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Preface

Work in Progress: This is a preliminary version of a text planned for an April 2012

publication date. This file is dated January 27, 2012. Return to our website occa-

sionally for updates. Please send comments to the author.

The text is a self-contained account of integration theory on the real line. The
usual curricula in real analysis courses do not allow for much time to be spent on
the Henstock-Kurzweil integral. Instead extensive accounts of Riemann’s integral
and the Lebesgue integral are presented. Accordingly the version here would be
mostly recommended for supplementary reading.

Even so it would be a reasonable course design to teach this material prior
to a course in abstract measure and integration. The student should end up as
well-prepared as in more traditional courses. Certainly every professional math-
ematician should be aware of more than Lebesgue’s theory; while nonabsolutely
convergent integrals do not play an extensive role in applications, they are part of
our history and of our culture.

The reader might want to view first the prequel to this text:

B. S. Thomson, The Calculus Integral, ClassicalRealAnalysis.com
(2008).
ISBN-13: 978-1442180956, ISBN-10: 1442180951

That text is an (experimental) outline of an elementary real analysis course in
which the Newton integral plays the key role. Since the presentation in the present
textbook also uses the Newton integral (in its various versions) as a motivating
tool, the reader may wish also to consult the prequel to see how this would work
at an introductory level.

There are innumerable books published on the Lebesgue integral. The reader
needing instruction in that theory is faced with too many choices, although many
of them are truly excellent. For the more general integral (called here the gen-
eral Newton integral or simply “the integral”) that is best known classically as
the Denjoy-Perron integral and, more recently, as the Henstock-Kurzweil integral,
there are far fewer choices and not all of them are excellent. I have resisted for
many years writing a lengthy account of this integral, partly because the topic is
not widely thought of as being of much significance.



ii

As an further experiment, however, I offer this account of the theory of that
integral. The challenge as I see it is to present a coherent narrative leading the
readers to a deep understanding of the nature of integration on the real line and,
moreover, fully preparing them to study abstract measure and integration. But that
is just a goal, not necessarily realized here. Most teachers will, doubtless, remain
with the usual sequence of instruction: basic calculus (the Riemann and improper
Riemann integrals vaguely presented), elementary analysis (the Riemann integral
treated in depth), then abstract measure and integration in graduate school. My
guess is that few graduate students, freshly taught this sequence, could survive
an oral examination on the statement∫ b

a
F ′(x)dx= F(b)−F(a),

giving all conditions on how this might or might not hold. I hope my readers do
better.

BST
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Chapter 1

By way of an introduction

The reader has, no doubt, studied the Riemann integral in elementary classes
and been apprised of the fact that that integral is entirely inadequate for modern
applications. That is a sufficient starting point to embark on this text.

We presume, however, that most readers of this material are interested in
the topic of the Henstock-Kurzweil integral for its own sake. Most readers too are
familiar with some of the elements of the Lebesgue theory of integration and will
want to see how the present theory connects with that. This chapter will give some
background to the narrative. The formal theory starts with the next chapter.

1.1 The classical Newton integral

Integration theory on the real line can be motivated in a number of ways. Many
presentations start with the ancient Greeks and their study of the method of ex-
haustion to calculate areas. That then transitions into discussions of Riemann
sums and an account of the Riemann integral. Having started that way, then an
introduction to Lebesgue’s quite different theory of integration demands some new
expository skills.

A simpler story to tell is presented in this chapter, starting with the original
concept of Newton. He realized that the problem of areas (along with a multitude
of problems in physics) could be expressed as a problem in antidifferentation.
Specifically (in more modern language) he introduced the initial value problem

dy

dx
= f (x), y(x0) = y0

where f is a given function and (x0,y0) is a given point. Finding any antiderivative
of f solves this problem by finding a curve through the point (x0,y0) with tangent
slope at each point (x,y) on the curve given by f (x).

Newton’s integral is a formal solution of this problem, captured by the follow-
ing definition. The idea is Newton’s although the notation and terminology have
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different sources (notably Leibnitz and Fourier).

Definition 1.1 (Classical Newton integral) Let f : [a,b] → R where [a,b] is a

compact interval. Then f is said to be Newton integrable on [a,b] if there is a

function F : [a,b]→ R such thata F ′(x) = f (x) for each x in [a,b]. We write∫ b

a
f (t)dt = F(b)−F(a).

aMore properly the requirement that F ′(a) = f (a) and that F ′(b) = f (b) would be understood
in terms of left-hand and right-hand derivatives respectively.

Usually such a function F is called an indefinite integral or a primitive for
f . Since there are many possible such primitive functions F for a given f , the
definition requires checking that F(b)−F(a) does not depend on which one is
chosen. The mean-value theorem of the calculus is the only tool needed for this.

A descriptive definition The definition is purely descriptive. It offers no method
for finding or constructing an integral—if one happens to know or to find an an-
tiderivative of f one can write the value of the integral. One cannot look at f

presumably and determine in every case whether it is or is not integrable. Nor,
unless we have found a primitive, does the definition give us any other method for
computing the value of the integral.

The initial value problem “solved” The initial value problem

dy

dx
= f (x), y(x0) = y0

is clearly solved by the expression

y= y0+
∫ x

x0

f (t)dt

but only in a trivial sense. It just expresses the same problem in different language
but with no new insights. In particular, even though we might write down this for-
mula as if it were a solution, we may not have any idea about whether the integral
does in fact exist.

Deficiencies Integration theory in the eighteenth century would have been
mostly understood in this sense. The inadequacies of the theory were met partly
by Cauchy in the 1820s (making the theory more constructive) and by later au-
thors who extended the integral to include larger classes of “integrable” functions.
It was not until the early 20th century that a suitable theory of integration emerged
that could be used in all applications.

Even so, the Newton integral is an excellent starting point for thinking about
the problem of integration and communicating all of the essential ideas to students
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of the theory. It has one very strong advantage: nearly all calculus students think
that this definition (that they actually first encountered as a theorem) describes
precisely what they remember of the calculus integral.

1.1.1 Bounded integrable functions and Lipschitz functions

What functions can appear as indefinite integrals? This is an important question
in integration theory, although it is entirely transparent for the classical Newton
integral. One can write

F(x) =
∫ x

a
f (t)dt (a≤ x≤ b)

in the sense of this integral if and only if F is everywhere differentiable.
If we narrow the question a bit to insist that the function f appearing should be

bounded on [a,b] then we must consider the following important and well-known
class of functions.

Definition 1.2 (Lipschitz functions) A function F : [a,b] → R is said to be a

Lipschitz function if there is a nonnegative number M so that

|F(y)−F(x)| ≤M|y− x|
for all x, y ∈ [a,b].

Lemma 1.3 If the function f : [a,b] → R is bounded and integrable, then its in-

definite integral must be a Lipschitz function

Proof. Since we are proving this lemma only for functions integrable in the classi-
cal Newton sense, this requires only an elementary application of the mean-value
theorem. Take F as the indefinite integral, assume that | f (x)| ≤M for all x∈ [a,b]

and use the mean-value theorem to select a point ξ between x and y so that
∣

∣

∣

∣

F(y)−F(x)

y− x

∣

∣

∣

∣

= | f ′(ξ)| ≤M.

For all of our methods of integration in this text the same lemma is true, although
the mean-value theorem could not be used to obtain a proof.

All of our more general integrals would allow the following simple argument.
Take a ≤ x < y ≤ b. Observe that −M ≤ f (x) ≤ M. Integrate on [a,b] using
monotone properties of integrals to obtain

−M(y− x)≤
∫ y

x
f (t)dt ≤M(y− x)

and substitute

F(y)−F(x) =
∫ y

x
f (t)dt.
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Because Lipschitz functions arise naturally in any investigation of bounded
integrable functions we should be alert to the properties of this class of functions
and expect them to play a role in integration theory.

1.1.2 Absolutely integrable functions and bounded variation

Continuing the theme of the previous section, we can ask what functions can
appear as indefinite integrals of absolutely integrable functions? A function f :

[a,b]→ R is said to be absolutely integrable if it is integrable and the function | f |
is also integrable. It said to be nonabsolutely integrable if it is integrable and the
function | f | fails to be integrable.

The following computational lemma quickly illustrates the key property that
the indefinite integral must possess. We shall prove the property for the classical
Newton integral but this same property is true for all of our integrals.

Lemma 1.4 If the function f : [a,b]→R is absolutely integrable, then its indefinite

integral F must have this property: for every subdivision

a= x0 < x1 < x2 < · · ·< xn = b

of the interval [a,b]
n

∑
i=1

|F(xi)−F(xi−1)| ≤
∫ b

a
| f (t)dt < ∞.

Proof. Let G be the indefinite integral of | f | on [a,b]. The proof is a simple appli-
cation of this easy inequality

|F(xi)−F(xi−1)|=
∣

∣

∣

∣

∫ xi−1

xi

f (t)dt

∣

∣

∣

∣

≤
∫ xi−1

xi

| f (t)|dt = G(xi)−G(xi−1).

Then one sums to obtain
n

∑
i=1

|F(xi)−F(xi−1)| ≤
n

∑
i=1

[G(xi)−G(xi−1)] = G(b)−G(a) =
∫ b

a
| f (t)dt < ∞.

These same steps would prove the lemma for any of our later integration methods;
it is not special to the classical Newton integral

Functions of bounded variation Any function F that possesses the property
stated in the lemma is said to have bounded variation on [a,b]. In fact we define
Var(F, [a,b]) to be the supremum of all sums of the form

n

∑
i=1

|F(xi)−F(xi−1)|

taken for arbitrary subdivisions

a= x0 < x1 < x2 < · · ·< xn = b

of the interval [a,b]. The value Var(F, [a,b]) is called the total variation of F .
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Because functions of bounded variation arise naturally in any investigation of
absolutely integrable functions we should be alert to the properties of this impor-
tant class of functions and expect them to play a role in integration theory.

Exercise 1 Show that a function F : [a,b] → R that is Lipschitz must have

bounded variation on [a,b]. Answer

1.1.3 The Newton integral is a nonabsolute integral

There do exist functions that are nonabsolutely integrable. The student who has
seen only the Riemann integral and its more important cousin, the Lebesgue in-
tegral, would not have encountered such functions. We give the details here.

The following interesting example shows that it is in the nature of all Newton-
type integrals to be non-absolute. Define the function F(x) = x2 sinx−2 on [0,1],
interpreting F(0) = 0 so that F is continuous. In fact F is differentiable at every
point. A direct computation using limits shows that F ′(0) = 0 while, for 0< x≤ 1,
standard calculus techniques (product rule, chain rule) supply

F ′(x) = 2xsinx−2− 2

x
cosx−2.

Consequently F ′ is integrable on [0,1] in the classical Newton sense. We show
that, while F ′ is integrable, |F ′| is not. If it were integrable then, by Lemma 1.4, F
would have bounded variation on [0,1]. It does not.

For any positive integer k, take points

yk =
1√
kπ

and xk =

√
2

√

[2k+1]π
.

Observe that F(yk) = 0 while

F(xk) =± 2

[2k+1]π
.

Consequently, for any large integer N one has
N

∑
k=1

|F(yk)−F(xk)| ≥
N

∑
k=1

2

[2k+1]π
.

The value of the sum on the right-hand side grows without bound as N increases.
This allows us to check that Var(F, [0,1]) = ∞ and so F does not have bounded
variation and |F ′| cannot be integrable by this (or indeed any) method.

1.2 Continuity and integrability

What functions are integrable in the Newton sense? We can answer this with a
host of examples, since every calculus student learns a variety of methods of
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computing antiderivatives (albeit for a limited set of problems). But the best el-
ementary theory and the best starting point for understanding the nature of the
problem is to focus on continuous functions.

We shall show now that, with appropriate continuity assumptions on f , we
can be assured that an integral exists without any requirement that we should
find it. Our methods will show that we can also describe a procedure that would,
in theory, produce the indefinite integral as the limit of a sequence of simpler
functions.

We will still have a theory for Newton integrals of discontinuous functions but
we will have to be content with the fact that much of the theory is formal, and
describes objects which are not necessarily constructible1.

1.2.1 Upper functions

We will illustrate our method by introducing the notion of an upper function. This
is a piecewise linear function whose slopes dominate a given function.

Let f be defined at all points of a compact interval [a,b] and suppose that f
is bounded. Choose any points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b.

Suppose that F is a continuous function on [a,b] that is linear on each interval
[xi−1,xi] and such that

F(xi)−F(xi−1)

xi− xi−1

≥ f (ξ)

for all points ξ for which xi−1 ≤ ξ ≤ xi (i = 1,2, . . . ,n). Then we can call F an
upper function for f on [a,b].

The method of upper functions is to approximate the indefinite integral that we
require by suitable upper functions. Upper functions are piecewise linear functions
with the break points (where the corners are) at x1, x2, . . . , xn−1. The slopes of
these line segments exceed the values of the function f in the corresponding
intervals. See Figure 1.1 for an illustration of such a function.

Exercise 2 Let f (x) = x2 be defined on the interval [0,1]. Define an upper func-

tion for f using the points 0, 1
4
, 1
2
, 3
4
,1. Sketch the graph of that upper function.

Answer

Exercise 3 (step functions) Let a function f be defined by requiring that, for any

integer n (positive, negative, or zero), f (x) = n if n− 1 ≤ x < n. This is a simple

example of a step function. Find a formula for an indefinite integral and show that

this is an upper function for f . Answer

1Note to the instructor: Just how unconstructible are indefinite integrals in general? See Chris
Freiling, How to compute antiderivatives, Bull. Symbolic Logic 1 (1995), no. 3, 279–316. This is by
no means an elementary question.
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Figure 1.1: A piecewise linear function on [−3,3].

1.2.2 Continuous functions are Newton integrable

For continuous functions we can always determine the existence of an indefinite
integral by a limiting process using appropriate upper functions. The lemma is a
technical computation that justifies this statement.

Lemma 1.5 Suppose that f : [a,b]→R is a bounded function. Then there exists

a Lipschitz function F : [a,b]→ R so that F ′(x) = f (x) for every point a≤ x ≤ b

at which f is continuous.

From this lemma there immediately follows our first existence theorem for the
Newton integral. The proof of the lemma even contains a method for constructing
the indefinite integral as a limit of a sequence of upper functions.

Theorem 1.6 Suppose that f : [a,b]→ R is continuous. Then f is Newton inte-

grable on all closed subintervals of [a,b].

1.2.3 Proof of Lemma 1.5

We use the method of upper functions to prove Lemma 1.5. It will be enough to
assume that f : [0,1]→ R and that f is nonnegative and bounded. The general
case is easily argued from this special situation.

Let F0 denote the function on [0,1] that has F0(0) = 0 and has constant slope
equal to

c01 = sup{ f (t) : 0≤ t ≤< 1}.
Subdivide [0,1] into [0, 1

2
] and [ 1

2
,1] and let F1 denote the continuous, piecewise

linear function on [0,1] that has F0(0) = 0 and has constant slope equal to

c11 = sup{ f (t) : 0≤ t ≤ 1

2
}
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on [0, 1
2
] and constant slope equal to

c12 = sup{ f (t) : 1
2
≤ t ≤ 1}

on [0, 1
2
]. This construction is continued. For example, at the next stage, Subdivide

[0,1] further into [0, 1
4
], [ 1

4
, 1
2
], [ 1

2
, 3
4
], and [ 3

4
,1]. Let F2 denote the continuous,

piecewise linear function on [0,1] that has F0(0) = 0 and has constant slope
equal to

c11 = sup{ f (t) : 0≤ t ≤ 1

4
}

on [0, 1
4
], constant slope equal to

c12 = sup{ f (t) : 1
4
≤ t ≤ 1

2
}

on [ 1
4
, 1
2
], constant slope equal to

c13 = sup{ f (t) : 1
2
≤ t ≤ 3

4
}

on [ 1
2
, 3
4
], and constant slope equal to

c14 = sup{ f (t) : 3
4
≤ t ≤ 1}

on [ 3
4
,1].

In this way we construct a sequence of such functions {Fn}. Note that each Fn
is continuous and nondecreasing. Moreover a look at the geometry reveals that

Fn(x)≥ Fn+1(x)

for all 0 ≤ x ≤ 1 and all n = 0, 1, 2, . . . . In particular {Fn(x)} is a nonincreasing
sequence of nonnegative numbers and consequently

F(x) = lim
n→∞

Fn(x)

exists for all 0≤ x≤ 1. We prove that F ′(x) = f (x) at all points x in [0,1] at which
the function f is continuous.

Fix a point x in [0,1] at which f is assumed to be continuous and let ε > 0.
Our argument addresses the case that 0 < x < 1; if x = 0 or x = 1 a one-sided
argument would have to be introduced, but otherwise the details do not much
differ.

Choose δ > 0 so that the oscillation

ω f ([x−2δ,x+2δ])

of f on the interval [x− 2δ,x+ 2δ] does not exceed ε. Let h be fixed so that
0< h< δ. Choose an integer N sufficiently large that

|FN(x)−F(x)|< εh and |FN(x+h)−F(x+h)|< εh.

From the geometry of our construction notice that the inequality

|FN(x+h)−FN(x)− f (x)h| ≤ hω f ([x−2h,x+2h]),
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must hold for large enough N. (Simply observe that the graph of FN will be com-
posed of line segments, each of whose slopes differ from f (x) by no more than
the number ω f ([x−2h,x+2h]).)

Putting these inequalities together we find that

|F(x+h)−F(x)− f (x)h| ≤
|FN(x+h)−Fn(x)− f (x)h|+ |FN(x)−F(x)|+ |FN(x+h)−F(x+h)|< 3εh.

This shows that the right-hand derivative of F at x must be exactly f (x). A similar
argument will handle the left-hand derivative and we have verified that F is an
indefinite integral (or primitive) for f on the interval [a,b].

We should now check that the function F defined here is Lipschitz on [0,1].
Let M be an upper bound for the function f . Check, first, that

0≤ Fn(y)−Fn(x)≤M(y− x)

for all x< y in [0,1]. From this we can deduce that F is in fact Lipschitz on [0,1].
This argument (thus far) establishes the theorem for the case [a,b] = [0,1]

and with f nonnegative. To complete the proof the reader can follow the next
steps as outlined here:

1. Suppose that f : [a,b]→R and set g(t) = f (a+ t(b−a)) for all 0≤ t ≤ 1.
If G is an indefinite integral for g on [0,1] show how to find an indefinite
integral for f on (a,b). [Hint: If H(t) = G(a+ t(b− a)) then, by the chain
rule,

H ′(t) = G′(a+ t(b−a))× (b−a) = f (a+ t(b−a))× (b−a).

Substitute x= a+ t(b−a) for each 0≤ t ≤ 1.]

2. Suppose that f : [a,b]→ R is a bounded function and that

K = inf{ f (x) : a≤ x≤ b}.
Set g(t) = f (t)−K for all a < t < b. Show that g is nonnegative and
bounded. Suppose that G is an indefinite integral for g on (a,b); show
how to find an indefinite integral for f on (a,b). [Hint: If G′(t) = g(t) then
d
dt
(G(t)+Kt) = g(t)+K = f (t).]

3. Show how to deduce Theorem 1.6 from the lemma.

1.3 Riemann sums

The expression of a Newton integral by its definition∫ b

a
f (x)dx= F(b)−F(a)

requires finding a function F to serve as an antiderivative. It would be more conve-
nient, both for theory and practice, if we can relate the value of the integral directly
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to the actual values of the function f .
Approximations of the form∫ b

a
f (x)dx≈

n

∑
i=1

f (ξi)(xi− xi−1)

have long been used. Here the points xi are chosen so as to begin at the left
endpoint a and end at the right endpoint b,

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

and the points ξi (called the associated points) are required to be chosen at or
between the corresponding points xi−1 and xi. Most readers would have encoun-
tered such sums under the stricter conditions that

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b and xi−1 ≤ ξi ≤ xi

so that the points are arranged in increasing order. This need not always be the
case, but it is most frequently so.

Riemann sums and integration theory These sums
n

∑
i=1

f (ξi)(xi− xi−1)

will be called Riemann sums even though their use predates Riemann’s birth by
many years. The connection with integration theory also does not originate with
Riemann2 nor are they that late in the history of the subject. Poisson in 1820
proposed such an investigation as “the fundamental proposition of the theory of
definite integrals.” Euler, by at least 1768, had already used such sums to approx-
imate integrals. Of course, for both Poisson and Euler the integral was understood
in our sense as an antiderivative3.

Thus we use the following language to describe these sums.

Definition 1.7 (Riemann sum) Suppose that f : R→ R and that a collection of

points is given

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

and along with associated points ξi at or between xi−1 and xi for i = 1,2, . . . ,n.

Then any sum of the form
n

∑
i=1

f (ξi)(xi− xi−1)

is called a Riemann sum for the function f on the interval [a,b].

2Georg Friedrich Bernhard Riemann (1826–1866). His lecture notes on integration theory date
from the 1850s.

3See Judith V. Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous calculus,
American Mathematical Monthly 90 (3), 1983, 185–194.
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Partitions and subpartitions When the collection of points

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

is chosen to be increasing, i.e., so that

a= x0 < x1 < x2 < x3 < .. . ,xn−1 < xn = b,

then we might prefer to write the partition as a interval-point relation:

{([xi−1,xi],ξi) : i= 1,2,3 . . .n}
or perhaps relabeled as

{([ai,bi],ξi) : i= 1,2,3 . . .n}.
We call such a collection a partition of the interval [a,b]. Any subset of a partition
is called a subpartition. The only requirement on a collection

{([ai,bi],ξi) : i= 1,2,3 . . .m}
to require it to be a subpartition is that the intervals [ai,bi] do not overlap and
the associated points ξi belong to the appropriate interval. For most of the theory
of Riemann sums one uses sums over partitions and subpartitions rather than
general versions where the points are chosen not to be increasing.

Partitions and subpartitions finer than δ Let δ be a positive number. Then a
partition or a subpartition

{([ai,bi],ξi) : i= 1,2,3 . . .m}
is said to be finer than δ if each

bi−ai < δ.

More generally, if δ is a positive function we use the same phrase to describe the
requirement that each

bi−ai < δ(ξi).

In nearly all applications of Riemann sums some such “finer” requirement will
appear. Our first observation, however, applies to partitions for which no such
“finer” notion is needed.

1.3.1 Mean-value theorem and Riemann sums

The mean-value theorem allows an interpretation in terms of Riemann sums that
is a convenient starting point for the theory. If F : R → R is a function that is
differentiable at every point of the interval [a,b] then we know that f = F ′ is New-
ton integrable and that the mean-value theorem of the calculus can be applied to
express the integral in the form∫ b

a
f (x)dx= F(b)−F(a) = f (ξ)(b−a)
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for some ξ ∈ (a,b). This expresses the integral exactly as a very simple kind of
Riemann sum with just one term. Here x0 = a and x1 = b.

Take now the three distinct points

a= x0,x1,x2 = b

and do the same thing twice. Then∫ b

a
f (x)dx= F(b)−F(a) = [F(b)−F(x1)]+ [F(x1)−F(a)]

= f (ξ2)(b− x1)+ f (ξ1)(x1−a) =
2

∑
i=1

f (ξi)(xi− xi−1)

for some points ξ1 between a and x1 and ξ2 between x1 and b. Again, this ex-
presses the integral exactly as a simple kind of Riemann sum with just two terms.

Exact expression of the integral as a Riemann sum In fact then we can do
this for any number of points. Take any collection

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

arranged in any order (not necessarily increasing) and choose the associated
points ξi between xi−1 and xi for i= 1,2, . . . ,n in such a way that∫ b

a
f (x)dx=

n

∑
i=1

[F(xi)−F(xi−1)] =
n

∑
i=1

f (ξi)(xi− xi−1). (1.1)

Using our language, we have just proved in the identity (1.1) that a Newton integral
in all situations can be computed exactly by some appropriately chosen Riemann
sum.

Wonderful or . . . perhaps not This seems both wonderful and, maybe, not so
wonderful. In the first place it means that an integral

∫ b
a f (x)dx can be computed

by a simple sum using the values of the function f rather than by using the def-
inition and having, instead, to solve a difficult or impossible indefinite integration
problem. On the other hand this only works if we can select the right associated
points {ξi} that make this precise. In theory the mean-value theorem supplies the
points, but in practice we would be most often unable to select the correct points.

Riemann sums and area Every Riemann sum∫ b

a
f (x)dx=

n

∑
i=1

f (ξi)(xi− xi−1). (1.2)

that expresses an integral of a nonnegative function can be reinterpreted as an
area. Consider that the product

f (ξi)× (xi− xi−1)
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represents the area of a rectangle with height f (ξi) and base (xi− xi−1). Then
both the integral and the Riemann sum are equal to the total area of a figure
composed of n rectangles. Figure 1.2 illustrates.

Figure 1.2: A Riemann sum considered as an area.

This then permits us to use the language of areas in all discussions of in-
tegrals. This may or may not be of assistance in visualizing the problem being
addressed.

Exercise 4 Show that the integral
∫ b
a xdx can be computed exactly by any Rie-

mann sum ∫ b

a
xdx=

n

∑
i=1

xi+ xi−1

2
(xi− xi−1) =

1

2

n

∑
i=1

(x2i − x2i−1).

Answer

Exercise 5 Subdivide the interval [0,1] at the points x0 = 0, x1 = 1/3, x2 = 2/3

and x3 = 1. Determine the points ξi so that

∫ 1

0
x2 dx=

3

∑
i=1

ξ2i (xi− xi−1).

Exercise 6 Subdivide the interval [0,1] at the points x0 = 0, x1 = 1/3, x2 = 2/3

and x3 = 1. Determine the points ξi ∈ [xi−1,xi] so that

3

∑
i=1

ξ2i (xi− xi−1).

is as large as possible. By how much does this sum exceed
∫ 1
0 x

2 dx?

Exercise 7 Subdivide the interval [0,1] at the points x0 = 0, x1 = 1/3, x2 = 2/3
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and x3 = 1. Consider various choices of the points ξi ∈ [xi−1,xi] in the sum

3

∑
i=1

ξ2i (xi− xi−1).

What are all the possible values of this sum? What is the relation between this set

of values and the number
∫ 1
0 x

2 dx?

Exercise 8 Subdivide the interval [0,1] by defining the points x0 = 0, x1 = 1/n,

x2 = 2/n, . . . xn−1 = (n− 1)/n, and xn = n/n = 1. Determine the points ξi ∈
[xi−1,xi] so that

n

∑
i=1

ξ2i (xi− xi−1).

is as large as possible. By how much does this sum exceed
∫ 1
0 x

2 dx?

Exercise 9 Let 0< r< 1. Subdivide the interval [0,1] by defining the points x0 =

0, x1 = rn−1, x2 = rn−2, . . . , xn−1 = rn−(n−1) = r, and xn = rn−(−n) = 1. Determine

the points ξi ∈ [xi−1,xi] so that

n

∑
i=1

ξ2i (xi− xi−1).

is as large as possible. By how much does this sum exceed
∫ 1
0 x

2 dx?

Exercise 10 (error estimate) Let f : [a,b]→ R be a Newton integrable function

with F as an indefinite integral. Suppose that

{([xi,xi−1],ξi) : i= 1,2, . . .n}
is an arbitrary partition of [a,b]. Show that
∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi− xi−1)

∣

∣

∣

∣

≤ ω f ([xi,xi−1])(xi− xi−1) (i= 1,2,3, . . . ,n)

and that
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

≤
n

∑
i=1

ω f ([xi,xi−1])(xi− xi−1). (1.3)

Note: that, if the right hand side of the inequality (1.3) is small then the Riemann

sum, while not precisely equal to the integral, would be a good estimate. Of

course, the right hand side might also be big. Answer

1.3.2 Uniform Approximation by Riemann sums

We have seen that Newton integrals can be exactly computed by Riemann sums.
Since we must appeal to the mean-value theorem, this gives no procedure for
determining the correct associated points that make the computation exact.
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Suppose we relax our goal. Instead of asking for an exact computation, per-
haps an approximate computation might be useful:∫ b

a
f (x)dx≈

n

∑
i=1

f (ξi)(xi− xi−1) ?

Here we wish to allow an arbitrary choice of associated points. Thus we will cer-
tainly introduce an error, depending on how far f (ξi) is from the “correct” choice
of associated point. To control the error we need to make the points xi and xi−1

close together. By a uniform approximation we mean that we shall specify the
smallness by a single small number δ and require that the points be chosen so
that, for each i= 1,2,3, . . . ,n,

|xi− xi−1|< δ.

[Later on we will relax this requirement and investigate a pointwise approximation,
by requiring that the points be chosen instead so that

|xi− xi−1|< δ(ξi)

using a different measure of smallness at each associated point.]
Furthermore, since each term in the sum can add in a small error, we need

also to restrict the choice of sequence

a= x0,x1,x2, . . . ,xn−1,xn = b

so that the total error introduced is not too large. One way to accomplish this is to
require that the points are chosen in the natural order:

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b.

A different way is to limit the size of the variation of the sequence of points by
restricting the size of the sum

n

∑
i=1

|xi− xi−1| .

We do the former for Cauchy’s theorem and the latter for Robbins’s theorem.

1.3.3 Cauchy’s theorem

The earliest theorem of this type is due to Cauchy from about 1820. Eighteenth
century authors also would certainly have known and recognized this result. It is
only attributable to Cauchy because he was the first to articulate what the notion
of continuity should mean.

We present it separately here as having largely historical interest. Theo-
rem 1.9 which follows (Robbins’s theorem) is the correct technical version for
integrability of continuous functions expressed by Riemann sums.
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Theorem 1.8 (Cauchy) Let f : [a,b] → R be a continuous function. Then, f is

Newton integrable on [a,b] and moreover the integral may be uniformly approxi-

mated by Riemann sums: for every ε > 0 there is a δ > 0 so that
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi− xi−1)

∣

∣

∣

∣

< ε (1.4)

and
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε (1.5)

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

for which

xi− xi−1 < δ

with associated points ξi ∈ [xi−1,xi].

Exercise 11 Prove Theorem 1.8 by using the error estimate in Exercise 10.

Answer

Exercise 12 Show that the integral∫ 1

0
x2 dx= lim

n→∞

12+22+32+42+52+62+ · · ·+n2

n3
.

Answer

Exercise 13 Show that the integral∫ 1

0
x2 dx= lim

r→1−

[

(1− r)+ r(r− r2)+ r2(r2− r3)+ r3(r3− r4)+ . . .
]

.

Answer

Exercise 14 Show that the integral
∫ 1
0 x

5 dx can be exactly computed by the

method of Riemann sums provided one has the formula

15+25+35+45+55+65++ · · ·+N5 =
N6

6
+

N5

2
+

5N4

12
− N2

12
.

1.3.4 Robbins’s theorem

There is another version possible for Cauchy’s theorem. For Cauchy’s theorem the
points of the subdivision a= x0, x1, . . . , xn = b were arranged in increasing order.
In Robbins’s theorem4 we drop the insistence that the points in the Riemann sum

4Only one direction in the theorem is due to Robbins and a proof can be found in Herbert E.
Robbins, Note on the Riemann integral, American Math. Monthly, Vol. 50, No. 10 (Dec., 1943), 617–
618.. The other direction is proved in B. S. Thomson, On Riemann sums, Real Analysis Exchange
37, no. 1 (2011).
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must form an increasing sequence. This allows us to characterize the Newton
integral of continuous functions entirely by a statement using Riemann sums.

Theorem 1.9 (Robbins) A real-valued function f is continuous on an interval

[a,b] if and only if it satisfies the following strong uniform integrability criterion:

there is a number I so that, for every ε > 0 and C > 0, there is a δ > 0 with the

property that
∣

∣

∣

∣

∣

I−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [a,b] satisfying
n

∑
i=1

|xi− xi−1| ≤C

where a= x0, b= xn, 0< |xi− xi−1|< δ and each ξi belongs to the interval with

endpoints xi and xi−1 for i = 1,2, . . . ,n. In that case, necessarily, f is Newton

integrable on [a,b] and

I =
∫ b

a
f (x)dx.

This theorem gives us some insight into integration theory. Instead of basing
the integral on the concept of an antiderivative, it could instead (at least in the
case of continuous functions) be obtained directly from a definition of an integral
based on the concept of Riemann sums. This gives us two equivalent formulations
of the Newton integral of continuous functions: one uses an antiderivative and one
uses Riemann sums.

Exercise 15 Deduce the inequality (1.5) in Cauchy’s theorem (Theorem 1.8) from

Robbins’s theorem.

1.3.5 Proof of Theorem 1.9

We first prove the easy direction in Robbins’s theorem, i.e, we assume that f is
continuous and prove that the statement holds with

I =
∫ b

a
f (x)dx.

Suppose first that f is (uniformly) continuous on [a,b]. Then f is integrable
on [a,b] in the classical Newton sense. We prove (using a different method than
that chosen by Robbins) that f satisfies also this strong integrability condition. Let
ε > 0 and C > 0 be given. Take δ sufficiently small that

| f (x)− f (y)|< ε/C

if x and y are points of [a,b] for which |x−y|< δ. (This uses the uniform continuity
of f on the interval [a,b].)
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Write F(x) =
∫ x
a f (t)dt. Suppose that a≤ x≤ ξ ≤ y≤ b and that 0< y−x<

δ. Then, by the mean-value theorem, there is a point ξ∗ between x and y for which

F(y)−F(x) = f (ξ∗)(y− x).

Thus we also have

|F(y)−F(x)− f (ξ)(y− x)|= |[ f (ξ∗)− f (ξ)](y− x)|< ε

C
(y− x).

Then, for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [a,b] with
the properties in the statement of the definition,

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

F(b)−F(a)−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

[F(xi)−F(xi−1)− f (ξi)(xi− xi−1)]

∣

∣

∣

∣

∣

≤
n

∑
i=1

|F(xi)−F(xi−1)− f (ξi)(xi− xi−1)|<
ε

C

n

∑
i=1

|xi− xi−1| ≤ ε.

That completes the proof in this one direction.
In the other direction let us assume that f has the strong integrability property

expressed in the statement of the theorem. We shall prove that f is then nec-
essarily continuous on [a,b] with the number I equal to the integral of f on that
interval. This is an exercise5 in elementary integration theory for the experienced
reader, and an introduction to some useful methods for the novice.

Step 1 We show that such a function satisfies the following equivalent strong
integrability criterion: for every ε > 0 and C > 0, there is a δ > 0 with the property
that

∣

∣

∣

∣

∣

m

∑
j=1

f (ξ′j)(x
′
j− x′j−1)−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points

x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn and x′0,x
′
1, . . . ,x

′
m and ξ′1,ξ

′
2, . . . ,ξ

′
m

from [a,b] satisfying
n

∑
i=1

|xi− xi−1| ≤C and
m

∑
j=1

|x′j− x′j−1| ≤C

where a= x0 = x′0, b= xn = x′m, 0< |xi− xi−1|< δ, 0< |x′j− x′j−1|< δ, each ξi
belongs to the interval with endpoints xi and xi−1 for i = 1,2, . . . ,n, and each ξ′j
belongs to the interval with endpoints x′j and x′j−1 for j = 1,2, . . . ,m,

5Indeed the experienced reader will recognize that f is necessarily Riemann integrable on [a,b]
and so Steps 1–3 can be skipped.
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This is a standard “Cauchy criterion” version of the integrability condition.
Such a statement is equivalent to the other version. It is an essential element
of general integration theory to prove the equivalence of such statements. (We
leave the details to the reader as it is an exercise useful to understanding the na-
ture of integration theory. This is similar to proving that a sequence is convergent
if and only if it is a Cauchy sequence. If you review how that proof is done you will
find that much of that method works here.)

Step 2 We note now that, if a function satisfies the strong integrability property
of the theorem on an interval [a,b] then it satisfies this same strong uniform inte-
grability criterion on every subinterval [c,d] ⊂ [a,b]: there is a number I(c,d) so
that, for every ε > 0 and C > 0, there is a δ > 0 with the property that

∣

∣

∣

∣

∣

I(c,d)−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] satisfying
n

∑
i=1

|xi− xi−1| ≤C

where c= x0, d = xn, 0< |xi− xi−1|< δ and each ξi belongs to the interval with
endpoints xi and xi−1 for i= 1,2, . . . ,n.

The method of proof is to use the equivalent “Cauchy criterion” as encoun-
tered in Step 1. Just check that, if f satisfies a Cauchy criterion on [a,b] then it
must also satisfy a Cauchy criterion on each subinterval [c,d].

Step 3 The next step is to verify the identity

I(x,z) = I(x,y)+ I(y,z)

for all a ≤ x < y < z ≤ b where these expressions have been defined in Step 2.
Again this should present no conceptual difficulty, although the steps require some
attention to detail and work with inequalities.

Step 4 Finally we are ready to prove the crucial step in Robbins’s theorem, i.e,
we assume that f satisfies the strong “integrability” criterion and prove that f must
be continuous and that

I =
∫ b

a
f (x)dx.

We know (from Steps 1–3) that such a function f with these properties would
have to have the same properties on each subinterval and that that there must be
a function F : [a,b]→ R with I(x,y) = F(y)−F(x) for each a≤ x< y≤ b.

Suppose, contrary to what we want to prove, that there is a point z of disconti-
nuity of f in the interval. We will assume that a< z< b and derive a contradiction.
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(The cases z= a and z= b are similarly handled.) Then there must be a positive
number η > 0 so that, if we choose any points z1 < z < z2, the interval [z1,z2]
must contain points c1 and c2 for which | f (c1)− f (c2)|> η.

Now we apply the strong integrability hypothesis using

I = F(b)−F(a), ε = η/4, and C = b−a+4

to obtain a choice of δ with 0 < δ < 1 that meets the conditions of the definition
on [a,b]. Choose points z1 < z < z2 so that z2− z1 < δ and then select points c1
and c2 in the interval [z1,z2] for which f (c1)− f (c2)> η.

Construct a sequence

a= x0 < x1 < · · ·< xp = z1

along with associated points {ξi} so that 0< xi− xi−1 < δ and so that
∣

∣

∣

∣

∣

F(z1)−F(a)−
p

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< η/4.

This just uses the integrability hypotheses of the function f on the interval [a,z1].
Choose the least integer r so that

r(z2− z1)> 1.

Note that

1< r(z2− z1) = (r−1)(z2− z1)+(z2− z1)≤ 1+(z2− z1)< 1+δ < 2.

Using r continue the sequence {xi} by defining points

xp = xp+2 = xp+4 = · · ·= xp+2r = z1

and

xp+1 = xp+3 = xp+5 = · · ·= xp+2r−1 = z2.

Write ξp+2 j = c2 and ξp+2 j−1 = c1 for j = 1,2, . . . ,r.
Finally complete the sequence {xi} by selecting points

z1 = xp+2r < xp+2r+1 < · · ·< xn−1 < xn = b

along with associated points {ξi} so that
∣

∣

∣

∣

∣

F(b)−F(z1)−
n

∑
i=p+2r+1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< η/4.

This just uses the integrability hypotheses for f on [z1,b].
Consider now the sum

n

∑
i=1

f (ξi)(xi− xi−1)

taken over the entire sequence thus constructed. Observe that
n

∑
i=1

|xi− xi−1|=
p

∑
i=1

(xi− xi−1)+
p+2r

∑
i=p+1

|xi− xi−1|+
n

∑
i=p+2r+1

(xi− xi−1)
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= (z1−a)+2r(z2− z1)+(b− z1) =

(b−a)+2r(z2− z1)≤ (b−a)+4=C.

Thus the points chosen satisfy the conditions of the definition for the δ selected
and we must have

∣

∣

∣

∣

∣

F(b)−F(a)−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε < η/4.

On the other hand
[

F(z1)−F(a)+F(b)−F(z1)−
n

∑
i=1

f (ξi)(xi− xi−1)

]

=

[

F(z1)−F(a)−
p

∑
i=1

f (xi)(xi− xi−1)

]

+

[

F(b)−F(z1)−
n

∑
i=p+2r+1

f (ξi)(xi− xi−1)

]

−
[

p+2r

∑
i=p+1

f (ξi)(xi− xi−1).

]

From this we deduce that
∣

∣

∣

∣

∣

p+2r

∑
i=p+1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< 3η/4.

But a direct computation of this sum shows that
p+2r

∑
i=p+1

f (ξi)(xi− xi−1) = [ f (c1)− f (c2)]r(z2− z1)> ηr(z2− z1)> η.

This contradiction completes the proof.

1.4 Characterization of Newton’s integral

We have characterized the Newton integral of continuous functions entirely by a
concept expressed in terms of Riemann sums. The Classical Newton integral can
be equally well characterized in general by a slight modification, a modification
that takes a uniform property and substitutes a more general pointwise property.

This is identical to an old problem of W. H. Young6: to determine necessary
and sufficient conditions on a function f in order that it should be the derivative of
some other function, i.e., in order that it have a Newton integral. We might recall
from elementary calculus already one sufficient condition (that f might be contin-

6W. H. Young, A note on the property of being a differential coefficient, Proc. London Math. Soc.

(2) 9 (1911) 360–368.
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uous) and perhaps one necessary condition (that f should have the intermediate
value property).

We can use a pointwise version of Robbins’s theorem to give a complete an-
swer to this problem in terms of Riemann sums. We begin with the easy direction
as a warm-up and to clarify the ideas.

Lemma 1.10 Let F : [c,d] → R be a differentiable function and let a, b ∈ [c,d],

ε > 0, and C > 0 be given. Then there is a positive function δ : [c,d]→ R
+ with

the property that
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

F ′(x)dx−F ′(ξi)(xi− xi−1)

∣

∣

∣

∣

< ε (1.6)

and
∣

∣

∣

∣

∣

∫ b

a
F ′x)dx−

n

∑
i=1

F ′(ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε (1.7)

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] with these four

properties:

1. a= x0 and b= xn.

2. 0< |xi− xi−1|< δ(ξi) for all i= 1,2, . . . ,n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i= 1,2, . . . ,n.

4. ∑n
i=1 |xi− xi−1| ≤C.

Exercise 16 Prove Lemma 1.10. Answer

Characterizing exact derivatives This lemma has a converse which offers a
complete characterization of the classical Newton integral precisely as a property
of Riemann sums. What functions f : [a,b]→R are Newton integrable (i.e., what
functions have an antiderivative)?
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Theorem 1.11 (Characterization of derivatives) A function f : [a,b]→ R is an

exact derivative if and only if it has the following strong pointwise integrability

property: there is a number I so that, for any choice of ε > 0 and C > 0, there

must exist a positive function δ : [a,b]→ R
+ with the property that

∣

∣

∣

∣

∣

I−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] with these four

properties:

1. a= x0 and b= xn.

2. 0< |xi− xi−1|< δ(ξi) for all i= 1,2, . . . ,n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i= 1,2, . . . ,n.

4. ∑n
i=1 |xi− xi−1| ≤C.

Necessarily then,

I =
∫ b

a
f (x)dx.

This theorem too gives us some insight into integration theory. Instead of bas-
ing the calculus integral on the concept of an antiderivative it could instead be
based on a definition of an integral centered on the concept of Riemann sums.
This gives us two equivalent formulations of the Newton integral: one uses an
antiderivative and one uses Riemann sums. The latter has some theoretical ad-
vantages since it is hard to examine a function and conclude that it is a derivative
without actually finding the antiderivative itself. Our main interest in this theorem
is that it leads naturally to the correct and natural definition of the integral on the
real line.

1.4.1 Proof of Theorem 1.11

One direction is given by the lemma. We prove the converse direction. The proof
is structured so as to be similar in many details to the proof of Theorem 1.9. The
first three steps are essentially identical and will not need much commentary.

Step 1 We first show that if the function f satisfies the hypotheses of the the-
orem on an interval [a,b] if and only if it satisfies the following equivalent strong
integrability criterion: for every ε > 0 and C > 0, there is a positive function δ on
[a,b] with the property that

∣

∣

∣

∣

∣

m

∑
j=1

f (ξ′j)(x
′
j− x′j−1)−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε
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for any choice of points

x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn and x′0,x
′
1, . . . ,x

′
m and ξ′1,ξ

′
2, . . . ,ξ

′
m

from [a,b] satisfying a= x0 = x′0, b= xn = x′m, and
n

∑
i=1

|xi− xi−1| ≤C and
m

∑
j=1

|x′j− x′j−1| ≤C

where a= x0 = x′0, b= xn = x′n, 0< |xi− xi−1|< δ(ξi), 0< |x′j− x′j−1|< δ(ξ′j),
each ξi belongs to the interval with endpoints xi and xi−1 for i = 1,2, . . . ,n, and
each ξ′j belongs to the interval with endpoints x′j and x′j−1 for j = 1,2, . . . ,m,

This is a standard “Cauchy” version of the integrability condition. Such a state-
ment is equivalent to the other version. It is an essential element of general inte-
gration theory to prove the equivalence of such statements.

Step 2 Now show that, if a function satisfies the hypotheses on an interval
[a,b], then it satisfies this same strong “integrability” criterion on every subinterval
[c,d] ⊂ [a,b]: there is a number I(c,d) so that, for every ε > 0 and C > 0, there
is a positive function δ on [a,b] with the property that

∣

∣

∣

∣

∣

I(c,d)−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] satisfying
n

∑
i=1

|xi− xi−1| ≤C

where c = x0, d = xn, 0 < |xi− xi−1| < δ(ξi) and each ξi belongs to the interval
with endpoints xi and xi−1 for i= 1,2, . . . ,n.

Step 3 Next show that

I(x,z) = I(x,y)+ I(y,z)

for all a≤ x< y,z≤ b.

