the function and within such a viewpoint there is a natural 
method of constructing some useful variation measures. In the study of the 
ordinary derivative certain concepts arise naturally: these are the notions of a 
Vitali cover of a set and related ideas. We can use such ideas to give variation 
measures that answer familiar problems in derivation theory. 

We present immediately the definitions that lead to the theory. 

DEFINITION 1. A family 3* of closed subintervals of [a, b] is said to be a full 
cover of X ç [ a , b] if for every xeX there is a positive number 8(x) such that 
every interval of length less than 8(x) that has x as an endpoint necessarily 
belongs to 3F. 

Such a family 3 is said to be a fine cover of X if for every xeX and every 
positive number e there is an interval I e & with length less than e and that has 
x as an endpoint. 

DEFINITION 2. Let / b e a real-valued function on [a, b] and & a family of 
closed subintervals of [a, b]; then we write 

V(/,^ = supX|/(M-/(ak)| 

where the supremum is with regard to all sequences {[ak, bk]}^ 3F with pairwise 
non-overlapping elements. (Write V(f, 0) = 0.) 

DEFINITION 3. Let / be a real-valued function on [a, b], then \\ff and ipf 

denote the set functions 

4ff (X) = inf{ V(f, &):&& full cover of X} 

and 

<fc(X) = inf{V(f, &):&* fine cover of X}. 

These set functions ij/f and i/*f are metric outer measures for any real-valued 
function / on [a, b] and since they are constructed directly from concepts 
arising in derivation theory, it may be anticipated that they will reflect the 
derivation properties of the function /. We will investigate these measures 
within a more general framework that may obscure the simple constructions 
defined above. 

2. Derivation bases on the line. The constructions given above arise within 
the context of ordinary differentiation on the real line. There are many 
different ways of generalizing the ordinary derivative and to each such way 
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there would correspond a similar construction. For example, the symmetric 
derivative of a function / is defined to be 

/^(JCO) = lim [f(xo + h) - f(x0 - h)]/2h 
h->0 

and a study of this derivative or the related extreme derivatives would involve 
notions similar to the full and fine covers of Definition 1 above but with 
obvious changes (instead of x as an endpoint we would require that x be the 
midpoint of the intervals in the cover). To unify these ideas and generalize 
them further we introduce the following definitions. 

DEFINITION 4. A derivation basis on the real line is any family SI of subsets of 
i x R where R is the real numbers and $ the collection of all closed intervals, 
with the property that whenever Sx and S2 belong to 2Ï there is an S3 e 2Ï with 

s3çs1ns2. 
DEFINITION 5. If S is any subset of $ x R and h is any real-valued function 

defined on i x R then we write 

V(fe,S) = sup X |M4*i)l 

where {(It, xt)} is a sequence of interval-point pairs from S with pairwise 
non-overlapping elements {It}. (Write V(h, 0) = 0.) 

If 21 is any non-empty family of subsets of 3 x R (not necessarily a derivation 
basis) then we write as well 

V(Ji,2l) = inf{V(/i,S):Se2i}. 

These concepts provide the needed generalizations. To return to the earlier 
versions of our outer measures we will write 

S[X] = { ( I , x )eS :xeX} 

whenever S ç ^ x R and X ç R , and 

21[X] = { S [ X ] : S E 2 1 } 

whenever 2Ï is a family of subsets of 3 x R. Then the outer measures i/>f (X) and 
\\ff(X) can be realized as V(h, 2Ï[X]) where h is the function h([a, b], x) = 
f(b) — f(a) and where 21 can be chosen separately to yield either measure. 

This construction is essentially due to Ralph Henstock [7] and arises really 
from considerations of Riemann sums in general settings. The families 21 need 
not have many delicate properties in order to ensure that the set functions 
X —> V(h, 2l[X]) are outer measures. There are a number of properties that 
will appear in [11] and which can be found in the other literature of the 
subject. We cite only two of these properties. 
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DEFINITION 6. A family SI of subsets of i x R will be said to be: 
.1 decomposable [respectively a-decomposable] if to every family {Xa : aeA} 

of subsets of R [respectively countable family] that is pairwise disjoint and 
corresponding family { S a : a e A } ç ? l there is an S eSI with S [ X a ] ç S a for 
every index a. 

.2 finer than the topology on R if to every open set G ç R there is an S e SI so 
that every (I, x ) eS [G] has I^G. 

These definitions give rise to the following theorem which provides the basic 
measure theory that arises from a general family St. 

