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In 1943, Herbert Robbins [2] pointed out that the Riemann sums

> FE G —xin)

i=1

that are used to approximate an integral may continue to do so if one drops the re-
quirement that the sequence xg, xy, ..., X, is increasing. There seems to have been
little attention paid to Robbins’s observation over the years, but it is worthwhile revis-
iting it nonetheless.

This is easy to see in some cases. Suppose f is continuous on an interval [c, d]
with F as its indefinite integral. Take a subinterval [a, b] C [c, d] and any sequence of
points in [c, d]

a = Xg, X1, X2, ..., X, = b.

We can use the mean-value theorem to choose associated points &* between x;_; and
x; so that

F(x)) — F(xi—) = f(%_i*)(xi — Xi—1)-
Then, evidently,
b n n
/ f)dx =F(b) — Fla)=Y [F(x) = Fxi_)l =Y fEN —xi1).
a i=1 i=1

It matters little here how the points xg, x1, X3, ..., x,, are arranged provided the se-
quence starts at @ and ends at b.
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If one wishes to choose arbitrary associated points &; between x;_; and x;, then this
will introduce an error. The way of controlling the error is to restrict the choice of
sequence by placing an upper bound on the variation

n
Z |x; — xi—1l
i=1

of the sequence and then requiring the points to be sufficiently close together. Since
not all Riemann integrable functions allow this generalization, this leads to a stricter
notion of integrability which the following definition captures.

Definition. A real-valued function f is super-Riemann integrable on an interval
[a, b] provided that there is a number / so that, for every € > 0 and C > 0, there
is a 8 > 0 with the property that

=Y fE) i —xi)| <e
i=1

for any choice of points xg, x1, ..., x, and &1, &, ..., &, from [a, b] satisfying

n
Z lxi —xi—1] < C,
i=1

where a = xg, b = x,, 0 < |x; — x;_1| < & and each &; belongs to the interval with
endpoints x; and x;_; fori =1,2,...,n.

Robbins’s theorem

Robbins proved that all continuous functions are super-Riemann integrable. Like many
young men at that dramatic period in history, even recent Harvard Ph.D.s, Robbins was
busy in other pursuits: he had joined the war effort by enlisting in the US Naval Reserve
(not as a mathematician). After the war he began a long and distinguished career as a
mathematical statistician and likely never had to teach college level calculus again. It
seems it never occurred to him to characterize completely the class of functions that
possess this strong integrability condition. We can do it for him, but it seems only fair
to give him credit for the full theorem, both directions.

Robbins’s Theorem. A function f is super-Riemann integrable on an interval
la, b] if and only if f is continuous there.

Proof. Suppose first that f is continuous. Then f is Riemann integrable in the
conventional sense. We prove (using a different method than that chosen by Robbins)
that f also satisfies the super-integrability condition. Let € > 0 and C > 0 be given.
Take § sufficiently small that | f(x) — f(y)| < €/C, if x and y are points of [a, b] for
which [x — y| < 6.

Write F(x) = fax f(@)dt. Suppose thata < x <& <y<band 0 <y—x <.
Then, by the mean-value theorem, there is a point £* between x and y for which

F(y) = F(x) = fED( —x).
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Thus we also have
IF(y) = F(x) = fE Q-0 =IfE") - fEIy -2 < g(y —X).

Then, for any choice of points x¢, xi, ..., x, and &, &, ..., &, from [a, b] with the
properties in the statement of the definition,

b n
f fOydx =" fE) G —xio1)
a i=1

F(b) — F(a) = ) fE)(x; — x,-_o'

i=1

D IF() — Fxim) — fE) (i — xi_o]i

i=I

< Z [ F(x;) — F(xi—) — fED)(x —xi—p)l

i=I

c n
< E;|Xi_Xi_l| < e.

That completes the proof in one direction.