Step 4 Let us then suppose that f is a function possessing this strong integra-
bility property on an interval [a,b]. We know (by Steps 1–3) that such a function f

with these properties would have to have the same properties on each subinter-
val. Moreover there must be a function F : [a,b]→ R with I(x,y) = F(y)−F(x)

for each a≤ x< y≤ b.
We claim now that F ′(x) = f (x) at every point x in the interval [a,b]. Suppose

(contrary to this) that there is a point z in the interval at which it is not true that

F ′(z) = f (z).

One possibility is that this is because the upper right-hand (Dini) derivative at z
exceeds f (z) by some positive value η> 0. Another is that the value f (z) exceeds
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the upper right-hand (Dini) derivative at z by some positive value η > 0. There
are six other possibilities, corresponding to the other three Dini derivatives under
which F ′(z) = f (z) might fail. It is sufficient for a proof that we show that this first
possibility cannot occur. From this we will obtain a contradiction to the statement
in the theorem.

Thus we will assume that there must be a positive number η > 0 so that we
can choose an arbitrarily small positive number t so that the interval [z,z+ t] has
this property:

F(z+ t)−F(z)

t
> f (z)+η

and hence so that

F(z+ t)−F(z)> f (z)t+ηt.

We give the details assuming this and that a < z < b. Now we apply the
theorem using ε < η/4, and C = b−a+6 to obtain a choice of positive function
δ that meets the conditions of the theorem. Choose a number 0< t < 1 for which
t < δ(z) and z+ t < b and with the property that

F(z+ t)−F(z)> f (z)t+ηt.

Let s be the least integer so that st > 2. Note that, consequently,

2< st = (s−1)t+ t ≤ 2+ t < 3.

We first select a sequence of points

z= u0 < u1 < u2 < · · ·< uk−1 = z+ t

and points υi from [xi−1,xi] so that 0< ui−ui−1 < δ(υi) and
∣

∣

∣

∣

∣

F(z+ t)−F(z)−
k−1

∑
i=1

f (υi)(ui−ui−1)

∣

∣

∣

∣

∣

< ηt/2

This is possible simply because f possesses the strong integrability property on
the interval [z,z+ t]. Now we add in the point uk = z and υk = z.

We compute that
k

∑
i=1

f (υi)(ui−ui−1) =− f (z)t+
k−1

∑
i=1

f (υi)(ui−ui−1)

>−[F(z+ t)−F(z)−ηt]+
k−1

∑
i=1

f (υi)(ui−ui−1)> ηt/2.

while at the same time
k

∑
i=1

|xi− xi−1|= 2t.

Repeat this sequence

z= u0 < u1 < · · ·< uk−1 > uk = z
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exactly s times so as to produce a sequence

z= u0,u1, . . .ur−1,ur = z

with the property that
r

∑
i=1

f (υi)(ui−ui−1)> ηst/2> η

while at the same time
r

∑
i=1

|ui−ui−1|= 2st < 6.

Now construct a sequence

a= z0 < z1 < · · ·< zp = z

along with associated points ζi so that 0< zi− zi−1 < δ(ζi) and so that
∣

∣

∣

∣

∣

∫ z

a
f (x)dx−

p

∑
i=1

f (ζi)(zi− zi−1)

∣

∣

∣

∣

∣

< η/4.

We also need a sequence

z= w0 < w1 < .. .wq = b

along with associated points ωi so that 0< wi−wi−1 < δ(ωi) and so that
∣

∣

∣

∣

∣

∫ b

z
f (x)dx−

q

∑
i=1

f (ωi)(wi−wi−1)

∣

∣

∣

∣

∣

< η/4.

Both of these just use the strong integrability property of f on the subintervals
[a,z] and [z,b]

Now we put these three sequences together in this way

a= z0 < z1 < · · ·< zp = z= u0,u1, . . . ,ur = z= w0 < w1 < .. .wq = b

to form a new sequence a = x0,x1, . . . ,xN = b for which |xi− xi−1| < δ(ξi) and
for which

N

∑
i=1

|xi− xi−1|= (z−a)+2st+(b− z) = b−a+2st < b−a+6=C.

We use ξi in each case as the appropriate intermediate point used earlier: thus
associated with an interval [zi−1,zi] we had used ζi; associated with an interval
[wi−1,wi] we had used ωi; while associated with a pair (ui−1,ui) we use υi.

Consider the sum
N

∑
i=1

f (ξi)(xi− xi−1)

taken over the entire sequence thus constructed. Because the points satisfy the
conditions of the theorem for the δ function selected we must have

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

N

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε < η/4.
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On the other hand
[∫ z

a
f (x)dx+

∫ b

z
f (x)dx−

N

∑
i=1

f (ξi)(xi− xi−1)

]

=

[∫ z

a
f (x)dx−

p

∑
i=1

f (ζi)(zi− zi−1)

]

+

[∫ b

z
f (x)dx−

q

∑
i=1

f (ωi)(wi−wi−1)

]

+

[

r

∑
i=1

f (υi)(ui−ui−1)

]

.

From this we deduce that
r

∑
i=1

f (ξi)(ui−ui−1)< 3η/4

and yet we recall that
r

∑
i=1

f (ξi)(ui−ui−1)> ηst/2> η.

This contradiction completes the proof.

1.5 How to generalize the integral?

The classical Newton integral is not nearly strong enough for the applications that
are demanded of a theory of integration. This was apparent certainly by the early
19th century7.

The first suggestion that one might make is to interpret the integral∫ b

a
f (x)dx= F(b)−F(a)

more broadly by no longer insisting that F ′(x) = f (x) holds everywhere. Thus
we introduce an exceptional set N of points x where F ′(x) = f (x) might fail. This
could be because f (x) is not defined, or F ′(x) does not exist, or even where F ′(x)
and f (x) do exist but have different values.

The simplest such generalization would allow finite sets. Our text The Calculus

Integral develops the theory of such an integral as a teaching tool that leads the
student to the modern versions. A more ambitious approach leads to the correct
theory.

7For an account of the integration difficulties of that era see David Bressoud, Radical Approach
to Real Analysis, Washington, D.C.: Mathematical Association of America, 2007.
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We have seen in Lemma 1.10 that the identity

F(x) =
∫ x

a
f (t)dt (a≤ x≤ b)

is closely related to the finding of a positive function δ so that the sum
n

∑
i=1

|F(ai)−F(bi)− f (ξi)(bi−ai)| (1.8)

is small for partitions

{([ai,bi],ξi) : i= 1,2,3, . . .}
of [a,b] finer than δ. This is merely because, if F ′(x) = f (x) everywhere, then we
can choose δ(x)> 0 small enough so that

|F(y)−F(x)− f (x)(y− x)|< ε|y− x|
for |x− y|< δ(x). In that case the sum in (1.10) is easily estimated:

n

∑
i=1

|F(ai)−F(bi)− f (ξi)(bi−ai)| ≤
n

∑
i=1

ε(bi−ai) = ε(b−a).

If we introduce a set of points N where F ′(x) = f (x) fails we are left trying to
control a sum of the form

n

∑
i=1

|F(ai)−F(bi)− f (ξi)(bi−ai)|

for a subpartition

{([ai,bi],ξi) : i= 1,2,3, . . .}
of [a,b] and with all associated points ξi belonging to the exceptional set N.

The easy and obvious way to control this is to require that the two sums
n

∑
i=1

|F(ai)−F(bi)| and
n

∑
i=1

| f (ξi)|(bi−ai)

for such subpartitions are small.
This leads us to the notion of “small Riemann sums” and hence to the idea

of sets of measure zero and functions of zero variation. We explore these now.
We return to these ideas in Chapter 2 where detailed proofs are available. For
our introductory chapter, however, the reader is encouraged to try to establish all
statements now. This will help clarify the nature of the integrals to be defined.

1.6 Exceptional sets

We now define the notion of sets of measure zero and functions having zero vari-
ation using the theme of “small Riemann sums” and motivated by our discussion
in the preceding section.



1.6. EXCEPTIONAL SETS 29

1.6.1 Sets of measure zero

A set E of real numbers is said to have measure zero8 if all Riemann sums of the
form

n

∑
i=1

f (ξi)(yi− xi)

defined relative to that set are arbitrarily small. The definition assumes a rather
familiar form and is, consequently, closely linked to ideas in integration theory. In-
deed we can anticipate from the form of the definition that sets of measure zero
are precisely those that play a key role in integration theory: they are the “negligi-
ble sets, the sets upon which the values of a function f can have no influence on
the value of the integral of f .

Definition 1.12 (Measure zero) A set E of real numbers is said to have measure

zero if for every ε > 0 and all functions f : E → R there is a positive function

δ : E → R
+ such that

∣

∣

∣

∣

∣

n

∑
i=1

f (ξi)(yi− xi)

∣

∣

∣

∣

∣

< ε

for all subpartitions {([xi,yi],ξi) : i= 1,2,3, . . .} for which yi−xi < δ(ξi) and with

all associated points ξi ∈ E.

Subpartitions anchored in a set Whenever a subpartition subpartitions

π = {([xi,yi],ξi) : i= 1,2,3, . . .}
is given with all associated points ξi chosen from a fixed set E we say that π is
anchored in E. Evidently this will have rather frequently so it is useful to have
some informal language that expresses the idea quickly.

A characterization of measure zero sets A simple and useful characterization
is available in the following lemma. Here we have replaced the requirement to
check “all functions” with an easier handled version that requires producing only
one function with the small Riemann sums property. We shall find, in the next
chapter, two more characterizations including the original definition of Lebesgue.

Lemma 1.13 A set E of real numbers has measure zero if and only if there is

some positive function g : E →R
+ that, for every ε> 0, there is a positive function

δ : E → R
+ such that

n

∑
i=1

g(x)(yi− xi)< ε

for all subpartitions {([xi,yi],ξi) : i= 1,2,3, . . .} anchored in E and finer than δ.

8Lebesgue’s definition was different but equivalent.
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As a corollary we have this special condition which could also have been taken
as our definition of sets of measure zero.

Corollary 1.14 A set E of real numbers has measure zero if and only if for every

ε > 0, there is a positive function δ : E → R
+ such that

n

∑
i=1

(yi− xi)< ε

for all subpartitions {([xi,yi],ξi) : i= 1,2,3, . . .} anchored in E and finer than δ.

Exercise 17 Show that all subsets of a set of measure zero are also of measure

zero.

Exercise 18 Show that a union of a sequence of sets of measure zero is also of

measure zero.

Exercise 19 Show that countable sets have measure zero.

Exercise 20 (infinite derivatives) LetN⊂ (a,b) be a set of measure zero. Show

that there is a nondecreasing function φ : [a,b] → R so that φ′(x) = +∞ for all

x ∈ N. Answer

1.6.2 Proof of Lemma 1.13

In one direction this is easy since if this property holds for all such functions f

then it certainly holds a particular choice of positive function g(x) on E.
Suppose that g : E →R

+ is a positive function with the property that, for every
ε > 0, there is a positive function δ : E → R

+ such that
n

∑
i=1

g(x)(yi− xi)< ε

for all subpartitions {([xi,yi],ξi) : i = 1,2,3, . . .} anchored in E and finer than
δ. Fix a positive integer k and let Ek denote the set of points x ∈ E at which
g(x)> 1/k.

Take any function f on Ek and write

Emk = {x ∈ Ek : m−1≤ | f (x)|< m}
for each integer m = 1, 2, 3, . . . , noting that the union of the sets Emk is the set
Ek itself. Define δm on E so that

n

∑
i=1

g(x)(yi− xi)< ε2−mm−1k−1

for all subpartitions {([xi,yi],ξi) : i= 1,2,3, . . .} anchored in E and finer than δm.
Now take δ(x) = δm(x) for x ∈ Emk. Consider a subpartition

{([xi,yi],ξi) : i= 1,2,3, . . .}
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anchored in Ek and finer than δ. Then
∣

∣

∣

∣

∣

n

∑
i=1

f (ξi)(yi− xi)

∣

∣

∣

∣

∣

≤
n

∑
i=1

| f (ξi)|(yi− xi)

≤
∞

∑
m=1

∑mkg(ξi)(yi− xi)≤
∞

∑
m=1

mk
[

ε2−mm−1k−1
]

= ε.

This requires separately summing the terms for which ξi belongs to different sets
Emk.

This verifies that each set Ek has measure zero by definition. By Exercise 18
a union of a sequence of sets of measure zero is also of measure zero. Hence E

is also of measure zero.

1.7 Zero variation

A function F is said to have zero variation on a set E of real numbers if a certain
Riemann sum of the form

n

∑
i=1

|F(yi)−F(xi)|

defined relative to that set is arbitrarily small. The definition assumes again a
familiar form and is also closely linked to ideas in integration theory.

Definition 1.15 (Zero variation) A function F : R→ R is said to have zero vari-

ation on a set E of real numbers if for every ε > 0 there is a positive function

δ : E → R
+ such that

n

∑
i=1

|F(yi)−F(xi)|< ε

whenever a subpartition

{([xi,yi],ξi) : i= 1,2,3, . . .}
is anchored in E and finer than δ.

We should note an obvious connection between these two notions: a set E
has measure zero if and only if the identity function F(x) = x has zero variation
on the set E. Indeed most of the functions one encounters in the calculus will
have this feature: they have zero variation on sets of measure zero. This is a key
observation for integration theory as it will turn out.

Exercise 21 Show that if a function has zero variation on each set in a sequence

E1, E2, E3, . . . then that function has zero variation on the union
⋃∞

n=1En.

Exercise 22 Show that a continuous function has zero variation on every count-

able set.

Answer
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Exercise 23 Show that a Lipschitz function has zero variation on every set of

measure zero.

Exercise 24 Show that a function with a zero derivative at every point of a set E

has zero variation on E. Answer

Exercise 25 Show that a function with a finite derivative at every point of a mea-

sure zero set E has zero variation on E.

Answer

Exercise 26 Show that a function that has zero variation on an open interval

(a,b) is necessarily constant on that interval. Answer

Exercise 27 (inverse function) Let F : [a,b] → R be a continuous, strictly in-

creasing function and let G : [F(a),F(b)]→R be its inverse. Let N ⊂ [a,b]. Show

that G has zero variation on the set F(N) if and only if N has measure zero.

Answer

Exercise 28 (left inverse) Let F : [a,b]→R be a nondecreasing function. Define

the left-inverse of F as the function G : [F(a),F(b)]→ R defined by

G(y) = inf{z ∈ [a,b] : F(z)≥ y}.
Show that

1. G is nondecreasing and left-continuous.

2. G has a jump discontinuity at a point y0 in [F(a),F(b)) if and only if F(u) =

y0 for all u in some open interval (s, t).

3. G(F(t))≤ t for every t ∈ [a,b]. Moreover,G(F(t))< t can occur if and only

if F is constant on some interval [s, t].

4. G(y) = u0 for all y in some interval (y1,y2) ⊂ [F(a),F(b))] if and only if F

has a jump discontinuity at u0 and (y1,y2)⊂ (F(u0−),F(u0+).

5. If F is strictly increasing then G is a left-inverse of F in the sense that

G(F(t) = t for all t ∈ [a,b] and G is continuous.

6. If F is strictly increasing, N ⊂ [a,b], and G has zero variation on the set

F(N), then N has measure zero.

[This exercise is needed in the sequel and placed here for easy reference.]

Answer
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1.8 Generalized Newton integral

We have defined the classical Newton integral (much as Newton himself might
have) as requiring for the expression∫ b

a
f (t)dt = F(b)−F(a)

that F ′(x) = f (x) at every point of the interval [a,b]. There are many reasons for
relaxing this to allow exceptions, a small set of points at which f may fail to be
defined or at which F ′(x) = f (x) might fail. To make this work, however, requires
some assumptions to be added to the function F .

Here are the variants that can be usefully introduced to beginning students
of integration theory, arranged in increasing order of generality (and difficulty). In
each case f is said to be integrable in that sense and the value∫ b

a
f (t)dt = F(b)−F(a)

is assigned to the integral:

Classical f is defined on [a,b] and F ′(x) = f (x) at every point of [a,b].

Naive f is defined at least on (a,b), F is continuous on [a,b] and F ′(x) = f (x)

at every point of (a,b).

Elementary f is defined at least on (a,b) except possibly at finitely many points,
F is continuous on [a,b], while F ′(x) = f (x) at every point of (a,b) with at
most finitely many exceptions.

Utility f is defined at least on (a,b) except possibly for a countable set N, F is
continuous on [a,b], while F ′(x) = f (x) at every point of (a,b) excepting
possibly points in the set N.

General f is defined at least on (a,b) except possibly for a set N of measure
zero, F is continuous on [a,b] and has zero variation on N, while F ′(x) =
f (x) at every point of (a,b) excepting possibly points in the set N.

1.8.1 Exercises

Exercise 29 Show that the function

f (x) =
1√
x

is not Newton integrable on [0,1] in the classical sense but is integrable in a naive

Newton sense.

Exercise 30 Show that the function

f (x) =
1
√

|x|
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Figure 1.3: Graph of the popcorn function.

is not Newton integrable on [−1,1] in the classical or naive senses but is inte-

grable in the elementary Newton sense.

Exercise 31 Show that the popcorn function of Figure 1.3 is Newton integrable in

the utility sense, but is not integrable in the classical, naive, or elementary Newton

senses. [The popcorn function is the function P : [0,1]→ R defined by P(x) = 0

for x irrational and P(x) = 1/q if x = p/q expresses the rational number x in its

lowest terms.] Answer

Exercise 32 Suppose that f : [a,b] → R is integrable in one of the Newton

senses with F as an indefinite integrable. Prove that F has this “absolute con-

tinuity” property: F has zero variation on every subset N ⊂ (a,b) of measure

zero. Answer

Exercise 33 (Justifying the naive integral) Let F ,G, f : [a,b]→R be functions

on [a,b]. Suppose that

1. Both F and G are continuous on [a,b].

2. F ′(x) = G(x) = f (x) for all x in (a,b).

Show that F(b)−F(a) = G(b)−G(a). Answer

Exercise 34 (Justifying the utility integral) Let F , G, f : [a,b] → R be func-

tions on [a,b]. Suppose that

1. Both F and G are continuous.

2. F ′(x) = f (x) for all x in (a,b) with at most countably many exceptions.

3. G′(x) = f (x) for all x in (a,b) with at most countably many exceptions.

Show that F(b)−F(a) = G(b)−G(a). Answer

Exercise 35 (Justifying the general integral) Let F , G, f : [a,b]→ R be func-

tions on [a,b]. Suppose that
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1. Both F and G are continuous.

2. F ′(x) = f (x) for all x in (a,b) excepting at most a set of points N1 of mea-

sure zero.

3. G′(x) = f (x) for all x in (a,b) excepting at most a set of points N2 of mea-

sure zero.

4. F has zero variation on N1.

5. G has zero variation on N2.

Show that F(b)−F(a) = G(b)−G(a). Answer

1.8.2 Newton integral: controlled version

There is yet another variant on the Newton integral. In this section let us discuss
one of these suggested recently by Hana Bendová and Jan Malý9. The reader
who has seen quite enough of Newton-type integrals may wish to proceed di-
rectly to the equivalent Henstock-Kurzweil definition of the integral, since this is
the integral that is our main object of study in the text. But it is too tempting to
introduce yet one more variant for your consideration.

The controlled version of the Newton integral is, as it turns out, just another
way of expressing the general Newton integral without alluding to derivatives or
sets of measure zero. This shifts the technical details from derivatives and vari-
ation to what the authors call a “control function.” The control function is not too
difficult to manipulate, but some students might find it rather non-intuitive.

We review the naive Newton integral but in a rather more suggestive language
that lends itself to an obvious generalization. In order for f : (a,b) → R to be
Newton integrable in the naive sense the following must hold:

There is a continuous function F : [a,b]→R and, for each x ∈ (a,b),

lim
y→x

F(y)−F(x)− f (x)(y− x)

y− x
= 0.

In that case the value of the integral may be taken as∫ b

a
f (x)dx= F(b)−F(a).

Bendová and Malý [5] modify this formulation to produce the following defini-
tion, which they offer as a reasonable alternative starting point for teaching the
general theory of integration on the real line.

9H. Bendová and J. Malý, An elementary way to introduce a Perron-like integral, Annales
Academiae Scientiarum Fennicae Mathematica, Volumen 36, 2011, 153–164.



36 CHAPTER 1. BY WAY OF AN INTRODUCTION

Definition 1.16 (Controlled Newton) A function f : (a,b)→R is said to be New-

ton integrable in the controlled sense provided there is a continuous function

F : [a,b] → R and there is a strictly increasing function φ : (a,b) → R called

the “control” with the property that, for each x ∈ (a,b),

lim
y→x

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)
= 0.

In that case the value of the integral is taken as∫ b

a
f (x)dx= F(b)−F(a).

The exercise below is needed to justify the definition. It is clear that this in-
tegral is more general than the naive Newton integral. It is true, although not im-
mediately apparent, that this integral is equivalent to the general Newton integral.
In the article [5] can be found an incomplete sketch of the program that could be
followed to develop integration theory from this starting point. They include some
of the basic tools for integration like integration by parts and change of variables
and go as far as a proof of the monotone convergence theorem. The techniques
would be accessible to most students of elementary analysis (particularly so for
the excellent mathematics students at Charles University in Prague where the
authors of this article teach.)

Theorem 1.17 A function f : (a,b) → R is Newton integrable in the controlled

sense if and only if it is integrable in the general Newton sense. Moreover the

values of the integral agree.

Exercise 36 (Justifying the controlled integral) Show that, if there are two

continuous functions F1, F2 : (a,b) → R that satisfy the hypotheses of Defini-

tion 1.16, then

F1(b)−F1(a) = F2(b)−F2(a).

Answer

Exercise 37 Show that the condition that, for each x ∈ (a,b),

lim
y→x

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)
= 0

in Definition 1.16 is sufficient to force F to be continuous at every point of (a,b)

(but not necessarily continuous at a and b).

1.8.3 Proof of Theorem 1.17

Let f : (a,b)→ R be Newton integrable in the controlled sense. Then there is an
indefinite integral F : [a,b] → R and a strictly increasing function φ : (a,b) → R
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that serves as the control. This means that for each x ∈ (a,b),

lim
y→x

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)
= 0.

Let x be a point at which φ is differentiable. Then

F(y)−F(x)− f (x)(y− x)

y− x

=
F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)
×
(

φ(y)−φ(x)

y− x

)

→ 0×φ′(x) = 0

as y → x. So F ′(x) = f (x) at each such point. By the Lebesgue differentiation
theorem10 it follows that φ′(x) exists and that F ′(x) = f (x) for a.e. point x in (a,b).

It follows that F is an indefinite Newton integral for f provided we can prove
one further property of F : if N ⊂ (a,b) is a set of measure zero then F has zero
variation on N. Fix an interval [c,d]⊂ (a,b). Let ε > 0 and write

η =
ε

2[φ(d)−φ(c)]
.

For each x ∈ N there is a δ1(x)> 0 so that, for all 0< |y− x|< δ1(x),
∣

∣

∣

∣

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)

∣

∣

∣

∣

< η.

Since N is a set of measure zero there is a positive function δ2 : N → R
+ so that

∑
([u,v],w)∈π

| f (w)|(v−u)< ε/2

whenever π is a subpartition anchored in N finer than δ2. Take δ = min{δ1,δ2}
and use it to verify that F has zero variation on N ∩ [c,d]. If π is a subpartition of
[c,d] anchored in N finer than δ we compute that

∑
([u,v],w)∈π

|F(v)−F(u)| ≤

≤ ∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|+ ∑
([u,v],w)∈π

| f (w)|(v−u)

< ∑
([u,v],w)∈π

η |φ(v)−φ(u)|+ ε/2

≤ η[φ(d)−φ(c)]+ ε/2= ε.

It follows that F has zero variation on N∩ [c,d]. Thus N can be expressed as

N =
∞⋃

n=1

N∩ [a+n−1,b−n−1],

i.e., as the union of a sequence of sets on each of which has F has zero variation.
Consequently F has zero variation on N.

10Not yet proved in the text, but we shall invoke it here nonetheless. See Sections 1.14 and 2.11.
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This completes the proof that every function Newton integrable in the con-
trolled sense must be also integrable in the general Newton sense. The same
function F appears as the indefinite integral for both.

Let us now prove the opposite direction. Let f : (a,b) → R be Newton inte-
grable in the general sense. Then there is an indefinite integral F : [a,b]→ R in
that sense and we need to construct a strictly increasing function φ : (a,b)→ R

that will serve as the control in the sense of Definition 1.16.
Let N be the set of points x in (a,b) at which F ′(x) = f (x) fails. We know

that F has zero variation on N and that N itself is a set of measure zero. Define
φ1(x) = x for each point x in (a,b) and note that

lim
y→x

F(y)−F(x)− f (x)(y− x)

φ1(y)−φ1(x)
= 0.

for each x in (a,b) that is not in N. Since N is a set of measure zero we can
choose (see Exercise 20) a nondecreasing function φ2 for which φ′

2(x) = +∞ for
each x ∈ N. Note that

lim
y→x

f (x)(y− x)

φ2(y)−φ2(x)
= 0.

Finally let us construct the third nondecreasing function φ3.
Since N is a set on which F has zero variation there is, for each integer n =

1,2,3, . . . a positive function δn : N → R
+ so that

∑
([u,v],w)∈π

|F(v)−F(u)|< 2−n

whenever π is a subpartition anchored in N finer than δn.
First, for each integer n = 1,2,3, . . . define the function Gn(x) at each point

a< x< b by requiring Gn(x) to be the supremum of the values

∑
([u,v],w)∈π

|F(v)−F(u)|

taken over all subpartitions π of [a,x] anchored in N and finer than δn.
Note that, for any integer n and all k= 1,2,3, . . . ,n, if x ∈ N and if 0< y−x<

δn(x) then ([x,y],x) is finer than δk and so

Gk(y)−Gk(x)≥ |F(y)−F(x)| .
Similarly if 0< x− y< δn(x) then ([y,x],x) is finer than δk and so

Gk(x)−Gk(y)≥ |F(x)−F(y)| .
We now ready to define our third control

φ3(x) =
∞

∑
k=1

Gk(x).

This is a finite-valued function, nondecreasing on (a,b). Note that, if 0< y− x <

δn(x) then

φ3(y)−φ3(x)≥ n |F(y)−F(x)| .
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and if 0< x− y< δn(x) then

φ3(x)−φ3(y)≥ n |F(x)−F(y)| .
Conseqently for each x ∈ (a,b),

lim
y→x

F(y)−F(x)

φ3(y)−φ3(x)
= 0.

Putting these three controls together

φ = φ1+φ2+φ3

we can now check that for each x ∈ (a,b),

lim
y→x

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)
= 0.

This supplies the needed control for Definition 1.16 and hence f is integrable in
the sense of that definition with the same function F for its indefinite integral.

1.8.4 Continuous linear functionals

The essential features of integration theory are often described in the language of
functionals. We view can any integration method as producing a functional

f −→
∫ b

a
f (x)dx

assigning a real number to any function f belonging to a specified class of func-
tions. The structure of that functional can be discussed using this terminology.

(monotone) If f , g : [a,b] → R are integrable and f (x) ≤ g(x) for all x ∈ [a,b]

then ∫ b

a
f (t)dt ≤

∫ b

a
g(t)dt.

(linear) If f1, f2, . . . fn : [a,b] → R are integrable and h(x) = ∑n
i=1 ci fi(x) is a

linear combination of these functions, then h is integrable in the same sense
and ∫ b

a
h(x)dx=

n

∑
i=1

ci

(∫ b

a
fi(x)dx

)

.

(continuous) If f1, f2, f3, . . . is a uniformly convergent sequence of integrable
functions on [a,b] and f (x)= limn→∞ fn(x). then f is integrable in the same
sense and ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fi(x)dx.

Proofs that each of the Newton variants produces an integration theory with
these three properties are requested in the exercises below. (As we shall see,
however, the elementary version does not quite allow the continuity property since
a uniform limit of functions integrable in that sense might fail to be integrable.)
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Notation A slight shift in notation makes these functional properties rather more
transparent. Use

Γ( f ) =
∫ b

a
f (x)dx

and rewrite the three properties above in rather more of a slogan-like form:

(monotone) If f ≤ g then Γ( f )≤ Γ(g).

(linear) If h= ∑n
i=1 ci fi then Γ(h) = ∑n

i=1 ciΓ( fi).

(continuous) If fn → f uniformly then Γ( f ) = limn→∞ Γ( fn).

Exercise 38 Check the monotone property for one or more of the five Newton

variants. Answer

Exercise 39 Check the linear property for one or more of the five Newton vari-

ants.

Answer

Exercise 40 Show that the continuity property does not hold for the elementary

Newton integral but does hold for the other four Newton variants. Answer

1.8.5 Which Newton variant should we teach

The classical variant (requiring that an integrable function should be everywhere
a derivative) is rather too severe, even for a calculus class. The naive version
is useful, particularly because it allows the integration of some unbounded func-
tions that commonly require “improper integration” techniques when discussed in
conventional calculus classes.

The elementary version, however, seems the most useful11 for beginning cal-
culus students, especially as it requires no technical apparatus beyond the use of
the mean-value theorem. The generality is sufficient for virtually all applications
that are intended in calculus courses and the presentation is considerably easier
than an introduction to the Riemann integral would require. One can still employ
Riemann sums in applications, but the integral itself need not be developed from
such sums.

The utility version is useful for more serious classes that wish to have a deeper
theory of integration but are not prepared for the Lebesgue integral and beyond.
This integrates all regulated functions12 and is easier in many ways than a serious
account of the Riemann integral would require. This is the point of view taken

11Our textbook The Calculus Integral [72] follows this approach and presents a full course of
instruction on such an integral.

12A function is regulated if it has finite one-sided limits at every point. See Section 1.9.1.
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in the elementary analysis text by Elias Zakon13. Thus, in his text, all integrals
concern continuous functions that are differentiable except possibly at the points
of some sequence of exceptional points.

The general version (equivalently the controlled version) is, as it will turn out,
exactly the generalization that is needed for the vast majority of integration ap-
plications on the real line (it is equivalent to the Henstock-Kurzweil integral). This
allows a reasonable stab at using the full theory of integration without too much
technical preparation. It is not likely to be adapted in undergraduate instruction
anytime soon, but one should keep it in mind nonetheless.

1.9 Constructive aspects: the regulated integral

The Newton integral is not constructive. We do not have a method for determining
which functions are integrable in any of these senses since we do not have any
methodology, in general, for determining if a function f has an antiderivative F .
Nor is the value of the integral constructive: if we cannot find F we cannot compute
F(b)−F(a) to evaluate the integral. This means that the theory remains largely
formal: it offers a way to discuss and develop a theory of integration, but we are
somewhat in mystery as to the full nature of the methods until we do much more
analysis.

To make the integral constructive we are forced to narrow the scope of the
integral. Both the Riemann and Lebesgue methods of integration do this. Some
authors suggest avoiding the Riemann methods as they do not lead to a satis-
fying theory of integration that justifies the effort. Many more authors avoid the
Lebesgue methods as too difficult for undergraduate instruction. In this chapter,
we too avoid the Lebesgue methods because we are trying not to work quite so
hard (at least until later). In Chapter 4 we do present Lebesgue’s constructive
theory.

The regulated functions are easy to work with and offer a constructive (if
limited) theory of integration on the real line. The Bourbaki14 suggestion for in-
struction at a lower level was to focus just on regulated functions. As Berberian15

explained it

At the outset, I hasten to say that I remain a “Riemann loyalist”: pound for

pound, the Riemann circle of ideas can’t be beat for its instructional value

to the beginning student of analysis. Consequently, I wouldn’t go so far as

to suggest that the theory of regulated functions replace the Riemann inte-

gral in the beginning undergraduate analysis course; however, in a graduate

13E. Zakon, Mathematical Analysis I, ISBN 1-931705-02-X, published by The Trillia Group, 2004.
14If you don’t happen to know who N. Bourbaki “was” please do some Wiki research. You will find

it more entertaining than anything that could be put here in a footnote.
15Sterling K. Berberian, Classroom Notes: Regulated Functions: Bourbaki’s Alternative to the

Riemann Integral. Amer. Math. Monthly 86 (1979), no. 3, 208–211.
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course in real variables, the theory of regulated functions can be an enter-

taining alternative to a routine review of the Riemann integral; and it is in

some ways a more instructive prelude to the Lebesgue theory, as I hope

to persuade the reader in this brief “comparative anatomy” of integration

theories.

A less ambitious teaching integral (intended for first-year students) by
Dixmier16 used a theory that is limited to functions that are piecewise continu-
ous and have finite one-sided limits at the discontinuities. This would correspond
to our elementary Newton integral, but simplified by refining considerably the class
of functions under consideration so as to have available a constructive process.

1.9.1 Step functions and regulated functions

Let f : [a,b]→ R.

1. If f (x) = χI(x) where I ⊂ [a,b] is an interval I = [c,d], (c,d), [c,d], or (c,d]
then f is said to be a single-step function.

2. If f is a finite linear combination of single-step functions then f is said to be
a step function.

3. If f is a uniform limit on [a,b] of a sequence of step functions then f is said
to be a regulated function.

The following observations are nearly immediate conclusions we can make
from our brief study of the Newton integral. In each case we see that we verify
integrability and compute the value of the integral.

Lemma 1.18 If f (x) = χI(x) is a single-step function on [a,b] then f is integrable

[elementary sense] and∫ b

a
f (x)dx=

∫ b

a
χI(x)dx= λ(I).

Lemma 1.19 If f is a step function on [a,b] then f is integrable [elementary

sense] and ∫ b

a
f (x)dx=

n

∑
i=1

ciλ(Ii).

where

f (x) =
n

∑
i=1

ciχIi(x)

is any representation of f as a linear combination of single-step functions.

16Jacques Dixmier, Cours de mathématiques du premier cycle. Cahiers Scientifiques, Fasc. 30.
Gauthier-Villars, Paris, 1967.
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Lemma 1.20 If f is a regulated function on [a,b] then f is integrable [utility sense]

and ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fi(x)dx.

where { fi} is any representation of f as a uniform limit of step functions.

Exercise 41 Verify that a single-step function is integrable [elementary sense]

and show how to evaluate the integral. Answer

Exercise 42 Show that a function s : [a,b]→R is a step function if and only there

are points

a= x0 < x1 < x2 < · · ·< xn = b

so that s is constant on each open interval (xi−1,xi) for i = 1,2, . . . ,n and verfiy

that, in that case, ∫ b

a
s(x)dx=

n

∑
i=1

ci(xi− xi−1)

where ci is the value of s on (xi−1,xi).

Exercise 43 Show that a regulated function f : [a,b]→ R has these properties:

1. f is bounded.

2. f is continuous nearly everywhere on [a,b].

3. f has finite one-sided limits at each point of [a,b].

Answer

Exercise 44 Show that a function f : [a,b]→ R is regulated if and only if it has

finite one-sided limits at each point of [a,b]. Answer

Exercise 45 Suppose that f : [a,b]→ R is regulated and let F be an indefinite

integral. Show that F has finite one-sided derivatives at each point, in fact that, for

all a≤ x< b,

D+F(x) = lim
t→x+

f (t)

and, for all a< x≤ b,

D−F(x) = lim
t→x−

f (t).

Exercise 46 Show that any monotonic function is regulated. Answer

Exercise 47 The regulated functions are not the only class of Newton integrable

functions whose integrals can be constructed. Show that if F : [a,b] → R is a

continuous function that has a continuous derivative F ′ on (a,b) then the value of

the integral of F ′ can be constructed. Answer
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Exercise 48 Show that the regulated integral (unlike the Newton integral) is an

absolute integration method, i.e. that whenever a function f is regulated so too is

the function | f |. Answer

Exercise 49 Show that Dixmier’s teaching integral (unlike the Newton integral) is

an absolute integration method, i.e. that whenever a function f is integrable by his

method so too is the function | f |. Answer

1.10 Riemann’s integral

Integration theory developed in quite a different direction historically. The five ver-
sions of Newton’s integral might have offered a different history to the subject,
but the popularity of Riemann’s ideas led to a more stagnant and less insightful
development.

By the middle of the nineteenth century Riemann, clearly inspired by Cauchy’s
clarification of Newton’s theory, was lecturing on a general integration theory
based on it. This is a standard and time-honored tradition in mathematics. What
an earlier mathematician proposes as a theorem, you will propose as a definition.
Thus Theorem 1.8 turned into this.

Definition 1.21 (Riemann integral) Let f be a function that is defined at every

point of [a,b]. Then, f is said to be Riemann integrable on [a,b] if it satisfies the

following “uniform integrability” criterion: there is a number I so that, for every

ε > 0 there is a δ > 0, with the property that
∣

∣

∣

∣

∣

I−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

for which

xi− xi−1 < δ

with associated points ξi ∈ [xi−1,xi].

The number I in the definition would then be written in integral notation as

I = (R)
∫ b

a
f (x)dx.

Compatibility The Riemann integral is compatible with the various versions of
the Newton integral but the relationship is murky. All continuous functions are
integrable in the Riemann sense and in the classical Newton sense with the values
of the integrals agreeing (of course). Most bounded functions (but not all) that are
integrable in the Newton sense (elementary or utility) are Riemann integrable and,
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again, the values of the integrals agree. Not all Riemann integrable functions are
integrable in the Newton sense (elementary or utility). It is safe, however, to write

(R)
∫ b

a
f (x)dx=

∫ b

a
f (x)dx

when we are sure that the function f is integrable in both senses. For unbounded
functions the Riemann integral cannot be used.

We will see that all regulated functions are Riemann integrable. So the Rie-
mann offers another (more complicated) constructive approach to integration the-
ory. The class of Riemann integrable functions is larger than the class of regulated
functions and one would think that that alone would justify pursuing this theory.
The class of Riemann integrable functions, however, does not play a truly signifi-
cant role in analysis and it is better for many reasons to bypass the theory except
for historical curiousity.

The general Newton integral does include the Riemann integral (as well as the
Lebesgue integral) and is sufficiently general for all but very specialized integration
problems.

1.10.1 Integrability criteria

What functions are Riemann integrable? This seems an important question, and
it certainly is an important question if we are to commit ourselves to a study of this
integral. In fact, though, we are not much interested in this very limited integral and
would not want to make too much of an effort to answer this question. We answer
it here only in order to introduce some methods and ideas that will be useful later
on.

The Newton integral (along with its several variants) makes a good teaching
integral. The Riemann integral is rather overrated as a teaching integral and we
wish to make minimal use of it. Even so we pause here to present a few integra-
bility criteria for historical interest and for motivation.

The following list of criteria assists in determining what functions are or are
not Riemann integrable. Let f : [a,b]→ R and let λ(J) denote the length of the
interval J (allowing also J to be a degenerate interval [i.e., empty or a single
point]).

Cauchy Criterion For every ε > 0 there is a δ > 0, with the property
that

∣

∣

∣

∣

∣

n

∑
i=1

m

∑
j=1

[ f (ξi)− f (η j)]λ(([ai,bi]∩ [c j,d j])

∣

∣

∣

∣

∣

< ε (1.9)

whenever

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
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and

{([c j,d j],η j) : j = 1,2,3, . . . ,m}
are partitions of [a,b] that are finer than δ.

Criterion M For every ε > 0 there is a δ > 0, with the property that
n

∑
i=1

m

∑
j=1

∣

∣ f (ξi)− f (η j)
∣

∣λ(([ai,bi]∩ [c j,d j])< ε

whenever

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
and

{([c j,d j],η j) : j = 1,2,3, . . . ,m}
are subpartitions of [a,b] that are finer than δ. (The criterion
is named in honor of E. J. McShane who used it in a different
context.)

Riemann’s Criterion For every ε > 0 there is a partition of [a,b]

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
with the property that

n

∑
i=1

ω f ([ai,bi])(bi−ai)< ε.

Lebesgue’s Criterion f is bounded and almost everywhere contin-
uous17.

Theorem 1.22 Each of the four criteria is equivalent to the Riemann integrability

of the function f .

Exercise 50 Show that the Riemann integral (unlike the Newton integral) is an

absolute integration method, i.e. that whenever a function f is Riemann integrable

on an interval so too is the function | f |. Answer

1.10.2 Proof of Theorem 1.22

We shall prove that the four criteria are equivalent and that any one of them is in
turn equivalent to the Riemann integrability of the function f on the interval [a,b].
Note first that each of the criteria requires f to be bounded so that we need not
address that.

The Cauchy Criterion is equivalent to Riemann integrability Indeed the first
criterion is exactly the same as the usual and familiar Cauchy criterion, which in
this instance would more likely be written in this form:

17A function is almost everywhere (a.e.) continuous if the set of points of discontinuity forms a set
of measure zero.
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For every ε > 0 there is a δ > 0, with the property that
∣

∣

∣

∣

∣

n

∑
i=1

f (ξi)λ(([ai,bi])−
m

∑
j=1

f (η j)λ(([c j,d j])

∣

∣

∣

∣

∣

< ε (1.10)

whenever

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
and

{([c j,d j],η j) : j = 1,2,3, . . . ,m}
are partitions of [a,b] that are finer than δ.

Just check that the inequalities (1.9) and (1.10) are identical.

Criterion M implies the Cauchy Criterion This is available simply from the
triangle inequality. Just notice that

∣

∣

∣

∣

∣

n

∑
i=1

m

∑
j=1

[ f (ξi)− f (η j)]λ(([ai,bi]∩ [c j,d j])

∣

∣

∣

∣

∣

≤
n

∑
i=1

m

∑
j=1

∣

∣ f (ξi)− f (η j)
∣

∣λ(([ai,bi]∩ [c j,d j]).

Cauchy Criterion implies Riemann’s Criterion This is easy. Take two subpar-
titions

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
and

{([ai,bi],ηi) : i= 1,2,3, . . . ,n}
and note the relation between

n

∑
i=1

[ f (ξi)− f (η j)]λ(([ai,bi])

and
n

∑
i=1

ω f ([ai,bi])(bi−ai).

In all cases

[ f (ξi)− f (η j)]≤ ω f ([ai,bi])

and the points ξi and η j can be chosen so that the left-hand side is arbitrarily
close to the right-hand side.

Riemann’s Criterion implies Criterion M Assuming Riemann’s Criterion we
select points of [a,b],

a= x0 < x1 < x2 < · · ·< xk = b
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with the property that
k

∑
i=1

ω f ([xi−1,xi])(xi− xi−1)< ε/3.

Let M be an upper bound for | f | and choose δ smaller than ε(6Mk)−1 and also
smaller than each of the lengths (xi− xi−1).

Now consider any collections

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
and

{([c j,d j],η j) : j = 1,2,3, . . . ,m}
that are subpartitions of [a,b] that are finer than δ.

An interval in one of these partitions is of type 1 (say) if it contains none of the
points x1, x2, . . . , xk−1 Note that if either [ai,bi] or [c j,d j] is not of type 1 then we
can use a crude estimate

∣

∣ f (ξi)− f (η j)
∣

∣λ(([ai,bi]∩ [c j,d j])≤ 2Mδ.

There are fewer than 2k of these intervals and so we can control the sum over
such intervals.

On the other hand if both of the intervals [ai,bi] and [c j,d j] are of type 1 then
the interval [ai,bi]∩ [c j,d j] is entirely inside one of the intervals [xi−1,xi] of the
original partition that we have chosen. We can control the contribution from these
intervals by relating to the sum

k

∑
i=1

ω f ([xi−1,xi])(xi− xi−1).

Arguing using these ideas, we find that
n

∑
i=1

m

∑
j=1

∣

∣ f (ξi)− f (η j)
∣

∣λ(([ai,bi]∩ [c j,d j])≤ 4kMδ+ ε/3< ε.

This is the Criterion M.

Riemann’s Criterion implies Lebesgue’s Criterion We use the oscillation
ω f (x) of the function f at a points x. The set of points of discontinuity of f is
exactly the set

E = {x ∈ [a,b] : ω f (x)> 0}.
let ε > 0. We shall choose a positive function δ : [a,b]→ R

+ so that
n

∑
i=1

ω f (ξi) [yi− xi]< ε

whenever a subpartition of [a,b]

{([xi,yi],ξi) : i= 1,2,3, . . .}
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is given that is anchored in E and finer than δ. It will follow then that E is a set of
measure zero as required.

Starting with Riemann’s Criterion we select a partition of [a,b]

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
with the property that

n

∑
i=1

ω f ([ai,bi])(bi−ai)< ε/3.

Here is how to choose our positive function δ : [a,b]→ R
+: we require only that

the interval [x− δ(x),x+ δ(x)] intersect one (if possible) or at most two of the
intervals in the collection

{[ai,bi] : i= 1,2,3, . . . ,n}.
Note, for example, that if a1 < ξ < b1 then

ω f (ξ1)≤ ω f ([a1,b1])

while if

a1 < ξ = b1 = a2 < b2

then

ω f (ξ)≤ ω f ([a1,b1])+ω f ([a2,b2]).

It follows from these computations that
n

∑
i=1

ω f (ξi) [yi− xi]≤ 3
n

∑
i=1

ω f ([ai,bi])(bi−ai)< ε

whenever a subpartition of [a,b]

{([xi,yi],ξi) : i= 1,2,3, . . .}
is anchored in E and finer than δ. Consequently E is a set of measure zero, as
Lebesgue’s Criterion demands.

Lebesgue’s Criterion implies Riemann’s Criterion For each x in the interval
choose δ(x)> 0 so that

ω f ([x−δ(x),x+δ(x)])≤ ω f (x)+ ε2−1(b−a)−1.