THEOREM 1. Let h be an arbitrary real-valued function o n i x R and let SI be 
a a-decomposable family of subsets of i x R . Then the function h*(X) = 
V(h, Sl[X]) is an outer measure on R. If in additon SI is a derivation basis that is 
finer than the topology, h* is a metric outer measure. 

Proof. This is proved in [11] but is straightforward in any case. 

More results for the measures ft* can be obtained by varying the hypotheses 
on the family SI. For the remainder of the paper, however, our concern is with 
specific applications of the theory and we drop the general approach returning 
to concrete examples of measures that are generated by real-valued functions / 
of a real variable. 

3. The Peano-Jordan "measures." The classical Peano-Jordan measure, or 
Jordan content as it is sometimes called, can be defined as an example of the 
theory of the previous section. In fact, the definition given by Stolz in 1884 (cf. 
[10, p. 30]) was essentially in terms of limits of Riemann sums and so fits into 
this framework. Here we give the construction of set functions mf correspond
ing to any function / on R: if f(x) = x then mf is precisely this Peano-Jordan 
measure and accordingly we may consider these set functions as generalizations 
of this classical concept. 

DEFINITION 7. The family di is defined to be the collection of all subsets Sô of 
i x R where 

S8={(lx):IeJ,xeI,\I\<8} 

and 8 is an arbitrary positive number. 
For any function / on R write 

mf(X)=V(f,dt[X]) (XçR). 

(Here / is considered to be defined on 3 x R by the device f([a. b], x) = f(b) -
f(a).) 

This 9Î is a derivation basis but does not have either of the properties of 
Definition 6. The set function mf is obviously non-negative, monotone, finitely 
subadditive, and additive over topologically separated sets. It is not a measure 
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or outer measure in the usual sense of those words, of course. Some of the 
specific properties of these set functions are given in the next theorem. 

THEOREM 2. The Peano-Jordan "measures" mf have the following properties: 
.1 if f is monotone then 

mf(a,b)=mf[a,b]=\f(b + )-f(a-)\ 

.2 the value of mf at a singleton {x} is 

Wfiix}) = lim sup \f(x + h)- f(x)\ + lim sup \f(x — h) — f(x)\ 

.3 for monotone f and bounded X ç R , 

mf(X) = inf{ mf(G) :G^X, G a finite union of open intervals} 

.4 for monotone f and bounded X ç R , 

mf(X) = mf(X) 

.5 for monotone f and {Kn} a decreasing sequence of compact sets, 

mf(f]Kn) = lim mf(Kn) 

.6 the value of mf on an arbitrary interval [a, b] is 

mf[a,b]=CV(/,[a,b]) + limsup|/(b + h)-/(6) | + limsup|/(a-fi)-/(a) | 

where CV is the classical variation of the function f on the interval. 

The proofs are elementary and will be omitted. 
Some elementary examples show that certain of these computations cannot 

be improved: (i) let / be defined by setting f(x) = 0 for negative x, f(x) = 1 for 
positive x and /(0) = 2; then mf({0}) = 3, mf(0,1) = 1, and m f[0,1] = 3 so that if 
/ is not monotone (.4) might fail; (ii) let / be continuous and nowhere 
differentiate, then while mf(F) = 0 for every finite set F, mf(G) = +oo for every 
open set G so that (.3), (.4), and (.5) may all fail for non-monotone /. 

The final estimate we wish to provide for this measure relates it to a classical 
variational idea of Lusin. For any positive number 8 and any perfect set P ç R 
define 

Vf,8(
p) = supjX 0(f, [ak, bk]) : U [ak, M 3 P, {[ak, bk]} non-overlapping, 

Pn(ak,bk)^0,5k-ak<ô} 

and 

Vf(P)= lim Vfj>(P). 
8-+0+ 
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Our estimate shows that vf(P) is finite if and only if mf(P) is finite. By the 
expression 0 ( / , I) here we mean the oscillation of the function / on the interval 
I defined as 

sup{ | / (x) - / (y) | :x ,ye l} . 

LEMMA. Let f be a continuous function on R and P a perfect set; then 
m f (P)<t^(P)<3m / (P) . 

Proof. We obtain the inequality mf(P)<vf(P) by showing that for any 8>0 
we must have V(f, S8/2[P])^ty,s(P)- Since / is continuous and P is perfect, this 
is just a matter of adjusting the intervals in any partition so that they are of the 
type appearing in the definition of vftS(P); we omit the details. 