In the other direction let us suppose that f is super-Riemann integrable on [a, b]
and, contrary to what we want to prove, that there is a point z of discontinuity of f in
the interval. We assume that a < z < b and derive a contradiction. (The cases z = a
and z = b are handled similarly.) Then there must be a positive number > 0 so that,
given any points z; and z;, with z; < z < z», the interval [z, z,] contains points ¢,
and ¢, for which | f(c;) — f(c2)| > n. Our strategy is to construct a Riemann sum that
visits two suitably chosen points z; and z, repeatedly.

We apply the super-integrability hypothesis using I = fab f(x)dx, e =n/4, and
C = b — a + 4 obtaining a §, with 0 < § < 1, that meets the conditions of the defini-
tion on [a, b]. Choose points z; < z < 7z so that z, — z; < §, and then select ¢; and
¢, in the interval [zy, z,] for which f(c;) — f(c2) > n. Construct a sequence

a:x0<x1<--~<xp=z1,

along with associated points {§;} so that 0 < x; — x;_; < § and so that

71 4
/ fdx =" fE) i —xi)| < /4.
¢ i=1

This actually just uses the Riemann integrability of the function f on the interval
la, z;].

Choose the least integer r so that
r(za—z1) > 1.

Note that

l<rm—-—z)=0-D@m—-z)+@m—z2)1+@—-z2) <1+6 <2
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Using r, continue the sequence {x;} by defining points

Xp = Xpi2 = Xppg =+ = Xpyor = 21,
and
'xp+| :'xp+3 :xp+5 = ... :xp+2r_| = 22.
Write §,40; = c;and §,40;—1 = ¢; for j = 1,2, ..., r. Finally, complete the sequence

{x;} by selecting points
2 = Xpgor < Xpgorl < 00 < Xy < Xp = b

along with associated points {£;} so that

b n
[ rwdx= 3 s —n) <uss

i=p+2r+1
Consider now the sum
Z FED)(xi — xim),
i=1

taken over the entire sequence thus constructed. Observe that

n P p+2r n
Z Ix; — x| = Z(Xi —Xi-1) + Z lx; — xi1| + Z (X; — Xi—1)
i=1 i=1 i=p+1 i=p+2r+1

=(z1—a)+2r(za—z1)+ (b —2z1)
=b-a)+2r(x—z1)<(b—-—a)+4=0C.

Thus the points chosen satisfy the conditions of the definition for the § selected and
we must have

<€ <n/4.

b n
/ fOydx =" fE) @ —xi1)
a i=1

On the other hand

21 b n
[/ rwdx+ [ rwdx =Y fE - x,-_o]
“ <1 i=1
21 r
= [ / fOydx = fl)(xi — x,~_1>}
a i=1

- n
+ ff(x)dx— > fE —xi)

i=p+2r+1
B p+2r
- Z FED (i — xiz1)
_i:p+l
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From this we deduce that

p+2r

Y FEx —xi)| < 3n/4.

i=p+1

But a direct computation of this sum shows that

p+2r
Y FE —xi) =) = fe)lr—2) > nrza —21) > 0.
i=p+1
This contradiction completes the proof. ]

An application to change of variables

Robbins mentions in [2] that the idea for super-Riemann integrabilty arose from the
change of variables formula. He did not supply an application, but we can. It seems
most likely that some or all of this well-known theorem is what he had in mind.

Change of Variables Theorem. Ler g be Riemann integrable on an interval [a, b],
let G be its indefinite integral, and suppose that f is continuous on G([a, b]). Then

G(b)

b b
f(X)dx=/ f(G(t))dG(t)=/ F(G(1)g@)dt, ey

G(a)

where the first and third integrals exist in the Riemann sense and the second in the
Riemann-Stieltjes sense.

Proof. We use the super-Riemann integrability of f on G([a, b]) to show that the
second integral in formula (1) exists as a Riemann-Stieltjes integral and equals the
first.