The set of points of discontinuity of f is exactly the set

E = {x ∈ [a,b] : ω f (x)> 0}
and we are assuming, using Lebesgue’s criterion, that the set E is a set of mea-
sure zero. Consequently there is a positive function δ1(x) on [a,b] smaller than
δ(x) with the property that

n

∑
i=1

ω f (ξi) [yi− xi]< ε/2
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whenever a subpartition of [a,b]

{([xi,yi],ξi) : i= 1,2,3, . . .}
is anchored in E and finer than δ.

Take any partition

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}
of the interval finer than δ1. (Such a partition must exist by Cousin’s lemma.) Then,
remembering that ω f (ξi) = 0 for points ξi not in E, we would have

n

∑
i=1

ω f ([ai,bi])(bi−ai)≤
n

∑
i=1

ω f (ξi) [bi−ai]+ ε/2< ε.

This is Riemann’s criterion for the partition we have just chosen.

1.10.3 Volterra’s Example

It is obvious that the Riemann integral does not include the classical Newton in-
tegral since there are unbounded derivatives. It was long thought, however, that
Riemann’s methods did suffice to construct the integral of any bounded deriva-
tive. In 1881 Vito Volterra constructed a bounded derivative on [0,1] which is not
Riemann integrable.

Since that time, a number of authors have constructed other such examples.
Not all of these are easily accessible to the beginning student. A short note of
Casper Goffman18 provides a simple example of such a derivative f and uses
only elementary techniques to show that f has the desired properties.

Essentially the construction is this: define an open set G that is dense in [0,1]

and is the union of a sequence of pairwise disjoint open intervals

G=
∞⋃
i=1

(ai,bi)

for which ∑∞
i=1(bi−ai) = 1/2. Then K = [0,1]\G is a closed set that cannot be

of measure zero (as a simple argument will show). Define a differentiable function
F : [0,1]→ R in such a way that |F ′(x)| ≤ 1 for all x, F ′(x) = 0 for all x ∈ K and
F ′(x) = 1 for at least one point x in every interval (ai,bi). By Lebesgue’s criterion
the function F ′ cannot be Riemann integrable because it is discontinuous at each
point of K that is not isolated in K.

Thus the Riemann integral is a rather odd member of the integration family. It
offers a simple constructive method for obtaining the integral of a large class of
functions, but it does not fit well into the story of the Newton integral which, after
all, is our main narrative here. A deeper study of Riemann’s integral would reveal
yet more flaws. (The next exercise is just one of these.)

18C. Goffman, A bounded derivative which is not Riemann integrable. Amer. Math. Monthly 84
(1977), no. 3, 205–206.
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Exercise 51 Let f , g : [a,b]→ R and suppose that f (x) = g(x) for almost every

point x in [a,b]. Show that if f and g are both Riemann integrable, then∫ b

a
f (x)dx=

∫ b

a
g(x)dx.

Show that, however, it is possible for f to be Riemann integrable without g being

Riemann integrable. Answer

1.11 Integral of Henstock and Kurzweil

Definition 1.21, defining the Riemann integral, in retrospect now appears as a
serious mistake in the history of integration theory. The correct definition for a
general integral on the real line is nearly identical but uses a positive function δ

rather than the uniform version (with a constant δ) promoted by Riemann. The-
orem 1.9 makes it clear that this better version is what is needed to capture the
classical Newton integral and to generalize it. Since Riemann selected to general-
ize only the uniform version, his integral did not even include the Newton integral
of bounded functions (although he would not have noticed this).

Definition 1.23 (Henstock-Kurzweil integral) Let f be a function that is defined

at every point of [a,b]. Then, f is said to be Henstock-Kurzweil integrable on [a,b]

if it satisfies the following “pointwise integrability” criterion: there is a number I so

that, for every ε > 0 there is a positive function δ : [a,b]→ R
+, with the property

that
∣

∣

∣

∣

∣

I−
n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

for which

xi− xi−1 < δ(ξi)

with associated points ξi ∈ [xi−1,xi].

It is immediate that the Henstock-Kurzweil integral includes both the Riemann
integral and the classical Newton integral. As we see, it is easily motivated and
easily presented. It is not clear at this stage how easy it is to develop a practi-
cal theory of integration from this definition. Indeed at this stage we should be
concerned by the fact that Definition 1.23 (unlike Definition 1.21) is not construc-
tive. Partitions finer than a positive function δ are rather more mysterious than
partitions finer than a positive number δ.

Defined everywhere? Note that the function here is defined at every point of
the interval [a,b]. We do not usually insist on this, permitting instead integrable
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functions to be defined only almost everywhere. The way to make this theorem
accessible in general is assign arbitrary values to the function at points where it
is undefined. We will prove later that this does not alter integrability nor change
the integral in any way. A frequent convention, given a function f defined almost
everywhere on an interval (a,b), is to work instead with the function g where we
take g(x) = f (x) when that exists and g(x) = 0 otherwise.

1.11.1 A Cauchy criterion

Integrability in this sense has a familiar Cauchy-type criterion. Here (and else-
where) we use λ(I) to denote the length of an interval I; if I is a degenerate
interval or an empty interval then λ(I) is considered to be zero.

Theorem 1.24 (Cauchy criterion) A necessary and sufficient condition in order

for a function f : [a,b] → R to be Henstock-Kurzweil integrable on a compact

interval [a,b] is that, for all ε > 0, positive function δ : [a,b]→ R
+ can be found

so that
∣

∣

∣

∣

∣

∑
(I,w)∈π

∑
(I′,w′)∈π′

[ f (w)− f (w′)]λ(I∩ I′)

∣

∣

∣

∣

∣

< ε (1.11)

for all partitions π, π′ of [a,b] finer than δ.

Proof. Start by checking that when π and π′ are both partitions of the same inter-
val [a,b] then, for any subinterval I of [a,b]

λ(I) = ∑
(I′,w′)∈π′

λ(I∩ I′)

from which it is easy to see that

∑
(I,w)∈π

f (w)λ(I) = ∑
(I,w)∈π

∑
(I′,w′)∈π′

f (w)λ(I∩ I′).

This allows the difference that would normally appear in a Cauchy type criterion
∣

∣

∣

∣

∣

∑
(I,w)∈π

f (w)λ(I)− ∑
(I′,w′)∈π′

f (w′)λ(I′)

∣

∣

∣

∣

∣

to assume the simple form given in (1.11). In particular that statement can be
rewritten as

∣

∣

∣

∣

∣

∑
(I,w)∈π

f (w)λ(I)− ∑
(I′,w′)∈π′

f (w)λ(I)

∣

∣

∣

∣

∣

< ε. (1.12)

1.11.2 The Henstock-Saks Lemma

One of the most important, if elementary, tools of our theory is the following con-
nection between a function and its indefinite integral. Saks was (perhaps) the first
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to exploit this in a study of integrals as Henstock pointed out later on when some
authors referred to this as “Henstock’s Lemma.”

This can be viewed as the generalization of the classical Newton connection
between a function f and its indefinite integral F where we insist that F ′(x) = f (x)

everywhere. This condition is clearly much more general.

Theorem 1.25 (Henstock-Saks) Suppose that f is a Henstock-Kurzweil inte-

grable function defined at every point of a compact interval [a,b]. Then f is

Henstock-Kurzweil integrable on every closed subinterval of [a,b]. Moreover, for

every ε > 0, there exists a positive function δ : [a,b]→ R
+, so that

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε

whenever π is a subpartition of the interval [a,b] finer than δ, where here

F(x) =
∫ x

a
f (t)dt

is an indefinite integral for f .

The exercise asks for the converse direction.

Exercise 52 Suppose that f , F : [a,b]→R and that, for every ε > 0, there exists

a positive function δ : [a,b]→ R
+, so that

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε

whenever π is a subpartition of the interval [a,b] finer than δ. Show that f is

Henstock-Kurzweil integrable on [a,b] and that∫ b

a
f (t)dt = F(b)−F(a).

Answer

Exercise 53 Suppose that f , F : [a,b]→R and that, for every ε > 0, there exists

a positive number δ, so that

∑
[u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε

whenever π is a subpartition of the interval [a,b] finer than δ. What can you con-

clude?

Answer

1.11.3 Proof of Theorem 1.25

The first step is to show that if f is Henstock-Kurzweil integrable on [a,b], then
f is Henstock-Kurzweil integrable on every closed subinterval of [a,b]. Use the
techniques we have already seen in the proofs of Theorems 1.9 and 1.11. Here
are the details.
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Henstock-Kurzweil integrability on subintervals.

If f : [a,b] → R is Henstock-Kurzweil integrable then it is also inte-
grable on any compact subinterval of [a,b].

Let ε > 0. Suppose that f is Henstock-Kurzweil integrable on [a,b] and [c,d] is a
compact subinterval. Choose a positive function δ : [a,b]→R

+, with the property
that

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

for which

xi− xi−1 < δ(ξi)

with associated points ξi ∈ [xi−1,xi].
Observe that for every pair of partitions π1, and π2 of the subinterval [c,d]

both of which are finer than δ, there is a subpartition π also finer than δ so that
π1∪π and π1∪π are partitions of the full interval [a,b]. In particular then

∣

∣

∣

∣

∣

∑
(I,w)∈π1

f (w)λ(I)− ∑
(I,w)∈π2

f (w)λ(I)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
(I,w)∈π∪π1

f (w)λ(I)− ∑
(I,w)∈π∪π2

f (w)λ(I)

∣

∣

∣

∣

∣

< ε

The integrability of f on [c,d] follows now from the Cauchy criterion.

The indefinite HK integral

If f : [a,b]→ R is Henstock-Kurzweil integrable then there is a func-
tion F : [a,b]→ R, called an indefinite integral for f , so that∫ d

c
f (x)dx= F(d)−F(c)

for every compact subinterval [c,d] of [a,b].

We have already supplied the existence of the integral on the subintervals.
We simply verify that the function

F(t) =
∫ t

a
f (x)dx (a≤ t ≤ b)

will have this stated property.
To see this first check that if a< c< d ≤ b then∫ c

a
f (x)dx+

∫ d

c
f (x)dx=

∫ d

a
f (x)dx. (1.13)
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Consequently∫ d

c
f (x)dx=

∫ d

a
f (x)dx−

∫ c

a
f (x)dx= F(d)−F(c)

as we require. Thus the remainder of the proof for this statement requires proving
the identity (1.13). We will leave this as an exercise to the reader to attempt this
using the Cauchy criterion. [This also follows from Exercise 183 which is a related
exercise for upper integrals from Chapter 3.].

The Henstock-Saks property

If F(x) =
∫ x
a f (t)dt for all a ≤ x ≤ b and ε > 0 then there exists a

positive function δ : [a,b]→ R
+, so that

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε (1.14)

whenever π is a subpartition of the interval [a,b] finer than δ.

Choose a positive function δ : [a,b]→ R
+, so that

∣

∣

∣

∣

∣

F(b)−F(a)− ∑
([u,v],w)∈π

f (w)(v−u)

∣

∣

∣

∣

∣

< ε/4 (1.15)

for every partition π of [a,b] finer than δ. It will be our goal to establish (1.14).
whenever π is a subpartition of the interval [a,b] finer than δ.

Fix π and let π′ ⊂ π be any nonempty subset. We can apply the Cousin lemma
on [a,b] to find partitions of any compact subinterval finer than this δ. This gives
us a useful way to supplement the subpartition π′ so as to form a useful partition
of [a,b]: we write

π\π′ = {([u1,v1],w1),([u2,v2],w2), . . .([uk,vk],wk)}.
Our hypothesis requires F to be an indefinite integral for f on each [ui,vi] (i =
1,2, . . . ,k) and so, for each i = 1,2, . . . ,k, we are able to select a partition πi of
the interval [ui,vi] that is finer than δ in such a way that

∣

∣

∣

∣

∣

F(vi)−F(ui)− ∑
([u,v],w)∈πi

f (w)(v−u)

∣

∣

∣

∣

∣

< ε/(4k). (1.16)

Thus if we augment π′ to form

π′′ = π∪π1∪π2∪· · ·∪πk

we obtain a partition of [a,b] finer than δ and thus also satisfying an inequality of
the form (1.15). Computing with these ideas, we see

∑
([u,v],x)∈π′

[F(v)−F(u)] = F(b)−F(a)−
k

∑
i=1

[F(vi)−F(ui)]
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and

∑
([u,v],w)∈π′

f (w)(v−u) = ∑
([u,v],w)∈π′′

f (w)(v−u)−
k

∑
i=1

(

∑
([u,v],w)∈πi

f (w)(v−u)

)

.

Putting these together with the estimates (1.15) and (1.16) we obtain
∣

∣

∣

∣

∣

∑
([u,v],x)∈π′

[[F(v)−F(u)]− f (x)(v−u)]

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

F(b)−F(a)− ∑
([u,v],x)∈π′′

f (x)(v−u)

∣

∣

∣

∣

∣

+
k

∑
i=1

∣

∣

∣

∣

∣

[F(vi)−F(ui)]− ∑
([u,v],x)∈πi

f (x)(v−u)

∣

∣

∣

∣

∣

< ε/4+ k(ε/(4k) = ε/2.

Let us emphasize what we now see: if π′ is any subset of π we have obtained this
inequality:

∣

∣

∣

∣

∣

∑
([u,v],w)∈π′

[F(v)−F(u)− f (x)(v−u)]

∣

∣

∣

∣

∣

< ε/2.

To complete the proof let

π+ = {([u,v],w) ∈ π : F(v)−F(u)− f (w)(v−u)≥ 0}
and

π− = {([u,v],w) ∈ π : F(v)−F(u)− f (w)(v−u)< 0}.
Then

∑
([u,v],w)∈π+

|F(v)−F(u)− f (w)(v−u)|

= ∑
([u,v],w)∈π+

[F(v)−F(u)− f (w)(v−u)]< ε/2

and

∑
([u,v],w)∈π−

|F(v)−F(u)− f (w)(v−u)|

= ∑
([u,v],w)∈π−

− [F(v)−F(u)− f (w)(v−u)]< ε/2.

Adding the two inequalities proves (1.14).

1.11.4 The Henstock-Kurzweil integral includes all Newton integrals

The Henstock-Kurzweil integral includes all variants of the Newton integrals and in
equivalent to the general version. We use this fact in Chapter 3 to justify embarking
on a detailed study of the Henstock-Kurzweil integral. Although it is useful to have
a wide variety of characterizations of the integral available, the use of Riemann
sums often offers the easiest and most transparent route to proving some property
that we might need.
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Theorem 1.26 The general Newton integral is equivalent in the Henstock-

Kurzweil integral.

Proof. Since the controlled Newton integral is equivalent to the general Newton
integral we could use either in the proof. The former is rather easier and we shall
it here.

Assume that the conditions of Definition 1.16 hold for a function f : (a,b)→R,
a continuous function F : [a,b]→ R, and a control function φ : (a,b)→ R. Fix an
interval [c,d]⊂ (a,b). Let ε > 0 and write

η =
ε

φ(d)−φ(c)
.

For each x ∈ (a,b), there is a δ(x)> 0 so that
∣

∣

∣

∣

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)

∣

∣

∣

∣

< η

if 0< |y− x|< δ(x).
A simple Cousin argument verifies that f is Henstock-Kurzweil integrable on

[c,d] and that ∫ d

c
f (x)dx= F(d)−F(c).

If π = {([u,v],w)} is a partition of [c,d] finer than δ, then
∣

∣

∣

∣

∣

F(d)−F(c)− ∑
([u,v],w)∈π

f (w)(v−u)

∣

∣

∣

∣

∣

≤ ∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|

≤ ∑
([u,v],w)∈π

η[φ(v)−φ(u)] = η[φ(d)−φ(c)] = ε.

That proves that f is Henstock-Kurzweil integrable on [c,d] and that F is an
indefinite integral. The function F is continuous on [a,b]. The extension to the
full interval [a,b] now follows with some further work (or else look ahead to the
Cauchy property of Section 1.13 to find this among the standard properties of the
Henstock-Kurzweil integral).

To prove the converse direction we show that the Henstock-Kurzweil inte-
gral is included in the controlled Newton integral. Suppose that f : [a,b] → R

is Henstock-Kurzweil integrable on [a,b] with F as its indefinite integral. Certainly
F is continuous. We need to construct an appropriate control in the sense of Def-
inition 1.16.

Use the Henstock-Saks lemma (Theorem 1.25) to choose a decreasing se-
quence of positive functions δn : [a,b]→ R

+ so that

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< 2−n

whenever π is a subpartition of the interval [a,b] finer than δn.
First, for each integer n = 1,2,3, . . . define the function Gn(x) at each point
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a< x< b by requiring Gn(x) to be the supremum of the values

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|

taken over all partitions π of [a,x] finer than δn. Note that Gn : [a,b]→ R is non-
decreasing, Gn(a) = 0 and Gn(b)< 2−n.

We see that, for any integer n and all k = 1,2,3, . . . ,n, if 0 < y− x < δn(x)

then ([x,y],x) is finer than δk. Thus

Gk(y)−Gk(x)≥ |F(y)−F(x)− f (x)(y− x)| .
Similarly if 0< x− y< δn(x) then ([y,x],x) is finer than δk and so

Gk(x)−Gk(y)≥ |F(x)−F(y)− f (x)(x− y)| .
We now define our control

φ(x) = x+
∞

∑
k=1

Gk(x).

This is a finite-valued function, increasing on (a,b). Note that, if 0< y−x< δn(x)

then

φ(y)−φ(x)≥ n |F(y)−F(x)− f (x)(y− x)| .
and if 0< x− y< δn(x) then

φ(x)−φ(y)≥ n |F(x)−F(y)− f (x)(x− y)| .
Conseqently for each x ∈ (a,b),

lim
y→x

F(y)−F(x)− f (x)(y− x)

φ(y)−φ(x)
= 0.

Thus φ is the required control verifying that the integral exists and with the same
value as the controlled Newton integral.

Exercise 54 Suppose that f , F : [a,b]→R and that one of these four statements

is true:

1. F ′(x) = f (x) at every point of [a,b].

2. F is continuous on [a,b] and F ′(x) = f (x) at every point of (a,b).

3. F is continuous on [a,b], while F ′(x) = f (x) at every point of (a,b) with at

most finitely many exceptions.

4. F is continuous on [a,b], while F ′(x) = f (x) at every point of (a,b) except-

ing possibly countably many points.

5. F has zero variation on a set N ⊂ [a,b] of measure zero, while F ′(x) = f (x)

at every point of [a,b] excepting possibly points in the set N.
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Give a direct proof (without appealing to Theorem 1.26) that f is Henstock-

Kurzweil integrable on [a,b] and∫ x

a
f (t)dt = F(b)−F(a).

Answer

1.12 Integral of Lebesgue

Historically and theoretically the Lebesgue integral on the real line is the most
important, more useful and broadly studied certainly than the Henstock-Kurzweil
integral. Most textbooks use the Riemann integral as a motivating tool leading to
Lebesgue’s theory. In fact, though, it was rather Newton’s classical integral which
motivated Lebesgue himself. The Riemann integral offers a constructive process
that yields the Newton integral for some, but not all, derivatives. Lebesgue of-
fered as motivation for his integral the problem of finding a constructive process
that would provide the Newton integral of all derivatives. He succeeded in find-
ing a process that worked for all bounded derivatives. We now know that there
is no constructive process19 possible that will yield the Newton integral for all un-
bounded derivatives.

The Lebesgue integral can be characterized in many various ways, some of
them much simpler than Lebesgue’s original thesis would suggest.

Definition 1.27 A function f : [a,b]→ R is said to be Lebesgue integrable pro-

vided that both f and | f | are Henstock-Kurzweil integrable.

In the event that both f and | f | are Henstock-Kurzweil integrable it is common
(and suggestive) to say that f is absolutely integrable. We use the expression
“Lebesgue integrable” instead for cultural reasons.

If f : [a,b]→ R is Lebesgue integrable then one can write

−∞ <−
∫ b

a
| f (x)|dx≤

∫ b

a
f (x)dx≤

∫ b

a
| f (x)|dx< ∞.

If f ,g : [a,b]→ R are Lebesgue integrable then one can write
∣

∣

∣

∣

∫ b

a
f (x)dx−

∫ b

a
g(x)dx

∣

∣

∣

∣

≤
∫ b

a
| f (x)−g(x)| dx.

Both of these ideas are extremely useful and are not available for functions that
are Henstock-Kurzweil integrable, but not absolutely (Lebesgue) integrable.

Measure theory? By defining the Lebesgue integral as a special case of the
Henstock-Kurzweil integral we are placed in an interesting historical position:

19See Randall Dougherty and Alexander S. Kechris, The complexity of antidifferentiation. Adv.
Math. 88 (1991), no. 2, 145–169. [21].
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whereas Lebesgue had to develop measure theory first (and at great length) be-
fore presenting his integration theory, we have the integral already quickly defined,
but now must go about (in our later chapters) the task of developing the necessary
measure theory that will support the integration theory. The essential point to note
here is that the procedure whereby the Lebesgue integral is defined as a special
case of the Henstock-Kurzweil integral, is not intended to side-step measure the-
ory. It just changes the order of the topics a bit. Measure theory remains a central
aspect of the theory of integration on the real line.

1.13 The Cauchy property

The expression of an integral as∫ b

a
f (x)dx= F(b)−F(a)

is sometimes usefully rewritten as∫ b

a
f (x)dx= F(b−)−F(a+)

by using the one-sided limits

F(a+) = lim
c→a+

F(c) and F(b−) lim
d→b−

F(d).

Since an indefinite integral in any of our senses is always continuous this does not
introduce any new methods, although it proves to be suggestive of a new method.

Suppose that we are able to check integrabiliity only on all intervals [c,d] ⊂
(a,b), but not on [a,b] itself. Does it follow that f would have to be integrable
on all of [a,b]? For some integration methods the answer is yes, provided these
one-sided limits F(a+) and F(b−) exist.

The reader will likely recognize this as a method taught in calculus classes
under the unfortunate topic known as “improper integrals.” For example many stu-
dents have been taught that the only correct computation of the integral∫ 1

0

1√
x
dx

must involve these steps:∫ 1

0

1√
x
dx= lim

c→0+

∫ 1

c

1√
x
dx= lim

c→0+

[

2
√
1−2

√
c
]

= 2.

Indeed a student who merely used the function F(x) = 2
√
x to write∫ 1

0

1√
x
dx= F(1)−F(0) = 2

would be severely chastised for her failure to mention that the integrand was un-
bounded and, hence, not integrable by the Riemann method. Both computations
are, however, entirely correct if the integral is interpreted in a Newton sense.
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We introduce the following definition, according to which the computation
above is explained by the failure of the Riemann integral to possess the Cauchy
property.

Definition 1.28 An integration method is said to possess the Cauchy property if

every function f defined on an interval [a,b] is integrable provided

1. f is integrable by that method on all intervals [c,d]⊂ (a,b), and

2. the limits

lim
c→a+

lim
d→b−

∫ d

c
f (x)dx= lim

d→b−
lim
c→a+

∫ d

c
f (x)dx

both exist and are equal.

The method has the bounded Cauchy property if this property holds for all

bounded functions on any interval [a,b].

Only the following methods, from among the integration methods that we have
studied, possess the Cauchy property:

1. The Newton integral (naive, utility, and general versions).

2. The Henstock-Kurzweil integral.

The following methods do not possess the Cauchy property:

1. The Newton integral (classical and elementary).

2. The regulated integral [Section 1.9].

3. The Dixmier teaching integral [Section 1.9].

4. The Riemann integral.

5. The Lebesgue integral.

Both the Riemann and Lebesgue integrals possess the bounded Cauchy property.
The others are too fragile even to have that property.

Exercise 55 The example f (x) = x−1/2 on [0,1] shows that the Rieman integral

does not possess the Cauchy property. Show that it does possess the bounded

Cauchy property. Answer

Exercise 56 Show that the elementary version of the Newton integral does not

possess the Cauchy property. Answer

Exercise 57 Show that the Lebesgue integral does not possess the Cauchy prop-

erty. [Hint: use the function F(x) = x2 sinx−2 on [0,1].

Answer
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1.14 Lebesgue differentiation theorem

Our final application of the methods of this chapter is to prove a famous and
useful theorem of Lebesgue asserting that functions of bounded variation are
almost everywhere differentiable. We have already commented on the central role
that functions of bounded variation must play in the study of absolutely integrable
functions. Accordingly we shall very much need this in our study of the Lebesgue
integral later on.

In Section 2.11 we shall return to this theorem and present a different (more
subtle) proof based on fine covering [i.e., Vitali covering] arguments. We will also
remove the hypothesis that F is continuous. The proof in this chapter is based on
the Rising Sun Lemma of Riesz which is of interest for other reasons.

Theorem 1.29 (Lebesgue differentiation theorem) Let F : [a,b]→R be a con-

tinuous function of bounded variation. Then F is differentiable at almost every

point in (a,b).

Corollary 1.30 Let F : [a,b]→R be a continuous monotonic function. Then F is

differentiable at almost every point in (a,b).

Corollary 1.31 Let F : [a,b]→R be a Lipschitz function. Then F is differentiable

at almost every point in (a,b).

1.14.1 Bounded variation

If a function f is absolutely integrable in any one of our senses on an interval [a,b]
then observe the following estimate. Write

F(x) =
∫ x

a
f (t)dt (a≤ x≤ b).

Take any number of nonoverlapping subintervals of [a,b]

[a1,b1], [a2,b2], [a3,b3], . . . , [aN ,bN ]

and check that
N

∑
i=1

|F(bi)−F(ai)|=
N

∑
i=1

∣

∣

∣

∣

∫ bi

ai

f (t)dt

∣

∣

∣

∣

≤
N

∑
i=1

∫ bi

ai

| f (t)|dt ≤
∫ b

a
| f (t)|dt.

This places an upper bound on sums of the form
N

∑
i=1

|F(bi)−F(ai)| .

Functions for which such sums always remain bounded are said to have
bounded variation on [a,b]. The least upper bound is written as Var(F, [a,b]) and
called the total variation of F on [a,b].
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Indefinite integrals do not have to be of bounded variation. But if the function
being integrated is absolutely integrable then the indefinite integral must be of
bounded variation. In fact, as we have just observed,

Var(F, [a,b])≤
∫ b

a
| f (t)|dt.

The differentiation properties of such functions thus becomes an important con-
cern of integration theory.

Exercise 58 Show that if F has bounded variation on an interval [a,b] then F is

necessarily bounded on [a,b].

Exercise 59 Show that if F has bounded variation on two adjacent intervals [a,b]

and [b,c] then F has bounded variation on [a,c]. In fact, show that

Var(F, [a,c])≤ Var(F, [a,b])+Var(F, [b,c]).

Exercise 60 Is the class of functions of bounded variation on an interval [a,b]

closed under linear combinations? Under products? Under quotients?

1.14.2 The Dini derivatives

The proof of Theorem 1.29 uses the four Dini derivatives. To analyze how a deriva-
tive F ′(x) may fail to exist we split that failure first into a right and left version and
then into two further pieces, an upper and a lower.

The two right Dini derivatives are defined as

D
+
F(u) = inf

δ>0
sup

{

F(v)−F(u)

v−u
: 0< v−u< δ

}

and

D+F(u) = sup
δ>0

inf

{

F(v)−F(u)

v−u
: 0< v−u< δ

}

We will prove that, for almost every point x in (a,b),

D
+
F(x)>−∞, D+F(x)< ∞,

and

D
+
F(x) = D+F(x).

From these three assertions it follows that F has a finite right-hand derivative
D+F(x) at almost every point x in (a,b). The same arguments would apply to the
left-hand Dini derivatives and so we can conclude that F has both a right-hand
and a left-hand derivative almost everywhere. Since the points where a right-hand
and a left-hand derivative can differ form a set that is countable [see Exercise 61]
it would follow that F is differentiable a.e. as stated.
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Exercise 61 (Beppo-Levi) Suppose that a function F : [a,b] → R has both a

right-hand and a left-hand derivative at every point of a nonempty set E ⊂ (a,b)

and that D+F(x) 6= D−F(x) for each x ∈ E. Show that E is countable. [cf. Exer-

cise 331.]

Answer

1.14.3 Two easy lemmas

The proof employs the Rising Sun lemma as well as an elementary geometric
lemma that Donald Austin20 used in 1965 to give a simple proof of this theorem.
Our proof of the differentiation theorem exploits some of the computations in his
proof, but written in different language and employing the Rising Sun lemma for
some of the work.

The Rising Sun lemma This lemma is known as the “Rising Sun” or “Setting
Sun” Lemma, depending on whether you wish the sun to rise in the east (on the
left) or set in the west (on the right).

Lemma 1.32 (Riesz) Let H : [a,b] → R be a continuous function and define a

point in (a,b) to be shaded if there is a point y> x in the interval for which H(x)<

H(y). Then the set of shaded points is open. If {(ak,bk)} is the sequence of

component intervals of that set then H(ak)≤ H(bk) for each k.

Image the sun placed on the x-axis far to the right of the graph of H consid-
ered as a hilly landscape. A point that is shaded (according to the statement in
the lemma) is indeed in the shade of some part of the graph to the right. See
Figure 1.4 for an illustration from the Wolfram website. The images on the web
site are interactive and a good assist to the intuition.

The proof is easy and should be attempted by all novices at least once. Note
especially two facts.

1. If a< x< b and D
+
H(x)> 0 then x is a shaded point for H.

2. If G : [a,b] → R is continuous then all points x at which D
+
G(x) > α are

contained in some collection of pairwise disjoint open intervals {(ak,bk)}
for which

G(bk)−G(ak)≤ α(bk−ak) (1.17)

for each k. [Apply the lemma to H(x) = F(x)−αx.]

Exercise 62 Prove Lemma 1.32. Answer

20D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Amer. Math. Soc.
16 (1965) 220–221.
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Figure 1.4: Riesz’s rising sun lemma.

Austin’s lemma To exploit an inequality such as (1.17) that comes from the
Rising Sun lemma in our proof we need some easy estimates. The proof is left as
an exercise.

Lemma 1.33 (Austin) Let G : [a,b]→ R, and suppose that {(ak,bk)} is a finite

or infinite sequence of pairwise disjoint open subintervals of [a,b].

1. If G(a)≤ G(b), then

− ∑
k≥1

(G(bk)−G(ak))≤ Var(G, [a,b])−|G(b)−G(a)|.

2. If G(b)≤ G(a), then

∑
k≥1

(G(bk)−G(ak))≤ Var(G, [a,b])−|G(b)−G(a)|.

Exercise 63 Prove Lemma 1.33. Answer

1.14.4 Proof of the Lebesgue differentiation theorem

We now prove the theorem. Recall that we are focusing just on the right-hand
derivative, since that is all that we need to establish.

Step 1. The strategy The first step in the proof is to show that at almost every
point t in (a,b),

D+F(t) = D
+
F(t).

If this is not true then there must exist a pair of rational numbers r and s for which
the set

Ers = {t ∈ (a,b) : D+F(t)< r < s< D
+
F(t)}
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is not a set of measure zero. This is because the union of the countable collection
of sets Ers contains all points t for which D+F(t) 6= D

+
F(t).

Let us show that each such set Ers is a set of measure zero. Write α = (s−
r)/2, B= (r+ s)/2, G(t) = F(t)−Bt. Note that

Ers = {t ∈ (a,b) : D+G(t)<−α < 0< α < D
+
G(t)}.

This will make our computations easier to visualize.

Step 2. Use the variation Since F is a continuous function of bounded variation
on [a,b], so too is the function G. In fact

Var(G, [a,b])≤ Var(F [a,b])+B(b−a).

Let ε > 0 and select points

a= s0 < s1 < · · ·< sn−1 < sn = b

so that
n

∑
i=1

|G(si)−G(si−1)|> Var(G, [a,b])−αε.

Let E ′
rs=Ers\{s1,s2, . . . ,sn−1}. Let us call an interval [si−1,si] black if G(si)−

G(si−1)≥ 0 and call it red if G(si)−G(si−1)< 0.

Step 3. Define the function δ For each i = 1,2,3, . . . ,n we define a func-
tion δi as follows. Suppose that [si−1,si] is a black interval and x is any point
in (si−1,si)∩Ers. Note that x is a shaded point for the function H(x) = G(x)+αx

on [si−1,si]. We can use the Rising Sun lemma to select a sequence of open in-
tervals {(ai j,bi j)} of [si−1,si] containing all these shaded points. In particular we
have arranged that each

G(bi j)−G(ai j)≤−α(bi j−ai j).

Moreover, using Lemma 1.33 we see that we will have the inequality

∑
j≥1

α(bi j−ai j)≤− ∑
j≥1

(G(bi j)−G(ai j))≤ Var(G, [si−1,si])−|G(si−G(si−1)|.

If, instead, [si−1,si] is a red interval and x is any point in (si−1,si)∩Ers, we
note that x is a shaded point for the function H(x) = −G(x) +αx on [si−1,si].
We can again apply the Rising Sun lemma to select a sequence of open intervals
{(ai j,bi j)} of [si−1,si] containing all these shaded points. In particular we have
arranged that each

G(bi j)−G(ai j)≥ α(bi j−ai j).

Moreover, again using Lemma 1.33 we see that we will have the inequality

∑
j≥1

α(bi j−ai j)≤ ∑
j≥1

(G(bi j)−G(ai j))≤ Var(G, [si−1,si])−|G(si−G(si−1)|.
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We simply choose δi(x) > 0 so that (x− δi(x),x+ δi(x)) is a subinterval of
that interval (ai j,bi j) to which x belongs.

Finally define δ to assume the value δi(x) whenever x ∈ (si−1,si)∩Ers. Then
δ is defined and positive on all of E ′

rs.

Step 4. Estimate the Riemann sum Let π be any subpartition anchored in E ′
rs

and finer than δ. Our estimate will verify that E ′
rs is a set of measure zero according

to Definition 1.12.
Write πi for the subset of the subpartition π all of whose intervals are subin-

tervals of [si−1,si]. Note that if ([u,v],w) ∈ πi then [u,v] is necessarily contained
in one of the open intervals (ai j,bi j). By our estimates in Step 2 we see that that

α

(

∑
([u,v],w)∈πi

(v−u)

)

≤ Var(G, [si−1,si])−|G(si)−G(si−1)|.

Consequently

α

(

∑
([u,v],w)∈π

(v−u)

)

= α

(

n

∑
i=1

∑
([u,v],w)∈πi

(v−u)

)

≤
n

∑
i=1

Var(G, [si−1,si])−
n

∑
i=1

|G(si−G(si−1)|

≤ Var(G, [a,b])−
n

∑
i=1

|G(si−G(si−1)|< αε.

We have proved that E ′
rs is a set of measure zero. So too then is Ers since the

two sets differ by only a finite number of points.

Step 5. Show the Dini derivatives are finite a.e. We know now that the func-
tion F has a right-hand derivative, finite or infinite, almost everywhere in (a,b). We
wish to exclude the possibility of the infinite derivative, except on a set of measure
zero.

Let

E∞ = {t ∈ (a,b) : D+F(t) = ∞}.
Choose any B so that F(b)−F(a) ≤ B(b− a) and set G(t) = F(t)−Bt. Note
that G(b)≤G(a) which will allow us to apply the second estimate in Lemma 1.33

Let ε > 0 and choose a positive number α large enough so that

Var(G, [a,b])−|G(b)−G(a)|< αε.

Note that every point x ∈ E∞ is a shaded point for the function H(x) = G(x)−αx

on [a,b].
We use the Rising Sun lemma to select a sequence of open subintervals

{(ai,bi)} of [a,b] containing all these shaded points. In particular we have that
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each

G(bi)−G(ai)≥ α(bi−ai).

We choose δ(x) > 0 so that (x− δ(x),x+ δ(x)) is a subinterval of that interval
(ai,bi) to which x belongs.

Let π be any subpartition anchored in E∞ and finer than δ. Our estimate will
verify that E∞ is a set of measure zero. Using Lemma 1.33 we have

α ∑
([u,v],w)∈π

(v−u)≤ Var(G, [a,b])−|G(b)−G(a)|< αε.

We have proved that

∑
([u,v],w)∈π

(v−u)< ε

for every such subpartition π. It follows that E∞ is a set of measure zero. The same
arguments will handle the set

E−∞ = {t ∈ (a,b) : D
+
F(t) =−∞}.

1.14.5 Removing the continuity hypothesis

The earliest proofs of the Lebesgue differentiation theorem (Theorem 1.29) de-
manded that the function must be continuous. This is not necessary, although any
direct use of the Rising Sun Lemma appears to demand continuity. There are a
number of ways of proving the full version, valid for all functions of bounded vari-
ation, continuous or not. Claude-Alain Faure [?] gives an elementary proof that
employs the Rising Sun lemma throughout. Botsko [7] also is quite readable. Our
proof later on in Section 2.11 gives a proof based on a Vitali covering argument.

A simple way of extending what we already have is to consider taking an “in-
verse” as Faure [?] has done. To illustrate the technique we prove this simple
version. We give the argument for monotonic functions. (The Jordan decomposi-
tion theorem, proved for us later on in Chapter 5), would allow us to deduce the
same property of functions of bounded variation.)

Theorem 1.34 Let F : [a,b]→ R be a nondecreasing function. Then F is differ-

entiable at almost every point of (a,b).

Proof. We shall replace F by the function F1(t) = F(t)+ t and argue for F1. If we
can show that F1 is differentiable a.e. in (a,b) then so too is the function F .

Note that F1 : [a,b] → R is a strictly increasing function. Then the function
G : [F1((a),F1((b)]→ R defined by

G(y) = inf{z ∈ [a,b] : F1((z)≥ y}
will serve as a continuous, strictly increasing left-inverse function for F1, i.e.,
G(F1(t)) = t for all t. We use the following feature of this inverse situation: if
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N ⊂ (a,b), then F1(N)⊂ (F1((a),F1((b)), and if the the function G has zero vari-
ation on F1(N) then necessarily N is a set of measure zero. (All of this is the
content of Exercise 28.)

Note that, if F1(a)≤ x< y≤ F1(b), with F1(u) = x, F1(v) = y then

F1(v)−F1(u) = F(v)−F(u)+(v−u)≥ v−u> 0

implies that, for all F1(a)≤ x< y≤ F1(b),

y− x≥ G(y)−G(x)> 0. (1.18)

Any pair ([u,v],w) corresponds to the pair ([x,y],z) with F1(u) = x, F1(v) = y,
and F1(w) = z. This reveals the relation

F1(v)−F1(u)

v−u
=

(

G(y)−G(x)

y− x

)−1

,

from which it follows that F1 is differentiable at any point w if G has a finite nonzero
derivative at z.

Using these observations we can apply the Lebesgue differentiation theorem
to the continuous, increasing function G to deduce that G has a derivative at every
point of [F1((a),F1((b)] except at the points of a set of measure zero. Let M1 be
the set of of points in [F(a),F(b)] where G does not have a derivative. Let M2 be
the set of points where G has a zero derivative. The set M1 must be of measure
zero. The inequality (1.18) shows that G has zero variation on M1. But we know
that G also has zero variation on the set of points where the derivative vanishes,
thus G has zero variation on M2 as well.

So G has zero variation on M =M1∪M2. Let N be the set of points where F1
does not have a derivative. Since F1(N)⊂M then N is a set of measure zero.

1.15 Infinite integrals

For many applications, some familiar to calculus students, one needs an integral
for a function f : R→ R that would be written in the form∫ ∞

−∞
f (x)dx.

The theory so far addresses only the case of integration on a compact interval
[a,b] and does not generalize without effort to the case of an unbounded interval.

The Newton integral on (−∞,∞). For the various Newton integrals the simplest
approach conceptually is merely to replace the usual definition∫ b

a
f (x)dx= F(b)−F(a)

with a statement such as∫ ∞

−∞
f (x)dx= F(∞)−F(−∞).



70 CHAPTER 1. BY WAY OF AN INTRODUCTION

Here, we interpret

F(∞) = lim
b→∞

F(b) and F(−∞) = lim
a→−∞

F(a). (1.19)

This pattern would be successful. For example, one could take F :R→R as any
continuous function for which F ′(x) = f (x) for all x with at most countably many
exceptions, provided the two limits in (1.19) can be proved to exist.

This is essentially the method used in elementary calculus. Because there are
two further limits imposed on the integral, some properties of finite integrals easily
extend to infinite integrals, while some properties do not. Exercise 64 illustrates a
property that does not survive the extra limits.

The Lebesgue integral on (−∞,∞). For the Lebesgue integral an entirely dif-
ferent approach is taken. Lebesgue integrals invariably split the function into its
positive and negative parts

f (x) = [ f (x)]+− [ f (x))]−

and require ∫ ∞

−∞
f (x)dx=

∫ ∞

−∞
[ f (x)]+ dx−

∫ ∞

−∞
[ f (x)]− dx

and ∫ ∞

−∞
| f (x)|dx=

∫ ∞

−∞
[ f (x)]+ dx+

∫ ∞

−∞
[ f (x)]− dx.

Thus the procedure above taking the two limits in (1.19), while sometimes useful in
computations, is not used to define the integral nor is it always valid. (Exercise 65
illustrates.)

Integration theory on (−∞,∞)? In this text, as it currently stands, we do not
have much more to say about the general problem of integration on infinite inter-
vals. A full account of what properties are available for infinite integrals might be
useful in a course of instruction, but it offers too much extra technical detail to a
course that is already highly detailed.

Some authors take the Henstock-Kurzweil integral and develop it also in a way
that allows “infinite” partitions, i.e., partitions of (−∞,∞). In that way integrals on
compact intervals have a theory that is similar to the theory on infinite intervals
and a certain unity of approach results. It seems that developing that here would
try the patience of the reader beyond what we are already doing.

Our only advice is to learn first the calculus theory as it is usually taught.
After that, study the measure-theoretic integral and the theory of that integral. The
techniques are different and the resulting theories differ. By then one is prepared
for any application.
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Exercise 64 Give an example of a sequence of functions fn : R → R that con-

verges uniformly to zero on (−∞,∞) and yet

lim
n→∞

∫ ∞

−∞
fn(x)dx 6= 0.

Answer

Exercise 65 Comment on the statements∫ ∞

−∞

sinx

x
dx= π and

∫ ∞

−∞

∣

∣

∣

∣

sinx

x

∣

∣

∣

∣

dx= ∞.

Answer

1.16 Where are we?

Rather than there being a single theory of integration, we have seen an abun-
dance of integrals. The exact relation among all of these integrals is not so easy
to spot. Take any pair of integrals (e.g., the elementary Newton integral and the
regulated integral). What is the relationship? Do they have differing properties?
A specialist in integration theory has no trouble answering such questions. Even
many a graduate student of mathematics might, however, get lost in the details.

There are two themes in this chapter. The first theme is the Newton integral
itself. The severely classical version that demands F ′(x) = f (x) everywhere is too
restrictive. The version that we need eventually for serious applications in analysis
allows exceptions forming a set of measure zero. This is the integral we study.

The other theme is the theme of Riemann sums. All of the concepts in in-
tegration theory on the real line permit a realization as Riemann sums. We saw
that in Cauchy’s theorem and in Robbins’s theorem. Riemann’s integral itself em-
ployed that notion but did not take the ideas nearly far enough. Riemann sums
have led us to a characterization of the general Newton integral (due to Henstock
and Kurzweil) as well as to the notions of measure zero sets and functions having
zero variation on a set. We have a significant tool in the use of Riemann sums,
provided we exploit that properly. This will lead us eventually to one of the most
important of the tools of integration theory—measure theory.

We know what integral we want to study. We want to study the integral that
includes all of the others. This leaves the inadequate Riemann integral of our
calculus class far behind. It also leaves the Lebesgue integral behind for the mo-
ment. We study the Henstock-Kurzweil integral, but taking care to develop the
Lebesgue theory along with it. Probably the most important aspect of the theory
discussed here is the abundance of new tools that this theory supplies to the study
of the Lebesgue integral itself. We do not argue that the Henstock-Kurzweil inte-
gral should “replace” the Lebesgue integral—it is merely an interesting and useful
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supplement21 to the Lebesgue theory.

21Henstock famously (infamously?) announced at the 1962 ICM meeting in Stockholm that “the
Lebesgue integral is dead.” One can agree with him, at least, that it is not necessary to develop all
of the machinery of measure theory in advance in order to define and develop an adequate theory
of integration. The Lebesgue integral, of course, survives as the most important special case of
Henstock’s theory.



Chapter 2

Covering Theorems

We embark now on a complete theory for the integral on the real line. In Chapter 1
we studied integration theory following mostly the single theme that∫ b

a
F ′(x)dx= F(b)−F(a),

requiring that F : [a,b]→ R is differentiable at all or at most points.
The connection of these integration ideas with Riemann sums has been ex-

plored. We now examine this more fully and purse the elements of the theory of
the Henstock-Kurzweil integral. We will start by exploring Lebesgue measure zero
sets in greater detail. In particular we prove the Mini-Vitali covering theorem that
characterizes Lebesgue measure zero sets in terms of full and fine covers.

Here is our goal for both the review and the new material that will be intro-
duced in this chapter:

• covering relations.

• Riemann sums.

• Lebesgue measure zero set.

• full null and fine null sets.

• Mini-Vitali theorem asserting the equivalence of Lebesgue measure zero,
full null, and fine null.

• zero variation and its relation to zero derivative.

• absolute continuity.

• Equivalence of the general Newton and Henstock-Kurzweil integrals.

• The Lebesgue differentiation theorem asserting the almost everywhere dif-
ferentiability of functions of bounded variation.
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2.1 Covering Relations

The language of integration theory and many of our most important techniques, as
presented in the next few chapters, depends on an understanding of and facility
with partitions and Riemann sums. A partition is a special case of a covering
relation. This section defines and reviews all of the terminology and examines all
of the techniques needed to carry on to a complete investigation of the integral.