To obtain the other inequality let X 0 ( / , [ak, bk]) be one of the sums that 
appear in the definition of u f s and choose xk, yk e[ak, bk] as respectively the 
maximum and minimum points for / in that interval. Let Ik = [ak, xk] if 
[ak, x k ] n P ^ 0 and let Ik = [xk, bk] otherwise; similarly let Jk=[ak, yk] or 
[y*o bk]

 a ê a i n depending on which meets P. Then 

Oif, [ak, bk]) = f(xk)~ f(yk)< \f(bk)- f(ak)\ + \f(Ik)\ + \f(Jk)\ 

and so any such sum used to estimate vf,s(P) is dominated by 3 V(f, SÔ[P]) and 
this gives u f(P)<3m f(P) as required. 

4. The Lebesgue-Stieltjes measures. McShane [8] has studied a derivation 
basis on the real line that can be used to characterize the Lebesgue integral in 
terms of limits of Riemann sums; indeed he has announced that a book is in 
press that contains an exposition of this accessible to undergraduates. It is thus 
appropriate to discuss the corresponding total variation measures that arise 
from this derivation basis. For a function / of bounded variation these generate 
the usual Lebesgue-Stieltjes measures and so we have labelled them as such in 
general. 

DEFINITION 8. The family 99? is defined to be the collection of all subsets SJ 
of 3 x R where 8 is an arbitrary positive function on R and 

S* = { ( I , x ) : l G i , x e R , I ç ( x - ô ( x ) , x + ô(x))}. 

For any function / on R we write 

<pf(x) = v(/,aw[x]) 
again according to the convention that / is defined on ^ x R as an interval 
function, /(J, x) - f(I) = f(b) - f(a) if I = [a, b]. 

Although we will not here discuss the differentiation theory that arises in 
connection with this basis it should be noted that this construction occurs in 
McShane's study of the Lebesgue integral and occurs in differentiation theory 
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under the term "unstraddled" derivative (see for example Bruckner [3, p. 69]) 
or Peano derivative. 

The next theorem summarizes the results available for these measures. 

THEOREM 3. The Lebesgue-Stieltjes total variation measures <pf have the 
following properties: 
.1 <pf is a metric outer measure on R 
.2 cpf has the increasing sets property, namely that for any increasing sequence 

of sets {Xn}, 

<Pf[\J Xn)=\im<pf(Xn). 

.3 the value of <pf on an open interval (a, b) is exactly the classical variation off 
on (a, b), 

<pf(a,b) = CV(f,(a,b)) 

.4 <pf(X) = inf{<p f(G):G^X,G open} 

.5 if f is monotone and K is compact then mf(K) = <pf(K) 

.6 <pf({x0})< + 00 // and only if f has bounded variation in some neighbourhood 
of x0. 

Proof. Assertions (.1), (.2), and (.4) are best seen within the context of the 
general theory; [11] contains proofs. Assertion (.3) is a straightforward conse
quence of the fact that partitions of any interval can be extracted from any 
S*eWl (again see [11]). Assertion (.5) follows from (.4) and Theorem 2, and 
Assertion (.6) is only a direct computation. 

One can view these measures as a reflection of the variation of the function 
in the crude sense that if the function / fails to have a finite variation 
somewhere, the measure <pf will indicate this by having an infinite value. Thus 
for most functions the measure <pf assigns infinite value to every set and so is of 
little interest. 

5. The Henstock total variation measures. The standard derivation basis on 
the real line (in our version that is) that corresponds to ordinary differentiation 
was used by Henstock [7] to yield a characterization of the Denjoy-Perron 
integral in terms of limits of Riemann sums. The corresponding total variation 
measures that arise from this basis have been defined in Section 1 above, and 
will be redefined from a slightly altered viewpoint here. Because they arise 
from a study of ordinary differentiation, it is to be expected that they will have 
applications to that study. 

DEFINITION 9. The family & is defined to be the collection of all subsets H s 

of & x R where 8 is an arbitrary positive function on R and where 

H s = {(I, x) : I e 3, x is an endpoint of 1,11\ <ô(x)}. 
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For any function / on R we will write 

<A'(X)=V(/,£[X]). 

The measures mf, <pf, and i(/f have been defined as set functions 

x -> v(f, a[x]) 
for an appropriate derivation basis SI and their theory is similar. To obtain the 
measure ij/f of Section 1 in the same spirit we need a family that is not a 
derivation basis but which has many desirable properties, for example, the 
decomposable property of Definition 6. The pattern we use in the next 
definition applies to any derivation basis; for a more detailed exposition of this 
idea in a general setting see [11]. 

DEFINITION 10. A subset H* of 3 x R is said to be &-fine if for every He£> 
and every X G R , 

H*nH[{x}]^0. 

The family $)v is the collection of all £>-fine subsets H* of 3 x R, and for any 
function / on R we will write 

^(X)=V(/,e.[X]). 