Let € > 0 and choose a number M; large enough so that |g(#)| < M, for all t €
[a, b]. Take C = M;(b — a). Choose §; > 0 so that

B n
/ f@dr =Y fE) i —xi)| <e.
A i=1

for any choice of points xg, x1, ..., x, and &1, &, ..., &, from G([a, b]) satisfying

n
Z|Xi —xi—1| =C,
i=1

where A = xp, B = x,,, 0 < |x; — x;_1| < é; and each &; belongs to the interval with
endpoints x; and x;_; fori = 1,2, ..., n. (This is a slight variant on the definition of
super-integrability. The proof of Robbins’s Theorem shows that this variant is also true
for continuous functions.)

Since G is continuous we may choose §, > 0 so that if s and ¢ are points of [a, b]
for which |s — #| < §, then necessarily |G(s) — G(¢)| < §;. Choose any points a =
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th<h<---<t,=bandf,_; <71, <t; for which 0 <1, —t,_; < &, and consider
the Riemann-Stieltjes sum

Y FG@NIGE) — Gt
i=1

We can adjust this sum (without changing its value) so that the associated point t; in
the interval [#;_y, ;] is always at an endpoint. Should this not be the case just note that
the identity

fGE)IGEH) — Gt = f(GE)IG(r) — Gti—)] + fF(G@mNIG () — G(11)]

allows us to rewrite the sum with this endpoint property.
Let x; = G(t;), & = G(t;). Note that xo = G(a), x, = G(b), and that

lxi — x| = 1G@) — G| < 6.
We also have
Z lx; — xi—1] = Z IG(#) — G(ti—)| < M, Z lti —tioil =M (b—a) =C.
i=1 i=1 i=1
Consequently, by our choice of §;, we have

G(b)

f@de — Z FGE@NIG ) — G(ti-1)]
i=1

G(a)

G(b)
< €.

f@yde =" fE) i —xio)
i=1

G(a)

This proves the existence of the Riemann-Stieltjes integral and establishes the first half
of formula (1).

We now show that the third integral in formula (1) exists as a Riemann integral and
equals the first. The function f is bounded on G([a, b]) so we can choose a number
M, large enough so that | f(G(¢))| < M, for all ¢t € [a, b]. Let € > 0 and choose
0 < 83 < &, so that for any pointsa =ty <t; < --- <t, =bandt,_| <71 <t for
which 0 < t; — t;_; < 83 we must have

D16 ) = Gltiy) — g(@) (i — xi1)| < €/Mo.

i=1

This follows from the fact that G is an indefinite Riemann integral of g.
Putting these together we can now compare the Riemann sums for the integral

b
f f(G@))g(r)dt

with the value of the integral
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by computing

G(b) n
f@0dt =Y f(GE))g)lxi — xi_i]
G@ i=1
G(b) n
< f@ydt =" f(GE) G ) — G(z,»_o]‘
Gl i=1

+ Z FGE@NIGE) — G(ti-)] — Zf(G(Ti))g(Ti)[Xi — Xi-1]

i=1 i=1

e+ Z | f(G@) [GE) — Gti-)] = f(G(m)g(T)xi — xi1]]

i=I

Se+ MY 1G(t) — Glti1) — g(w)lxi — x| < 2e.

i=1

This establishes that the third integral in formula (1) exists in the Riemann sense and
is equal to the first. ]

This version of the change of variables formula is sufficiently general for most
elementary purposes and has the advantage that it can be proved quite easily given
the super integrability of continuous functions. The proofs are just manipulations of
Riemann sums and do not use any elements of the theory. In particular we do not need
to appeal to some other theorem for the existence of one of the integrals, nor do we
use any properties of integrals apart from the Riemann sum definition.

The reader should be aware, however, that formula (1) is valid under much weaker
assumptions. It is enough either that f is Riemann integrable on G([a, b]), or else that
the Riemann-Stieltjes integral in (1) exists, or else that (f o G)g is Riemann integrable
on [a, b]. The proofs are rather more technical. See [4] for discussion, proofs, and
references to the literature.