2.1.1 Partitions and subpartitions

Construct a subdivision of a compact interval [a,b] by choosing points

a= a0 < a1 < a2 < · · ·< ak−1 < ak = b

and then select points ξ1, ξ2, . . . , ξk so that each point ξi belongs to the corre-
sponding interval [ai−1,ai]. Then the collection

π = {([ai−1,ai],ξi) : i= 1,2, . . . ,k}
is called a partition of [a,b]. Note that the intervals do not overlap and that their
union is the whole of the interval [a,b]. The associated points must be selected
from their corresponding interval. Any subset of a partition is called a subpartition.

We consider this a special kind of covering relation.

2.1.2 Covering relations

Families of pairs ([u,v],w), where [u,v] is a compact interval and w a point in that
interval, are called covering relations. Every partition and every subpartition is a
covering relation. It is a relation because it provides an association of points with
intervals.

All covering relations are just subsets of one big covering relation:

β̂ = {([u,v],w) : u,v,w ∈ R, u< v and u≤ w≤ v }.
We shall most frequently use the Greek symbol β to denote a covering relation.
We have already used the Greek symbol π to denote those covering relations
which are partitions or subpartitions.

2.1.3 Prunings

Given a number of covering relations arising in a problem we often have to com-
bine them or “prune out” certain subsets of them. We use the following techniques
quite frequently:
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Definition 2.1 If β is a covering relation and E a set of real numbers then we

write:

• β[E] = {([u,v],w) ∈ β : w ∈ E}.

• β(E) = {([u,v],w) ∈ β : [u,v]⊂ E}.

to indicate these subsets of the covering relation β from which we have removed

inconvenient members.

2.1.4 Full covers

A full cover is one that, in very loose language, contains all sufficiently small inter-
vals at a point.

Definition 2.2 Let E be a set of real numbers. A covering relation β is said to

be a full cover of E if for each w ∈ E there is a positive number δ(w) so that β

contains every pair ([u,v],w) for which v−u< δ(w).

By a full cover without reference to any set we mean a full cover of all of R.
Full covers arise naturally as ways to describe continuity, differentiation, inte-

gration, and numerous other processes of analysis. The student should attempt
many of the exercises in order to gain a facility in covering arguments.

2.1.5 Fine covers

A fine cover1 is one that, in very loose language, contains arbitrarily small intervals
at a point.

Definition 2.3 Let E be a set of real numbers. A covering relation β is said to be

a fine cover of E if for each w ∈ E and any positive number ε the covering relation

β contains at least one pair ([u,v],w) for which v−u< ε.

By a fine cover without reference to any set we mean a fine cover of all of R.
Fine covers arise in the same way that full covers arise. In a sense the fine

cover comes from a negation of a full cover. For example (as you will see in the
Exercises) full covers could be used to describe continuity conditions and fine
covers would then twist this to describe the situation where continuity fails.

1Known also as a Vitali cover.
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2.1.6 Uniformly full covers

A uniformly full cover is one that, in very loose language, contains all sufficiently
small intervals at a point, where the smallness required is considered the same
for all points

Definition 2.4 Let E be a set of real numbers. A covering relation β is said to be

a uniformly full cover of E if there is a positive number δ so that β contains every

pair ([u,v],w) for which v−u< δ.

Only occasionally shall we use uniformly full covers. To verify that a covering
relation is full just requires us to test what happens at each point. To verify that a
covering relation is uniformly full requires more: we have to find a positive number
δ that works at every point. The exclusive use of uniformly full covers would lead
to a restrictive theory: the Riemann integral (which plays only a minor role in this
textbook) is based on uniformly full covers. Our integration theory uses full covers
and, as a consequence, is much more general and is easier.2

Exercises

Exercise 66 Suppose that G is an open set. Show that

β = {([u,v],w) : u≤ w≤ v, [u,v]⊂ G}
is a full cover of G.

Exercise 67 Suppose that β is a full cover of a set E and that G is an open

set containing E. Show that β(G) is also a full cover of E. [This is described as

“pruning the full cover” by the open set G.] Answer

Exercise 68 Suppose that β is a fine cover of a set E and that G is an open

set containing E. Show that β(G) is also a fine cover of E. [This is described as

“pruning the fine cover” by the open set G.] Answer

Exercise 69 Suppose that β is a uniformly full cover of a set E and that G is an

open set containing E. Show that β(G) is not necessarily a uniformly full cover of

E. Would it be a full cover?

Exercise 70 Suppose that β1 and β2 are both full covers of a set E. Show that

β1∩β2 is also a full cover of E.

Exercise 71 Suppose that β1 and β2 are both fine covers of a set E. Show that

β1∩β2 need not be a fine cover of E.

2It is easier since the requirement in Riemann integration to always check that the covers used
are not merely full, but uniformly full, imposes unnecessary burdens on many proofs.
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Exercise 72 Suppose that β1 is a full cover of a set E and β2 is a fine cover.

Show that β1∩β2 is also a fine cover of E. Need it be a full cover?

Exercise 73 Suppose that β1 and β2 are full covers of sets E1 and E2 respec-

tively. Show that β1∪β2 is a full cover of E1∪E2.

Exercise 74 Suppose that β1 and β2 are fine covers of sets E1 and E2 respec-

tively. Show that β1∪β2 is a fine cover of E1∪E2.

Exercise 75 Let E1, E2, E3, . . . be a sequence of sets. Suppose that β1, β2, β3,

. . . are full covers of sets E1, E2, E3, . . . respectively. Show that

β = β1∪β2∪β3∪ . . .

is a full cover of E =
⋃∞

n=1En.

Exercise 76 Let E1, E2, E3, . . . be a sequence of sets. Suppose that β1, β2, β3,

. . . are fine covers of sets E1, E2, E3, . . . respectively. Show that

β = β1∪β2∪β3∪ . . .

is a fine cover of E =
⋃∞

n=1En.

Exercise 77 Let F : R→ R and let ε : R→ R
+ be an arbitrary positive function.

Show that

β1 = {([u,v],w) : |F(u)−F(v)| ≤ ε(w)}
is a full cover of the set of points at which F is continuous, while

β2 = {([u,v],w) : |F(u)−F(v)| ≥ ε(w)}
is a fine cover of the set of points at which F is not continuous.

Exercise 78 Let F , f : R→ R, and let ε : R→ R
+ be an arbitrary positive func-

tion. Show that

β1 = {([u,v],w) : |F(u)−F(v)− f (w)(v−u)| ≤ ε(w)(v−u))}
is a full cover of the set of points x at which F ′(x) = f (x) is true, while

β2 = {([u,v],w) : |F(u)−F(v)− f (w)(v−u)| ≥ ε(w)(v−u))}
is a fine cover of the set of points x at which F ′(x) = f (x) fails to be true, i.e.,

either F is not differentiable at x or else F is differentiable at x but F ′(x) 6= f (x).

Exercise 79 Let F : R→ R and let ε > 0. Show that

β1 = {([u,v],w) : F(t)> f (w)− ε for all t ∈ [u,v]}
is a full cover of the set of points at which F is lower semicontinuous.

Exercise 80 Show that β is fine at a point w if and only if for all β1 that are full at

w there is at least one pair ([u,v],w) belonging to both β and β1. Answer
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Exercise 81 Show that β is full at a point w if and only if for all β1 that are fine at

w there is at least one pair ([u,v],w) belonging to both β and β1. Answer

Exercise 82 (Heine-Borel) Let G be a family of open sets so that every point in

a compact set K is contained in at least one member of the family. Show that the

covering relation

β = {(I,x) : x ∈ I and I ⊂ G for some G ∈ G}.
is a full cover of K (cf. the Heine-Borel Theorem).

Exercise 83 (Bolzano-Weierstrass) Let E be an infinite set that contains no

points of accumulation. Show that

β = {(I,x) : x ∈ I and I∩E is finite}.
must be a full cover (cf. the Bolzano-Weierstrass Theorem).

Exercise 84 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains only finitely many of the xn}.
If β is a fine cover of a set E what (if anything) can you conclude? Answer

Exercise 85 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains only finitely many of the xn}.
If β is not a fine cover of a set E what (if anything) can you conclude? Answer

Exercise 86 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains only finitely many of the xn}.
If β is a full cover of a set E what (if anything) can you conclude? Answer

Exercise 87 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains only finitely many of the xn}.
If β is not a full cover of a set E what (if anything) can you conclude? Answer

Exercise 88 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains infinitely many of the xn}.
If β is a fine cover of a set E what (if anything) can you conclude? Answer

Exercise 89 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains infinitely many of the xn}.
If β is a not a fine cover of a set E what (if anything) can you conclude?

Answer
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Exercise 90 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains infinitely many of the xn}.
If β is a full cover of a set E what (if anything) can you conclude? Answer

Exercise 91 Let {xn} be a sequence of real numbers and let

β = {(I,x) : x ∈ I and I contains infinitely many of the xn}.
If β is a not a full cover of a set E what (if anything) can you conclude?

Answer

2.2 Covering arguments

There are a number of standard devices we can use that employ covering rela-
tions. The most fundamental for our purposes, perhaps, is the Cousin covering
lemma, asserting that full covers always contain partitions. We need this in order
justify our definition of the integral in terms of Riemann sums, full covers, and par-
titions. Advanced readers would be familiar with the Vitali covering argument that
appears frequently in later courses of analysis.

2.2.1 Cousin covering lemma

In elementary analysis the Cousin covering lemma can often be used to construct
proofs that might normally invoke the Bolzano-Weierstrass theorem or the Heine-
Borel theorem. We repeat it here for convenience and to stress the role that it
plays in covering arguments in analysis and in integration theory. This also allows
us a chance to rewrite the proof in the language of this chapter.

Lemma 2.5 (Cousin covering lemma) Let β be a full cover. Then β contains a

partition of every compact interval.

Proof. Note, first, that if β fails to contain a partition of some interval [a,b] then
it must fail to contain a partition of much smaller subintervals. For example if a<
c < b, if π1 is a partition of [a,c] and π2 is a partition of [c,b], then π1 ∪ π2 is
certainly a partition of [a,b].

We use this feature repeatedly. Suppose that β fails to contain a partition of
[a,b]. Choose a subinterval [a1,b1] with length less than 1/2 the length of [a,b]
so that β fails to contain a partition of [a1,b1]. Continue inductively, selecting a
nested sequence of compact intervals [an,bn] with lengths shrinking to zero so
that β fails to contain a partition of each [an,bn].

By the nested interval property there is point z belonging to each of the in-
tervals. As β is a full cover, there must exist a δ > 0 so that β contains (I,z)

for any compact subinterval I of [a,b] with length smaller than δ. In particular β
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contains all ([an,bn],z) for n large enough to assure us that bn−an < δ. The set
π = {([an,bn],z)}} containing a single element is itself a partition of [an,bn] that
is contained in β. That contradicts our assumptions. Consequently β must contain
a partition of [a,b]. Since [a,b] was arbitrary, β must contain a partition of any
compact interval.

2.2.2 A simple covering argument

As an illustration of how Cousin’s covering lemma can be used in a covering ar-
gument we prove a well-known theorem from elementary calculus. Most calculus
students learn and use the fact that continuous functions possess the Darboux
property (mostly called the “intermediate value” property in elementary calculus
classes). The proofs are usually inadequate and given properly only in more ad-
vanced courses. The most familiar genuine proofs are based on the Heine-Borel
theorem or the Bolzano-Weierstrass theorem. We give a simple covering argu-
ment instead.

Theorem 2.6 Every continuous function F : R→ R has the Darboux property.

Proof. The statement of the theorem is equivalent to this: if F(x) 6= k for all x then
either F(x)> k for all x or else F(x)< k for all x. By applying this to the function
G(x) = F(x)− k we see that this asserts that if G(x) 6= 0 for all x then either
G(x)> 0 for all x or else G(x)< 0 for all x.

Assume, then, that the continuous function G never vanishes. Define

β =

{

([u,v],w) :
G(v)

G(u)
> 0

}

. (2.1)

This can be checked to be a full cover. Accordingly, by the Cousin covering lemma,
if [a,b] is any interval then there are are points

a= x0 < x1 < x2 < · · ·< xn = b

and associated points {ξi} so that

π = {([xi−1,xi],ξi) : i= 1,2, . . . ,n} ⊂ β.

Hence
G(b)

G(b)
=

G(x1)

G(x0)
× G(x2)

G(x1)
× G(x3)

G(x2)
×·· ·× G(xn)

G(xn−1)
> 0.

Consequently, for any interval [a,b], G(a) and G(b) have the same sign, i.e, either
G(x)> 0 for all x or else G(x)< 0 for all x.

Keep it elegant Note that the definition of the covering relation β in (2.1) is
focussed on the property that we want to prove, not constructed from the hy-
potheses of the theorem. One might have been tempted instead first to choose
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δ(x)> 0 for each x so that |F(y)−F(x)|< |F(x)|/2 if |y− x|< δ(x). This is cer-
tainly possible because |F(x)| > 0 and F is continuous at each point. Then one
might define

β1 = {([u,v],w) : 0< v−u< δ(w)} .
The same argument would work because β1 ⊂ β. But that would be a clumsy use
of covering arguments.

Exercise 92 Prove the Heine-Borel theorem using a covering argument.

Answer

Exercise 93 Prove the Bolzano-Weiertrass theorem using a covering argument.

Answer

Exercise 94 Suppose that F :R→R is a continuous function for which F ′(x)≥ 0

at every point x with at most countably many exceptions. Construct a covering

argument to demonstrate that F is nondecreasing. Answer

Exercise 95 Suppose that F : R→ R is a lower semicontinuous function. Con-

struct a covering argument to demonstrate that F is bounded below on every

compact interval. Answer

Exercise 96 A function F : R → R is said to have bounded derived numbers if

there is a number M so that, for each x one can choose δ > 0 so that
∣

∣

∣

∣

F(x+h)−F(x)

h

∣

∣

∣

∣

≤M

whenever 0 < |h| < δ. Show that F is Lipschitz if and only if F has bounded

derived numbers. Answer

2.2.3 Decomposition of full covers

There is a decomposition of full covers that is often of use in constructing a proof.
Here is a good place to put it for easy reference, although it is mostly unmotivated
for the moment. (We have used a similar idea in the solution of Exercise 61.) This
shows that, while a full cover is a much more general object than a uniformly full
cover, it can be broken into pieces that are themselves uniform covers.

Lemma 2.7 (Decomposition Lemma) Let β be a full cover of a set E. Then there

is an increasing sequence of sets {En} with E =
⋃∞

n=1En and a sequence of

nonoverlapping compact intervals {Ikn} covering En so that if x is any point in En

and I is any subinterval of Ikn that contains x then (I,x) belongs to β.
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Proof. Let β be a full cover of a set E. By the nature of the cover there must exist,
for each x ∈ E a positive number δ(x) on E with the property that (I,x) belongs
to β whenever if x ∈ E, x ∈ I and the length of the interval I is smaller than δ(x).
Define

En = {x ∈ E : δ(x)> 1/n}.
This is an expanding sequence of subsets of E whose union is E itself. If I is any
compact interval that contains a point x in En and has length less than 1/n, then
(I,x) must belong to β.

A way of exploiting this property is to introduce the intervals

Imn =

[

m

n
,
m+1

n

]

for integers m = 0, ±1, ±2, . . . . Then β([En∩ Imn]) has this property: if x is any
point in En ∩ Imn and I is any subinterval of Imn that contains x then (I,x) is a
member of β([En∩ Imn]).

Thus the condition of being a full cover, which is a local condition defined in a
special way at each point, has been made uniform throughout each piece of the
decomposition. If we relabel these sets in a convenient way then we now have our
decomposition property.

2.3 Riemann sums

The integral can be characterized as a limit of Riemann sums. The original Rie-
mann integral has such a definition and the Lebesgue integral, although origi-
nallly defined in a completely different manner, also has such a characterization
although not as simple as that for the Riemann integral. The notation for Riemann
sums can assume any of the following forms (2.2), (2.3), (2.4), or (2.5), depending
on which is convenient:

Take an interval [a,b] and subdivide as follows:

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b.

Then form a partition of [a,b] by selecting points ξi from each of the corresponding
intervals:

π = ([x0,x1],ξ1), ([x1,x2],ξ2), . . . , ([xn−1,xn],ξn).

Sums of the following form are called Riemann sums with respect to this partition:
n

∑
k=1

f (ξk)(xk− xk−1). (2.2)

These can also be more conveniently written as

∑
([u,v],w)∈π

f (w)(v−u) (2.3)
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or

∑
([u,v],w)∈π

f (w)λ([u,v]) (2.4)

or even as

∑
(I,w)∈π

f (w)λ(I). (2.5)

Here we are using λ as a length function:

λ([u,v]) = v−u

is simply the length of the interval [u,v]. We can in this way also conveniently
assign a length to the intersection of two compact intervals. For example,

λ([u1,v1]∩ [u2,v2])

would be the length of the interval [u1,v1]∩ [u2,v2] (if it is an interval) and would
have length zero if the two intervals do not overlap.

General Riemann sums In general, let h([u,v],w) denote any real-valued func-
tion which assigns to an interval-point pair ([u,v],w) a real value. Let π be any
partition or subpartition. Then we will (loosely) call any sum

∑
([u,v],w)∈π

h([u,v],w) (2.6)

or

∑
(I,w)∈π

h(I,w) (2.7)

a Riemann sum. Such sums will play a role in many diverse investigations.

Exercises

Exercise 97 Let F : [a,b]→R and let π be a partition of [a,b]. Verify the compu-

tations

∑
([u,v],w)∈π

(v−u) = b−a

and

∑
([u,v],w)∈π

(F(v)−F(u)) = F(b)−F(a).

Exercise 98 Let F : [a,b]→ R and let π be a partition of [a,b]. Show that

∑
([u,v],w)∈π

|F(v)−F(u)| ≥ |F(b)−F(a)|.

Exercise 99 Let F : [a,b]→ R be a Lipschitz function with Lipschitz constant M
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and let π be a partition of the interval [a,b]. Show that

∑
([u,v],w)∈π

|F(v)−F(u)| ≤M(b−a)|.

Exercise 100 Let F , f : [a,b]→ R and let π be a partition of [a,b] and suppose

that

F(v)−F(u)≥ f (w)(v−u)

for all ([u,v],w) ∈ π. Show that

∑
([u,v],w)∈π

f (w)(v−u))≤ F(b)−F(a).

Exercise 101 Let F : [a,b]→ R be a function with the property that

∑
([u,v],w)∈π

|F(v)−F(u)|= 0.

for every partition π of the interval [a,b]. What can you conclude?

Exercise 102 Let F : [0,1]→ R be a function with the property that it is mono-

tonic on each of the intervals [0, 1
3
], [ 1

3
, 2
3
], and [ 2

3
,1]. What is the largest possible

value of

∑
([u,v],w)∈π

|F(v)−F(u)|

for arbitrary partitions π of the interval [a,b].

Exercise 103 Describe the difference between the two sums

∑
([u,v],w)∈π

f (w)(v−u)

and

∑
(I,w)∈π([c,d])

f (w)(v−u)

where [c,d] is an interval. Answer

Exercise 104 Describe the difference between the two sums

∑
([u,v],w)∈π

f (w)(v−u)

and

∑
([u,v],w)∈π[E]

f (w)(v−u).

where E is a set. Answer
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Exercise 105 How could you interpret the expression

∑
([u,v],w)∈π1∪π2

f (w)(v−u)?

Exercise 106 How could you interpret the expression

∑
(([u1,v1],w1)∈π1

∑
([u2,v2],w2)∈π2

f (w1)λ([u1,v1]∩ [u2,v2])?

if π1 and π2 are both partitions of the same interval [a,b]?

Exercise 107 Show that

∑
(([u1,v1],w1)∈π1

f (w1)λ([u1,v1])− ∑
([u2,v2],w2)∈π2

f (w2)λ([u2,v2]) =

∑
(([u1,v1],w1)∈π1

∑
([u2,v2],w2)∈π2

[ f (w1)− f (w2)]λ([u1,v1]∩ [u2,v2])

if π1 and π2 are both partitions of the same interval [a,b]?

Exercise 108 Let f : [a,b]→R be a continuous function. What could you require

of two partitions π1 and π2 of the interval [a,b] in order to conclude that
∣

∣

∣

∣

∣

∑
(([u1,v1],w1)∈π1

f (w1)(v1−u1)− ∑
([u2,v2],w2)∈π2

f (w2)(v2−u2)

∣

∣

∣

∣

∣

< ε?

2.4 Sets of Lebesgue measure zero

We review the notion of a set of Lebesgue measure zero already studied in Chap-
ter 1. We will present three distinct versions of Lebesgue measure zero. The first
is due to Lebesgue and arises from his theory of measure. The second and third
use full and fine coverings and estimates using Riemann sums. Before we used
the full covering version for our first definition of Lebesgue measure zero. Now we
begin with Lebesgue’s definition.

2.4.1 Lebesgue measure of open sets

The property that a set E will be a set of Lebesgue measure zero is actually a
statement about the family of open sets containing E. A set E is measure zero if
there are arbitrarily “small” open sets containing E.

For a precise version of this we require a definition for the Lebesgue measure
λ(G) of an open set G. Later on we will study Lebesgue’s measure in general.
The attention here is directed only on that measure for open sets.
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Definition 2.8 Let G be an open set. Then the Lebesgue measure λ(G) of an

open set G is defined to be the total sum of the lengths of all the component

intervals of G.

According to this definition λ( /0) = 0 (since there are no component intervals).
If G consists of infinitely many bounded component intervals ({ai,bi)} then the
measure is the sum of an infinite series:

λ(G) =
∞

∑
i=1

(bi−ai).

[An unbounded component interval would have length ∞ and so an open set with
an unbounded component has infinite measure.]

The only tool we need for working with this concept for the moment is given
by the subadditivity property.

Lemma 2.9 (Subadditivity) Let G1, G2, G3, . . . be a sequence of open sets.

Then the union

G=
∞⋃
i=1

Gi

is also an open set and

λ(G)≤
∞

∑
i=1

λ(Gi).

Proof. Certainly G is open since any union of open sets is open. Let

T =
∞

∑
i=1

λ(Gi).

Note that T is simply the sum of the lengths of all the component intervals of all
the Gi.

Let ({a j,b j)} denote the component intervals of G. Take (a1,b1) and choose
any [c1,d1]⊂ (a1,b1). A compactness argument shows that [c1,d1] is contained in
finitely many of the component intervals making up the sum T . We conclude that
d1− c1 ≤ T . That would be true for any choice of [c1,d1]⊂ (a1,b1), so that b1−
a1 ≤ T . A similar argument using m components (a1,b1), (a2,b2), . . . , (am,bm)
will establish that

m

∑
j=1

(b j−a j)≤ T

from which

λ(G) =
∞

∑
j=1

(b j−a j)≤ T

evidently follows.
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2.4.2 Sets of Lebesgue measure zero

Our first definition of Lebesgue measure zero set expresses this as a property of
open sets that contain the set.

Definition 2.10 Let E be a set of real numbers. Then E is said to have Lebesgue
measure zero if for every ε > 0 there is an open set G containing E for which

λ(G)< ε.

Recall that we have given a completely different definition of measure zero in
Chapter 1. Thus we are obliged very quickly to show that these two definitions are
equivalent. In the meantime the following exercises should be attempted but now
with the new definition. In Section 2.7 we will show that the two definitions (along
with a third definition for Lebesgue measure zero) are equivalent.

Exercises

Exercise 109 The empty set has Lebesgue measure zero. Answer

Exercise 110 Every finite set has Lebesgue measure zero. Answer

Exercise 111 Every infinite, countable set has Lebesgue measure zero.

Answer

Exercise 112 The Cantor set has Lebesgue measure zero. Answer

2.4.3 Sequences of Lebesgue measure zero sets

One of the most fundamental of the properties of sets having measure zero is
how sequences of such sets combine. We recall that the union of any sequence
of countable sets is also countable. We now prove that the union of any sequence
of Lebesgue measure zero sets is also a Lebesgue measure zero set.

Theorem 2.11 Let E1, E2, E3, . . . be a sequence of sets of measure zero. Then

the set E formed by taking the union of all the sets in the sequence is also of

Lebesgue measure zero.

Proof. Let ε > 0. Choose open sets Gn ⊃ En so that

λ(Gn)< 2−nε.

Then set G =
⋃∞

n=1Gn. Observe, by the subadditivity property (i.e., from
Lemma 2.9), that G is an open set containing E for which λ(G)< ε.



88 CHAPTER 2. COVERING THEOREMS

Exercises

Exercise 113 Show that E is a set of Lebesgue measure zero if and only if there

is a finite or infinite sequence

(a1,b1),(a2,b2),(a3,b3),(a4,b4), . . .

of open intervals covering the set E so that
∞

∑
k=1

(bk−ak)≤ ε.

Exercise 114 (compact sets of Lebesgue measure zero) Let E be a compact

set of Lebesgue measure zero. Show that for every ε> 0 there is a finite collection

of open intervals

{(ak,bk) : k = 1,2,3, . . . ,N}
that covers the set E and so that

N

∑
k=1

(bk−ak)< ε.

Answer

Exercise 115 Show that E is a set of Lebesgue measure zero if and only if there

is a finite or infinite sequence

[a1,b1], [a2,b2], [a3,b3], [a4,b4], . . .

of compact intervals covering the set E so that
∞

∑
k=1

(bk−ak)≤ ε.

Exercise 116 Show that every subset of a set of Lebesgue measure zero also

has Lebesgue measure zero.

Exercise 117 Suppose that E ⊂ [a,b] is a set of Lebesgue measure zero. Show

that

∫ b

a
χE(x)dx= 0. Answer

Exercise 118 If E has Lebesgue measure zero, show that the translated set

E+α = {x+α : x ∈ E}
also has Lebesgue measure zero.

Exercise 119 If E has Lebesgue measure zero, show that the expanded set

cE = {cx : x ∈ E}
also has Lebesgue measure zero for any c> 0.



2.4. SETS OF LEBESGUE MEASURE ZERO 89

Exercise 120 If E has Lebesgue measure zero, show that the reflected set

−E = {−x : x ∈ E}
also has Lebesgue measure zero.

Exercise 121 Without referring to Theorem 2.11, show that the union of any two

sets of Lebesgue measure zero also has Lebesgue measure zero.

Exercise 122 If E1 ⊂ E2 and E1 has Lebesgue measure zero but E2 has not,

what can you say about the set E2 \E1?

Exercise 123 Show that any interval (a,b) or [a,b] is not of Lebesgue measure

zero.

Exercise 124 Give an example of a set that is not of Lebesgue measure zero

and does not contain any interval [a,b].

Exercise 125 A careless student claims that if a set E has measure zero, then it

is true that the closure E must also have Lebesgue measure zero. After all, if E is

contained in
⋃∞

i=1(ai,bi) with small total length then E is contained in
⋃∞

i=1[ai,bi],

also with small total length. Is this correct?

Exercise 126 If a set E has Lebesgue measure zero what can you say about

interior points of that set?

Exercise 127 If a set E has Lebesgue measure zero what can you say about

boundary points of that set?

Exercise 128 Suppose that a set E has the property that E∩ [a,b] has Lebesgue

measure zero for every compact interval [a,b]. Must E also have Lebesgue mea-

sure zero?

Exercise 129 Show that the set of real numbers in the interval [0,1] that do not

have a 7 in their infinite decimal expansion is of Lebesgue measure zero.

Exercise 130 Describe completely the class of sets E with the following property:

For every ε > 0 there is a finite collection of open intervals

(a1,b1),(a2,b2),(a3,b3),(a4,b4), . . .(aN ,bN)

that covers the set E and so that
N

∑
k=1

(bk−ak)< ε.

(These sets are said to have zero content.)
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Exercise 131 Show that a set E has Lebesgue measure zero if and only if there

is a sequence of intervals

(a1,b1),(a2,b2),(a3,b3),(a4,b4), . . .

so that every point in E belongs to infinitely many of the intervals and ∑∞
k=1(bk−

ak) converges.

Exercise 132 Suppose that {(ai,bi)} is a sequence of open intervals for which

∞

∑
i=1

(bi−ai)< ∞.

Show that the set

E =
∞⋂

n=1

∞⋃
i=n

(ai,bi)

has Lebesgue measure zero. What relation does this exercise have with the pre-

ceding exercise?

Exercise 133 By altering the construction of the Cantor set, construct a nowhere

dense closed subset of [0,1] so that the sum of the lengths of the intervals re-

moved is not equal to 1. Will this set have Lebesgue measure zero?

2.4.4 Almost everywhere language

Here is some language commonly used in discussions of Lebesgue measure zero
sets. Let P(x) be a property that may or not be possessed by a point x ∈ R. We
say that

P(x) is true almost everywhere

or

P(x) is true for almost every x

if the set

{x ∈ R : P(x) is not true}
is a Lebesgue measure zero set.

There is a convenient extension of this language useful in integration theory:

(mostly everywhere) A statement holds mostly everywhere if it holds every-
where with the exception of a finite set of points c1, c2, c3, . . . , cn.

(nearly everywhere) A statement holds nearly everywhere if it holds everywhere
with the exception of a countable set.

(almost everywhere) A statement holds almost everywhere if it holds every-
where with the exception of a set of Lebesgue measure zero.



2.5. FULL NULL SETS 91

Nearly everywhere might be abbreviated “n.e.” but only in a context where the
reader is reminded of such usage. Almost everywhere is very frequently abbrevi-
ated “a.e.” and most advanced readers are familiar with this usage.

Exercises

Exercise 134 What would it mean to say that a function is almost everywhere

discontinuous?

Exercise 135 What would it mean to say that a function is almost everywhere dif-

ferentiable? Give an example of function that is almost everywhere differentiable,

but not everywhere differentiable.

Exercise 136 What would it mean to say that almost every point inR is irrational?

Is this a true statement?

Exercise 137 What would it mean to say that almost everywhere point in a set

A belongs to a set B? Give an example for which this is true and an example for

which this is false.

Exercise 138 What would it mean to say that a function is almost everywhere

equal to zero?

Exercise 139 What would it mean to say that a function is almost everywhere

different from zero?

Exercise 140 Suppose that the function f : [a,b]→R is integrable and is almost

everywhere in [a,b] nonnegative. Show that
∫ b
a f (x)dx≥ 0. Answer

Exercise 141 Suppose that the functions F ,G : [a,b]→R are continuous almost

everywhere in [a,b]. Is the sum function F(x)+G(x) also continuous almost ev-

erywhere in [a,b].

Exercise 142 Suppose that the functions F , G : [a,b]→ R are differentiable al-

most everywhere in [a,b]. Is the sum function F(x)+G(x) also differentiable al-

most everywhere in [a,b].

2.5 Full null sets

Sets of Lebesgue measure zero are defined using open sets that contain them.
There is a variant on this using full covers instead. We have already taken advan-
tage of this variant in Chapter 1 because that variant has the closest connection
with integration theory as we have presented it. For the moment we refer to this
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version of measure zero as “full null.” Once we have proved the equivalence we
can revert to normal usage and just label such sets as “Lebesgue measure zero”
or more simply and commonly in discussions of real functions, merely as “mea-
sure zero.”

This definition has the advantage that, since it is defined using full covers, the
definition is more closely related to the differentiation and integration properties of
functions. It has the disadvantage that, unlike the Lebesgue measure zero sets, it
is not constructive; full covers themselves are not necessarily constructive.

Definition 2.12 A set E of real numbers is said to be full null if for every ε > 0

there is a full cover β of the set E with the property that

∑
([u,v],w)∈π

(v−u)< ε (2.8)

for every subpartition π chosen from β.

We recall that an equivalent formulation (in Definition 1.12) required what is
at first sight much stronger: that

∑
([u,v],w)∈π

| f (w)(v−u)|< ε (2.9)

for arbitrary functions f : E → R rather than the narrower condition in (2.8). Thus
we can also describe full null sets as those for which all Riemann sums concen-
trated on them can be arranged to be small. We will further show that the two
definitions, full null and Lebesgue measure zero, are equivalent later. For the mo-
ment one direction is easy.

Theorem 2.13 Every set of Lebesgue measure zero is also full null.

Proof. Assume that a set E Lebesgue measure zero and let ε > 0. Choose an
open set G containing E for which λ(G) < ε. Let {(ai,bi)} be the component
intervals of G. Define β to be the collection of all pairs ([u,v],w) with the property
that w ∈ [u,v]⊂ G. It is easy to check that β is a full cover of E.

Consider any subpartition π chosen from β. For each ([u,v],w) ∈ π, [u,v] is
a subinterval of some component (ai,bi) of G. Holding i fixed, the sum of the
lengths of those intervals [u,v]⊂ (ai,bi) would certainly be smaller than (bi−ai).
It follows that

∑
([u,v],w)∈π

(v−u)≤
∞

∑
i=1

(bi−ai) = λ(G)< ε.

This verifies that E is full null.

Exercises

Exercise 143 Show that every subset of a full null set is also a full null set.
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Exercise 144 Show that the union of any two full null sets is also a full null set.

Exercise 145 Show that the union of any sequence of full null sets is also a full

null set.

Exercise 146 Define a set E to be uniformly full null if for every ε > 0 there is a

uniformly full cover β of the set E with the property that

∑
([u,v],w)∈π

(v−u)< ε (2.10)

for every subpartition π chosen from β. Show that uniformly full null sets are the

same as sets of zero content. (cf. Exercise 130).

Exercise 147 (Small Riemann sums) Show that our definition in this section is

equivalent to Definition 1.12, i.e., show that a set E of real numbers is full null if

and only if for every ε > 0 and any function f : E → R there is a full cover β of E

such that
∣

∣

∣

∣

∣

n

∑
i=1

f (ξi)(yi− xi)

∣

∣

∣

∣

∣

< ε

for all subpartitions {([xi,yi],ξi) : i= 1,2,3, . . .} contained in β.

2.6 Fine null sets

Sets of Lebesgue measure zero are defined with attention to the open sets that
contain them. Full null sets are defined using full covers. There is a third variant on
this using fine covers instead. This offers yet a more delicate way of working with
Lebesgue measure zero sets, since fine covers can express very subtle properties
of derivatives and integrals. We will show in Section 2.7 that all three notions are
equivalent.

Definition 2.14 A set E of real numbers is said to be fine null if for every ε > 0

there is a fine cover β of the set E with the property that

∑
([u,v],w)∈π

(v−u)< ε (2.11)

for every subpartition π chosen from β.

We remark that an equivalent formulation would be to insist on a formally
stronger requirement: that

∑
([u,v],w)∈π

| f (w)(v−u)|< ε (2.12)

for arbitrary functions f : E → R rather than the narrower condition in (2.11). The
reader can take either as a definition of fine null sets.
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Exercises

Exercise 148 Show that every set of Lebesgue measure zero is also fine null.

Exercise 149 Show that every full null set is also fine null.

Exercise 150 Show that every subset of a fine null set is also a fine null set.

Exercise 151 Show that the union of any two fine null sets is also a full null set.

Exercise 152 Show that the union of any sequence of fine null sets is also a fine

null set.

Exercise 153 (Small Riemann sums) Show that our definition in this section is

equivalent to a fine version of Definition 1.12, i.e., show that a set E of real num-

bers is fine null if and only if for every ε > 0 and any function f : E →R there is a

fine cover β of E such that
∣

∣

∣

∣

∣

n

∑
i=1

f (ξi)(yi− xi)

∣

∣

∣

∣

∣

< ε

for all subpartitions {([xi,yi],ξi) : i= 1,2,3, . . .} contained in β.

2.7 The Mini-Vitali Covering Theorem

The original Vitali covering theorem asserts that the Lebesgue measure of an
arbitrary set can be determined either by open coverings of E, or by full covers
of E, or by fine covers of E. Our goals in this chapter are narrower. We want to
establish these same facts, but only for sets of Lebesgue measure zero. Later we
will return and complete the Vitali covering theorem.

Theorem 2.15 (Mini-Vitali covering theorem) For any set E ⊂ R the following

are equivalent:

1. E is a set of Lebesgue measure zero.

2. E is a full null set.

3. E is a fine null set.

As a result of this theorem we can now simply refer to these sets as measure
zero sets and use any of the three characterizations that is convenient. The proof
requires some simple geometric arguments and an application of the Heine-Borel
theorem; it is given in the sections that now follow.
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3∗ [c1,d1]
[u,v]

[c1,d1]

Figure 2.1: Note that 3 ∗ [c1,d1] will then include any shorter interval [u,v] that
intersects [c1,d1].

2.7.1 Covering lemmas for families of compact intervals

We begin with some simple covering lemmas for finite and infinite families of com-
pact intervals.

Lemma 2.16 Let C be a finite family of compact intervals. Then there is a pairwise

disjoint subcollection [ci,di] (i= 1,2, . . . ,m) of that family witha

⋃
[u,v]∈C

[u,v]⊂
m⋃
i=1

3∗ [ci,di].

aBy 3 ∗ [u,v] we mean the interval centered at the same point as [u,v] but with three times the
length.

Proof. For [c1,d1] simply choose the largest interval. Note that 3∗ [c1,d1] will then
include any other interval [u,v] ∈ C that intersects [c1,d1]. See Figure 2.1.

For [c2,d2] choose the largest interval from among those that do not inter-
sect [c1,d1]. Note that together 3 ∗ [c1,d1] and 3 ∗ [c2,d2] include any interval of
the family that intersects either [c1,d1] or [c2,d2]. Continue inductively, choosing
[ck+1,dk+1] as the largest interval in C that does not intersect one the previously
chosen intervals [c1,d1], [c2,d2], . . . , [ck,dk]. Stop when you run out of intervals
to select.

The next covering lemma addresses arbitrary families of compact intervals.

Lemma 2.17 Let C be any collection of compact intervals. Then the set

G=
⋃

[u,v]∈C
(u,v)

is an open set that contains all but countably many points of the set

E =
⋃

[u,v]∈C
[u,v]

Proof. Let

C = {x : x 6∈ G and x= c or x= d for at least one [c,d] ∈ C }.
We observe that G is open, being a union of a family of open intervals. Clearly G

contains all of E except for points that are in the set C. To complete the proof of
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the lemma, we show that C is countable. Write, for n= 1,2,3, . . . ,

Cn = {x : x 6∈ G, x= c for at least one [c,d] ∈ C with d− c> 1/n}.
C′
n = {x : x 6∈ G, x= d for at least one [c,d] ∈ C with d− c> 1/n}.

We easily show that each Cn and C′
n is countable. For example if c ∈Cn then

the interval (c,c+1/n) can contain no other point ofC. This is because there is at
least one interval [c,d] from C with d− c > 1/n. Thus (c,c+1/n) ⊂ (c,d) ⊂ G.
Consequently there can be only countably many such points. It follows that the
set C =

⋃∞
n=1(Cn∪C′

n) is a countable subset of E.

2.7.2 Proof of the Mini-Vitali covering theorem

We begin with a simple lemma that is the key to the argument, both for our proof
of the mini version as well as the proof of the full Vitali covering theorem.

Lemma 2.18 Let β be a covering relation and write

G=
⋃

([u,v],w)∈β

(u,v).

ThenG is an open set and, if g= λ(G), is finite then there must exist a subpartition

π ⊂ β for which

∑
([u,v],w)∈π

(v−u)≥ g/6. (2.13)

In particular

G′ = G\
⋃

([u,v],w)∈π

[u,v]

is an open subset of G and λ(G′)≤ 5g/6.

Proof. It is clear that the set G of the lemma, expressed as the union of a family of
open intervals, must be an open set. Let {(ai,bi)} be the sequence of component
intervals of G. Thus, by definition,

g= λ(G) =
∞

∑
i=1

(bi−ai).

Choose an integer N large enough that
N

∑
i=1

(bi−ai)> 3g/4.

Inside each open interval (ai,bi), for i = 1, 2, . . . , N, choose a compact interval
[ci,di] so that

N

∑
i=1

(di− ci)> g/2.
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Write

K =
N⋃
i=1

[ci,di]

and note that it is a compact set covered by the family

{(u,v) : ([u,v],w) ∈ β}.
By the Heine-Borel theorem there must be a finite subset

([u1,v1],w1), ([u2,v2],w2), ([u3,v3],w3), . . . ,([um,vm],wm)

from β for which

K ⊂
m⋃
i=1

(ui,vi).

By Lemma 2.16 we can extract a subpartition π from this list so that

K ⊂
⋃

([u,v],w)∈π

3∗ [u,v].

and so

∑
([u,v],w∈π

3(v−u)≥
N

∑
i=1

(di− ci)> g/2.

Statement (2.13) then follows. [Not that we need it here, but recall that
Lemma 2.16 allows us to claim that the intervals in the subpartition π are disjoint,
not merely nonoverlapping.]

The final statement of the lemma requires just checking the length of a finite
number of the components of G′. We have removed all the intervals [u,v] from G

for which ([u,v],w) ∈ π. Since the total length removed is greater than g/6 what
remains cannot be larger than 5g/6.

Proof of the Mini-Vitali covering theorem: We already know that every set
of Lebesgue measure zero is full null, and that every full null set is fine null. To
complete the proof we show that every fine null set is a set of Lebesgue measure
zero. Let us suppose that E is not a set of Lebesgue measure zero. We show that
it is not fine full then. Define

ε0 = inf{λ(G) : G open and G⊃ E}.
Since E is not Lebesgue measure zero, ε0 > 0.

Let β be an arbitrary fine cover of E. Define

G=
⋃

([u,v],w)∈β

(u,v).

This is an open set and, by Lemma 2.17, G covers all of E except for a countable
set. It follows that λ(G)≥ ε0, since if λ(G)< ε0 we could add to G a small open set
G′ that contains the missing countable set of points and for which the combined
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set G∪G′ is an open set containing E but with measure smaller than ε0.
By Lemma 2.18 there must exist a subpartition π ⊂ β for which

∑
([u,v],w)∈π

(v−u)≥ ε0/6.

But that means that E is not a fine null set, since this is true for every fine cover
β.

2.8 Functions having zero variation

A set E is full null (i.e., Lebesgue measure zero) if there is a full cover β of the set
E so that

∑
([u,v],w)∈π

(v−u)< ε

whenever π is a subpartition, π⊂ β. This generalizes easily by considering instead
sums

∑
([u,v],w)∈π

|F(v)−F(u)|

for some function F . We have used this definition in Chapter 1 but repeat and
review it here.

Definition 2.19 Let F be defined on an open set that contains a set E of real

numbers. We say that F has zero variation on the set E provided that for every

ε > 0 there is a full cover β of the set E so that

∑
([u,v],w)∈π

|F(v)−F(u)|< ε

whenever π is a subpartition, π ⊂ β.

Lemma 2.20 Let F : (a,b)→ R. Then F has zero variation on the open interval

(a,b) if and only if F is constant on (a,b).

Proof. One direction is obvious; the other direction is an application of the Cousin
covering lemma. Suppose that F has zero variation on (a,b). Let ε > 0 and
choose a full cover β of the set (a,b) so that

∑
([u,v],w)∈π

|F(v)−F(u)|< ε

whenever π is a subpartition, π ⊂ β. If [c,d]⊂ (a,b) then there is a partition π ⊂ β

of the whole interval [c,d]. Consequently

|F(d)−F(c)| ≤ ∑
([u,v],w)∈π

|F(v)−F(u)|< ε.

This holds for every such interval [c,d] and every positive ε. It follows that F must
be constant on (a,b).
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Lemma 2.21 Let F be defined on an open set that contains each of the sets E1,

E2, E3, . . . and suppose that F has zero variation on each Ei (i= 1,2,3, . . . ). Then

F has zero variation on any subset of the union
⋃∞

i=1Ei.

Proof. Let ε > 0 and, for each integer i, choose a full cover βi of Ei so that

∑
([u,v],w)∈π

|F(v)−F(u)|< 2−iε (2.14)

whenever π is a subpartition, π ⊂ βi. Construct β as the union of the sequence
βi[Ei]. This is a full cover of any subset E of the union

⋃∞
i=1Ei. Now simply check

that, if π is a subpartition, π ⊂ β then

∑
([u,v],w)∈π

|F(v)−F(u)| ≤
∞

∑
i=1

∑
([u,v],w)∈π[Ei]

|F(v)−F(u)|<
∞

∑
i=1

2−iε = ε. (2.15)

It follows that F has zero variation on E.

Exercises

Exercise 154 Show that a constant function has zero variation on any set. Is the

converse true, i.e., if F has zero variation on a set E must F be constant on E?

Answer

Exercise 155 Show that if F has zero variation on a set E then it has zero varia-

tion on any subset of E.

Exercise 156 Let E contain a single point x0. What does it mean for F to have

zero variation on E? Answer

Exercise 157 Let E have countably many points. Show that F has zero variation

on the set E if and only if F has zero variation on the singleton sets {e} for each

e ∈ E.

Exercise 158 Show that N is a measure zero set if and only if the function F(x) =

x has zero variation on N.

Exercise 159 Suppose that both the functions F and G have zero variation on a

set E. Show that so too does every linear combination rF+ sG.

Exercise 160 Suppose that both the functions F and G have zero variation on a

set E. Does it follow that the product FG must have zero variation on E?

Exercise 161 Show that a continuous function has variation zero on every count-

able set.

Exercise 162 Show that a function that has variation zero on every countable set

must be continuous.
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2.8.1 Zero variation and zero derivatives

There is an intimate connection between the notion of zero variation and the fact of
zero derivatives. The following two theorems are central to our theory. Note that
zero derivatives imply zero variation and that, conversely, zero variation implies
zero derivatives (but only almost everywhere).

Theorem 2.22 Let F : R→ R and suppose that F ′(x) = 0 at every point of the

set E. Then F has zero variation on E.