Henstock refers to the measure i\tf as the "variation" and has developed a 
concept similar to ijjf using the term "inner variation." We shall refer to both of 
these as the Henstock total variation measures, and consider that an under
standing of the nature of / (for example, the nature of the oscillation be
haviour, the level set structure, and so on) is promoted by the study of the two 
measures together. The basic theorem follows. 

THEOREM 4. The Henstock total variation measures have the following proper
ties: 
.1 ijjf and ipf are metric outer measures on R 
.2 <fc<s^ 
.3 ijjf has the increasing sets property 
.4 \\ff < mf and ij/f < <pf 

.5 if/f(G) = <pf(G) if G is open 

.6 i//f({x}) = limsup|/(x + h ) - / ( x ) | + l imsup | / ( x - f i ) - / ( x ) | 

and 

ty(W)= min| lim sup |/(x + h) -/(x)|, lim sup |/(x -h)- f(x)\ \. 
I h—•()+ h^0+ J 

Proof. Both the families Q and &v are decomposable and so Theorem 1 
proves that ty and ij/f are outer measures; also Q is finer than the topology on 
R so that \\ff is even a metric outer measure, and similar considerations apply to 
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if/f. The increasing sets property (.3) is most easily proved within the general 
theory of [11]. 

For (.2) note that & , [ X ] 3 £ [ X ] for every X g R and hence i^(X) = 
V(f, ©„[X])< V(/, £[X]) = ^ f(X). Assertion (.4) is similar. 

Assertion (.5) follows from the fact that for any G open, for any H e $ [ G ] , 
and for any interval [a, b] inside G there must be a partition of [a, b] chosen 
from H. From this we can derive that the variation if/f(G) is precisely the 
classical variation of / on G and this is equal to çf(G) as required. Finally, the 
estimate in (.6) is just a direct computation. 

We will complete our investigation here with the general derivation results 
that can be proved with the help of these measures. The extreme relative 
derivatives of a function / with respect to a function g are defined, as in Saks 
[12], by writing 

fg (x) = lim sup [/(x + h) - /(x)]/[g(x +'h) - g(x)] 

/g(x) = liminf[f(x + fc)-/(x)Mg(x + / i )-g(x)] 
h->0 

but according to the interpretation of a quotient c/0 subject to the convention 
that c/0 = 0 if c = 0 and c/0 = +o° or -oo if c is positive or negative. It should 
be observed that these definitions are exactly the same as 

/ g (x)=inf sup f(I)lg(I) 
He& (I,x)eH 

and 

/R(x) = sup inf f(I)!g(I) 
He<o (I,x)eH 

expressed in terms of the derivation basis S&. The family !QV enters in as 
estimates are considered that give rise to Vitali coverings, and, of course, this is 
the source of the concept. 

THEOREM 5. Let f and g be real-valued functions on R and let X denote a 
subset of R; then 
.1 if \\ff is a-finite on X, then for ^-almost every x in X the extreme derivatives 

/g(x) and fg(x) are finite. 
.2 if t/>f(X) = 0 then for ^-almost every x in X, /g(x) = /g(x) = 0. 
.3 if i/f8 is a-finite on X and everywhere in X, /g(x) = /g(x) — 0 then i^f(X) = 0. 
.4 if iff* is a-finite on X and at every point x in X either /g(x) or /g(x) vanishes, 

then i(jf(X) = 0. 
.5 if i/fg is a-finite on X and both extreme derivatives /g(x) and /g(x) are finite 

everywhere in X, then \\tf is a-finite on X. 
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Proof. To prove (.1) suppose that if/f is a-finite on X and write Y± = 
{xeX:/g(x) = +00} and Y2 = {xeX:f^(x) = -00}. The proof amounts to show
ing that ^(Y1U Y2) = 0. We give the details for ^(Yx) = 0. For any H e £ [ X ] 
and any natural number n write 

H* = { ( I ,x )€H: / ( l ) /g (D>n} 

and observe that H* must belong to ^ [ Y i ] and that every (I, x ) e H * has 
n |g(I) |<|/(I) | . From this we can compute m/fg(Y0^nV(g,H*)< V(f, H) and 
hence that m / ^ Y ^ ^ X ) . If i//(X)<+oo then certainly </rg(Yi) = 0; if ^ is 
cr-finite on X, then the same conclusion is obtained by splitting X into a 
sequence of sets of finite measure. 

This completes the proof of (.1). It is recognizably similar to the classical 
proofs of this type of statement in which the Vitali theorem plays a role and 
this is the source of the idea. Since the remaining proofs in this theorem 
employ precisely the same devices, we may omit them. 
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