Characterizing derivatives

The application to change of variables is likely the only significant use of super-
integrability that we can make, which seems to reduce the concept to that of an in-
teresting curiosity. But there is, nonetheless, something else we can do: generalize
Robbins’s Theorem. While super-integrability, as we have seen, characterizes contin-
uous functions, a slight modification characterizes derivatives.

We have, certainly, a great many characterizations of continuity. That continuous
functions are precisely super-integrable is therefore of only moderate interest. But
there are few characterizations of derivatives. The first explicit announcement of this
as a research problem was by William Henry Young [5] in 1911. (See [1] for an ac-
count of the problem and for Young’s enunciation of it.) Our theorem characterizes
derivatives in terms of a version of super-integrability.

Characterization of Derivatives Theorem. A real-valued function f on an in-

terval [a, b] is an exact derivative if and only if it satisfies the following strong inte-
grability property: there is a number I so that, for every € > 0 and C > 0, there is a
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positive function § on [a, b] with the property that

I—Zf(fi)(xi—xi—l) <€, 2)
el

for any choice of points xg, X1, ..., X, and &, &, ..., &, from [a, b] satisfying

n
Z|xi — x|l =C,
i=1

where a = xo, b = x,, 0 < |x; — x;_1| < §(&) and each &; belongs to the interval with
endpoints x; and x; _ fori = 1,2, ..., n.

In one direction (as is often the case with generalizations) the proof is easier than it
was for Robbins’s theorem. If F'(x) = f(x) at each point x of [a, b], select §(x) > 0
so that

F(z) — F(y)

— | <=
z—Yy C

whenever x — §(x) <y < z < x 4+ 8(x). Then, with I = F(b) — F(a), the inequal-
ity (2) is easy to check.

In the other direction, if f is integrable in this strong (and perhaps strange) sense,
then it has an indefinite integral F* which serves as an antiderivative for f. If there is
a point z where F'(z) = f(z) fails, we construct Riemann sums that loop repeatedly
about that point (similar to the situation for the discontinuity point z in Robbins’s
theorem). Thus essentially the same method of proof works here too.

This theorem can stand alone as a characterization of derivatives, but is more prof-
itably interpreted within the context of the Henstock-Kurzweil integral. (For an ac-
count of this integration theory see [3].) Readers familiar with that integral will spot
immediately the connection. This adds another characterization of derivatives to a cur-
rently small collection and provides a new motivation for the Henstock-Kurzweil inte-
gral itself.

We can also apply this theorem to a version of the Change of Variables Theorem.
Rewrite formula (1) as

b
F(G)) — F(G(a) 2/ F(G()g(1)dt, 3

a form familiar to calculus students. We have established this identity for g Riemann
integrable and for F continuously differentiable. By the same methods, we can prove
that it holds for all differentiable functions F and all g that are Henstock-Kurzweil
integrable. Since an exact derivative F' need not be Riemann integrable, nor even
Lebesgue integrable, this is a considerable extension obtained by elementary methods.
Details and references for all of the material of this section are in [4].

Summary. The usual definition of the Riemann integral as a limit of Riemann sums can be
strengthened to demand more of the function to be integrated. This super-Riemann integra-
bility has interesting properties and provides an easy proof of a simple change of variables
formula and a novel characterization of derivatives. This theory offers teachers and students of
elementary integration theory a curious and illuminating detour from the usual Rieman inte-
gral.
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Proof Without Words: Partial Sums of an Arithmetic Sequence

Anthony J. Crachiola (acrachio@svsu.edu) Saginaw Valley State University,
7400 Bay Road, University Center, Michigan 48710

Let ay, a;, as, ... be an arithmetic sequence. Then

n(a; + a,)
a1+a2+...+an:Tn
Proof.
d d d d
aj ay as an—2 an—1 an
[ L L @ o—————©O
ayt+a+---+ap
n
ai An
@ L J
ay +ay

2 |

Summary. A visual proof that a partial sum of an arithmetic sequence equals the num-
ber of terms times the average of the first and last term.
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