Proof. Fix an integer n and write En = (−n,n)∩E. Let ε > 0 and consider the
collection

β = {([u,v],w) : w ∈ E, w ∈ [u,v]⊂ (−n,n), |F(v)−F(u)|< ε(v−u)}.
By our assumption that F ′(x) = 0 at every point of E we see easily that β is a full
cover of En. But if π ⊂ β is any subpartition we must have

∑
([u,v],w)∈π

|F(v)−F(u)|< ∑
([u,v],w)∈π

ε(v−u)< 2εn.

This proves that F has zero variation on each set En. It follows from Lemma 2.21
that F has zero variation on the set E which is, evidently, the union of the se-
quence of sets {En}.

Theorem 2.23 Let F : R→ R and suppose that F has zero variation on a set E.

Then F ′(x) = 0 at almost every point of the set E.

Proof. This theorem is deeper than the preceding and will require, for us, an
appeal to our version of the Vitali covering theorem. Let N be the set of points x in
E at which F ′(x) = 0 is false. A fine covering argument allows us to analyze this.
There must be some positive number ε(x) for each x ∈ N so that

β1 = {([u,v],w) : w ∈ E, |F(v)−F(u)| ≥ ε(w)(v−u)} (2.16)

is a fine cover of N. This is how the full/fine arguments work. For, if not, then there
would be some point x in E so that, for every ε > 0,

β2 = {([u,v],w) : w ∈ E, |F(v)−F(u)|< ε(v−u)} (2.17)

would have to be full at x. But that says exactly that F ′(x) = 0. Write

Ni = {w ∈ N : ε(w)> 1/i}
for each integer i and note that N is the union of the sequence of sets {Ni}.

Fix i. Let η > 0. Since F has zero variation on E we can find a full cover β3 of
E so that

∑
([u,v],w)∈π

|F(v)−F(u)|< η (2.18)

whenever π is a subpartition, π ⊂ β3. The intersection β = β1∩β3 is a fine cover
of N.
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For the set Ni and any subpartition π ⊂ β[Ni] we compute, with some help
from (2.16) and (2.18), that

∑
([u,v],w)∈π

(v−u)< ∑
([u,v],w)∈π

ε(w)|F(v)−F(u)|

≤ i ∑
([u,v],w)∈π

|F(v)−F(u)|< iη.

This verifies that each set Ni is a fine null set and so, by the Mini-Vitali covering
theorem, also a set of Lebesgue measure zero. Consequently N itself, as the
union of a sequence of Lebesgue measure zero sets, is also a set of Lebesgue
measure zero. This completes the proof.

2.8.2 Generalization of the zero derivative/variation

We wish to interpret this result in a much more general manner. Let h be any
real-valued function that assigns values h(([u,v],w)) to pairs ([u,v],w)). We can
define zero variation and zero derivative for h just as easily as we can for a function
F : R→ R.

If h(I,x) is any function which assigns real values to interval-point pairs it will
be convenient to have a notation for the following limits:

limsup
(I,x) =⇒ x

h(I,x) = inf
δ>0

(sup{h(I,x) : λ(I)< δ, x ∈ I})

and

liminf
(I,x) =⇒ x

h(I,x) = sup
δ>0

(inf{h(I,x) : λ(I)< δ, x ∈ I}) .

These are just expressions for the lower and upper limits of h(I,x) as the interval
I (always assumed to contain x) shrinks to the point x.

We say that h has a zero derivative at a point w if

limsup
(I,w) =⇒ w

∣

∣

∣

∣

h(I,w)

λ(I)

∣

∣

∣

∣

= 0.

This is equivalent to requiring that

lim
δ→0+

sup

{∣

∣

∣

∣

h(([u,v],w))

v−u

∣

∣

∣

∣

: u≤ w≤ v, 0< v−u< δ

}

= 0.

We say too that h has zero variation on a set E if for every ε > 0 there is a full
cover β of E so that

∑
([u,v],w)∈π

|h(([u,v],w))|< ε

whenever π is a subpartition, π ⊂ β.
A repeat of the proofs just given, with minor changes, allows us to claim that

Theorems 2.22 and 2.23 can be extended to these general versions:
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Theorem 2.24 If h has a zero derivative everywhere in a set E then h has zero

variation on E.

Theorem 2.25 Zero variation for h on a set E implies h has a zero derivative

almost everywhere in E.

Exercise 163 Show that if

limsup
(I,x) =⇒ x

h(I,x)< t

at every point x of a set E then

{(I,x) : x ∈ I, h(I,x)< t}
is a full cover of E.

Exercise 164 Show that if

liminf
(I,x) =⇒ x

h(I,x)< t

at every point x of a set E then

{(I,x) : x ∈ I, h(I,x)< t}
is a fine cover of E.

2.8.3 Zero variation and mapping properties

If a function F has zero variation on a set E then necessarily the image set F(E)
has Lebesgue measure zero. This is an important and subtle property of zero
variation and we wish to present it early in our study, even though the proof will
require accepting some basic facts about Lebesgue measure that we develop only
later.

Theorem 2.26 If a function F has zero variation on a set E then the image set

F(E) = {y : y= F(x) for some x ∈ E}
has Lebesgue measure zero.

Proof. This is a special case of Theorem 6.7 that we prove much later. It is con-
venient to place it here because it clarifies the nature of zero variation. We require
for the proof some basic facts about the Lebesgue measure not yet proved. For
any set A of real numbers the value

λ(A) = inf{λ(G) : G open and G⊃ A}
is called the Lebesgue measure of A. Certainly A is a set of Lebesgue measure
zero if and only if λ(A) = 0.

We need here to know these elementary facts about Lebesgue measure. If

A=
∞⋃

n=1

An
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then

λ(A)≤
∞

∑
n=1

λ(An).

Moreover, if {An} is an increasing sequence of sets and each λ(An) ≤ t, then
λ(A)≤ t.

To continue the proof now, let E be a set on which F has zero variation. Let
ε > 0. There is then a full cover β of E so that

∑
([u,v],w)∈π

|F(v)−F(u)|< ε

whenever π is a subpartition contained in β.
We can apply the decomposition lemma (Lemma 2.7) to obtain an increasing

sequence of set {En} whose union is E as well as, for each n a sequence of
nonoverlapping intervals {Ikn} with the properties stated in the lemma. The main
feature we need is that if x1 and x2 are distinct points of En inside an interval Ikn
and x1 < x2 then ([x1,x2],x1) is a member of β.

Let us make a crude estimate of the Lebesgue measure of F(En ∩ Ikn). We
just check the diameter of the set. If that diameter is not zero, then there must
be distinct points x1 and x2 of En inside an interval Ikn with x1 < x2 such that the
number

|F(x1)−F(x2)|+ ε2−k

exceeds this diameter. We know that ([x1,x2],x1) is a member of β. This provides
us with an upper estimate for λ(En ∩ Ikn) from which we deduce, using our first
property of Lebesgue measure, that

λ(F(En))≤
∞

∑
k=1

λ(En∩ Ikn)≤ 2ε.

As this holds for all n it follows (again from a property of Lebesgue measure) that

λ(F(E))≤ 2ε.

Finally then λ(F(E)) = 0 and we have proved that F(E) is a set of Lebesgue
measure zero.

Exercise 165 Suppose that F is differentiable at every point of a set E and that

the image set F(E) is a set of Lebesgue measure zero. Show that F ′(x) = 0 for

almost every point x in E. Answer

2.9 Absolutely continuous functions

Our formulation of the notions of zero variation and measure zero are immedi-
ately related by the fact that the function F(x) = x has zero variation on a set N
precisely when that set N is a set of Lebesgue measure zero. We see, then, that
F(x) = x has zero variation on all sets of Lebesgue measure zero. Most functions
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that we have encountered in the calculus also have this property. We shall see
that all differentiable functions have this property. It plays a vital role in the theory;
such functions are said to be λ-absolutely continuous3.

The basic definition is the following, with several variants given subsequently.

Definition 2.27 A real-valued function defined on an open set containing a set E

is said to be λ-absolutely continuous on E if F has zero variation on every subset

N of E that has Lebesgue measure zero.

Absolute continuity is stronger than continuity.

Lemma 2.28 If a function F : (a,b)→ R is λ-absolutely continuous on the open

interval (a,b) then F is continuous at each point of that interval.

Proof. If F has zero variation on each Lebesgue measure zero subset of (a,b)
then F has zero variation on any set {x0} containing a single point x0 from that
interval. If we translate what this would mean into ε, δ language we find that for
every ε > 0 there must be a δ > 0 so that

|F(v)−F(u)|< ε

if v− u < δ and x0 ∈ [u,v]. But this is exactly the statement that F is continuous
at the point x0.

The exercises show that most continuous functions we encounter in the cal-
culus will be absolutely continuous. In fact the only continuous function we might
have seen so far that is not absolutely continuous is the Cantor function of ele-
mentary analysis.

2.9.1 Absolute continuity in the sense of Vitali

Historically the first notion of absolute continuity is due to G. Vitali. It is not ex-
pressed in terms of zero variation/zero measure but more in a way that is closely
related to uniform continuity.

Definition 2.29 (AC in the sense of Vitali) A function F : [a,b] → R is abso-

lutely continuous in Vitali’s sense on [a,b] provided that for every ε > 0 there

is a δ > 0 so that
n

∑
i=1

|F(xi)−F(yi)|< ε

whenever {[xi,yi]} are nonoverlapping subintervals of [a,b] for which
n

∑
i=1

(yi− xi)< δ.

3Note to the instructor: we need to distinguish among several closely related notions of abso-
lute continuity. The phrase is usually used in analysis courses in the sense that Vitali introduced (for
functions) and also in the quite different measure sense (for set functions).
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This definition does not immediately relate to our fundamental definition of
λ-absolute continuity, but the connection is easily established.

Lemma 2.30 Suppose that F : [a,b] → R is absolutely continuous in Vitali’s

sense on [a,b]. Then

1. F is uniformly continuous on [a,b].

2. F has bounded variation on [a,b].

3. F is λ-absolutely continuous on (a,b).

4. F maps subsets of (a,b) of Lebesgue measure zero into sets of Lebesgue

measure zero.

One should always ask, on seeing such a list of properties, whether they are
sufficient as well as necessary. In this case we will be able to prove (much later)
that conditions 1, 2, and 3 are sufficient and (more interesting) that conditions 1,
2, and 4 are also sufficient.

2.9.2 Proof of Lemma 2.30

It is clear just from the definitions that if F is absolutely continuous in Vitali’s sense
on [a,b] then F is uniformly continuous on [a,b].

Suppose that F : [a,b]→R is absolutely continuous in Vitali’s sense on [a,b].
We show that F has bounded variation on [a,b]. Select a δ > 0 so that

n

∑
i=1

|F(xi)−F(yi)|< 1

whenever {[xi,yi]} are nonoverlapping subintervals of [a,b] for which
n

∑
i=1

(yi− xi)< δ.

Note that if [c,d] is a subinterval of [a,b] with length less than δ then certainly

Var(F, [c,d])≤ 1.

Since [a,b] can be expressed as the union of a finite number of subintervals of
[a,b] each with length less than δ, it follows (from Exercise 59) that F has bounded
variation on [a,b].

Finally if F : [a,b]→ R is absolutely continuous in Vitali’s sense on [a,b] and
E ⊂ (a,b) is a set of measure zero, let ε > 0 and choose δ > 0 so that

n

∑
i=1

|F(xi)−F(yi)|< ε
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whenever {[xi,yi]} are nonoverlapping subintervals of [a,b] for which
n

∑
i=1

(yi− xi)< δ.

Let G⊃ E be a an open set with λ(G)< δ. Define

β = {([u,v],w) : w ∈ E ∩ [u,v]⊂ G}.
This is a full cover of E. Just check that

∑
([u,v],w)∈π

(v−u)< δ

and hence that

∑
([u,v],w)∈π

|F(v)−F(u)|< ε

whenever π is a subpartition contained in β. It follows that F has zero variation
on E. As this applies to any measure zero set it follows that F is λ-absolutely
continuous on (a,b).

Finally the fourth condition of Lemma 2.30 now follows from Theorem 2.26.

2.9.3 Absolute continuity in the variational sense

As we said, historically the first notion of absolute continuity is due to G. Vitali.
The connection with sets of measure zero soon emerged as the measure theory
developed. In fact absolute continuity (in our sense, not in Vitali’s sense) is used
extensively in the general theory of measure.

Vitali’s definition is limited to functions of bounded variation as Lemma 2.30
shows. The need for a notion of absolute continuity that would apply more gener-
ally to functions that do not have bounded variation led A. Denjoy to a notion that
imitated the Vitali definition. That notion developed later on by S. Saks under the
name “generalized absolute continuity in the restricted sense” shortened consid-
erably by the symbols ACG⋆. A different (but equivalent) definition is rather more
convenient.

Definition 2.31 (AC in the variational sense (ACG⋆)) A function F : [a,b]→ R

is absolutely continuous in the variational sense on [a,b] provided that F is uni-

formly continuous on [a,b] and λ-absolutely continuous on (a,b).

We see (because of Lemma 2.30 ) that a function absolutely continuous in the
Vitali sense on an interval [a,b] is necessarily also absolutely continuous in the
variational sense (i.e., is ACG⋆ as mathematicians of the previous century would
have expressed it). To give an example that shows the converse not to be true one
can just supply an everywhere differentiable function that does not have bounded
variation. The next section explains why differentiable functions would have this
property.
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2.9.4 Absolute continuity and derivatives

There is an intimate relationship between the differentiability properties of a func-
tion and its absolute continuity properties. The first such connection is easy to
make. Our lemma shows that all differentiable functions are λ-absolutely continu-
ous.

Lemma 2.32 Suppose that F is a real-valued function defined on an open set

that contains the Lebesgue measure zero set N and that F is differentiable at

every point of N. Then F is has zero variation on N.

Proof. For each natural number n let Nn be the collection of those points x in N at
which |F ′(x)|< n. We show that F has zero variation on each Nn. It follows then
that F is has zero variation on N =

⋃∞
n=1Nn.

Let ε > 0. Since There must be a full cover β1 of N so that

∑
([u,v],w)∈π

(v−u)< ε/n

whenever π is a subpartition, π ⊂ β1. Define

β2 = {([u,v],w) : w ∈ En, |F(v)−F(u)|< n(v−u)}.
This is evidently a full cover of Nn, because |F ′(w)|< n for each w ∈ Nn.

Consequently β = β1∩β2 is a full cover of Nn for which

∑
([u,v],w)∈π

|F(v)−F(u)|< ∑
([u,v],w)∈π

n(v−u)< ε

whenever π is a subpartition, π ⊂ β. This proves that F has zero variation on Nn.
Since N is the union of the sequence of set Nn this proves our assertion.,

Corollary 2.33 Suppose that F : [a,b]→R is a uniformly continuous function that

is differentiable at nearly every point of (a,b). Then F is absolutely continuous in

the variational sense (i.e., ACG⋆) on [a,b].

Corollary 2.34 Suppose that F : [a,b] → R is a uniformly continuous function

that is differentiable at every point of (a,b) with the exception possibly of points

in a set N on which F has zero variation. Then F is absolutely continuous in the

variational sense (i.e., ACG⋆) on [a,b].

Exercises

Exercise 166 Show that the function F(x) = x is λ-absolutely continuous on ev-

ery open interval.

Exercise 167 Show that a linear combination of λ-absolutely continuous func-

tions is λ-absolutely continuous.
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Exercise 168 Suppose that F : (a,b) → R is is λ-absolutely continuous on the

interval (a,b). Show that F must be pointwise continuous at every point of that

interval.

Exercise 169 Show that a Lipschitz function defined on an open interval is λ-

absolutely continuous there.

Exercise 170 Give an example of an λ-absolutely continuous function that is not

Lipschitz.

Exercise 171 Show that the Cantor function is not λ-absolutely continuous on

(0,1).

Exercise 172 Suppose that F : (a,b) → R is differentiable at each point of the

open interval (a,b). Show that F is λ-absolutely continuous on the interval (a,b).

Answer

Exercise 173 Suppose that F : (a,b) → R is differentiable at each point of the

open interval (a,b) with countably many exceptions but that F is pointwise contin-

uous at those exceptional points. Show that F is λ-absolutely continuous on the

interval (a,b). Answer

Exercise 174 Suppose that F : (a,b) → R is differentiable at each point of the

open interval (a,b) with the exception of a set N ⊂ (a,b). Suppose further that

N is a set of measure zero and that F has zero variation on N. Show that F is

λ-absolutely continuous on the interval (a,b).

Exercise 175 Suppose that F : (a,b)→ R is λ-absolutely continuous on the in-

terval (a,b). Then by definition F has zero variation on every subset of Lebesgue

measure zero. Is it possible that F has zero variation on subsets that are not

Lebesgue measure zero?

Exercise 176 A function F on an open interval I is said to have finite derived
numbers on a set E ⊂ I if, for each x ∈ E, there is a number Mx and one can

choose δ > 0 so that
∣

∣

∣

∣

F(x+h)−F(x)

h

∣

∣

∣

∣

≤Mx

whenever x+h ∈ I and |h|< δ. Show that F is λ-absolutely continuous on E if F

has finite derived numbers there.

Exercise 177 Suppose that F : [a,b] → R is Lipschitz. Show that F must be

absolutely continuous in the Vitali sense on [a,b]. Is the converse true, i.e., if F is

absolutely continuous in the Vitali sense on [a,b] then is F necessarily Lipschitz.-
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2.10 An application to the Henstock-Kurzweil integral

Our first serious application of the methods of this chapter establishes that the
Henstock-Kurzweil integral is equivalent to the general Newton integral.

Theorem 2.35 (Properties of the indefinite integral) Suppose that f : [a,b]→
R is a Henstock-Kurzweil integrable function on a compact interval [a,b] and that

F is an indefinite integral for f . Then

1. F is absolutely continuous in the variational sense (ACG⋆) on [a,b].

2. F ′(x) = f (x) at almost every point of (a,b).

As a corollary, by combining this theorem with Theorem 54, we obtain the
equivalence of the Henstock-Kurzweil and general Newton integrals.

Corollary 2.36 The Henstock-Kurzweil and general Newton integrals are equiv-

alent.

2.10.1 Proof of Theorem 2.35

Let N be a set of measure zero contained in [a,b]. We show that F has zero
variation on N. Let ε > 0. By Theorem 1.25 (the Henstock-Saks lemma) there
exists a full cover β1 of [a,b] so that

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε/2

whenever π is a subpartition of the interval [a,b] contained in β1. As N has mea-
sure zero, there exists a full cover β2 of N so that

∑
([u,v],w)∈π

| f (w)|(v−u)< ε/2

whenever π is a subpartition of the interval [a,b] contained in β2.
Consequently, setting β as the intersection of β1 and β2, we will have a full

cover of N for which

∑
([u,v],w)∈π

|F(v)−F(u)| ≤ ∑
([u,v],w)∈π

| f (w)|(v−u)

+ ∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε/2+ ε/2= ε.

whenever π is a subpartition of the interval [a,b] contained in β. It follows that F
is absolutely continuous in the variational sense (ACG⋆) on [a,b].

The second part of the theorem is a direct application of the material of Sec-
tion 2.8.2. Define the function

h([u,v],w) = F(v)−F(u)− f (w)(v−u).
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By the Saks-Henstock lemma h has zero variation on the set (a,b). By Theo-
rem 2.25 this means that h′(x) = 0 at almost every point x of (a,b). But, observing
that

h([u,v],w)

v−u
=

F(v)−F(u)

v−u
− f (w),

we see that at every point w for which h′(w) = 0 it is true that F ′(w) = f (w).

2.11 Lebesgue differentiation theorem

Our second application of the Mini-Vitali theorem is to prove a famous and useful
theorem of Lebesgue asserting that functions of bounded variation are almost
everywhere differentiable. We shall need this in our study of the Lebesgue integral
later on.

We have already studied a version of this theorem in Section 1.14. Here we
can prove the full version and also illustrate the use of fine covering (i.e., Vitali
covering) arguments. An education in real analysis would be expected to include
an exposure to the Rising Sun lemma as well as to the fine covering arguments
that can be used to prove Lebesgue’s theorem. Historians would also want to
study Lebesgue’s original proof.

Theorem 2.37 Let F : [a,b]→ R be a function of bounded variation. Then F is

differentiable at almost every point in (a,b).

Corollary 2.38 Let F : [a,b] → R be a monotonic function. Then F is differen-

tiable at almost every point in (a,b).

The proof of the theorem will require an introduction, first, to the upper and
lower derivates and then a simple geometric lemma that allows us to use a fine
covering argument to show that the set of points where F ′(x) does not exist is
Lebesgue measure zero.

2.11.1 Upper and lower derivates

The proof uses the upper and lower derivates. To analyze how a derivative F ′(x)
may fail to exist we split that failure into two pieces, an upper and a lower, defined
as

DF(x) = inf
δ>0

sup

{

F(v)−F(u)

v−u
: x ∈ [u,v], 0< v−u< δ

}

and

DF(x) = sup
δ>0

inf

{

F(v)−F(u)

v−u
: x ∈ [u,v], 0< v−u< δ

}

We will prove that, for almost every point x in (a,b),

DF(x)>−∞, DF(x)< ∞,
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and

DF(x) = DF(x).

From these three assertions it follows that F has a finite derivative F ′(x) at almost
every point x in (a,b).

The proof will depend on a fine covering argument. For that we need to recog-
nize the following connection between derivates and covers. The proof is trivial; it
is only a matter of interpreting the statements.

Lemma 2.39 Let F : [a,b]→ R, α ∈ R, and let

β =

{

([u,v],w) :
F(v)−F(u)

v−u
> α, w ∈ [u,v]⊂ [a,b]

}

.

Then, β is a full cover of the set

E1 = {x ∈ (a,b) : DF(x)> α}
and a fine cover of the larger set

E2 = {x ∈ (a,b) : DF(x)> α}.

2.11.2 Geometrical lemmas

The proof employs an elementary geometric lemma that Donald Austin4 used in
1965 to give a simple proof of this theorem. Our proof of the differentiation theorem
is essentially his, but written in different language. See also the version of Michael
Botsko5.

Lemma 2.40 (Austin’s lemma) Let G : [a,b] → R, α > 0 and suppose that

G(a)≤ G(b). Let

β =

{

([u,v],w) :
G(v)−G(u)

v−u
<−α, w ∈ [u,v]⊂ [a,b]

}

.

Then, for any nonempty subpartition π ⊂ β,

α

(

∑
([u,v],w)∈π

(v−u)

)

< Var(G, [a,b])−|G(b)−G(a)|.

Proof. To prove the lemma, let π1 be a partition of [a,b] that contains the subpar-
tition π. Just write

|G(b)−G(a)|= G(b)−G(a) = ∑
([u,v],w)∈π1

[G(v)−G(u)]

4D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Amer. Math. Soc.
16 (1965) 220–221.

5M. W. Botsko, An elementary proof of Lebesgue’s differentiation theorem. Amer. Math. Monthly
110 (2003), no. 9, 834–838.
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= ∑
([u,v],w)∈π

[G(v)−G(u)]+ ∑
([u,v],w)∈π1\π

[G(v)−G(u)]

<−α

(

∑
([u,v],w)∈π

[v−u]

)

+Var(G, [a,b]).

The statement of the lemma follows.

As a corollary we can replace F with −F to obtain a similar statement.

Corollary 2.41 Let G : [a,b]→ R, α > 0 and suppose that G(b)≤ G(a). Let

β =

{

([u,v],w) :
G(v)−G(u)

v−u
> α, w ∈ [u,v]⊂ [a,b]

}

.

Then, for any nonempty subpartition π ⊂ β,

α

(

∑
([u,v],w)∈π

(v−u)

)

< Var(G, [a,b])−|G(b)−G(a)|.

2.11.3 Proof of the Lebesgue differentiation theorem

We now prove the theorem. The first step in the proof is to show that at almost
every point t in (a,b),

DF(t) = DF(t).

If this is not true then there must exist a pair of rational numbers r and s for which
the set

Ers = {t ∈ (a,b) : DF(t)< r < s< DF(t)}
is not a set of Lebesgue measure zero. This is because the union of the countable
collection of sets Ers contains all points t for which DF(t) 6= DF(t).

Let us show that each such set Ers is fine null. By the Mini-Vitali theorem
we then know that Ers is a set of Lebesgue measure zero. Write α = (s− r)/2,
B= (r+ s)/2, G(t) = F(t)−Bt. Note that

Ers = {t ∈ (a,b) : DG(t)<−α < 0< α < DG(t)}.
Since F has bounded variation on [a,b], so too does the function G. In fact

Var(G, [a,b])≤ Var(F [a,b])+B(b−a).

Let ε > 0 and select points

a= s0 < s1 < · · ·< sn−1 < sn = b

so that
n

∑
i=1

|G(si)−G(si−1)|> Var(G, [a,b])−αε.

Let E ′
rs=Ers\{s1,s2, . . . ,sn−1}. Let us call an interval [si−1,si] black if G(si)−

G(si−1)≥ 0 and call it red if G(si)−G(si−1)< 0.
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For each i= 1,2,3, . . . ,n we define a covering relation βi as follows. If [si−1,si]

is a black interval then

βi =

{

([u,v],w) :
G(v)−G(u)

v−u
<−α, w ∈ [u,v]⊂ [si−1,si]

}

.

If, instead, [si−1,si] is a red interval then

βi =

{

([u,v],w) :
G(v)−G(u)

v−u
> α, w ∈ [u,v]⊂ [si−1,si]

}

.

Let β =
⋃n

i=1 βi. Because of Lemma 2.39 we see that this collection β is a fine
cover of E ′

rs.
Let π be any nonempty subpartition contained in β. Write

πi = π∩βi.

By Lemma 2.40 applied to the black intervals and Corollary 2.41 applied to the
red intervals we obtain that

α

(

∑
([u,v],w)∈πi

(v−u)

)

< Var(G, [si−1,si])−|G(si)−G(si−1)|.

Consequently

α

(

∑
([u,v],w)∈π

(v−u)

)

= α

(

n

∑
i=1

∑
([u,v],w)∈πi

(v−u)

)

≤
n

∑
i=1

Var(G, [si−1,si])−
n

∑
i=1

|G(si−G(si−1)|

≤ Var(G, [a,b])− [Var(G, [a,b])−αε] = αε.

We have proved that β is a fine cover of E ′
rs with the property that

∑
([u,v],w)∈π

(v−u)< ε

for every subpartition π ⊂ β. It follows that E ′
rs is fine null, and hence a set of

Lebesgue measure zero. So too then is Ers since the two sets differ by only a
finite number of points.

We know now that the function F has a derivative, finite or infinite, almost
everywhere in (a,b). We wish to exclude the possibility of the infinite derivative,
except on a set of Lebesgue measure zero.

Let

E∞ = {t ∈ (a,b) : DF(t) = ∞}.
Choose any B so that F(b)−F(a) ≤ B(b− a) and set G(t) = F(t)−Bt. Note
that G(b)≤ G(a) which will allow us to apply Corollary 2.41.

Let ε > 0 and choose a positive number α large enough so that

Var(G, [a,b])−|G(b)−G(a)|< αε.
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Define

β =

{

([u,v],w) :
G(v)−G(u)

v−u
> α, [u,v]⊂ [a,b]

}

.

This is a fine cover of E∞. Let π be any subpartition π ⊂ β. By our corollary then

α ∑
([u,v],w)∈π

(v−u)< Var(G, [a,b])−|G(b)−G(a)|< αε.

We have proved that β is a fine cover of E∞ with the property that

∑
([u,v],w)∈πi

(v−u)< ε

for every subpartition π ⊂ β. It follows that E∞ is fine null, and hence a set of
Lebesgue measure zero. The same arguments will handle the set

E−∞ = {t ∈ (a,b) : DF(t) =−∞}.

2.11.4 Fubini differentiation theorem

The formula
d

dx

∞

∑
n=1

Fn(x) =
∞

∑
n=1

d

dx
Fn(x)

is not generally valid without assumptions about uniform convergence, Fubini’s dif-
ferentiation theorem says that, with some assumptions on the nature of the func-
tions Fn, we can have this differentiation formula, not everywhere, but almost ev-
erywhere. Prove this occasionally useful results as an application of the Lebesgue
differentiation theorem:

Theorem 2.42 (Fubini) Let {Fn} be a sequence of monotonic, nondecreasing

functions on the interval [a,b] and suppose that F(x) = ∑∞
n=1Fn(x) is absolutely

convergent for all a≤ x≤ b. Then, for almost every x in (a,b),

F ′(x) =
∞

∑
n=1

F ′
n(x).

Proof. Our main tool, apart from ordinary computations, is the fact that monotonic
functions are differentiable almost everywhere. This is proved in Theorem 2.37.

Let us simplify the proof by deciding that Fn(a) = 0 for all n, so that F and all
functions Fn are nonnegative. We know from the Lebesgue differentiation theorem
applied to all of these monotonic functions that, except for x in a set of Lebesgue
measure zero, all of the derivatives, F ′(x) and F ′

n(x) exist. Thus it is only the
identity for these values of x that we need to establish.

Note that

F(x)≥
m

∑
n=1

Fn(x)
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for every integer m so that for almost every x,

F ′(x)≥
m

∑
n=1

F ′
n(x)

and, consequently,

F ′(x)≥
∞

∑
n=1

F ′
n(x). (2.19)

To simplify we can assume that

F(b)−
m

∑
n=1

Fn(b)≤ 2−m.

If this were not the case then we could put parentheses in the series, group terms
together, and relabel so that this would be the case. Consider the series

G(x) =
∞

∑
n=1

(

F(x)−
n

∑
k=1

Fk(x)

)

.

Note that

0≤ G(x)−
m

∑
n=1

(

F(x)−
n

∑
k=1

Fk(x)

)

≤
∞

∑
n=m+1

2−n = 2−m.

Thus we see that G is also the sum of a series of functions.
A repeat of the argument we just gave to establish (2.19) will provide the

analogous statement for this series:

0≤
∞

∑
n=1

(

F ′(x)−
n

∑
k=1

F ′
k(x)

)

≤ G′(x) (2.20)

The function G has a finite derivative at almost every point. So in order for the
inequality in (2.20) to hold for this series at a particular value of x the terms must
tend to zero. Writing that out we now know that, for almost every x,

lim
n→∞

(

F ′(x)−
n

∑
k=1

F ′
k(x)

)

= 0.

This is exactly the conclusion of the theorem.

2.12 An application to the Riemann integral

What are necessary and sufficient conditions in order that a function may be an
indefinite integral in the Riemann sense? The problem was explicitly posed in a
short note [66] published by Erik Talvila in 2008. A solution was given in [71]. As
an application of the material in this chapter we shall present a solution here.

While we are not so much interested in the Riemann integral for its own sake,
we are interested in the methods of integration theory. This proof illustrates those
methods and is a good illustration of how powerful the techniques of this chapter
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can be.

Theorem 2.43 A necessary and sufficient condition in order for a function F :

[a,b]→ R to be representable in the form

F(x) =C+
∫ x

a
f (t)dt (a≤ x≤ b)

for some constant C and for some Riemann integrable function f on [a,b] is that,

for all ε > 0, a positive function δ : [a,b]→ R
+ can be found so that

n

∑
i=1

∣

∣

∣

∣

F(ξi)−F(xi−1)

ξi− xi−1

− F(xi)−F(ξ′i)
xi−ξ′i

∣

∣

∣

∣

(xi− xi−1)< ε (2.21)

for every a= x0 < x1 < x2 < · · ·< xn = b that is finer than δ and every choice of

associated points xi−1 < ξi ≤ ξ′i < xi.

Proof. For the proof that the condition is necessary let us suppose that F is the
indefinite integral of a Riemann integrable function f . Let ε > 0 and choose δ > 0

so that
n

∑
i=1

ω f ([xi−1,xi]) (xi− xi−1)< ε

for every subdivision a= x0 < x1 < x2 < · · ·< xn = b that is finer than δ. Here, as
always,

ω f ([c,d]) = sup{| f (x)− f (y)| : x, y ∈ [c,d]}
is used to denote the oscillation of the function f on a closed interval [c,d]. Since
f is Riemann integrable this is possible (indeed it is one of Riemann’s own charac-
terizations of integrability, equivalent to that given in Section 1.10.1 as “Riemann’s
criterion”).

Observe that, if s≤ f (x)≤ t on an interval [c,d], then

s− t ≤ F(ξ)−F(c)

ξ− c
− F(d)−F(ξ′)

d−ξ′
≤ t− s

for every c< ξ ≤ ξ′ < d. It follows that
∣

∣

∣

∣

F(ξ)−F(c)

ξ− c
− F(d)−F(ξ′)

d−ξ′

∣

∣

∣

∣

≤ ω f ([c,d]).

Consequently, using a subdivision a = x0 < x1 < x2 < · · · < xn = b that is finer
than δ,

n

∑
i=1

∣

∣

∣

∣

F(ξi)−F(xi)

ξi− xi
− F(xi)−F(ξ′i)

xi−ξ′i

∣

∣

∣

∣

(xi− xi−1)

≤
n

∑
i=1

ω f ([xi−1,xi]) (xi− xi−1)< ε

proving (2.21) for any choice of associated points xi−1 < ξi ≤ ξ′i < xi.
In the opposite direction we suppose ε > 0 and that δ > 0 has been chosen

so that the condition (2.21) is satisfied for such subdivisions.
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First we claim that F is Lipschitz. We note that F must be bounded, even
continuous, otherwise the condition (2.21) is easily violated. Suppose then that
|F(x)|< K for all x ∈ [a,b].

Fix a number 0< t < δ. We work in the interval [a,b− t]. For any x ∈ [a,b− t]

we use the interval [x,x+ t] and observe, for any 0< h< t/2, that
∣

∣

∣

∣

F(x+h)−F(x)

h
− F(x+ t)−F(x+ t/2)

t/2

∣

∣

∣

∣

(x+ t− x)< ε

because of the condition (2.21). Consequently
∣

∣

∣

∣

F(x+h)−F(x)

h

∣

∣

∣

∣

<
4K+ ε

t
.

This imposes a bound on all the right-hand derived numbers of the continuous
function F in the interval [a,b− t]. It follows that this bound also serves as a
Lipschitz constant for F in [a,b− t]. By identical arguments, working on the left
side, we can show that this same bound is a Lipschitz constant for F on the
interval [a+ t,b]. It follows that F is Lipschitz on [a,b].

Since F is Lipschitz the derivative F ′(x) is a bounded function that exists at
all points x in a set D for which [a,b]\D has Lebesgue measure zero.

We define f (x) = F(x) for x ∈ D and, at points x not in D, we write

f (x) = inf
t>0

sup{F ′(y) : y ∈ D, |x− y|< t}.

We shall now prove that f is continuous at almost every point of D and hence
at almost every point of [a,b]. It is certainly bounded since F ′ is bounded by the
Lipschitz constant for F . Then, by Lebesgue’s criterion (see Section 1.10.1), we
will know that f is Riemann integrable on [a,b].

Let ω f (x) denote the oscillation of the function f at a point x, i.e.,

ω f (x) = inf
t>0

sup{| f (x+h)− f (x)| : x+h ∈ [a,b], |h|< t}.

The function f is continuous at a point x if and only if ω f (x) = 0. Thus the collec-
tion of discontinuity points of f can be expressed as the union of an increasing
sequence of sets {Em} where

Em = {x ∈ [a,b] : ω f (x)> 1/m} (m= 1,2,3, . . .).

We show that each |Em|= 0, i.e., that each is a set of Lebesgue measure zero.
For each x ∈D∩Em we may choose a sequence of nonzero numbers hn → 0

so that

| f (x+hn)− f (x)| ≥ 1/(2m).

By the way in which f was defined we may select these points so that x+hn are
in D.

Thus for each point x that is in D∩Em we may define β to be the collection
of all the interval-point pairs of the form ([x,y],x) or ([y,x],x) with |x− y| smaller
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than δ and for which y ∈ D and

| f (y)− f (x)| ≥ 1/(2m).

This β must form a fine cover of D∩Em.
We intend to apply the Mini-Vitali theorem. Take any subpartition from β; this

corresponds to a nonoverlapping collection of intervals [x1,y1], [x2,y2], . . . , [xp,yp]
chosen from this fine cover. This will have the property that 0< yk− xk < δ and

| f (yk)− f (xk)| ≥ 1/(2m) (k = 1,2, . . . , p).

For each k = 1,2, . . . , p select points ξk, ξ′k with xk < ξk ≤ ξ′k < yk in such a
way that

∣

∣

∣

∣

F(ξk)−F(xk)

ξk− xk
−F ′(xk)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

F(yk)−F(ξ′k)

yk−ξ′k
−F ′(yk)

∣

∣

∣

∣

< ε.

Now observe that
1

2m
(yk− xk)≤ | f (yk)− f (xk)|(yk− xk)≤

∣

∣

∣

∣

F(ξk)−F(xk)

ξk− xk
−F ′(xk)

∣

∣

∣

∣

(yk− xk)+

∣

∣

∣

∣

F(yk)−F(ξk)

yk−ξ′k
−F ′(yk)

∣

∣

∣

∣

(yk− xk)

+

∣

∣

∣

∣

F(ξk)−F(xk)

ξk− xk
− F(yk)−F(ξk)

yk−ξ′k

∣

∣

∣

∣

(yk− xk).

But
p

∑
k=1

∣

∣

∣

∣

F(ξk)−F(xk)

ξk− xk
− F(yk)−F(ξk)

yk−ξ′k

∣

∣

∣

∣

(yk− xk)< ε

by the assumed condition (2.21). (This isn’t a full subdivision of [a,b] but the sum
remains smaller than ε.)

The other inequalities we have imposed then show that
p

∑
k=1

(yk− xk)≤ (2m)ε[1+2(b−a)].

This argument works for any such subpartition chosen from this fine cover β.
Since ε > 0 is arbitrary we can claim, by the Mini-Vitali theorem, that D∩Em is a
set of Lebesgue measure zero for each m. Thus the set of discontinuities of f in
D has been expressed as the union of a sequence of sets of measure zero.

Thus we have proved that f is bounded and a.e. continuous on [a,b]. By
Lebesgue’s criterion (see Section 1.10.1 again) the function f is Riemann inte-
grable. The indefinite integral of f can differ from F only by a constant. It follows
that

F(x) =C+
∫ x

a
f (t)dt (a≤ x≤ b) (2.22)
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for some constant C, f f is Riemann integrable and the representation in (2.22)
can be interpreted in the Riemann sense.

2.12.1 Riesz’s problem

Theorem 2.43 just proved is closely related to a similar problem solved by
Riesz [58] for functions of bounded variation and can be deduced from it with
some extra work (left to the reader).

Theorem 2.44 (Riesz) In order for a function F : [a,b]→ R to be represented in

the form

F(x) =C+
∫ x

a
f (t)dt (a≤ x≤ b)

for some constant C and for some function f that has bounded variation on [a,b]

it is necessary and sufficient that there is a constant K so that
n

∑
i=1

∣

∣

∣

∣

F(ξi)−F(xi−1)

ξi− xi−1

− F(xi)−F(ξ′i)
xi−ξ′i

∣

∣

∣

∣

≤ K (2.23)

for every subdivision a= x0 < x1 < x2 < · · ·< xn = b and every choice of points

xi−1 < ξi ≤ ξ′i < xi.

This property has been labeled bounded slope variation and has received
some attention by later authors. This is more often expressed by placing a bound
on the sums

n−1

∑
i=1

∣

∣

∣

∣

F(xi+1)−F(xi)

xi+1− xi
− F(xi)−F(xi−1)

xi− xi−1

∣

∣

∣

∣

(2.24)

but the equivalent formulation here makes many computations more transparent.
For details connecting the two expressions (2.23) and (2.24), see Ene [23, p. 719].

Note that our condition (2.21) in Theorem 2.43 is easily implied by the stronger
condition expressed in (2.23) here. Thus, in particular, we already know that a
function F satisfying this stronger condition is the indefinite Riemann integral of
a function f constructed in the proof there. Just prove now that f has bounded
variation on [a,b].

2.12.2 Other variants

Theorem 2.43 and Theorem 2.44 belong to a collection of problems, each of which
asks for necessary and sufficient conditions for a given function F : [a,b]→ R to
be expressed as

F(x) =C+
∫ x

a
f (t)dt (a≤ x≤ b)

for some constant C and for some function f belonging to a given class of func-
tions. The most famous would be for the class of Lebesgue integrable functions:



120 CHAPTER 2. COVERING THEOREMS

the answer is that F should be absolutely continuous in the sense of Vitali, a result
which is (as one might expect) due to Vitali. We will return to this kind of problem
later on in Section 4.15.

Let us complete our discussion with just one more example. Again the proof
is left to the reader.

Theorem 2.45 A necessary and sufficient condition in order for a function F :

[a,b]→ R to be representable in the form

F(x) =C+
∫ x

a
f (t)dt (a≤ x≤ b)

for some constant C and for some continuous function f on [a,b] is that, for all

ε > 0 and κ > 0, a positive δ can be found so that
n

∑
i=1

∣

∣

∣

∣

F(ξi)−F(xi−1)

ξi− xi−1

− F(xi)−F(ξ′i)
xi−ξ′i

∣

∣

∣

∣

|xi− xi−1|< ε (2.25)

for every collection of points

a= x0,x1,x2, . . . ,xn = b

from [a,b] for which ∑n
i=1 |xi − xi−1| < κ and 0 < |xi − xi−1| < δ and for every

choice of associated points ξi and ξ′i for which xi−1 < ξi ≤ ξ′i < xi or xi−1 > ξi ≥
ξ′i > xi.



Chapter 3

The Integral

We have already introduced a number of variants for an integration theory on the
real line. Of these the broadest theory available is that of the general Newton
integral or (equivalently) the Henstock-Kurzweil integral. The simpler versions of
Newton’s integral, as well as the Riemann integral, and the Lebesgue integral are
all contained in these equivalent theories.

We shall take as our definition of the integral a simple version of the Henstock-
Kurzweil theory. This integral has historically been known under different names
depending on the choice of definition: Denjoy’s restricted integral, Perron’s in-
tegral, the Denjoy-Perron integral, the Riemann-complete integral, the Kurzweil
integral, the Henstock-Kurzweil integral, and the gage integral. Mostly we call it
simply the integral.

The theory is formal, not constructive. The Riemann integral is constructive,
but too restricted for an adequate theory of integration. The Lebesgue theory (as
we shall see in Chapter 4) is constructive too and is quite adequate even if not
quite as general. Our viewpoint on the Lebesgue integral shall be that it is con-
tained as a special case of the integral here presented. As part of that viewpoint
we accept the responsibility to develop the constructive aspects of the theory.
Thus we will return to Lebesgue’s original presentation, but backwards.

Uur development should prove a little easier than the usual introductions to
that integral. Lebesgue’s definition of an integral requires an extensive develop-
ment of the underlying measure theory first. Then it is necessary to prove all
properties of the integral using that definition. Since we already have an integra-
tion theory developed, we need only check that Lebesgue’s methods can be used
to construct the value of the integral.
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3.1 Upper and lower integrals

The integral is studied by means of an upper and a lower integral. This is a useful
way to develop the theory and so we can leave the Henstock-Kurzweil definition
behind us for a moment and start the theory of this integral in this way. This notion
of using upper and lower integrals goes back at least to 1875 and is due to Jean-
Gaston Darboux (1842–1917).

Definition 3.1 For a function f : [a,b]→ R we define an upper integral by

∫ b

a
f (x)dx= inf

β
sup
π⊂β

{

∑
([u,v],w)∈π

f (w)(v−u)

}

where the supremum is taken over all partitions π of [a,b] contained in β, and the

infimum over all full covers β of the interval [a,b].

Note that the first step is to estimate the largest possible value for the Riemann
sums for partitions π of [a,b] contained in β, and the second step is to refine this
by shrinking to smaller and smaller full covers β.

Similarly we define a lower integral as
∫ b

a
f (x)dx= sup

β

inf
π⊂β

{

∑
([u,v],w)∈π

f (w)(v−u)

}

where, again, π is a partition of [a,b] and β is a full cover.

Exercises

Exercise 178 Check that∫ b

a
f (x)dx=−

∫ b

a
[− f (x)]dx.

Exercise 179 Let f : [a,b]→ R. Show that

∫ b

a
f (x)dx≤

∫ b

a
f (x)dx.

Answer

Exercise 180 Show that a function f can be altered at a finite number of points

without changing the values of the upper and lower integrals.

Exercise 181 Show that a function f can be altered at a countable number of

points without changing the values of the upper and lower integrals.
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Exercise 182 Show that a function f can be altered at the points of a set of

measure zero without changing the values of the upper and lower integrals.

Answer

Exercise 183 Let f : [a,c]→ R and suppose that a< b< c. Show that

∫ c

a
f (x)dx=

∫ b

a
f (x)dx+

∫ c

b
f (x)dx,

assuming the sum makes sense. Answer

Exercise 184 Let f , g : R → R. What rule should hold for the upper and lower

integrals ∫ b

a
[ f (x)+g(x)]dx and

∫ b

a
[ f (x)+g(x)]dx?

Exercise 185 Define a partition π to be endpointed if only elements of the form

([u,w],w) or ([w,v],w) appear and there is no element ([u,v],w) ∈ π for which

u < w < v. Show that a restriction in the definition of integrals to use endpointed

partitions only would not change the theory at all. Answer

3.1.1 The integral and integrable functions

If the upper and lower integrals are identical we write the common value as
∫ b

a
f (x)dx=

∫ b

a
f (x)dx=

∫ b

a
f (x)dx

allowing finite or infinite values. We say in this case that the integral is determined.
When the integral is not determined then (by Exercise ??)

∫ b

a
f (x)dx<

∫ b

a
f (x)dx

and there is no integral.
If the integral is determined and this value is also finite then f is integrable

and ∫ b

a
f (x)dx

is called the integral, now assuming a finite value. Our first goal will be to check
that this account is equivalent to the usual presentation of the Henstock-Kurzweil
integral that we offered in Chapter 1.

Exercises

Exercise 186 Let f : [a,b]→ R show that a sufficient condition for f to be inte-

grable on [a,b] with c =
∫ b
a f (x)dx is that for every ε > 0 there is a full cover so
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that
∣

∣

∣

∣

∣

c− ∑
([u,v],w)∈π

f (w)(v−u)

∣

∣

∣

∣

∣

< ε

for every partition π of [a,b] contained in β. Answer

Exercise 187 Let f : [a,b]→ R be an integrable function and let π be any parti-

tion of [a,b]. Show that
∣

∣

∣

∣

∣

∫ b

a
f (x)dx− ∑

([u,v],w)∈π

f (w)(v−u)

∣

∣

∣

∣

∣

≤ ∑
([u,v],w)∈π

ω f ([u,v])λ([u,v]).

Here ω f (I) denotes the oscillation of the function f on the interval I, defined as

sup
s,t∈I

| f (s)− f (t)|.

3.1.2 HK criterion

Our first criterion for integrability returns us to Definition 1.23 and shows that the
upper/lower integral approach is equivalent to the original Henstock-Kurzweil def-
inition.

Theorem 3.2 Let f : [a,b]→ R. A necessary and sufficient condition in order for

−∞ <
∫ b

a
f (x)dx=

∫ b

a
f (x)dx< ∞

is that there is a number I so that for all ε > 0 a full cover β of [a,b] can be found

so that
∣

∣

∣

∣

∣

∑
([u,v],w)∈π

f (w)(v−u)− I

∣

∣

∣

∣

∣

< ε

for all partitions π of [a,b] contained in β. In that case then, necessarily,

I =
∫ b

a
f (x)dx=

∫ b

a
f (x)dx.

Proof. In Exercise 186 we checked that this condition is sufficient. On the other
hand, if we know that f is integrable with I =

∫ b
a f (x)dx then, using the definition

of the upper integral, for any ε > 0 we choose a full cover β1 so that

∑
([u,v],w)∈π

f (w)(v−u)< I+ ε

for all partitions π of [a,b] contained in β1. Similarly, using the definition of the
lower integral, we choose a full cover β2 so that

∑
([u,v],w)∈π

f (w)(v−u)> I− ε
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for all partitions π of [a,b] contained in β2. Take β = β1 ∩β2. This is a full cover
with the property stated.

3.1.3 Cauchy criterion

As in nearly all theories concerning limits there is a “Cauchy” criterion available.
This should be compared to the closely related one for the Riemann integral dis-
cussed in Section 1.10.1.

Theorem 3.3 (Cauchy criterion) A necessary and sufficient condition in order

for a function f : [a,b]→R to be integrable on a compact interval [a,b] is that, for

all ε > 0, a full cover β of [a,b] can be found so that
∣

∣

∣

∣

∣

∑
(I,w)∈π

∑
(I′,w′)∈π′

[ f (w)− f (w′)]λ(I∩ I′)

∣

∣

∣

∣

∣

< ε (3.1)

for all partitions π, π′ of [a,b] contained in β.

Proof. Start by checking that when π and π′ are both partitions of the same inter-
val [a,b] then, for any subinterval I of [a,b]

λ(I) = ∑
(I′,w′)∈π′

λ(I∩ I′)

from which it is easy to see that

∑
(I,w)∈π

f (w)λ(I) = ∑
(I,w)∈π

∑
(I′,w′)∈π′

f (w)λ(I∩ I′).

This allows the difference that would normally appear in a Cauchy type criterion
∣

∣

∣

∣

∣

∑
(I,w)∈π

f (w)λ(I)− ∑
(I′,w′)∈π′

f (w′)λ(I′)

∣

∣

∣

∣

∣

to assume the simple form given in (3.1). In particular that statement can be rewrit-
ten as

∣

∣

∣

∣

∣

∑
(I,w)∈π

f (w)λ(I)− ∑
(I′,w′)∈π′

f (w)λ(I)

∣

∣

∣

∣

∣

< ε. (3.2)

The condition is necessary. For if f is integrable then the first Cauchy criterion
supplies a full cover β so that

∣

∣

∣

∣

∣

∑
(I,w)∈π

f (w)λ(I)− c

∣

∣

∣

∣

∣

< ε/2

for all partitions π of [a,b] contained in β. Any two Riemann sums would both be
this close to c and hence within ε of each other.

Suppose the condition holds. We can see from (3.2) that the upper and lower
integrals must be finite. We wish to show that they are equal.



126 CHAPTER 3. THE INTEGRAL

Using the definition of the upper integral, there is at least one partition π of
[a,b] contained in β with

∑
(I,w)∈π

f (w)λ(I)>
∫ b

a
f (x)dx− ε

Using the definition of the lower integral, there is at least one partition π′ of [a,b]
contained in β with

∑
(I,w)∈π′

f (w)λ(I)<
∫ b

a
f (x)dx+ ε.

Together with (3.2) these show that
∫ b

a
f (x)dx−

∫ b

a
f (x)dx< 2ε.

Since ε is an arbitrary positive number the upper and lower integrals are equal.

3.1.4 McShane’s criterion

A nearly imperceptible change in the statement of the Cauchy criterion for inte-
grability strengthens the property in such a way as to characterize the Lebesgue
integral.

Definition 3.4 (McShane’s criterion) A function f : [a,b]→ R is said to satisfy
McShane’s criterion on [a,b] provided that for all ε > 0 a full cover β can be found

so that

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ(I∩ I′)< ε

for all partitions π, π′ of [a,b] contained in β.

Theorem 3.5 If a function f : [a,b] → R satisfies McShane’s criterion then f is

absolutely integrable on [a,b] (i.e., both f and | f | are integrable on [a,b]).

Note: the converse is proved later on.

Proof. Just check that the expression in Theorem 3.3
∣

∣

∣

∣

∣

∑
(I,w)∈π

∑
(I′,w′)∈π′

[ f (w)− f (w′)]λ(I∩ I′)

∣

∣

∣

∣

∣

< ε (3.3)

is smaller than the expression

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ(I∩ I′)< ε.

That would prove, using Theorem 3.3 that the integrability of f follows from the
McShane criterion.
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But it is also true that this expression
∣

∣

∣

∣

∣

∑
(I,w)∈π

∑
(I′,w′)∈π′

[| f (w)|− | f (w′)|]λ(I∩ I′)

∣

∣

∣

∣

∣

< ε (3.4)

is smaller than the expression

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ(I∩ I′)< ε.

That would prove, again using Theorem 3.3 that the integrability of | f | follows from
the same McShane criterion.

3.2 Elementary properties of the integral

All of our elementary properties of the integral are anticipated by the classical
Newton integral which shares all the same properties in somewhat weaker forms.
For the classical integral the proofs are obtained by direct appeal to corresponding
properties of derivatives. Here we need to derive analogous properties directly
from the expression of the integral by Riemann sums.

Our interest here is that these same properties now hold under very general
hypotheses, although requiring new proofs The reader should be able to construct
proofs that use either the descriptive version of the general Newton integral or the
Henstock-Kurzweil version based on Riemann sums.

3.2.1 Integration and order

Theorem 3.6 Suppose that f , g are both integrable on a compact interval [a,b]

and that f (x)≤ g(x) for almost every x in that interval. Then∫ b

a
f (x)dx≤

∫ b

a
g(x)dx.

3.2.2 Integration of linear combinations

Theorem 3.7 Suppose that f , g are both integrable on a compact interval [a,b] .

Then so too is any linear combination r f + sg and∫ b

a
[r f (x)+ sg(x)] dx= r

(∫ b

a
f (x)dx

)

+ s

(∫ b

a
g(x)dx

)

.

3.2.3 Integrability on subintervals

Theorem 3.8 Suppose that f is integrable on a compact interval [a,b] . Then f

is integrable on any compact subinterval of [a,b].



128 CHAPTER 3. THE INTEGRAL

3.2.4 Additivity

Theorem 3.9 If f is integrable on both of the intervals [a,b] and [b,c], then f is

integrable on [a,c] and∫ c

a
f (x)dx=

∫ b

a
f (x)dx+

∫ c

b
f (x)dx.

3.2.5 A simple change of variables

Let φ : [a,b]→ R be a strictly increasing differentiable function. We would expect
from elementary formulas of the calculus that∫ φ(b)

φ(a)
f (x)dx=

∫ b

a
f (φ(t))φ′(t)dt.

If f is itself everywhere a derivative then this could be justified. If f is assumed
only to be integrable then a different proof, using φ to map full covers and parti-
tions, is needed.

Later on in Section 5.12 we will return to this problem and find more general
conditions for a change of variables. The convenient tool there is the Stieltjes
integral which helps clarify these ideas and offers some technical simplifications.

Theorem 3.10 (Change of variable) Let φ : R→ R be a strictly increasing, dif-

ferentiable function. If f : R→ R is integrable on [φ(a),φ(b)] then∫ φ(b)

φ(a)
f (x)dx=

∫ b

a
f (φ(t))φ′(t)dt.

Proof. Let ε > 0 and define β to be the collection of all pairs ([x,y],z) subject only
to the conditions that

∣

∣

∣

∣

φ(y)−φ(x)

y− x
−φ′(z)

∣

∣

∣

∣

<
ε

2(b−a)|(1+ | f (φ(z)|) .

Since φ is everywhere differentiable this is a full cover. Note that we can write
φ(y)− φ(x) also as λ(J) where J = φ([x,y]) is just the compact interval that φ

maps [x,y] onto.
Write

β′
1 = {(φ([x,y]),φ(x)) : ([x,y],z) ∈ β1}

and check that β′
1 is also a full cover. Observe that elements (J,x) =

(φ([x,y]),φ(z)) of β′
1 must satisfy

| f (φ(x))λ(φ([x,y]))− f (φ(x))φ′(x)λ([x,y])|< ελ([x,y])/2(b−a).

The expression f (φ(t))λ(φ([x,y])) here is better viewed as f (x)λ(J).
Choose a full cover β′

2 so that
∣

∣

∣

∣

∣

∫ φ(b)

φ(a)
f (x)dx− ∑

(J,x)∈π′
f (x)λ(J)

∣

∣

∣

∣

∣

< ε/2
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for all partitions π′ ⊂ β′
2 of the interval [φ(a),φ(b)]. Write β2 for the collection of

all (I,x) for which (I,x) = (φ(J),φ(t)) for some (J, t) ∈ β′
2. This is a full cover of

[a,b].
Write β = β1∩β2. Check that β is a full cover of [a,b] and check that

∣

∣

∣

∣

∣

∫ φ(b)

φ(a)
f (x)dx− ∑

(I,x)∈π

f (φ(x))φ′(x)λ(I)

∣

∣

∣

∣

∣

< ε

for all partitions π ⊂ β of the interval [a,b]. An appeal to the HK criterion then
completes the proof.

3.2.6 Integration by parts

Integration by parts formula:∫ b

a
F(x)G′(x)dx= F(b)G(b)−F(a)G(b)−

∫ b

a
F ′(x)G(x)dx. (3.5)

The formula can be derived from the product rule for derivatives:

d

dx
(F(x)G(x)) = F(x)G′(x)+F ′(x)G(x)

which holds at any point where both functions are differentiable. One must then
give strong enough hypotheses that the function F(x)G(x) is an indefinite integral
for the function

F(x)G′(x)+F ′(x)G(x)

in the sense needed for our integral.
The most general statement is the following: if f and g are both integrable on

[a,b] and F and G are their indefinite integrals on that interval then Fg+ fG is
integrable on [a,b] and∫ b

a
(F(x)g(x)+ f (x)G(x)) dx= F(b)G(b)−F(a)G(b).

In particular the usual formula (3.5) holds if and only if one of the two integrals in
that statement exists. The proof is easiest to deduce from the Stieltjes version∫ b

a
F(x)dG(x)+G(x)dF(x) = F(b)G(b)−F(a)G(b) (3.6)

that we will study in a later chapter. The reader may wish to try, however, to prove
it directly.

Remark: For the Lebesgue integral the integration by parts formula is available but
not quite as straightforward. It is possible that Fg+ fG is integrable on [a,b] but
that only one of Fg and fG is Lebesgue integrable (i.e., absolutely integrable) on
[a,b]. For example take F(x) = x and G(x) = xcosx−2 on [0,1]. It is also possible
neither is Lebesgue integrable: take F(x) = x1/2 sinx−1 and G(x) = x1/2 cosx−1.
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3.2.7 Derivative of the integral

If f is integrable on an interval [a,b] then the formula

d

dx

∫ x

a
f (t)dt = f (x)

holds at almost every point in (a,b). This is merely by definition had we started
with the Newton version of the integral. Since the Henstock-Kurzweil integral is
equivalent to the general Newton integral we know this fact already. To make a
claim, however, at some particular point the following simple observation is some-
times useful.

Theorem 3.11 Let f : [a,b]→ R be an integrable function on the interval [a,b].

Let

F(t) =
∫ t

a
f (x)dx (a≤ t ≤ b).

Assume that x0 ∈ [a,b] is a point of continuity of f . Then

1. If a< x0 < b then F ′(x0) = f (x0).

2. If a= x0 then the right hand derivative F ′
+(a) = f (a).

3. If x0 = b then the left hand derivative F ′
−(b) = f (b).

Proof. Let x0 be a point of continuity of f and let ε > 0. Then there is a δ > 0

so that | f (x)− f (x0)| < ε if |x− x0| < δ and x ∈ [a,b]. Let [u,v] ⊂ [a,b] be any
interval that contains x0 and has length less than δ. Simply compute

∣

∣

∣

∣

∫ v

u
f (x)dx− f (x0)(v−u)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ v

u
f (x)dx−

∫ v

u
f (x0)dx

∣

∣

∣

∣

≤
∫ v

u
| f (x)− f (x0)| dx≤ ε(v−u).

From this the conclusions of the theorem are easy to check.

3.2.8 Null functions

A function is a null function if it is equal to zero at every point with only a small
set of exceptions. It is immediately clear that every null function has a constant
indefinite integral. Thus the following statements are obvious.

Theorem 3.12 Let f : [a,b]→ R be a null function. Then f is integrable on [a,b]

and ∫ b

a
f (x)dx= 0.
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Theorem 3.13 Let f : [a,b]→ R be an integrable function with the property that∫ d

c
f (x)dx= 0 for all [c,d]⊂ [a,b].

Then f is a null function.

Corollary 3.14 Let f : [a,b] → R be a nonnegative integrable function with the

property that ∫ b

a
f (x)dx= 0.

Then f is a null function.

3.2.9 Monotone convergence theorem

The formula

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a

(

lim
n→∞

fn(x)
)

dx

is extremely useful but not generally valid. If the sequence of integrable functions
{ fn} is monotone then this does hold.

Theorem 3.15 (Monotone convergence theorem) Let fn : [a,b] → R (n =

1,2,3, . . . ) be a nondecreasing sequence of integrable functions and suppose

that

f (x) = lim
n→∞

fn(x)

for almost every x in [a,b]. Then∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx. (3.7)

In particular, if the limit exists and is finite the function f is integrable on [a,b] and

the identity (3.7) holds. If the limit is infinite then the function f is not integrable

but the integral is determined and∫ b

a
f (x)dx= ∞.

Here we are using the ideas from Section 3.1 that allow us to express an
integral as infinite. This was not available to us in our study of the Newton integral
but the Henstock-Kurzweil theory of upper and lower integrals allowed this. The
proof of Theorem 3.15 is given in Section 3.2.11 below.

3.2.10 Summing inside the integral

We establish here that the summation formula∫ b

a

(

∞

∑
n=1

fn(x)

)

dx=
∞

∑
n=1

(∫ b

a
fn(x)dx

)



132 CHAPTER 3. THE INTEGRAL

is possible for nonnegative integrable functions.

Theorem 3.16 (summing inside the integral) Let fn : [a,b] → R (n =

1,2,3, . . . ) be a sequence of nonnegative integrable functions and suppose

that

f (x) =
∞

∑
n=1

fn(x)

for almost every x. Then∫ b

a
f (x)dx=

∞

∑
n=1

(∫ b

a
fn(x)dx

)

.

In particular, if the series converges the function f is integrable on [a,b] and the

identity (3.10) holds. If the series diverges then the function f is not integrable but

the integral is determined and ∫ b

a
f (x)dx= ∞.

The proof is obtained from the two lemmas given in Section 3.2.11 below.

3.2.11 Two convergence lemmas

The monotone convergence theorem and the formula for summing inside the in-
tegral are directly related by the following observation. If

f1(x)≤ f2(x)≤ f3(x)≤ . . .

and

lim
n→∞

fn(x) = f (x)

then

f (x) = f1(x)+
∞

∑
n=1

( fn(x)− fn−1(x))

expresses f as the sum of a series. Thus it is enough to prove Theorem‘3.16.
This is obtained from the following two lemmas.

Lemma 3.17 Suppose that f , f1, f2, . . . is a sequence of nonnegative functions

defined on a compact interval [a,b]. If, for almost every x

f (x)≥
∞

∑
n=1

fn(x),

then ∫ b

a
f (x)dx≥

∞

∑
n=1

(∫ b

a
fn(x)dx

)

. (3.8)

Proof. We can assume that the inequality assumed is valid for every x; simply
redefine fn(x) = 0 for those points in the null set where the inequality doesn’t
work. The resulting functions will have the same lower integrals as fn.
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Let ε > 0. Take any integer N and choose full covers βn (n = 1,2, . . . ,N) so
that all the Riemann sums1

∑
π

fn(w)(v−u)≥
∫ b

a
fn(x)dx− ε2−n

whenever π ⊂ βn is a partition of [a,b]. (If the integrals here are not finite then
there is nothing to prove, since both sides of the inequality (3.8) will be infinite.)

Let

β =
N⋂

n=1

βn.

This too is a full cover, one that is contained in all of the others.
Take any partition of [a,b] with π ⊂ β, and compute

∑
π

f (w)(v−u)≥ ∑
π

(

N

∑
n=1

fn(w)(v−u)

)

=
N

∑
n=1

(

∑
π

fn(w)(v−u)

)

≥

N

∑
n=1

(∫ b

a
fn(x)dx− ε2−n

)

.

This gives a lower bound for all Cauchy sums and hence, since ε is arbitrary,
shows that ∫ b

a
f (x)dx≥

N

∑
n=1

(∫ b

a
fn(x)dx

)

.

As this is true for all N the inequality (3.8) must follow.

Lemma 3.18 Suppose that f , f1, f2, . . . is a sequence of nonnegative functions

defined on a compact interval [a,b]. If, for almost every x

f (x)≤
∞

∑
n=1

fn(x),

then ∫ b

a
f (x)dx≤

∞

∑
n=1

(∫ b

a
fn(x)dx

)

. (3.9)

Proof. As before, we can assume that the inequality assumed is valid for every
x; simply redefine f (x) = 0 for those points in the null set where the inequality
doesn’t work. The resulting function will have the same integral and same upper
integral as f .

This lemma is similar to the preceding one, but requires a bit of bookkeeping
and a new technique with the covers. Let t < 1 and choose for each x ∈ [a,b] the

1We simplify our notation for Riemann sums a bit by replacing

∑
([u,v],w)∈π

f (w)(v−u) by ∑
π

f (w)(v−u).
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first integer N(x) so that

t f (x)≤
N(x)

∑
n=1

fn(x).

Choose, again and using the same ideas as before, full covers βn (n =

1,2, . . . ) so that β1 ⊃ β2 ⊃ β3 . . . and all Riemann sums2

∑
π

fn(w)(v−u)≤
∫ b

a
fn(x)dx+ ε2−n

whenever π ⊂ βn is a partition of [a,b]. (Again, if the integrals here are not finite
then there is nothing to prove, since the larger side of the inequality (3.9) will be
infinite.)

Let

En = {x ∈ [a,b] : N(x) = n}.
We use these sets to carve up the covering relations. Write

βn[En] = {([u,v],w) ∈ βn : w ∈ En}.
There must be a full cover β so that

β[En]⊂ βn[En]

for all n= 1,2,3, . . . .
Take any partition of [a,b] with π ⊂ β. Let N be the largest value of N(x) for

the finite collection of pairs (I,x) ∈ π. We need to carve the partition π into a finite
number of disjoint subsets by writing, for j = 1,2,3, . . . ,N,

π j = {([u,v],w) ∈ π : w ∈ E j}
and

σ j = π j ∪π j+1∪· · ·∪πN .

for integers j = 1,2,3, . . . ,N. Note that

σ j ⊂ β j

and that

π = π1∪π2∪· · ·∪πN .

Check the following computations, making sure to use the fact that for x ∈ Ei,

t f (x)≤ f1(x)+ f2(x)+ · · ·+ fi(x).

∑
π

t f (w)(v−u) =
N

∑
i=1

∑
πi

t f (w)(v−u)

2As before, we simplify our notation for Riemann sums by replacing

∑
([u,v],w)∈π

f (w)(v−u) by ∑
π

f (w)(v−u).
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≤
N

∑
i=1

∑
πi

( f1(w)+ f2(w)+ · · ·+ fi(w))(v−u)

=
N

∑
j=1

(

∑
σ j

f j(w)(v−u)

)

≤

N

∑
j=1

(∫ b

a
f j(x)dx+ ε2− j

)

≤
∞

∑
j=1

(∫ b

a
f j(x)dx

)

+ ε.

This gives an upper bound for all Cauchy sums and hence, since ε is arbitrary,
shows that ∫ b

a
t f (x)dx≤

∞

∑
n=1

(∫ b

a
fn(x)dx

)

.

As this is true for all t < 1 the inequality (3.9) must follow too.

Exercises

Exercise 188 Give an example to show that it is possible that
∫ b
a f (x)dx = ∞ in

Theorem 3.16.

Exercise 189 Give an example to show that it is possible for the Theorem 3.16 to

fail if we drop the assumption that the functions are nonnegative in the theorem.

Exercise 190 Let fn : [a,b] → R (n = 1,2,3, . . . ) be a sequence of absolutely

integrable functions and suppose that
∞

∑
n=1

| fn(x)|< ∞

for almost every x and that
∞

∑
n=1

(∫ b

a
| fn(x)|dx

)

< ∞.

Then show that

f (x) =
∞

∑
n=1

fn(x)

is finite for almost every x in [a,b], is absolutely integrable, and that∫ b

a
f (x)dx=

∞

∑
n=1

(∫ b

a
fn(x)dx

)

.

3.3 Equi-integrability

We describe a uniform version of integrability that is useful in discussions of the
convergence of sequences of integrable functions.
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Definition 3.19 (equi-integrability) Suppose that { fn} is a sequence of inte-

grable functions defined at every point of a compact interval [a,b]. Then { fn}
is said to be equi-integrable on [a,b] if, for every ε > 0, there is a full cover β of

[a,b] so that
∣

∣

∣

∣

∣

∫ b

a
fn(x)dx− ∑

[u,v],w)∈π

fn(w)(v−u)

∣

∣

∣

∣

∣

< ε

whenever π is a partition of the interval [a,b] chosen from β.

Uniform convergence is a sufficient condition for equi-integrability, but the con-
dition itself is much more general.

Lemma 3.20 Suppose that { fn} is a sequence of integrable functions defined at

every point of a compact interval [a,b] and that { fn} is uniformly convergent on

[a,b]. Then { fn} is equi-integrable on [a,b].

Equi-integrability along with pointwise convergence gives a simply stated cri-
terion for taking the limit inside the integral.

Theorem 3.21 Suppose that { fn} is a sequence of equi-integrable functions de-

fined at every point of a compact interval [a,b] and that { fn} is pointwise con-

vergent almost everywhere on [a,b] to a function f . Then f is integrable on [a,b]

and ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx. (3.10)

The proofs are not difficult and are left as exercises.



Chapter 4

Lebesgue’s Integral

Lebesgue’s program is the construction of the value of the integral∫ b

a
f (x)dx

directly from the measure and the values of the function f in the integral. Our
formal definition of the integral appears to do this. Since full covers are not them-
selves, in general, constructible from the function being integrated we cannot
claim that our integral is constructed in the sense Lebesgue intends.

For his program he invented the integral as a heuristic device, imagined what
properties it should possess, and then went about discovering how to construct it
based on this fiction. At the end he had to take his construction as the definition
itself. For us to follow the same program is much easier: we have an integral,
we know many of its properties, and we can use this information to construct the
value of the integral for any absolutely integrable function.

This chapter presents an introduction to Lebesgue’s methods, but backwards
in a sense from conventional presentations. We already have a formal definition
of the integral, so we do not need to define an integral by Lebesgue’s method.
Nor do we need to develop its elementary properties since we have already done
so by other means. We need only show how to construct the value of an object∫ b
a f (x)dx that we have already defined by other means. In the course of that

construction we discover the many methods of measure theory which can be used
to study integration theory at a deeper level.

4.1 The Lebesgue integral

The Lebesgue integral is a special case of the general integral. It is not merely a
special case, but certainly the most important special case.
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Definition 4.1 (The Lebesgue integral) A function f : [a,b] → R is said to be

Lebesgue integrable if f is absolutely integrable, i.e., if both f and | f | are inte-

grable on [a,b].

By definition all Lebesgue integrable functions are integrable in our sense.
There are functions that are integrable but not Lebesgue integrable; they are said
to be nonabsolutely integrable. The theory of such functions is less powerful and
more delicate1 than the theory of the Lebesgue integrable functions. There are
also fewer applications. We return to nonabsolutely integrable functions in Chap-
ter 6. In this chapter we study properties of absolutely (i.e., Lebesgue) integrable
functions. In particular we shall find that a good constructive theory is available
using Lebesgue’s theory of measure.

4.2 Lebesgue measure

We define the following three versions of Lebesgue measure (similar to the three
versions of a measure zero set) for a set E ⊂ R:

• λ(E) = inf{λ(G) : G open and G⊃ E }.

• λ∗(E) = inf
β

(

sup
π⊂β

∑
([u,v],w)∈π

(v−u)

)

where the infimum is taken over all full covers β of the set E and π ⊂ β is
an arbitrary subpartition.

• λ∗(E) = inf
β

(

sup
π⊂β

∑
([u,v],w)∈π

(v−u)

)

where the infimum is taken over all fine covers β of the set E and π ⊂ β is
an arbitrary subpartition.

The first of these λ is Lebesgue’s original version of his measure. We have
already (in Section 2.4.1) defined the Lebesgue measure of open sets. This defini-
tion extends that, by a simple infimum, to all sets. The definition of the full measure
λ∗ is closely related to the integral.

Lemma 4.2 Let E be a set of real numbers contained in an interval [a,b]. Then

λ∗(E) =
∫ b

a
χE(x)dx.

The three definitions are equivalent, a fact which is proved as the Vitali cover-
ing theorem in Section 4.3 below.

1The best analogy that captures the difference is in the theory of convergent series: absolutely
convergent series permit a stronger and more useful theory than do the nonabsolutely [condition-
ally] convergent series.



4.2. LEBESGUE MEASURE 139

4.2.1 Basic property of Lebesgue measure

Theorem 4.3 Lebesgue measure λ is a nonnegative real-valued set function de-

fined for all sets of reals numbers that is a measurea on R, i.e., it has the following

properties:

1. λ( /0) = 0.

2. For any sequence of sets E, E1, E2, E3, . . . for which

E ⊂
∞⋃

n=1

En

the inequality

λ(E)≤
∞

∑
n=1

λ(En)

must hold.

aMost authors would call this an outer measure.

This result is often described by the following language that splits the property
(2) in two parts:

Subadditivity: λ

(

∞⋃
n=1

En

)

≤
∞

∑
n=1

λ(En).

Monotonicity: λ(A)≤ λ(B) if A⊂ B.

Since we have three representations of the Lebesgue measure, as λ, λ∗, or as
λ∗ we can prove this using any one of the three. The exercises ask for all three;
any one would suffice in view of the Vitali covering theorem proved in the next
section.

Exercises

Exercise 191 Prove Lemma 4.2, i.e., establish the identity

λ∗(E) =
∫ b

a
χE(x)dx

for any set E ⊂ [a,b]. Note that this exercise uses the full version λ∗, not the
original Lebesgue version λ. Answer

Exercise 192 Prove that λ is a measure in the sense of Theorem 4.3.

Answer

Exercise 193 Prove that λ∗ is a measure in the sense of Theorem 4.3.
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Exercise 194 Prove that λ∗ is a measure in the sense of Theorem 4.3.

Exercise 195 Prove that λ(A) < t if and only if there is an open set G that con-

tains all but countably many points of A and for which λ(G)< t.

4.3 Vitali covering theorem

These three measures are identical and we can use any version. The identity
λ = λ∗ = λ∗ is Vitali’s theorem, although his theorem is normally expressed in
different language.2

The proof is just a bit more difficult than the proof of the narrower version, the
mini-Vitali theorem given in Section 2.7, where we showed that sets of measure
zero were equivalent to both full null and fine null sets.

Theorem 4.4 (Vitali Covering Theorem) λ = λ∗ = λ∗.

4.3.1 Classical version of Vitali’s theorem

Vitali’s covering theorem asserts that the measure of an arbitrary set can be de-
termined from full and fine covers of that set. The basic computation about fine
covers is the following lemma, known as the classical version of Vitali’s theorem.

Lemma 4.5 (Vitali covering theorem) Let β be a fine cover of a bounded set E

and suppose that ε > 0. Then there must exist a subpartition π ⊂ β for which

λ



E \
⋃

([u,v],w)∈π

[u,v]



< ε. (4.1)

Proof. For the proof of this theorem we need only one simple fact (Exercise 195)
about the Lebesgue measure λ(E) of a real set A:

⋆ λ(A) < ε if and only if there is an open set G containing all but

countably many points of A and for which λ(G)< ε.

Thus the proof is really about open sets. Indeed in our proof we use only the
Lebesgue measure of open sets and several covering lemmas.

The proof is just a repeated application of Lemma 2.18. Since E is bounded
there is an open set U1 containing E for which λ(U1) < ∞. If λ(U1) < ε then,

2The language here, will no doubt, shock some traditionalists for whom it appears to suggest
Lebesgue inner and outer measure. But this has nothing to do with inner/outer measure. The mea-
sures λ∗ and λ∗ are those derived from full and fine covers.
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since E ⊂U1, λ(E) < ε and there is nothing more to prove: take π = /0 and the
statement (4.1) is satisfied. If λ(U1)≥ ε we start our process.

We prune β by the open set U1: define β1 = β(U1). Note that this, too, is a
fine cover of E. Set

G1 =
⋃

([u,v],w)∈β1

(u,v).

Then G1 is an open set and g1 = λ(G1) < λ(U1) is finite. We know from
Lemma 2.17, that G1 covers all of E except for a countable set. [We shall ignore
countable sets in this proof, to keep the bookkeeping simple]. By Lemma 2.18
there must exist a subpartition π1 ⊂ β1 for which

U2 = G1 \
⋃

([u,v],w)∈π

[u,v]

is an open subset of G1 and

λ(U2)≤ 5g1/6≤ 5λ(U1)/6.

Define

E1 = E \
⋃

([u,v],w)∈π1

[u,v].

If λ(U2)< ε then λ(E1)< ε. This is becauseU2 is an open set containing all of E1

except possibly some countable set; thus ⋆ stated above implies that λ(E1)< ε.
But if λ(E1) < ε the process can stop: take π = π1 and the statement (4.1) is
satisfied.

If λ(U2)≥ ε we continue our process. Define β2 = β(U2) and note that this is
a fine cover of E1 (i.e., the points in E not already handled by the subpartition π1

or the countably many points of E discarded in the first stage of our proof).
Set

G2 =
⋃

([u,v],w)∈β2

(u,v).

Then G2 is an open set and

g2 = λ(G2)≤ λ(U2).

As before, we know from Lemma 2.17, that G2 covers all of E1 except for a count-
able set. [We are ignoring countable sets in this proof, throw these points away].

Again applying Lemma 2.18, we find a subpartition π2 ⊂ β2 for which

U3 = G2 \
⋃

([u,v],w)∈π2

[u,v]

is an open subset of G2 and λ(U3)≤ 5g2/6. Define

E2 = E1 \
⋃

([u,v],w)∈π2

[u,v]

= E \
⋃

([u,v],w)∈π1∪π2

[u,v].
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If λ(U3)< ε then λ(E2)< ε. This because U3 is an open set containing all of E2

except possibly some countable set; thus ⋆ stated above implies that λ(E2)< ε.
But if λ(E2) < ε the process can stop: take π = π1 ∪π2 and the statement (4.1)
is satisfied. [Be sure to check that the intervals from π1 have been arranged to be
disjoint from the intervals in π2.]

This process is continued, inductively, until it stops. It certainly must stop since

λ(Uk+1)<
5

6
λ(Uk)≤ ·· · ≤

(

5

6

)k

λ(U1)

so that eventually λ(Uk+1)< ε and λ(Ek)< ε. Take

π = π1∪π2∪ . . .πk

and the statement (4.1) is satisfied.

4.3.2 Proof that λ = λ∗ = λ∗.

The inequality

λ∗ ≤ λ∗ ≤ λ

is trivial. First of all, any full cover is also a fine cover so that λ∗ ≤ λ∗ must be true.
Second, if λ(E) < t there is an open set G containing E for which it is also true
that λ(G) < t. But then we can define a covering relation β to consist of all pairs
([u,v],w) provided w ∈ [u,v]⊂ G. This is a full cover of E. Note that

∑
([u,v],w)∈π

(v−u)≤ λ(G)< t

whenever π ⊂ β is an arbitrary subpartition. It follows that λ∗(E) < t. As this is
true for all t,

λ∗(E)≤ λ(E).

Finally, then, Lemma 4.5 completes the proof. Let β be any fine cover of a
bounded set E and suppose that ε > 0. Then there must exist a subpartition
π ⊂ β for which

λ



E \
⋃

([u,v],w)∈π

[u,v]



< ε. (4.2)

In particular, using subadditivity measure property of λ,

λ(E)≤ λ



E \
⋃

([u,v],w)∈π

[u,v]



+ ∑
([u,v],w)∈π

λ([u,v])

< ∑
([u,v],w)∈π

(v−u)+ ε.

So, since this is true for any fine cover of E,

λ(E)≤ λ∗(E)+ ε.
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It follows that λ(E)≤ λ∗(E) for all bounded sets E.
That establishes the identity λ = λ∗ = λ∗ for all bounded sets. The extension

to unbounded sets can be accomplished with the standard measure properties.

4.4 Density theorem

As an application of the Vitali covering theorem we prove the density theorem.
This asserts that for an arbitrary set E almost every point is a point of density, a
point x where

λ(E ∩ [u,v])

λ([u,v])
→ 1

as [u,v] shrinks to x.

Theorem 4.6 Almost every point of an arbitrary set E is a point of density.

Proof. To define this with a bit more precision write

d(E,x) = sup
δ>0

inf

{

λ(E ∩ [u,v])

λ([u,v])
: u≤ x≤ v, 0< v−u< δ

}

.

This is called the lower density of E at x. The theorem asserts that

d(E,x) = 1

at almost every point x of E.
We may assume that E is bounded. Take any α < 1 and define

Eα = {x ∈ E : d(E,x)< α}
and

E ′ = {x ∈ E : d(E,x)< 1} .
We show that Eα is necessarily a set of measure zero. It follows that E ′ is then a
set of measure zero since evidently

E ′ =
∞⋃

n=1

E n
n+1

.

Fix α < 1 and any open set G containing Eα, and define

β = {([u,v],w) : u≤ x≤ v, λ(E ∩ [u,v])< αλ([u,v])} .
This is a fine cover of Eα, and since G is an open set containing Eα, the pruned
relation β(G) is also a fine cover of Eα. Let ε > 0. By the Vitali covering theorem
(Lemma 4.5) there must exist a subpartition π ⊂ β(G) for which

λ



Eα \
⋃

([u,v],w)∈π

[u,v]



< ε. (4.3)
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Now we simply compute, using subadditivity, that

λ(Eα)≤ λ



Eα \
⋃

([u,v],w)∈π

[u,v]



+ ∑
([u,v],w)∈π

λ(Eα ∩ [u,v])

≤ ε+ ∑
([u,v],w)∈π

λ(E ∩ [u,v])

≤ ε+α ∑
([u,v],w)∈π

λ([u,v])≤ ε+αλ(G).

We deduce that λ(Eα)≤ λ(G) for all such open sets G and hence that λ(Eα)≤
αλ(Eα). This is possible only if λ(Eα) = 0.

4.4.1 Approximate Cousin lemma

Density arguments play an important role in many advanced studies in analysis.
As an illustration we generalize the notion of a full cover by introducing a density
computation into the concept.

Definition 4.7 A covering relation β is said to be approximately full at a point

x0 provided there is a set ∆x0 containing x0 and for which d(∆x0 ,x0) = 1 so that

([y,z],x) belongs to β for all y≤ x≤ z with y, z ∈ ∆x0 .

A covering relation β is said to be approximately full if it is approximately full at
every point. Note that all full covers are necessarily also approximately full. There
is a covering lemma entirely analogous to the Cousin lemma available for these
more general covers.

Lemma 4.8 (Approximate Cousin) A covering relation that is approximately full

contains partitions of every compact interval.

Proof. Suppose that β is approximately full. Let us say that an interval (a,b) is
regular if β contains a partition of every closed subinterval of [a,b]. Let R be the
union of all regular intervals. (If there are no regular intervals then R= /0.) Clearly
R is open. Let (c,d) be an open interval contained in R. We claim that then (c,d)

itself is regular. Suppose [a,b]⊂ [c,d].
If c < a < b < d then a simple compactness argument (Heine-Borel) shows

that β contains a partition of [a,b]. Alternatively an ordinary covering argument
works too. Let

α = {([u,v],w) : β contains a partition of [u,v] }.
Then α is a full cover of R and so, by the ordinary Cousin lemma, α contains a
partition of [a,b]. That can be used to deduce that β contains a partition of [a,b].
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If c= a< b= d then again we can argue that β contains a partition of [a,b].
Indeed select a< a′ < b′ < b so that ([a,a′],a) and ([b′,b],b) are in β and select
a partition π ⊂ β of the interval [a′,b′]. Then

π′ = π∪{([a,a′],a), ([b′,b],b)}
is a partition of [a,b] contained in β.

Thus the lemma is proved if we are able to show that R = R. Suppose not.
Then E =R\R is a nonempty closed set. For each x ∈ E choose a set ∆x having
density 1 at x so that ([x,y],x) and ([z,x],x) belong to β if z< x< y and z, y ∈ ∆x.
Choose δ(x)> 0 so that

λ(∆x∩ (x,x+h))

h
> 1/2

and
λ(∆x∩ (x−h,x))

h
> 1/2

if 0< h< δ(x).
Write, for any integer n,

En = {x ∈ E : δ(x)> 1/n},
observing that the union of the sequence of sets {En} is all of E.

By the Baire category theorem3 there is an interval (c,d) and an integer n so
that En is dense in E ∩ (c,d) and d− c< 1/n.

We complete the proof by showing that (c,d) must then be a regular interval.
This would be impossible since no regular interval can contain any points of E.

First observe that if [u,v]⊂ [c,d] and u, v are points of En then the set

∆u∩∆v∩ [u,v] 6= /0.

If that set were empty it would violate the measure conditions

λ(∆u∩ (u,v))>
v−u

2
and λ(∆v∩ (u,v))>

v−u

2
.

Simply select a point w in that set and notice that

π = {([u,w],u), ([w,v],w)}
is a partition of [u,v] that is contained in β.

Now, using similar ideas, observe that if [u,v] ⊂ [c,d] and u ∈ E, v ∈ En ∩
(u,u+ δ(u)), then there is a partition of [u,v] that is contained in β. Again, if
[u,v]⊂ [c,d] and v∈ E, u∈ En∩(v,v−δ(v)), then there is a partition of [u,v] that
is contained in β.

These observations are enough for us to determine that β contains a partition
of every closed subinterval of [c,d]. For example to find a partition of [c,d] itself
one possibility is that we can select points c < c1 < d1 < d so that c1, d1 ∈ E

3See Section 6.17 for a full account. Many textbooks, including our textbooks [69] and [?], also
have extensive instructional materials on Baire category arguments.
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and (c,c1)∩E = (d1,d)∩E = /0. (Note that (c,c1) and (d1,d) would necessarily
be regular intervals.) If c1 and d1 are in En we would be done. We would have a
partition from β of each of the intervals [c,c1], [c1,d1], and [d1,d].

If c1 and d1 are not in En then we would continue, using the fact that En

is dense in E here, and select d2 > c2 so that c2 ∈ En ∩ (c1,c1 + δ(c1)) and
d2 ∈ En ∩ (d1− δ(d1),d1). We know that β contains a partition of each interval
[c,c1], [c1,c2], [c2,d2], [d2,d1], and [d1,d]. Consequently β contains a partition of
[c,d]. In this way we find that β contains a partition of each subinterval of [c,d]
which is impossible unless E = /0 and so R= R.

4.5 Additivity

Lebesgue measure is subadditive in general on the union of two sets E1 and E2.
The subadditivity formula is

λ(A∩ (E1∪E2))≤ λ(A∩E1)+λ(A∩E2)

We know that this same subadditivity formula holds for a sequence of sets {Ei}:

λ

(

A∩
(

∞⋃
i=1

Ei

))

≤
∞

∑
i=1

λ(A∩Ei).

We now ask for conditions under which we can claim equality (not inequality). The
additivity formula we wish to investigate is

λ

(

A∩
(

∞⋃
i=1

Ei

))

=
∞

∑
i=1

λ(A∩Ei)?

Our first observation is that this is possible if the sets {Ei} are separated by
open sets. This means merely that there exist open sets Gi and G j that have no
point in common, with Ei ⊂Gi and E j ⊂G j. This is stronger than the requirement
that Ei and E j have no point in common. But note that two disjoint closed sets can
always be separated in this fashion.

Lemma 4.9 Let E1 and E2 be sets that are separated by open sets. Then, for any

set A

λ(A∩ (E1∪E2)) = λ(A∩E1)+λ(A∩E2).

Proof. Let us use the full version λ∗. We know that

λ∗(A∩ (E1∪E2))≤ λ∗(A∩E1)+λ∗(A∩E2).

Let us prove the opposite direction. Let β be any full cover of A∩(E1∪E2). Select
G1 and G2, disjoint open sets containing E1 and E2 (respectively). Then β(G1 ∪
G2) is necessarily a full cover of A∩ (E1 ∪E2). Note that β(G1) is a full cover
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of A∩E1 and that β(G2) is a full cover of A∩E2. If t1 < λ∗(A∩E1) and t2 <

λ∗(A∩E2) then there must be subpartitions π1 ⊂ β(G1) and π2 ⊂ β(G2) with

∑
([u,v],w)∈π1

(v−u)> t1

and

∑
([u,v],w)∈π2

(v−u)> t2.

It follows that β contains a subpartition π = π1∪π2 for which

∑
([u,v],w)∈π

(v−u)> t1+ t2.

From this we deduce that λ∗(A∩ (E1∪E2))> t1+ t2. Then

λ∗(A∩ (E1∪E2))≥ λ∗(A∩E1)+λ∗(A∩E2)

follows.

Corollary 4.10 Let E1, E2, E3, . . . be a sequence of pairwise disjoint subsets of

R and write

E =
∞⋃
i=1

Ei.

Suppose that each pair of sets in the sequence are separated by open sets. Then,

for any set A,

λ(A∩E) =
∞

∑
i=1

λ(A∩Ei).

Proof. We know from the usual measure properties that

λ(A∩E)≤
∞

∑
i=1

λ(A∩Ei).

We also know that

λ(A∩ (E1∪E2)) = λ(A∩E1)+λ(A∩E2).

An inductive argument would show, too, that for any n> 1,

λ(A∩ (E1∪E2 · · ·∪En)) = λ(A∩E1)+λ(A∩E2)+ · · ·+λ(A∩En).

Thus, from the monotonicity property of measures,
n

∑
i=1

λ(A∩Ei)≤ λ(A∩E)≤
∞

∑
i=1

λ(A∩Ei).

From this the corollary evidently follows.

Corollary 4.11 Let E1, E2, E3, . . . be a sequence of pairwise disjoint closed sub-

sets of R. Then, for any set A,

λ(A∩E) =
∞

∑
i=1

λ(A∩Ei).



148 CHAPTER 4. LEBESGUE’S INTEGRAL

To push the countable additivity one step further we use the previous corollary
in a natural way. This looks like a highly technical lemma, but it is the basis and
motivation for our definition of measurable sets and the theory is more natural
than it might appear. The proof is left as an exercise; working through a proof
should make it clear how and why the measurability definition in the next section
works.

Lemma 4.12 Let E1, E2, E3, . . . be a sequence of pairwise disjoint subsets of R

and write

E =
∞⋃
i=1

Ei.

Suppose that for every ε > 0 and for every n there is an open set Gn so that

En \Gn is closed and so that λ(Gn)< ε. Then, for any set A,

λ(A∩E) =
∞

∑
i=1

λ(A∩Ei).

4.6 Measurable sets

4.6.1 Definition of measurable sets

Definition 4.13 An arbitrary subset E of R is measurablea if for every ε > 0 there

is an open set G with λ(G)< ε and so that E \G is closed.

aMost advanced courses will start with a different definition of measurable and later on show that
this property used here is equivalent in certain settings. See Section 4.8.2 for the connections.

Thus a set is measurable if it is “almost closed.” Immediately from this defini-
tion we see that all closed sets are measurable and that all null sets are measur-
able. The definition is exactly designed to produce the following Theorem.

Theorem 4.14 Let E1, E2, E3, . . . be a sequence of pairwise disjoint measurable

subsets of R and write

E =
∞⋃
i=1

Ei.

Then, for any set A,

λ(A∩E) =
∞

∑
i=1

λ(A∩Ei).

Proof. This follows immediately from Lemma 4.12.



4.6. MEASURABLE SETS 149

4.6.2 Properties of measurable sets

Theorem 4.15 The class of all measurable subsets of R forms a Borel familya

that contains all closed sets and all null sets.

aThe definition of a Borel family is outlined in the proof.

Proof. The class of all measurable subsets of R forms a Borel family: it a col-
lection of sets that is closed under the formation of unions and intersections of
sequences of its members, and contains the complement of each of its mem-
bers. Here are the details of the proof. Items (3), (4), and (5) are specifically the
requirements that the class of measurable sets forms a Borel family.

We prove that the family of all measurable sets has the following properties:

1. Every null set is measurable.

2. Every closed set is measurable.

3. If E1, E2, E3, is a sequence of measurable sets then the union
⋃∞

n=1En is
also measurable.

4. If E1, E2, E3, is a sequence of measurable sets then the intersection⋂∞
n=1En is also measurable.

5. If E is measurable then the complement R\E is also measurable.

Items (1) and (2) are easy. Let us prove (5) first. Let E be measurable and E ′

is its complement. Let ε > 0 and choose an open set G1 so that E \G1 is closed
and λ(G1)< ε/2. Let O be the complement of E \G1; evidently O is open.

First find an open set G2 with λ(G2) < ε/2 so that O \G2 is closed. [Simply
display the component intervals of O, handle the infinite components first, and
then a finite number of the bounded components.] Now observe that

E ′ \ (G1∪G2) = O\G2

is a closed set while G1 ∪G2 is an open set with measure smaller than ε. This
verifies that E ′ is measurable.

Now check (e): let ε > 0 and choose open sets Gn so that λ(Gn)< ε2−n and
each En \Gn is closed. Observe that the set G=

⋃∞
n=1Gn is an open set for which

λ(G)≤
∞

∑
n=1

λ(Gn)≤
∞

∑
n=1

ε2−n = ε.

Finally

E ′ = E \G=
∞⋂

n=1

(En \Gn)

is closed.
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For (4), write E ′
n for the complementary set to En. Then the complement of the

set A=
⋃∞

n=1En is the set B=
⋂∞

n=1E
′
n. Each E ′

n is measurable by (5) and hence
B is measurable by (d). The complement of B, namely the set A, is measurable
by (5) again.

4.6.3 Increasing sequences of sets

If

E1 ⊂ E2 ⊂ E3 ⊂ . . .

is an increasing sequence of sets then we would expect that

λ

(

∞⋃
n=1

En

)

= lim
n→∞

λ(En).

This is particularly easy to prove if the sets are measurable. We show that this
identity holds in general.

Theorem 4.16 Suppose that {En} is an increasing sequence of sets. Then

λ

(

∞⋃
n=1

En

)

= lim
n→∞

λ(En).

Proof. Suppose first that the sets are measurable. Then simply write A0 = /0 and
An = En \En−1 for each n= 1,2,3, . . . . Then these sets are also measurable and
Lemma 4.14 shows us that

λ

(

∞⋃
n=1

En

)

= λ

(

∞⋃
n=1

An

)

=
∞

∑
n=1

λ(An) =
∞

∑
n=1

(λ(En)−λ(En−1)) = lim
n→∞

λ(En).

Now we drop the assumption that the sets {En} are measurable. Observe first
that

λ

(

∞⋃
n=1

En

)

≥ lim
m→∞

λ(Em)

merely because each set Em is contained in this union.
To prove the opposite inequality, begin by choosing measurable sets Hn ⊃ En

with the same measures, i.e., so that λ(En) = λ(Hn). (For example, start with a
sequence of open sets Gnm containing En with λ(En) ≤ λ(Gnm) ≤ λ(En)+ 1/n

and take Hn =
⋂∞

m=1Gnm.)
Write Vm =

⋂∞
k=mHk and V =

⋃∞
m=1Vm. These sets are all measurable be-

cause we choose the {Hk} to be measurable. We obtain

λ(V ) = lim
m→∞

λ(Vm).
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But Em ⊂Vm ⊂ Hm so that V ⊃ E and λ(Em) = λ(Vm) = λ(Hm). Consequently

λ

(

∞⋃
n=1

En

)

≤ λ(V ) = lim
m→∞

λ(Vm) = lim
m→∞

λ(Em).

This completes the proof.

Exercise 196 (Borel–Cantelli) Let {An} be a sequence of measurable sets with

∑∞
n=1 λ(An)< ∞. Then

λ

(

limsup
n→∞

An

)

= 0.

Here by the limsup of a sequence of sets we mean the collection of points that

belong to infinitely many of the sets in the sequence. This can be defined also as

limsup
n→∞

An =
∞⋂

m=1

∞⋃
n=m

An.

4.6.4 Existence of nonmeasurable sets

We turn now to a search for Lebesgue nonmeasurable sets. The first proof that
nonmeasurable sets must exist is due to G. Vitali (1875–1932). It uses the axiom
of choice which has to this point not been needed in the text.

Theorem 4.17 There exist subsets of R that are not Lebesgue measurable.

Proof. Let I = [− 1
2
, 1
2
]. We define an equivalence relation on this interval by re-

lating points to rational numbers; we use Q to denote the set of all rationals. For
x,y ∈ I write x∼ y if x− y ∈ Q. For all x ∈ I, let

K(x) = {y ∈ I : x− y ∈ Q}= {x+ r ∈ I : r ∈ Q}.
We show that ∼ is an equivalence relation. It is clear that x∼ x for all x∈ I and that
if x∼ y then y∼ x. To show transitivity of ∼, suppose that x,y,z ∈ I and x−y= r1
and y− z = r2 for r1,r2 ∈ Q. Then x− z = (x− y)+ (y− z) = r1+ r2, so x ∼ z.
Thus the set of all equivalence classes K(x) forms a partition of I:

⋃
x∈IK(x) = I,

and if K(x) 6= K(y), then K(x)∩K(y) = /0.
Let A be a set containing exactly one member of each equivalence class.

(The existence of such a set A follows from the axiom of choice.) We show that
A is nonmeasurable. Let 0= r0,r1,r2, . . . be an enumeration of Q∩ [−1,1], and
define

Ak = {x+ rk : x ∈ A}
so that Ak is obtained from A by the translation x→ x+ rk.

Then

[−1

2
,
1

2
]⊂

∞⋃
k=0

Ak ⊂ [− 3
2
, 3
2
]. (4.4)
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To verify the first inclusion, let x ∈ [− 1
2
, 1
2
] and let x0 be the representative of K(x)

in A. We have {x0}= A∩K(x). Then x− x0 ∈ Q∩ [−1,1], so there exists k such
that x−x0 = rk. Thus x ∈ Ak. The second inclusion is immediate: the set Ak is the
translation of A⊂ [− 1

2
, 1
2
] by the rational number rk ∈ [−1,1].

Suppose now that A is measurable. It is easy to see that then each of the
translated sets Ak is also measurable and that λ(Ak) = λ(A) for every k. But the
sets {Ai} are pairwise disjoint. If z ∈ Ai ∩A j for i 6= j, then xi = z− ri and x j =

z− r j are in different equivalence classes. This is impossible, since xi−x j ∈Q. It
now follows from (4.4) and the countable additivity of λ for measurable set that

1= λ([−1

2
,
1

2
])≤ λ(

∞⋃
k=1

Ak) =
∞

∑
k=1

λ(Ak)≤ λ([− 3
2
, 3
2
]) = 3. (4.5)

Let α = λ(A) = λ(Ak). From (4.5), we infer that

1≤ α+α+ · · · ≤ 3. (4.6)

But it is clear that no number α can satisfy both inequalities in (4.6). The first
inequality implies that α > 0, but the second implies that α = 0. Thus A is non-
measurable.

The proof has invoked the axiom of choice in order to construct the nonmea-
surable set. One might ask whether it is possible to give a more constructive proof,
one that does not use this principle. This question belongs to the subject of logic
rather than analysis, and the logicians have answered it. In 1964, R. M. Solovay
showed that, in Zermelo–Fraenkel set theory with a weaker assumption than the
axiom of choice, it is consistent that all sets are Lebesgue measurable. On the
other hand, the existence of nonmeasurable sets does not imply the axiom of
choice. Thus it is no accident that our proof had to rely on the axiom of choice: it
would have to appeal to some further logical principle in any case.4

4.7 Measurable functions

The most important class of functions defined on the real line are the measurable
functions. All of the functions that one normally encounters are measurable.

Definition 4.18 An arbitrary function f :R→R is measurable if for any real num-

ber r

Ar = {x ∈ R : f (x)< r}
is a measurable set.

4See also K. Ciesielski, “How good is Lebesgue measure?” Math. Intelligencer 11(2), 1989,
pp. 54–58, for a discussion of material related to this section and for references to the literature.
That same author’s text, Set Theory for the Working Mathematician, Cambridge University Press,
London (1997) is an excellent source for students wishing to go deeper into these ideas.
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A function f : [a,b]→R would be measurable if there is a measurable function
g : R→ R and f (x) = g(x) for all x ∈ [a,b].

Exercises

Exercise 197 Show that the function f (x) = χA(x) is measurable if and only if

the set A is a measurable set.

Exercise 198 Show that a function f :R→R is measurable if and only if f−1(G)

is a measurable set for each open set G⊂ R.

Exercise 199 Suppose that, for n = 1,2,3, . . . ,n, each function fn : R → R is

measurable. Show that the function

g(x) = f1(x)+ f2(x)+ f3(x)+ · · ·+ fn(x)

is measurable.

Exercise 200 Suppose that, for n = 1,2,3, . . . ,n, each function fn : R → R is

measurable. Show that the functions

g(x) =max{ f1(x), f2(x), f3(x), . . . , fn(x)}
and

h(x) =min{ f1(x), f2(x), f3(x), . . . , fn(x)}
are measurable.

Exercise 201 Let f : R→ R be measurable. Show that the functions

| f |(x) = | f (x)|=max{ f (x),− f (x)},
[ f ]+(x) =max{ f (x),0}

and

[ f ]−(x) =max{0,− f (x)},
are measurable. Answer

4.7.1 Measurable functions are almost bounded

Measurable functions defined on a compact interval [a,b] can be considered to
be almost bounded, i.e., bounded once a small set of points is removed. This is a
prelude to a deeper theorem of Lusin which we prove later on. In Lusin’s theorem
it will be shown that, not merely are all measurable functions on a compact interval
almost bounded—they are almost continuous.

Theorem 4.19 Suppose that f : [a,b] → R is measurable. Then f is “almost

bounded” on [a,b] in the sense that, for every ε > 0, there is an open set G

with λ(G)< ε such that f is bounded on the closed set [a,b]\G.
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Proof. For each integer n, let

En = {x ∈ [a,b] : | f (x)|> n}.
These sets all have finite Lebesgue measure, they form a decreasing sequence
of sets and

∞⋂
n=1

En = /0.

Consequently λ(En)→ 0. Now just take an integer N so that λ(EN)< ε and use
E = EN . Observe that | f (x) ≤ N for all x ∈ [a,b] \E. Since λ(E) < ε we can
also find an open set ⊃ E for which λ(G) < ε and for which the statement of the
theorem must hold.

Note This argument fails for measurable functions defined on a set of infinite
measure. We have explicitly used in the proof the fact that λ([a,b])<∞. In fact the
theorem is untrue: take f (x) = x defined for all real numbers x. There is no small
open set G, not even any open set G of finite measure, for which f is bounded on
R\G.

4.7.2 Continuous functions are measurable

Lemma 4.20 A function f :R→R that is continuous everywhere is measurable.

Proof. To prove that f is measurable we need to verify that, for any real number
r,

Ar = {x ∈ R : f (x)< r}
is a measurable set. But we already know that, for continuous functions, such sets
are open.

We know too that a continuous function f : [a,b]→ R is also measurable by
our definition since f agrees on [a,b] with the continuous function g defined by
g(t) = f (t) for a≤ t ≤ b, g(t) = g(b) for t > b, and g(t) = g(a) for t < a.

Exercise 202 (composition) Let f : R → R be a continuous function and let

g : R → R be a measurable function. Show that the composition f ◦ g must be

measurable but that the composition g◦ f may not be. Answer

4.7.3 Derivatives are measurable

Suppose that f : R → R is almost everywhere the derivative of some function.
Then f is measurable5. If we combine that fact with the definition of the calculus
integral we see that all integrable functions must be measurable.

5A theorem of Lusin states the converse: if f is measurable then there is a continuous function
F for which F ′(x) = f (x) almost everywhere. This should not be confused with the fundamental
theorem of the calculus.
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Lemma 4.21 A function f : R → R that is almost everywhere the derivative of

some function is measurable.

Proof. We suppose that F : R → R and F ′(x) = f (x) almost everywhere, say
everywhere in R \N where N is a set of measure zero. Consider the set E =

{x : DF(x) > r} for any r. Let m, n be positive integers and define βmn to be
the covering relation consisting of all pairs ([u,v],w) for which u≤ w≤ v, and for
which 0< v−u< 1/m and

F(v)−F(u)

v−u
≥ r+1/n.

Write

Emn =
⋃

{[u,v] : ([u,v],w) ∈ βmn}.
Each set Emn is thus a fairly simple object: it is a union of a family of compact

intervals. In Lemma 2.17 we have seen that this means it has a simple struc-
ture: it differs from an open set by a countable set. In particular each Emn is an
measurable set. We check that

E =
∞⋃

n=1

∞⋂
m=1

Emn. (4.7)

To begin suppose that x ∈ E. Then DF(x)> r. There must be at least one integer
n with DF(x)> r+1/n. Moreover, for every integer m there would have to be at
least one compact interval [u,v] containing x with length less than 1/m so that

F(v)−F(u)

v−u
≥ r+1/n.

Hence x is a point in the set on the right-hand side of the proposed identity. Con-
versely, should x belong to that set, then there is at least one n so that for all m, x
belongs to Emn. It would follow that DF(x)> r and so x ∈ E.

The identity (4.7) now exhibits E as a combination of sequences of measur-
able sets and so E too is an measurable set because the measurable sets form a
Borel family (Theorem 4.15). Finally then

{x : f (x)> r}=
(

{x : DF(x)> r}∩ [R\N]
)

∪N′

where N′ is an appropriate subset of N. This exhibits the set {x : f (x) > r} as
the union of a measurable set and a set of measure zero. Consequently that set
is measurable. This is true for all r and verifies that f is a measurable function.

Exercise 203 Let f :R→R. Show that the set of points where f is differentiable

is a measurable set. Answer

4.7.4 Integrable functions are measurable

If we combine Lemma 4.21 with the descriptive definition of the integral we see
that all integrable functions must be measurable.
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Lemma 4.22 If f : [a,b]→ R is integrable then f is measurable.

4.7.5 Simple functions

A function f :R→R is simple if there is a finite collection of measurable sets E1,
E2, E3, . . . , En and real numbers r1, r2, r3, . . . , rn so that

f (x) =
n

∑
k=1

rkχEk
(x)

for all real x.

Lemma 4.23 Any simple function is measurable.

Proof. Suppose that

f (x) =
n

∑
k=1

rkχEk
(x)

and s is any real number. It is easy to sort out, for any value of s, exactly what the
set

As = {x : f (x)< s}
must be in terms of the sets {Ek}. In each case we see that As is some simple
combination of measurable sets and so is itself measurable.

4.7.6 Measurable functions are almost simple

Simple functions are easily seen to be measurable. In a sense all measurable
functions are very close to being simple themselves. We show that bounded
measurable functions can be written as the uniform limit of simple functions. All
nonnegative measurable functions can be written as the limit of a monotonic se-
quence of simple functions, or equivalently as the sum of a series of simple func-
tions.

Theorem 4.24 If f : R → R is a bounded, measurable function then f is the

uniform limit of a sequence of simple functions { fk}.

Proof. To simplify the arithmetic, start with the situation of a nonnegative, measur-
able function f : [0,∞)→ R. One simply checks that the following procedure ex-
presses any such function f : [0,∞)→ R as a nondecreasing limit of a sequence
{ fk} of simple functions: Fix an integer k. Subdivide [0,k] into subintervals

[( j−1)2−k, j2−k] ( j = 1,2,3, . . . ,k2k)

and, for all x ∈ [a,b], define fk(x) to be ( j−1)2−k if

( j−1)2−k ≤ f (x)< j2−k

and to be k if f (x)≥ k. If f is bounded then this limit is in fact uniform. The general
case of a bounded measurable function f : R→ R is easily deduced from this.
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For unbounded functions we must certainly drop the uniform convergence
since all simple functions are bounded. We do have the following, however, whose
proof is contained in the paragraph above.

Theorem 4.25 Every nonnegative, measurable function f :R→R can be written

as a nondecreasing limit of a sequence of simple functions { fk}.

Here too is an equivalent formulation with a convenient algorithm for de-
terming the sequence of simple functions.

Theorem 4.26 Every nonnegative, measurable function f :R→R can be written

as the sum of a series of nonnegative simple functions by the following inductive

procedure: Take {rk} to be any sequence of positive numbers for which rk → 0

and ∑∞
k=1 rk =+∞. Define the sets

Ak =

{

x : f (x)≥ rk+ ∑
j<k

r jχA j
(x)

}

inductively, starting with A0 = /0. Then

f (x) =
∞

∑
k=1

rkχAk
(x)

at every x.

The proof is just a matter of deciding whether and why this works.

4.7.7 Limits of measurable functions

In many instances all one might know of a function is that it is a limit of a sequence
of known functions or the sum of an infinite series of such functions. The next
theorem asserts that we can deduce the measurability of the function from the
separate functions in the limit or the sum.

Theorem 4.27 Let fn :R→R be a sequence of measurable functions. Suppose

that f : R→ R is a function for which

f (x) = lim
n→∞

fn(x)

for almost every x. Then f is measurable.

Proof. We fix a real number r and verify that

{x ∈ R : f (x)< r}
is a measurable set. We use the fact that sets of the form

{x ∈ R : fn(x)< s}
are measurable. This follows from the measurability of each function fn.
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Let N be the null set consisting of points x where we do not have

f (x) = lim
n→∞

fn(x)

and let E = R\N. Then both E and N are measurable.
We claim the following set identity:

{x ∈ E : f (x)< r}=
∞⋃

k=1

∞⋃
m=1

∞⋂
n=m

{x ∈ E : fn(x)< r−1/k}.

This is a matter of close interpretation. If x0 belongs to the simple set on the left
of the proposed identity, then x0 ∈ E and f (x0) < r. There must exist a k so that
f (x0) < r− 1/k. Then there must exist an integer m so that fn(x) < r− 1/k for
all n≥ m. That places x0 in the set on the right.

In the other direction if x0 belongs to the complicated set on the right of the
proposed identity, then for some k and m, fn(x0)< r−1/k for all n≥m. It follows
that f (x0)≤ r−1/k < r. That places x0 in the set on the left.

Each set

{x ∈ E : fn(x)< r−1/k}= E ∩{x ∈ R : fn(x)< r−1/k}
thus is measurable since it is the intersection of a measurable set and an open
set. As measurable sets form a Borel family the intersections and unions of these
sets remain measurable.

Finally then

{x ∈ R : f (x)< r}
is seen to be the union of the measurable set

{x ∈ E : f (x)< r}
and some subset of N. This checks the measurability of the function f .

Corollary 4.28 Let gn :R→R be a sequence of measurable functions. Suppose

that f : R→ R is a function for which

f (x) =
∞

∑
n=1

gn(x)

for almost every x. Then f is measurable.

4.8 Construction of the integral

We now give Lebesgue’s construction of the integral in a series of steps, starting
with characteristic functions, then simple functions, then nonnegative measurable
functions, and finally all absolutely integrable functions.
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4.8.1 Characteristic functions of measurable sets

Lemma 4.29 Let E be a subset of an interval [a,b]. Then the function χE is inte-

grable on [a,b] if and only if E is a measurable set, and in that case

λ(E) =
∫ b

a
χE(x)dx.

Proof. For any set E ⊂ [a,b], measurable or not, we can easily establish the
(Exercise 191) identity

λ∗(E) =
∫ b

a
χE(x)dx.

The two concepts in this identity are defined by the same process. Thus the proof
of the lemma depends only on showing that integrability of χE(x) is equivalent to
the measurability of E.

We already know that if χE(x) is integrable then it is a measurable function.
But this can happen only if E is a measurable set. Conversely let us suppose that
E is measurable and verify that χE is integrable on [a,b]. In fact we show that this
function satisfies the McShane criterion on this interval (see Theorem 3.5).

Since E is measurable we know that

λ(E)+λ([a,b]\E) = b−a.

Let ε > 0. Select open sets E ⊂ G1 and [a,b]\G2 so that

λ(G1)< λ(E)+ ε/2

and

λ(G2)< λ([a,b]\E)+ ε/2.

Then, use the identity

λ(G1∪G2) = λ(G1)+λ(G2)−λ(G1∩G2)

to get

λ(G1∩G2) = λ(G1)+λ(G2)−λ(G1∪G2)

< [λ(E)+ ε/2]+ [λ([a,b]\E)+ ε/2]− (b−a) = ε.

This will enable us to apply the McShane criterion to establish that χE is integrable
on [a,b]. Define β as the collection of all pairs ([u,v],w) for which either w∈E and
[u,v] ⊂ G1 or w ∈ [a,b] \E and [u,v] ⊂ G2. This is a full cover of [a,b]. Choose
any two partitions π, π′ of [a,b] contained in β. We compute

∑
([u,v],w)∈π

∑
([u′,v′],w′)∈π′

∣

∣χE(w)−χE(w
′)
∣

∣λ([u,v]∩ [u′,v′]). (4.8)

Note, in this sum, that terms for which both w and w′ are in E or for which
neither is in E vanish. Terms for which w ∈ E and w′ ∈ [a,b] \ E must have
|χE(w)−χE(w

′)| = 1, [u,v] ⊂ G1 and [u′,v′] ⊂ G2. In particular [u,v]∩ [u′,v′] ⊂
(G1 ∩G2). The same is true if w′ ∈ E and w ∈ [a,b] \ E. Remembering that



160 CHAPTER 4. LEBESGUE’S INTEGRAL

λ(G1∩G2) < ε, we see that the sum in (4.8) is smaller than ε. By the McShane
criterion χE is absolutely integrable on [a,b].

4.8.2 Characterizations of measurable sets

From our studies so far we can obtain a number of characterizations of measur-
able sets. Our definition of choice was to describe measurable sets as those that
are almost closed. The original Lebesgue definition is equivalent to assertion (3),
but expressed in the language of inner and outer measures. For Lebesgue, asser-
tion (2) would have been interpreted as a definition of integrability, rather than a
“property” of measurable sets. Assertion (4) is known as Carathéodory’s criterion
and is particularly useful in the study of abstract measure theory on spaces more
general than the real line. The final assertion (5) is closely related to the McShane
condition for Lebesgue integrability.

Theorem 4.30 Let E be a set of real numbers. Then the following assertions are

equivalent:

1. E is measurable.

2. χE is integrable on every compact interval [a,b].

3. For every compact interval [a,b],

λ([a,b]∩E)+λ([a,b]\E) = b−a. (4.9)

4. For every set T ⊂ R,

λ(T )≥ λ(T ∩E)+λ(T \E). (4.10)

5. For every ε > 0 and every compact interval [a,b], there is a full cover β of

[a,b] so that

∑
([u,v],w)∈π

∑
([u′,v′],w′)∈π′

λ([u,v]∩ [u′,v′])< ε

whenever π, π′ are subpartitions of [a,b] with π ⊂ β[E] and π′ ⊂ β[[a,b] \
E]].

Proof. First note that a set E is measurable if and only if E ∩ [a,b] is measurable
for every compact interval [a,b]. In one direction this is because [a,b] is a measur-
able set (it is closed) and the intersection of measurable sets is also measurable.
In the other direction, if E ∩ [a,b] is measurable for every compact interval [a,b],
then E =

⋃∞
n=1E ∩ [−n,n] expresses E as a measurable set.

The first three conditions (a), (b), and (c) we have explicitly shown to be equiv-
alent in the proof of the lemma. Let us check that (d) implies (c). Observe that the
inequality,

λ(T )≤ λ(T ∩E)+λ(T \E)



4.8. CONSTRUCTION OF THE INTEGRAL 161

holds in general, so that the condition (4.10) is equivalent to the assertion of equal-
ity:

λ(T ) = λ(T ∩E)+λ(T \E).
Thus (c) is a special case of (d) with T = [a,b]. On the other hand, (a) implies (d).
Measurability of E implies that E and R\E are disjoint measurable sets for which

λ(T ) = λ(T ∩E)+λ(T \E)
must hold for any set T ⊂ R. Finally the fifth condition (e) is just a rewriting of the
McShane criterion for integrability of the function χE on [a,b]. We have seen in
the proof of the lemma that measurability of E∩ [a,b] is equivalent to that criterion
applied to χE on [a,b].

4.8.3 Integral of simple functions

Recall that a function f : R→ R is simple if there is a finite collection of measur-
able sets E1, E2, E3, . . . , En and real numbers r1, r2, r3, . . . , rn so that

f (x) =
n

∑
k=1

rkχEk
(x)

for all real x. Since this is a finite linear combination it follows from the integration
theory and the integration of characteristic functions (Lemma 4.29) that such a
function is necessarily integrable on any compact interval [a,b] and that∫ b

a
f (x)dx=

n

∑
k=1

(∫ b

a
rkχEk

(x)dx

)

=
n

∑
k=1

rkλ(Ek∩ [a,b]).

Thus the integral of simple functions can be constructed from the values of the
function in a finite number of steps using the Lebesgue measure.

4.8.4 Integral of bounded measurable functions

The value of the integral on a compact interval [a,b] for simple functions has been
seen to be constructible directly from the values of the Lebesgue measure itself.
This extends, by Theorem 4.24, to all bounded measurable functions since they
are uniform limits of simple functions.

The reader might recall that we used a similar constructive argument for the
regulated integral of Section 1.9. There, starting with step functions (much less
general than simple functions) we were able to extend the integral constructively
to all regulated functions. Regulated functions are uniform limits of step functions;
bounded measurable functions are uniform limits of simple functions. The theories
are completely analogous.
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Theorem 4.31 Let f be a bounded, measurable function on an interval [a,b].

Then f is Lebesgue integrable and, for any representation of f as the uniform

limit of a sequence of simple functions,

f (x) = lim
n→∞

fn(x) (a≤ x≤ b)

the identity ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx

must hold.

Proof. This requires only an appeal to the uniform convergence theorem for inte-
grals.

4.8.5 Integral of nonnegative measurable functions

We have seen (Theorem 4.26) that every nonnegative measurable function can
be represented by simple functions. Consequently the integral of such a function
can be constructed.

Theorem 4.32 Let f be a nonnegative, measurable function on an interval [a,b].

Then, for any representation of f as the sum of a series of nonnegative, simple

functions

f (x) =
∞

∑
k=1

fn(x) (a≤ x≤ b)

the identity ∫ b

a
f (x)dx=

∞

∑
k=1

(∫ b

a
fn(x)dx

)

must hold (finite or infinite). Moreover f is Lebesgue integrable on [a,b] if and only

if this series of integrals converges to a finite value.

Proof. This requires only an appeal to the monotone convergence theorem.

Corollary 4.33 Let f be a nonnegative, measurable function on an interval [a,b].

Then ∫ b

a
f (x)dx

exists (finitely or infinitely). Moreover f is integrable on [a,b] if and only if this

value is finite.

Proof. This follows from the theorem.
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4.8.6 Fatou’s Lemma

Theorem 4.34 (Fatou’s lemma) Let fn be a sequence of nonnegative, measur-

able functions defined at every point of an interval [a,b]. Then, assuming that

f (x) = liminf
n→∞

fn(x)

is finite almost everywhere,∫ b

a
liminf
n→∞

fn(x)dx≤ liminf
n→∞

∫ b

a
fn(x)dx..

Proof. Fatou’s lemma is proved using the monotone convergence theorem, The-
orem 3.15. Let f denote the limit inferior of the fn. For every natural number k
define the function

gk(x) = inf
n≥k

fn(x).

Then the sequence g1, g2, . . . is a nondecreasing sequence of measurable
functions and converges pointwise to f . For k≤ n, we have gk(x)≤ fn(x), so that

∫ b

a
gk(x)dx≤

∫ b

a
fn(x)dx,

hence ∫ b

a
gk(x)dx≤ inf

n≥k

∫ b

a
fn(x)dx.

Using the monotone convergence theorem, the last inequality, and the definition
of the limit inferior, it follows that∫ b

a
liminf
n→∞

fn(x)dx= lim
k→∞

∫ b

a
gk(x)dx≤

lim
k→∞

inf
n≥k

∫ b

a
fn(x)dx= liminf

n→∞

∫ b

a
fn(x)dx .

Exercises

Exercise 204 On the interval [0,1] for every natural number n define

fn(x) =

{

n for x ∈ (0,1/n),

0 otherwise.

Show that ∫ 1

0
liminf
n→∞

fn(x)dx< liminf
n→∞

∫ 1

0
fn(x)dx.
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Exercise 205 On the interval [0,∞) for every natural number n define

fn(x) =

{

1
n

for x ∈ [0,n],

0 otherwise.

Show that { fn} is uniformly convergent and that∫ ∞

0
liminf
n→∞

fn(x)dx< liminf
n→∞

∫ ∞

0
fn(x)dx.

Exercise 206 On the interval [0,∞) for every natural number n define

fn(x) =

{

− 1
n

for x ∈ [n,2n],

0 otherwise.

Show that { fn} is uniformly convergent and that the inequality in Fatou’s lemma∫ ∞

0
liminf
n→∞

fn(x)dx≤ liminf
n→∞

∫ ∞

0
fn(x)dx.

fails.

Exercise 207 (reverse Fatou lemma) Let { fn} be a sequence of measurable

functions defined on an interval [a,b]. Suppose that there exists a Lebesgue inte-

grable function g on [a,b] such that fn ≤ g for all n. Show that∫ b

a
limsup
n→∞

fn(x)dx≥ limsup
n→∞

∫ b

a
fn(x)dx.

Answer

4.8.7 Dominated convergence theorem

Fatou’s lemma provides a simple proof of a well-known and highly useful conver-
gence theorem. We cannot expect to take limits inside the integral sign merely in
the presence of pointwise convergence. This theorem asserts that this is indeed
possible if the sequence of functions is controlled by a dominating function,

Theorem 4.35 (dominated convergence) Let { fn} be a sequence of measur-

able functions defined on an interval [a,b]. Assume that the sequence converges

pointwise and is dominated by some nonnegative, Lebesgue integrable function

g. Then the pointwise limit is an integrable function and

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a
lim
n→∞

fn(x)dx.

To say that the sequence is "dominated" by g means that | fn(x)| ≤ g(x) for all

natural numbers n and all points x in [a,b].

Proof. If f denotes the pointwise limit of the sequence, then f is also measurable
and dominated by g, hence integrable. Furthermore,

| f (x)− fn(x)| ≤ 2g(x)
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for all n and

limsup
n→∞

| f (x)− fn(x)|= 0.

By the reverse Fatou lemma,

limsup
n→∞

∫ b

a
| f (x)− fn(x)|dx≤

∫ b

a
limsup
n→∞

| f (x)− fn(x)|dx= 0.

Using linearity and monotonicity of the integral,
∣

∣

∣

∣

∫ b

a
f (x)dx−

∫ b

a
fn(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a
f (x)− fn(x))dx

∣

∣

∣

∣

≤
∫ b

a
| f (x)− fn(x)|dx,

and the statement is proved.

4.9 Derivatives

4.9.1 Derivative of the integral

It is the case for all of our integrals (since they are all contained in the general
Newton integral) that

d

dx

∫ x

a
f (t)dt = f (x) (4.11)

for a.e. point x in an interval [a,b] in which f is assumed to be integrable. For the
Lebesge integral we can add

d

dx

∫ x

a
| f (t)|dt = | f (x)|

for a.e. point x in an interval in which f is assumed to be Lebesgue integrable. In
most presentations of the Lebesgue theory of integration this would now have to
be proved. For us, since we started with the Newton integral (i.e., the equivalent
Henstock-Kurzweil integral), this is already given.

Lebesgue points A stronger condition than merely the derivative statement in
equation 4.11 is described in the following definition.

Definition 4.36 Suppose that f is Lebesgue integrable on an open interval that

includes the point x0. Then that point is said to be a Lebesgue point for f provided

lim
h→0

1

h

∫ x0+h

x0

| f (x)− f (x0)|dx= 0.

It is easy to check that every point of continuity of f is necessarily also a
Lebesgue point for f . Indeed, a Lebesgue point is a special kind of point of “ap-
proximate” continuity. This would be made more precise in advanced courses. It
is stronger than merely a point where the derivative exists (see Exercise 209).
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Theorem 4.37 Let f be Lebesgue integrable on [a,b]. Then almost every point

of [a,b] is a Lebesgue point of f .

Proof. Let r be any rational number. Then the function gr(x) = f (x)− r is
Lebesgue integrable and thus

lim
h→0

1

h

∫ x+h

x
| f (t)− r|dt = | f (x)− r| (4.12)

for a.e. point x in (a,b). Let

E(r) = {x ∈ (a,b) : (4.12) fails}.
Then λ(E(r)) = 0. Let E be the union of the countable collection of sets E(r)

taken over all possible rational numbers r. Then λ(E) = 0.
We shall how that every point x0 in (a,b)\E is a Lebesgue point for f . Let x0

be such a point and let ε > 0. Choose a rational number rn such that

| f (x0)− rn|<
ε

3
. (4.13)

We then have

|| f (x)− rn|− | f (x)− f (x0)||< 1
3
ε.

on [a,b] so that
∣

∣

∣

∣

1

h

∫ x0+h

x0

| f (x)− rn|dx−
1

h

∫ x0+h

x0

| f (x)− f (x0)|dx
∣

∣

∣

∣

≤ ε

3
(4.14)

whenever x0+h ∈ [a,b]. Since x0 6∈ E, (4.12) applies, so there exists δ > 0 such
that

∣

∣

∣

∣

1

h

∫ x0+h

x0

| f (x)− rn|dx−| f (x0)− rn|
∣

∣

∣

∣

<
ε

3

if |h|< δ. From (4.13), we infer that, for |h|< δ,

1

h

∫ x0+h

x0

| f (x)− rn|dx<
2ε

3

so
1

h

∫ x0+h

x0

| f (x)− f (x0)|dx< ε (4.15)

by (4.14).
We have shown that for all x0 /∈ E and every ε > 0 there exists δ > 0 such

that (4.15) holds whenever |h| < δ. Since λ(E) = 0, we conclude that almost
every x ∈ [a,b] is a Lebesgue point of f .

Exercise 208 Suppose that f : [a,b]→ R is Lebesgue integrable and that x0 is

a point of continuity of f . Show that x0 is a Lebesgue point of f . Is the converse

true?

Exercise 209 Suppose that f : [a,b]→ R is Lebesgue integrable and that x0 is

a Lebesgue point of f . Show that F ′(x0) = f (x0).
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4.9.2 Lebesgue points and points of approximate continuity

Let f : R → R be a function that is locally Lebesgue integrable, i.e. integrable
on each compact interval. Let us compare points of approximate continuity with
Lebesgue points and points where the fundamental theorem of the calculus holds.

Approximate continuity will be studied in a bit greater detail below in Sec-
tion 4.11.2. Let us anticipate the definion here. Recall that d(E,x0) denotes for us
the lower density of the set E at a point x0 (as defined in Section 4.4).

Definition 4.38 (approximate continuity) Let f be a function defined in an open

set containing a point x0. If there exists a set E such that

d(E,x0) = 1 and lim
x→x0,x∈E

f (x) = f (x0),

we say that f is approximately continuous at x0. If f is approximately continuous

at all points of its domain, we simply say that f is approximately continuous.

We use this language for our theorem:

1. A point x0 is in A f if f is approximately continuous at x0.

2. A point x0 is in L f if x0 is a Lebesgue point for f .

3. A point x0 is in D f if F ′(x0) = f (x0) where F is any indefinite integral for f

in a neighborhood of x0.

The connections are given in the following statement.

Theorem 4.39 Let f : R→ R be a locally Lebesgue integrable function. Then

1. L f ⊂ A f .

2. L f ⊂D f .

3. If f is locally boundeda then A f = L f ⊂D f .

4. In general A f \D f and D f \A f are both first category and measure zero.

ai.e., bounded on each compact interval.

Proof. Let us begin by noting that the first two statements are easy and can be
left to the reader to sort out. We now give a detailed proof for the third statement:
we show that A f ⊂ L f for bounded functions. We suppose f is a bounded mea-
surable function on [a,b]. If f is approximately continuous at x0 ∈ (a,b) we verify
that x0 is a Lebesgue point for f . Choose a set E such that d(E,x0) = 1 and f

is continuous at x0 restricted to the set E. Write A = R \E. Let M be an upper
bound for | f |, and let h> 0. Then

1

h

∫ x0+h

x0

| f (x)− f (x0)|dx=
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1

h

∫ x0+h

x0

χE(x)| f (x)− f (x0)|dx+
1

h

∫ x0+h

x0

χA(x)| f (x)− f (x0)|dx.

Let ε > 0 and choose δ > 0 such that (i) if t ∈ E and |t − x0| < δ then | f (t)−
f (x0)|< ε/2, and (ii) if h< δ, then

λ([x0,x0+h]\E)
h

<
ε

4M
.

For h< δ, we calculate

1

h

∫ x0+h

x0

| f (x)− f (x0)|dx

≤ ε

2h
λ([x0,x0+h]∩E)+

2M

h
λ([x0,x0+h]\E)

≤ ε
h

2h
+2M

ε

4M
= ε.

A similar calculation holds if h< 0. Since ε is arbitrary, we conclude that that x0 is
a Lebesgue point for f .

Finally let us address the fourth statement in the theorem. It is clear that A f \
D f and D f \A f are both sets of measure zero. Indeed we know that R \D f

and R \A f are both sets of measure zero. We will rely now on the interested
reader to review the necessary notions of Baire category to complete the proof
and establish that these sets are also sets of the first category.

Exercise 210 Give an example of an unbounded, locally Lebesgue integrable

function f : R → R that illustrates that A ⊂ L can be false in general, i.e., find

such a function that is approximately continuous at a point that is not itself also a

Lebesgue point.

4.9.3 Derivatives of functions of bounded variation

As a consequence of Lebesgue’s program to this point we can prove also some
facts about derivatives of monotonic functions and derivatives of functions of
bounded variation. These are due to Lebesgue, but our proofs are rather eas-
ier since we do not need much of the measure theory to obtain them.

Theorem 4.40 Let F : [a,b]→ R be a function of bounded variation. Then F ′(x)
exists almost everywhere in [a,b] and∫ b

a
|F ′(x)|dx≤ Var(F, [a,b]).

Proof. We know from the Lebesgue differentiation theorem that F is a.e. differ-
entiable. Let f (x) = |F ′(x)| at every point at which F ′(x) exists and as zero else-
where. Then f is a nonnegative function. At every point w in [a,b] there is a δ > 0
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so that, whenever u≤ w≤ v and 0< v−u< δ,

f (w)− ε ≤ |F(v)−F(u)|
v−u

.

At points w where f (w) = 0 this is obvious, while at points w where F ′(w) exists
this follows from the definition of the derivative.

Take β as the collection of all pairs ([u,v],w) subject to the requirement only
that

|F(v)−F(u)|> [ f (w)− ε](v−u)

if w ∈ [a,b] and [u,v]⊂ [a,b]. This collection β is a full cover.
Every partition π ⊂ β of the interval [a,b] satisfies

∑
([u,v],w)∈π

[ f (w)− ε](v−u)< ∑
([u,v],w)∈π

|F(v)−F(u)| ≤ Var(F, [a,b]).

It follows that

−ε(b−a)+
∫ b

a
f (x)dx≤ Var(F, [a,b]).

Since ε is an arbitrary positive number,
∫ b

a
f (x)dx≤ Var(F, [a,b]).

Since f is almost everywhere a derivative it is necessarily measurable. Thus we
may use the integral in place of the upper integral.

Corollary 4.41 Let F : [a,b]→R be a nondecreasing function. Then F ′(x) exists
almost everywhere in [a,b] and∫ b

a
F ′(x)dx≤ F(b)−F(a).

Corollary 4.42 (Lebesgue decomposition) Let F : [a,b]→ R be a continuous,

nondecreasing function. Then F ′(x) exists almost everywhere in [a,b] and

F(t) =
∫ t

a
F ′(x)dx+S(t) (a≤ t ≤ b)

expresses F as the sum of an integral and a continuous, nondecreasing singular

function.

Proof. Simply define

S(t) = F(t)−
∫ t

a
F ′(x)dx (a≤ t ≤ b).

Check that S′(t) = 0 almost everywhere (trivial) and so S is singular. That S is
continuous is evident since it is the difference of two continuous functions. That S
is nondecreasing follows from the theorem, since

S(d)−S(c) = F(d)−F(c)−
∫ d

c
F ′(x)dx≥ 0
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for any [c,d]⊂ [a,b].

4.9.4 Characterization of the Lebesgue integral

Recall that a function f is Lebesgue integrable on an interval [a,b] if both f and
| f | are integrable on that interval.

Theorem 4.43 Let f : [a,b]→ R. Then f is Lebesgue integrable if and only if f

is measurable and ∫ b

a
| f (x)|dx< ∞.

Proof. We know, from Exercise 201, that the functions | f |, [ f ]+, and [ f ]− are also
measurable. The finiteness of this integral implies (by Corollary 4.33) that each of
these functions are integrable. In particular both functions f = [ f ]+− [ f ]− and | f |
are integrable. Thus f must be absolutely integrable. Conversely if f is absolutely
integrable, this means that | f | is integrable and consequently, by definition, it has
a finite integral.

Our final theorem for Lebesgue’s program shows that the integral is con-
structible by his methods for all Lebesgue integrable functions. We see in the
next section that this is as far as one can go.

Theorem 4.44 If f is Lebesgue integrable on a compact interval [a,b] then f , | f |,
[ f ]+, and [ f ]− are measurable and∫ b

a
| f (x)|dx=

∫ b

a
[ f (x)]+ dx+

∫ b

a
[ f (x)]− dx

and ∫ b

a
f (x)dx=

∫ b

a
[ f (x)]+ dx−

∫ b

a
[ f (x)]− dx

Proof. If f is Lebesgue integrable then we know that f and | f | are integrable.
It follows that [ f ]+ = ( f + | f |)/2 and [ f ]− = (| f |− f )/2 are both integrable. All
functions are measurable since all are integrable. Since

| f (x)|= [ f (x)]++[ f (x)]−

and

f (x) = [ f (x)]+− [ f (x)]−

the integration formulas are immediately available.
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4.9.5 McShane’s Criterion

Lebesgue’s integral can also be characterized by the McShane criterion. Using
normal inequality techniques we easily observe that the expression

∣

∣

∣

∣

∣

∑
(I,w)∈π

∑
(I′,w′)∈π′

[ f (w)− f (w′)]λ(I∩ I′)

∣

∣

∣

∣

∣

< ε (4.16)

that we use for the second Cauchy criterion must be smaller than a quite similar
expression:

∣

∣

∣

∣

∣

∑
(I,w)∈π

∑
(I′,w′)∈π′

[ f (w)− f (w′)]λ(I∩ I′)

∣

∣

∣

∣

∣

≤

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ(I∩ I′).

It takes a sharp (and young) eye to spot the difference, but the larger side of
this inequality may be strictly larger. This leads to a stronger integrability criterion
than that in the second Cauchy criterion. This is the motivation for the criterion,
named after E. J. McShane. We prove that McShane’s criterion is a necessary
and sufficient condition for Lebesgue integrability.

Definition 4.45 (McShane’s criterion) A function f : [a,b]→R is said to satisfy
McShane’s criterion on [a,b] provided that for all ε > 0 a full cover β can be found

so that

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ(I∩ I′)< ε

for all partitions π, π′ of [a,b] contained in β.

Theorem 4.46 Let f : [a,b]→ R. Then f is Lebesgue integrable on an interval if

and only if it satisfies McShane’s criterion on that interval.

Proof. It is immediate that if f satisfies McShane’s criterion it also satisfies
Cauchy’s second criterion. Thus the function f is integrable. We then observe
that, since

∣

∣| f (x)|− | f (x′)| ≤
∣

∣

∣

∣ f (x)− f (x′)
∣

∣ ,

it is clear that whenever f satisfies McShane’s criterion so too does | f |. Thus | f |
too is integrable on [a,b]. The inequalities of the theorem simply follow from the
inequalities −| f (x)| ≤ f (x)≤ | f (x)| which hold for all x.

Here is the proof in the other direction. To simplify the notation let us write

S( f ,π,π′) = ∑
([u,v],w)∈π

∑
([u′,v′],w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ([u,v]∩ [u′,v′]) (4.17)

for any two partitions π, π′ of [a,b]. Some preliminary computations will help. If g1,
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g2, . . . , gn are functions on [a,b] then,

S

(

n

∑
i=1

gi,π,π
′
)

≤
n

∑
i=1

S(gi,π,π
′). (4.18)

If ∫ b

a
| f (x)|dx< t

then there must exist a full cover β with the property that for any two partitions π,
π′ of [a,b] from β,

S( f ,π,π′)< 2t. (4.19)

Finally

S( f ,π,π′)≤ sup{| f (t)| : a≤ t ≤ b} ·2(b−a). (4.20)

Each of the statements (4.18), (4.19), and (4.20) require only simple computations
that we leave to the reader.

Now for our argument. We assume that f is absolutely integrable and verify
the criterion. But f can be written as a difference of two nonnegative integrable
functions. If both of these satisfy the criterion then, using (4.18) we deduce that
so too does f . Consequently for the remainder of the proof we assume that f is
nonnegative and integrable.

The first step is to observe that every characteristic function of a measurable
set satisfies the McShane criterion. This is proved in Lemma 4.29. Using (4.18)
we easily deduce, as our second step, that every nonnegative simple function also
satisfies the McShane criterion.

The third step is to show that every nonnegative, bounded measurable func-
tion also satisfies this criterion. But such a function is the uniform limit of a se-
quence of nonnegative simple functions. It follows then, from (4.20), that such
functions satisfy the McShane criterion. For if f is a bounded measurable func-
tion, ε > 0, choose a simple function g so that

| f (t)−g(t)|< ε/(4[b−a])

for all a≤ t ≤ b. Now using McShane’s criterion on g we can select a full cover β

for which S(g,π,π′)< ε/2 for all partitions π, π′ of [a,b] from β. Then

S( f ,π,π′)≤ S( f −g,π,π′)+S(g,π,π′)≤ ε/2+ ε/2= ε.

The final step requires an appeal to the monotone convergence theorem. Set
fN(t) = min{N, f (t)} and use the monotone convergence theorem to find an
integer N large enough so that∫ b

a
[ f (x)− fN(x)]dx< ε/4.

Using (4.19) select a full cover β1 for which S( f − fN ,π,π
′)< ε/2 for all partitions

π, π′ of [a,b] from β1. Select a full cover β2 for which S( fN ,π,π
′) < ε/2 for all

partitions π, π′ of [a,b] from β2. Then set β = β1∩β2. This is a full cover and we
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can check that

S( f ,π,π′)≤ S( f − fN ,π,π
′)+S( fN ,π,π

′)≤ ε/2+ ε/2= ε.

for all partitions π, π′ of [a,b] from β. This verifies the McShane criterion for an
arbitrary nonnegative integrable function f .

Exercises

Exercise 211 Suppose that each of the functions f1, f2, . . . , fn : [a,b]→R satis-

fies McShane’s criterion on a compact interval [a,b] and that a function L :Rn→R

is given satisfying

|L(x1,x2, . . . ,xn)−L(y1,y2, . . . ,yn)| ≤M
n

∑
i=1

|xi− yi|

for some numberM and all (x1,x2, . . . ,xn) and (y1,y2, . . . ,yn) inR
n. Show that the

function g(x) = L( f1(x), f2(x), . . . , fn(x)) satisfies McShane’s criterion on [a,b].

Exercise 212 Let F , f : R → R. A necessary and sufficient condition in order

that f be the derivative of F at each point is that for every ε > 0 there is a full

cover β of the real line with the property that for every compact interval [a,b] and

every partition π ⊂ β of [a,b],

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε(b−a). (4.21)

Answer

Exercise 213 (Freiling’s criterion) Let f :R→R. Show that necessary and suf-

ficient condition6 in order that f be the derivative of some function F at each point

is that for every ε > 0 there is a full cover β of the real line with the property that

for every compact interval [a,b] and every pair of partitions π1, π2 ⊂ β of [a,b],
∣

∣

∣

∣

∣

∑
(I,z)∈π

∑
(I′,z′)∈π′

[ f (z)− f (z′)]λ(I∩ I′)

∣

∣

∣

∣

∣

< ελ([a,b]). (4.22)

Answer

Exercise 214 Let f :R→R. Characterize the following property: for every ε > 0

there is a full cover β of the real line with the property that for every compact

interval [a,b] and every pair of partitions π1, π2 ⊂ β of [a,b],

∑
(I,z)∈π

∑
(I′,z′)∈π′

| f (z)− f (z′)|λ(I∩ I′)< ελ([a,b]).

6This is from Chris Freiling, On the problem of characterizing derivatives. Real Anal. Exchange
23 (1997/98), no. 2, 805–812. For a different account of the problem of characterizing derivatives
return to Section 1.4.
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4.9.6 Nonabsolutely integrable functions

A function f is nonabsolutely integrable on an interval [a,b] if it is integrable, but
not absolutely integrable there, i.e., f is integrable [a,b] but | f | is not integrable.
Lebesgue’s program will not construct the integral of a nonabsolutely integrable
function. The only method that his program offers is the hope that∫ b

a
f (x)dx=

∫ b

a
[ f (x)]+ dx−

∫ b

a
[ f (x)]− dx?

Theorem 4.47 If f is nonabsolutely integrable on a compact interval [a,b] then∫ b

a
| f (x)|dx=

∫ b

a
[ f (x)]+ dx=

∫ b

a
[ f (x)]− dx= ∞.

Proof. If f is nonabsolutely integrable then it is measurable. It follows from Exer-
cise 201 that the functions | f |, [ f ]+, and [ f ]− are also measurable. If, for example,∫ b

a
[ f (x)]+ dx< ∞,

contrary to what we wish to prove, then we must conclude (from Theorem 4.43)
that [ f ]+ is integrable. But if [ f ]+ is integrable then from the identity

[ f (x)]− = [ f (x)]+− f (x)

we could conclude that [ f ]− must also be integrable and consequently each of the
functions f , | f |, [ f ]+, and [ f ]− must be integrable, contradicting the hypothesis
of the theorem.

4.10 Convergence of sequences of functions

Let f , f1, f2, . . . be a sequence of functions each defined on some compact inter-
val [a,b]⊂ R. There are various ways in which one can interpret the phrase “the
sequence of functions { fn} converges to f .” From the point of view of integration
theory we would want to know the relations among these various ways as well as
whether one can write ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx.

4.10.1 Review of elementary theory

In an elementary course one is likely to have learned only a few modes of conver-
gence. We might, likely, be interested only in continuous functions or integrable
functions (either Rieman or Newton integrable).

pointwise { fn} converges pointwise to f on [a,b] if limn→∞ fn(x)= f (x) for each
x ∈ [a,b].
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uniformly (unif) { fn} converges uniformly to f on [a,b] if for all ε > 0 there is an
integer N so that

| fn(x)− f (x)|< ε

for all n≥ N and all x ∈ [a,b].

in mean { fn} converges in mean to f on [a,b] if

lim
n→∞

∫ b

a
| fn(x)− f (x)| dx= 0

where all functions are assumed to be integrable (in an appropriate sense).

The only comparisons between these three modes on a compact interval [a,b]
can be expressed this way:

[unif] ⇒ [pointwise] and [unif] ⇒ [mean].

The implications do not reverse, nor is there any general connection between
[mean] and [pointwise]. Note that mean convergence does imply convergence of
the integrals since, if { fn} converges in mean to f on [a,b], then

∣

∣

∣

∣

∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
∫ b

a
| fn(x)− f (x)| dx→ 0

as n→ ∞.
The exercises are standard in elementary courses and should be attempted

or reviewed before proceeding to the more advanced modes of convergence.

Exercise 215 Give an example to illustrate that

[pointwise] 6⇒ [unif] and [pointwise] 6⇒ [mean].

Exercise 216 Give an example to illustrate that

[mean] 6⇒ [unif] and [mean] 6⇒ [pointwise].

Exercise 217 Show that, if { fn} is a sequence of continuous functions converg-

ing uniformly to f on [a,b], then f is also continuous. [Show that this is not true

for pointwise convergence.]

Exercise 218 Show that, if { fn} is a sequence of Riemann integrable functions

converging uniformly to f on [a,b], then f is also Riemann integrable and fn → f

[mean] on [a,b]. [Show that this is not true for pointwise convergence.]

Exercise 219 Is the preceeding exercise still true if “Riemann integrable” is re-

placed by “Newton integrable” in one of the five senses of Section 1.8?

Answer

‘
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4.10.2 Modes of convergence

In an advanced course (with the measure theory developed in this chapter) there
are number of important new modes of convergence. Usually, now, one assumes
that the functions f , f1, f2, . . . in the sequence are each measurable and defined
on some compact interval [a,b]⊂R. Each mode of convergence represents some
subtle way in which the functions fn in the sequence can be considered to get
close to the function f .

almost everywhere (a.e.) { fn} converges almost everywhere to f on [a,b] if
limn→∞ fn(x) = f (x) for each x ∈ E except possibly for x in a set of
Lebesgue measure zero.

almost uniformly (a.u.) { fn} converges almost uniformly to f on [a,b] if for all
ε > 0 there is a measurable set A⊂ [a,b] so that λ([a,b]\A)< ε and { fn}
converges uniformly to f on A.

in measure (meas) { fn} converges in measure to f on [a,b] if for all ε > 0

lim
n→∞

λ({x ∈ [a,b] : | fn(x)− f (x)| ≥ ε}) = 0.

in mean { fn} converges in mean to f on [a,b] if

lim
n→∞

∫ b

a
| fn(x)− f (x)| dx= 0.

Note For many applications one would want to express convergence on a given
measurable set E, rather than on an interval [a,b]. If E is bounded then simply
take an interval [a,b] containing E and replace the sequence { fn} by the se-
quence { fnχE}. The theory is unchanged. If E is unbounded there are different
considerations and a somewhat different theory. We leave that to a later advanced
course in measure and integration.

4.10.3 Comparison of modes of convergence on [a,b]

The implications in Figure 4.1 display7 all the connections among the various
modes of convergence on a given interval [a,b]. These are all explored in the
Exercises. The hardest one of these to prove is known as Egorov’s theorem and
is presented separately in Section 4.10.6.

The exercises also supply the necessary counterexamples to show that the
missing arrows in the figure are correct. The hardest one of these to supply is is
presented separately in Section 4.10.4.

7These figures have been popular for many years, since appearing in M. E. Munroe, Introduction
to Measure and Integration, Addison-Wesley (1953).
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[meas] [a.e.]

[a.u.][mean]

[unif]

✁
✁
✁

✁
✁✁☛

❆
❆
❆
❆
❆❆❯

❅
❅❅❘

�
��✠

✟✟✟✟✟✙ ❄
✻

✛
❄

Figure 4.1: Comparison of modes of convergence on [a,b]

Exercise 220 Which are the trivial or easy implications in Figure 4.1. Supply the

arguments (except in the completely trivial cases). Answer

Exercise 221 By examining Figure 4.1 state which of the possible implications

requires a counterexample justifying the missing arrow. Answer

Exercise 222 Let { fn} be a sequence of Lebesgue integrable functions on [a,b]

such that fn → f [mean]. Show that that fn → f [meas] on [a,b]. Answer

4.10.4 A sliding sequence of functions

Most of the required counterexamples are easy to construct. The one that might
cause some difficulty is the one that will illustrate that

[meas] 6⇒ [a.e.]

on an interval [a,b]. This is a little tricky and so we present one in this section.
For nonnegative integers n, k, with 0≤ k < 2n and m= 2n+ k, let

Em =

[

k

2n
,
k+1

2n

]

.

Let f1 = χ
[0,1]

and, for n > 1, fm = χ
Em

. We show that this sequence supplies

an example of a sequence of measurable functions on the interval [0,1] that con-
verges in measure to the zero function, and yet which is not convergent at even a
single point of [0,1].

We see that

f2 = χ
[0, 12 ]

, f3 = χ
[ 12 ,1]

,

f4 = χ
[0, 14 ]

, f5 = χ
[ 14 ,

1
2 ]
, f6 = χ

[ 12 ,
3
4 ]
, f7 = χ

[ 3
4
,1]
,

f8 = χ
[0, 18 ]

, . . .

Every point x ∈ [0,1] belongs to infinitely many of the sets Em, and so

limsup
m

fm(x) = 1,

while

liminf
m

fm(x) = 0.
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Thus { fm} converges at no point in [0,1], yet λ(Em) = 2−n for m = 2n+ k. As
m→ ∞, n→ ∞ also. For every η > 0,

λ({x : fm(x)≥ η)≤ 1

2n
.

It follows that fm → 0 [meas] on the interval [0,1].
Remarkably this sequence of functions does not converge at even a single

point. This illustrates convergence in measure as a particularly weak form of con-
vergence, useful in the theory precisely because it is so weak.

4.10.5 Riesz’s Theorem

We have just witnessed a sequence of measurable functions converging in mea-
sure on an interval and not convergent at a single point. If we are prepared to con-
sider subsequences, however, we can claim that convergence in measure does
imply pointwise a.e. convergence.

Theorem 4.48 (Riesz) Suppose that { fn} is a sequence of measurable functions

on [a,b] such that fn → f [meas]. While it need not be true that fn → f [a.e.] on

[a,b], there must be some subsequence { fnk} of { fn} that does converge a.e. to

f .

Proof. For each integer k, choose nk such that

λ

({

x ∈ [a,b] : | fn(x)− f (x)| ≥ 1

2k

})

<
1

2k

for every n≥ nk. We choose the sequence {nk} to be increasing. Let

Ak =

{

x ∈ [a,b] : | fnk(x)− f (x)| ≥ 1

2k

}

,

and let A = limsupkAk, i.e. A is the set of points that belong to infinitely many of
the sets in the sequence of sets. Since

∞

∑
k=1

λ(Ak)< 1< ∞,

it follows that λ(A) = 0 by the Borel–Cantelli lemma (Exercise 196). Let x 6∈ A.
Then x is a member of only finitely many of the sets Ak. Thus there exists K such
that, if k ≥ K,

| fnk(x)− f (x)|< 1

2k
.

It follows that fnk → f [a.e.].

Exercise 223 (Fatou’s lemma for convergence in measure) Let fn be a se-

quence of nonnegative, measurable functions defined at every point of an interval
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[a,b]. Suppose that { fn} converges in measure to a function f on [a,b]. Show

that ∫ b

a
f (x)dx≤ liminf

n→∞

∫ b

a
fn(x)dx.

[cf. Fatou’s lemma in Section 4.8.6.] Answer

Exercise 224 Let fn be a sequence of measurable functions defined at every

point of an interval [a,b]. Show that { fn} converges in measure to zero on [a,b] if

and only if

lim
n→∞

∫ b

a

| fn(t)|
1+ | fn(t)|

dt = 0.

4.10.6 Egorov’s Theorem

We will show that

[a.e.] ⇒ [a.u.] on a compact interval [a,b].

This is known as Egorov’s theorem and it supplies a crucial link in our connections
of the modes [a.e.] and [a.u.]. Since the proof is not completely transparent and is
historically of great significance we supply all details.

Theorem 4.49 (Egorov) Suppose that the functions f1, f2, . . . are each measur-

able and defined on a compact interval [a,b]. Suppose that fn → f [a.e.] on [a,b].

Then f is measurable and fn → f [a.u.] on [a,b].

Proof. We already know that the a.e. limit of a sequence of measurable functions
must be measurable. For every pair of integers n, k let

Ank =
∞⋂

m=n

{x ∈ [a,b] : | fm(x)− f (x)|< 1

k
}.

Since all functions are measurable, it follows that each of the sets Ank is mea-
surable. Let

E = {x ∈ [a,b] : lim
n
| fn(x)− f (x)|= 0}.

Since fn → f [a.e.], E is measurable, λ(E) = λ([a,b]), and for each integer k,

E ⊂
∞⋃

n=1

Ank.

For fixed k, the sequence {Ank}∞
n=1 is expanding, so that

lim
n

λ(Ank) = λ

(

∞⋃
n=1

Ank

)

≥ λ(E) = λ([a,b]).

Since λ(E)< ∞,

lim
n

λ(E \Ank) = 0. (4.23)
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Now let ε > 0. It follows from (4.23) that there exists nk such that

λ(E \Ankk)< ε2−k. (4.24)

We have shown that for each ε > 0 there exists nk such that inequality (4.24)
holds. Let

A=
∞⋂

k=1

Ankk.

We now show that

λ([a,b]\A) = λ(E \A)< ε

and that fn → f [unif] on A. It is clear that A is measurable. Furthermore,

λ(E \A) = λ

(

∞⋃
k=1

(E \Ankk)

)

≤
∞

∑
k=1

λ(E \Ankk)<
∞

∑
k=1

ε

2k
= ε.

We see from the definition of the sets Ank that, for m≥ nk,

| fm(x)− f (x)|< 1

k

for every x ∈ Ankk and therefore for every x ∈ A. Thus fn → f [unif] on A as we
wished to show.

The exercise shows that a version of Egorov’s theorem on sets of infinite mea-
sure would not be available.

Exercise 225 Consider the sequence of functions f (x) = x/n on (−∞,∞). Show

that { fn} converges pointwise on (−∞,∞) but that there can be no “small” set N

so that { fn} converges uniformly on (−∞,∞)\N. Answer

4.10.7 Dominated convergence on an interval

For this section we assume that the functions f , f1, f2, . . . in the sequence are
each measurable and defined on an interval [a,b] with the very special property
that there is a nonnegative Lebesgue integrable function g : [a,b]→ R that domi-

nates the entire sequence. That is we assume that∫ b

a
g(x)dx< ∞

and that

| fn(x)| ≤ g(x) for all x ∈ [a,b].

Figure 4.2 shows that with this extra dominated assumption there are some fur-
ther connections among the various modes of convergence. In the exercises we
are asked to supply the extra proofs now needed. Since we have already ad-
dressed such concerns in Exercise 4.35 the reader can supply some of these
proofs without further difficulty.
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[meas] [a.e.]

[a.u.][mean]

[unif]

✁
✁
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Figure 4.2: Comparison of modes of dominated convergence.

Bounded convergence Dominated convergence is often replaced by a simpler
assumption—bounded convergence. If

| fn(x)| ≤M for all x ∈ [a,b].

for some positive number M then the function g(x) =M dominates the functions
in the sequence f1, f2, . . . as we require.

Exercise 226 What are the implications that must be proved to justify the con-

nections in Figure 4.2 that did not appear in Figure 4.1.

Answer

Exercise 227 Show that

[meas]⇒ [mean]

on an interval [a,b] assuming that the sequence is dominated. Answer

4.11 Lusin’s theorem

There is another useful way to view measurable functions: they are almost contin-
uous . This important theorem was discovered independently by Guiseppe Vitali
(1875–1932) and Nikolai Lusin (1883–1950). It is almost universally called Lusin’s
theorem. (Lusin, often transliterated as Luzin, was a student of Egorov, who is
known mainly for the theorem on almost uniform convergence that we have just
proved in Section 4.10.6.)

Theorem 4.50 Let f : [a,b] → R be a measurable function. Then to each pair

(ε,η) of positive numbers corresponds a continuous function g : [a,b]→ R such

that

λ({x ∈ [a,b] : | f (x)−g(x)| ≥ η})< ε.

Proof. Let us suppose first that f is bounded. By Exercise 4.24 there exists a
simple function s, such that

|s(x)− f (x)|< η (x ∈ [a,b]).
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Let c1, . . . ,cm be the values that s assumes on [a,b] and, for each i= 1, . . . ,m, let

Ei = {x ∈ [a,b] : s(x) = ci}.
The sets Ei are measurable, pairwise disjoint, and cover [a,b]. Choose closed
sets F1, . . . ,Fm such that, for each i= 1, . . . ,m, Fi ⊂ Ei and

λ(Ei \Fi)<
ε

m
.

Let

F = F1∪· · ·∪Fm.

Then F is a closed subset of [a,b] for which λ([a,b]\F)< ε.
We may then construct a continuous function g on [a,b] that agrees with s

just at points of the closed set F . The simplest way to do this is just to take any
component (c,d) of the open set G= (a,b)\F and define g to be linear on [c,d].
Since

λ([a,b]\F)< ε,

g is the desired function.
Finally, to remove the assumption that f is bounded, simply replace f by

a bounded measurable function that differs from it on a set of sufficiently small
measure. (See Exercise 4.19.)

From this theorem we easily deduce the following theorem showing that a
measurable function must be the [a.u.] limit of a sequence of continuous functions.
Use Theorem 4.50 to select a sequence of continuous gk → f [meas] on [a,b].
Use Exercise 4.48 to pass to a subsequence gkm → f [a.e.] on [a,b]. Then, by
Egorov’s theorem, this subsequence converges [a.u.] to f on [a,b]. This proves
the theorem:

Theorem 4.51 Let f : [a,b]→ R be a measurable function. Then there exists a

sequence of continuous functions {gk} on [a,b] such that gk → f [a.u.] on [a,b].

Finally we can obtain the usual form of Lusin’s theorem.

Theorem 4.52 (Lusin) Let f : [a,b]→R be a measurable function and let ε > 0.

Then there exists a continuous function g : [a,b]→R such that f (x) = g(x) for all

x in a closed set F ⊂ [a,b] for which λ([a,b]\F)< ε.

Proof. As we have oberved in Theorem 4.51, there exists a sequence of contin-
uous functions {gk} on [a,b] such that gk → f [a.u.] on [a,b]. This means that
there is a measurable set E with λ([a,b] \E) < ε/2 so that gk → f [unif] on E.
Choose C closed so that C ⊂ E with λ(E \C)< ε/2. Then λ([a,b]\C)< ε.

Because of the uniform convergence, f is continuous on the closed set C
(i.e. continuous restricted to that set, not necessarily continuous at each point of
that set). Simply now extend f from C to a continuous function g : [a,b]→ R that
agrees with f on C.
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4.11.1 Littlewood’s three principles

Lusin’s theorem, along with Egorov’s theorem, is considered part of the funda-
mentals of real analysis. Littlewood famously expressed it this way:

“The extent of knowledge required is nothing like so great as is sometimes
supposed. There are three principles, roughly expressible in the following
terms:

• Every set is nearly a finite union of intervals;

• Every function is nearly continuous;

• Every convergent sequence of functions is nearly uniformly conver-
gent.

Most of the results . . . are fairly intuitive applications of these ideas, and the
student armed with them should be equal to most occasions when real vari-
able theory is called for. If one of the principles would be the obvious means
to settle the problem it it were ‘quite’ true, it is natural to ask if the ‘nearly’ is
near enough, and for a problem that is actually solvable it generally is.”

——from J. E. Littlewood, Lectures on the Theory of Functions, Oxford University

Press (1944), p. 26.

One finds usually that any set one encounters can be proved to be measur-
able; if so, then measurable sets can be approximated by unions of intervals. Sim-
ilarly one finds that any function one encounters can be proved to be measurable;
if so, then measurable functions can be approximated by continuous functions.
Finally, most modes of convergence of a sequence of measurable functions can
be approximated by uniform convergence.

4.11.2 Denjoy-Stepanoff theorem

Lusin’s theorem asserts a close connection between the measurability of a func-
tion and a kind of weak continuity condition. It is closely related to a similar the-
orem wherein measurable functions are characterized as those that are approx-
imately continuous almost everywhere. The definition of approximate continuity
uses the notion of density introduced in Section 4.4.

Definition 4.53 (approximate continuity) Let f be a function defined in an open

set containing a point x0. If there exists a set E such that

d(E,x0) = 1 and lim
x→x0,x∈E

f (x) = f (x0),

we say that f is approximately continuous at x0. If f is approximately continuous

at all points of its domain, we simply say that f is approximately continuous.
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If a function is defined on a closed interval [a,b], then approximate continuity
at the end points is defined in the obvious way, invoking one-sided densities. Note
that f is approximately continuous at x0 if there exists a set E having x0 as a den-
sity point, such that the function f restricted to E is continuous at x0. For example,
if A ⊂ R is measurable, then the characteristic function χA is approximately con-
tinuous at every point that is either a point of density of A or else a point of density
of R \A. In particular almost every point is a point of approximate continuity of
any function f (x) = χA(x) provided A is a measurable set. This suggests that a
similar thing might be true for all measurable functions.

Indeed, we show that measurability of functions can be characterized us-
ing the concept of approximate continuity. Denjoy8 introduced the concept and
showed that measurable functions have this property. Stepanoff9 proved the more
difficult converse.

Theorem 4.54 (Denjoy-Stepanoff) A function is measurable if and only if it is

approximately continuous at almost every point.

Proof. We prove this only in the one direction (the easy direction). We suppose
that f is measurable. Let ε > 0. By Lusin’s theorem there exists a continuous
function g such that

λ({x : g(x) 6= f (x)})< ε. (4.25)

Let E = {g(x) = f (x)}. By Theorem 4.6, almost every point of E is a density point
of E. If x0 ∈ E and x0 is a density point of E, we have

lim
x→x0, x∈E

f (x) = lim
x→x0

g(x) = g(x0) = f (x0).

Thus f is approximately continuous at x0. Since x0 is an arbitrary density point of
E, f is approximately continuous at each density point of E. From (4.25), we infer
that f is approximately continuous except perhaps on a set of measure less than
ε. Since ε is arbitrary, f is approximately continuous a.e.

For the opposite direction we supply some interesting references. In addition
to the original paper of Stepanoff cited above, the more adventurous reader might
want to track down the simpler proof of Kamke10. An advanced reader should
certainly consult the article of Lukeš11 that demonstrates the theorem as an ap-
plication of purely topological methods.

Exercise 228 Show that a function f is approximately continuous at a point x0 if

8A. Denjoy: Sur les fonctions derivées sommables, Bull. Soc. Math. France 43 (1915), 161–248.
9W. Stepanoff, Sur une proprieté caractéristique des fonctions mesurables, Rec. Math. Soc.

Math. Moscou 30 (1924), 487–489.
10E. Kamke, Zur Definition der approximate stetigen Funktionen, Fund. Math. I0 (1927), 431–433.
11Jaroslav Lukeš, A topological proof of Denjoy-Stepanoff theorem. Časopis Pěst. Mat. 103

(1978), no. 1, 95–96, 98.
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and only if

lim
h→0+

λ({x ∈ (x0−h,x0+h) : | f (x)− f (x0)| ≥ ε})
h

= 0

for every ε > 0.

Exercise 229 Show that a function that is approximately continuous at every

point must be in the first Baire class, i.e., it is the pointwise limit of a sequence of

continuous functions. Answer

Exercise 230 Show that a function that is approximately continuous at every

point must have the Darboux property, i.e., it has the intermediate value prop-

erty (familiar to students of the calculus since all continuous functions have this

property). Answer

4.12 Absolute continuity of the integral

We shall need a type of absolute continuity property of integrals. This is closely
related to the various other concepts that we have previously introduced using this
phrase.

Theorem 4.55 Suppose that f : [a,b]→ R is a Lebesgue integrable function on

[a,b]. Then for every ε > 0 there is a δ > 0 so that if G is an open set for which

λ(G)< δ then ∫ b

a
χG(x)| f (x)|dx< ε.

Proof. For illustrative purposes only we begin the proof with the bounded case.
Suppose that | f (x)| < N for all x ∈ [a,b]. Choose δ = ε/N and observe that, if
λ(G)< δ then simple inequalities provide∫ b

a
χG(x)| f (x)|dx≤ N

∫ b

a
χG(x)dx≤ Nλ(G)< ε.

The argument in the bounded case suggests how to proceed. For each posi-
tive integer n let

An = {x ∈ [a,b] : n−1≤ | f (x)|< n}.
From the fact that f is measurable we can deduce that each An is measurable.
Note that the sets in the sequence are pairwise disjoint and that their union is
all of [a,b]. We can select an open set Gn for which Bn = An \Gn is closed and
λ(Gn)< ε2−nn−1. Using all this we compute∫ b

a
χAn

(x)| f (x)|dx=
∫ b

a
χBn

(x) f (x)dx+
∫ b

a
χAn∩Gn

(x) f (x)dx

≤
∫ b

a
χBn

(x)| f (x)|dx+n[ε2−nn−1].
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Note that {Bn} is a disjointed sequence of closed subsets of [a,b]. Define B

as the union of the sequence. Then
∞

∑
n=1

∫ b

a
χAn

(x)| f (x)|dx≤
∞

∑
n=1

∫ b

a
χBn

(x)| f (x)|dx+ ε

=
∫ b

a
χB(x)| f (x)|dx+ ε ≤

∫ b

a
| f (x)|dx+ ε < ∞.

In particular there must be an integer N sufficiently large that
∞

∑
n=N+1

∫ b

a
χAn

(x)| f (x)|dx< ε/2.

Choose δ = ε/(2N) and let G be any open set for which λ(G)< δ. Since

G= {x ∈ G : | f (x)|< N}∪
∞⋃

n=N+1

(G∩An)

we have ∫ b

a
χG(x)| f (x)|dx≤ Nλ(G)+

∞

∑
n=N+1

∫ b

a
χAn

(x)| f (x)|dx< ε.

Exercise 231 Theorem 4.55 requires the assumption that the function f is

Lebesgue integrable. Suppose that f : [a,b] → R is a nonabsolutely integrable

function on [a,b] (i.e., f is integrable, but not Lebesgue integrable). Show that for

every δ > 0 there must exist a disjoint collection

[a1,b1], [a2,b2], [a3,b3], . . . , [an,bn]

of subintervals of [a,b] for which ∑n
i=1(bi−ai)< δ and yet

n

∑
i=1

∣

∣

∣

∣

∫ bi

ai

f (x)dx

∣

∣

∣

∣

> 1.

Answer

4.13 Convergence of integrals

One of our central concerns, and indeed one of the central concerns of the early
history of integration theory, has been the convergence of integrals. Suppose that
f1, f2, f3, . . . is a sequence of Lebesgue integrable functions on an interval [a,b]
and that

lim
n→∞

fn(x) = f (x) for a.e. x ∈ [a,b].

Then under what extra conditions can we conclude that f is also Lebesgue inte-
grable on [a,b] and that

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a
f (x)dx? (4.26)
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Some of the answers to this question are given by the following conditions.

(uniform convergence) limn→∞ fn(x) = f (x) uniformly on [a,b].

(bounded convergence) for some positive number M, | fn(x)| ≤ M for all inte-
gers n and a.e. points x ∈ [a,b].

(dominated convergence) for some Lebesgue integrable function g and for all
integers n, the inequality | fn(x)| ≤ g(x) holds for a.e. point x ∈ [a,b].

These conditions, as we know, are sufficient but by no means necessary in
order to conclude the validity of the limit statement (4.26). We have seen this
material before in Section 4.10.7.

In this section and in Section 4.13.2 we shall add two new conditions that also
suffice and are closer to being necessary. The Vitali condition is well-known and
often cited12. Some authors refer to the property as “uniform absolute continuity”
which, in view of the language of Section 4.12, better captures the property than
the term “equi-integrability.” The second condition we study is a generalization of
McShane’s characterization of Lebesgue integrability.

(Vitali equi-integrability) for all ε > 0 there is a δ > 0 so that if G is an open set
for which λ(G)< δ then ∫ b

a
| fn(x)|χG(x)dx< ε

for all integers n.

Exercise 232 Show that [uniform convergence] does not imply [bounded conver-

gence], but does imply [dominated convergence].

Answer

Exercise 233 Show that [bounded convergence] implies [dominated conver-

gence].

Answer

Exercise 234 Show that [dominated convergence] imples the [Vitali equi-

integrability] condition.

Answer

Exercise 235 Give an example of a sequence of nonegative, continuous func-

tions fn : [0,1]→ R converging pointwise to zero for which

lim
n→∞

∫ 1

0
fn(x)dx= 0

and yet not satisfying the [dominated convergence] condition. Answer

12The original is in G. Vitali, Sul integrazione per serie, Rend. Circ. Mat. Palermo 23 (1907),
137–155.
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Exercise 236 Suppose that g1, g2, g3, . . . is a sequence of nonnega-

tive Lebesgue integrable functions on an interval [a,b] and suppose that

limn→∞ fn(x) = 0 for a.e. x ∈ [a,b]. Show that

lim
n→∞

∫ b

a
gn(x)dx= 0

if and only if the sequence {gn} satisfies the Vitali equi-integrability condition.

Answer

4.13.1 A stronger convergence theorem

Since this additional condition is weaker than the dominated convergence condi-
tion, we can obtain a stronger convergence theorem by using it.

Theorem 4.56 (Vitali) Let f1, f2, f3, . . . be a sequence of Lebesgue integrable

functions on an interval [a,b] and suppose that

lim
n→∞

fn(x) = f (x) for a.e. x ∈ [a,b].

If the sequence { fn} satisfies the Vitali equi-integrability condition, then f is

Lebesgue integrable on [a,b] and

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a
f (x)dx. (4.27)

Proof. Let us assume that f1, f2, f3, . . . is a sequence of Lebesgue integrable
functions on [a,b] and that

lim
n→∞

fn(x) = f (x) for a.e. x ∈ [a,b].

The function f is certainly measurable. We show that it is also Lebesgue inte-
grable.

If the sequence { fn} satisfies the Vitali equi-integrability condition, then we
can select a positive number η > 0 so that if G is an open set for which λ(G)< η

then, for each integer i, ∫ b

a
| fi(x)|χG(x)dx< 1.

Cover (a,b) with a finite number of open intervals, each of length less than η, say

(a,b)⊂ (a1,b1)∪ (a2,b2)∪· · ·∪ (am,bm).

Then ∫ b

a
| fi(x)|dx≤

m

∑
i=1

∫ bi

ai

| fi(x)|dx< m.

This uniform bound and Fatou’s lemma shows that∫ b

a
| f (x)|dx≤ m

and, hence, that f is Lebesgue integrable on [a,b].
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Let ε > 0. Select a positive number δ > 0 so that if G is an open set for which
λ(G)< δ then, for each integer i,∫ b

a
| fi(x)|χG(x)dx< ε/3.

Fatou’s lemma (yet again) shows that∫ b

a
| f (x)|χG(x)dx≤ ε/3

would also be true. Now apply Egorov’s theorem to select an open set G for which
λ(G) < δ and so that fn → f uniformly on the closed set K = [a,b] \G. We
compute ∫ b

a
| fn(x)− f (x)|dx≤

∫ b

a
χK(x)| fn(x)− f (x)|dx

+
∫ b

a
χG(x)| fn(x)|dx+

∫ b

a
χG(x)| f (x)|dx.

≤
∫ b

a
χK(x)| fn(x)− f (x)|dx+2ε/3.

The uniform convergence of the sequence {χK(x)| fn(x)− f (x)|} on [a,b] shows
that, for large enough n, ∫ b

a
| fn(x)− f (x)|dx< ε.

Finally then, the limit statement (4.27) now follows.

4.13.2 McShane equi-integrability condition

Definition 4.45 expresses a necessary and sufficient condition for a function to
be Lebesgue integrable on an interval. This is easily and naturally converted
into an equi-integrability condition (although McShane himself did not). Kurzweil
and Schwabik13 have shown that this condition is essentially equivalent to the
Vitali equi-integrability condition. The latter is expressed exclusively in measure-
theoretic terms, while the McShane condition is stated directly in terms of Rie-
mann sums.

As before we suppose that f1, f2, f3, . . . is a sequence of Lebesgue integrable
functions on an interval [a,b] and that

lim
n→∞

fn(x) = f (x) for a.e. x ∈ [a,b].

(McShane equi-integrability) for all ε > 0 a full cover β can be found so that

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ fn(w)− fn(w
′)
∣

∣λ(I∩ I′)< ε

13In J. Kurzweil and S. Schwabik, McShane equi-integrability and Vitali’s convergence theorem.
Math. Bohem. 129 (2004), no. 2, 141–157.
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for all integers n and all subpartitions π, π′ of [a,b] contained in β.

Our second convergence theorem is similiar to the Vitali theorem just proved.

Theorem 4.57 Let f1, f2, f3, . . . be a sequence of Lebesgue integrable functions

on an interval [a,b] and suppose that

lim
n→∞

fn(x) = f (x) for a.e. x ∈ [a,b].

If the sequence { fn} satisfies the McShane equi-integrability condition, then f is

Lebesgue integrable on [a,b] and

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a
f (x)dx. (4.28)

Proof. We can suppose that

lim
n→∞

fn(x) = f (x) for every x ∈ [a,b].

(Changing “a.e.” to “every” is easily done.)
Let ε > 0. If the sequence { fn} satisfies the uniform McShane condition, then

a full cover β can be found so that

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ fn(w)− fn(w
′)
∣

∣λ(I∩ I′)< ε/2 (4.29)

for all integers n and all subpartitions π, π′ of [a,b] contained in β. We would also
necessarily have from this inequality that

∣

∣

∣

∣

∣

∫ b

a
fn(x)dx− ∑

(I,w)∈π

fn(w)λ(I)

∣

∣

∣

∣

∣

< ε (4.30)

for all integers n and every partition π of [a,b] contained in β.
Let n→ ∞ in (4.29) to obtain that

∑
(I,w)∈π

∑
(I′,w′)∈π′

∣

∣ f (w)− f (w′)
∣

∣λ(I∩ I′)≤ ε/2 (4.31)

for all subpartitions π, π′ of [a,b] contained in β. This means, the McShane crite-
rion, that f is Lebesgue integrable on [a,b]. Finally then, the limit statement (4.27)
now follows.

Finally letting n→ ∞ in (4.30) we can deduce the limit statement (4.28).

4.14 Young-Daniell-Riesz Program

Our main interest in this chapter is the constructive method of Lebesgue that
provides a way to construct the value of the integral for all absolutely integrable
functions. This requires developing the measure theory that is the primary tool of
the subject. This is the method used by Lebesgue in his famous presentation of
his integral.
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At the same time, the British mathematician W. H. Young14 [75] initiated a
theory of the same integral by employing the method of monotone sequences.
These ideas were elaborated by Daniell15 [17] who produced a general method of
monotone sequences that has had a considerable impact on later generations of
analysts. F. Riesz showed that this method could be used to present an elegant
constructive account of the Lebesgue integral without first invoking measure the-
ory. We know, of course, that the Newton and Henstock-Kurzweil methods do this
as well, but in a non-constructive manner.

Let us begin by returning to the theory of the regulated integral. We recall that
the starting point is the integral of step functions, extended by employing uniform
limits. The new theory starts also with the integral of step functions, but employs
monotone limits.

4.14.1 Recall the program for the regulated integal

One starts the program with the integral for step functions. (See Section 1.9.1.)

Definition 4.58 (step function) A function f : [a,b]→R is said to be a step func-

tion if there are points

a= x0 < x1 < x2 < .. . ,xn = b

such that f is constant on each open interval (xi−1,xi).

Step functions are easily shown to be integrable and the value of the integral
constructed as a simple sum∫ b

a
f (x)dx=

n

∑
i=1

ci(xi−1− xi)

where f assumes the value ci on the interval (xi−1,xi).
The extension step that we studied in Chapter 1 is to define a function f :

[a,b] → R as regulated provided it is a uniform limit on [a,b] of a sequence of
step functions. Consequently any such regulated function is integrable and the
value for its integral is constructed by using∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx

where { fn} is any sequence of step functions converging uniformly to f .
Our point of view [since we start with a full integration theory] is that this anal-

ysis offers a constructive method for determining the value of an integral whose
value has been defined nonconstructively [either by an antiderivative or as a rather
mysterious limit of Riemann sums]. A different point of view could be taken that
this program offers an alternative definition of an integral whose properties would

14William Henry Young, Proc. London Math. Soc. (2) 2 (1904), 52–66.
15Percy John Daniell, Ann. of Math. (2) 19 (1917/18), 279–294.
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have to be determined from that definition. The regulated program, indeed, is used
in some textbooks and courses of instruction, but seems to be less popular than
other methods.

4.14.2 Riesz sequences

The Young-Daniell-Riesz program we present is nearly identical in basic outline,
but takes a technically more challenging approach in the limit step: in place of
uniform limits, which are mostly easy to handle, it uses monotone limits, requiring
rather more technical and subtle arguments. The payoff, however, is large. This
program gives a method for constructing the value of the integral for all absolutely
integrable [i.e., Lebesgue integrable] functions.

Semicontinuous functions

Definition 4.59 (l.s.c. function) A function f : [a,b]→ R∪∞ is said to be lower

semicontinuous [l.s.c.] if for every point x ∈ [a,b] and every t < f (x) there is a

δ > 0 so that

f (y)> t for all y ∈ [a,b]∩ (x−δ,x+δ).

Similarly f : [a,b]→R∪−∞ is upper semicontinuous [u.s.c.] if for every point
x ∈ [a,b] and every t > f (x) there is a δ > 0 so that

t > f (y) for all y ∈ [a,b]∩ (x−δ,x+δ).

A function is continuous if and only if it is both u.s.c. and l.s.c. The characteristic
function of an open interval is l.s.c. while the characteristic function of a closed
interval is u.s.c.

Riesz sequences of step functions

Definition 4.60 (Riesz sequence) A sequence of functions fn : [a,b] → R for

n= 1,2,3, . . . is said to be a Riesz sequence if

1. each fn is a lower semicontinuous step function.

2. the sequence is monotone, i.e., for each x and each n, fn(x)≤ fn+1(x).

3. the integrals are bounded, i.e.,

sup
n

∫ b

a
fn(x)dx< ∞.

At the same time we will consider also monotone decreasing Riesz se-
quences: decreasing monotone limits and upper semicontinuous step functions,
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i.e., for each x and each n, fn(x) ≥ fn+1(x). and we would assume that the inte-
grals are bounded below,

inf
n

∫ b

a
fn(x)dx>−∞.

4.14.3 Convergence of Riesz sequences of step functions

Our first theorem shows that every Riesz sequence converges to a function that
is integrable. Indeed, the value of the integral of such a limit function is directly
constructible from the integrals of the members in the sequence.

Theorem 4.61 Suppose that fn : [a,b] → R for n = 1,2,3, . . . is a Riesz se-

quence. Then

lim
n→∞

fn(x) = f (x) (4.32)

exists (finitely or infinitely) for all x and is finite for a.e. x. The function f is lower

semicontinuous, bounded below, finite almost everywhere, and absolutely inte-

grable. Moreover ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx. (4.33)

Proof. Since the sequence is monotone it is clear that

lim
n→∞

fn(x) = f (x)

exists as a finite number or as +∞ for all x. A monotone sequence of l.s.c. func-
tions converges to another l.s.c. function. All l.c.s. functions are bounded below
(although it is also obvious that f ≥ f1 gives a lower bound too). The statement
(4.33) follows immediately from the monotone convergence theorem. Because of
the bounds on the integrals of the functions fn in a Riesz sequence, the inequality

−∞ <
∫ b

a
f1(x)dx≤

∫ b

a
f (x)dx< ∞

shows that f must be a.e. finite.

4.14.4 Representing semicontinuous functions by Riesz sequences

The converse direction is essential to us. We wish to know how far this program
takes us. We have a constructive method using Riesz sequences for determing
the value of the integral for a large class of functions, certainly larger now that the
class of regulated functions. How large?
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Theorem 4.62 Suppose that the function f : [a,b] → R∪{+∞} is lower semi-

continuous and absolutely integrable. Then there exists a Riesz sequence. gn :

[a,b]→ R for n= 1,2,3, . . . so that

lim
n→∞

gn(x) = f (x)

for a.e. x in [a,b]. Moreover, for any such representation of f as a limit of a Riesz

sequence, ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
gn(x)dx.

Proof. The set of points N = {x ∈ [a,b] : f (x) = ∞} is necessarily of measure
zero since we are assuming that f is integrable. Define f1(x) = f (x) for x∈ [a,b]\
N and f1(x) = 0 for x ∈ N. Since f is integrable, so too is f1 and for any integer
n= 1,2,3, . . . , and there must exist a full cover β1 of [a,b] for which

∣

∣

∣

∣

∣

∫ b

a
f1(x)dx− ∑

([u,v],w)∈π

f1(w)(v−u)

∣

∣

∣

∣

∣

< 1/n.

for any partition π ⊂ β1 of [a,b].
Define

β2 = {([u,v],w) : w ∈ N and f (t)> n for all t ∈ [u,v] }.
This is a full cover of N since we are assuming that f is l.s.c. on [a,b] and f (w) =

∞ for each w ∈ N.
There is a full cover β3 of the measure zero set N so that

∑
([u,v],w)∈π

(v−u)< 1/n2.

for any subpartition π ⊂ β2 of [a,b].
The collection

β3 = {([u,v],w) : w ∈ [a,b]\N and f (t)> f (w)−1/n for all t ∈ [u,v] }
is a full cover of [a,b]\N since we are assuming that f is l.s.c. on [a,b].

Finally then

β = β1∩ ([β2∩β3]∪β3)

is evidently a full cover of [a,b]. Take any partition π ⊂ β of [a,b].
We know that

∣

∣

∣

∣

∣

∫ b

a
f1(x)dx− ∑

([u,v],w)∈π

f1(w)(v−u)

∣

∣

∣

∣

∣

< 1/n.

where f1(w) = 0 and f (w) = ∞ if w ∈ N.
Define a step function fn on [a,b] this way: if ([u,v],w) ∈ π and w ∈ N then

set fn(t) = n for all t ∈ (u,v). If ([u,v],w) ∈ π and w ∈ [a,b]\N then set fn(t) =
f (w)−1/n for all t ∈ (u,v). Note that fn is continuous at each point t at which we
have defined it and that fn(t) ≤ f (t) at all such points. There are still the finitely
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many points at the endpoints of the intervals; at these points we simply arrange
that fn is lower semi-continuous at each such point t and that fn(t)≤ f (t).

We claim now to have defined a l.s.c. step function fn with fn ≤ f and such
that ∫ b

a
fn(t)dt ≥

∫ b

a
f (t)dt− (b−a+2)/n. (4.34)

To check (4.34), take any element ([u,v],w) ∈ π. Now f1(w)(v− u) = 0 for
any w ∈ N and ∫ v

u
fn(t)dt = n(v−u).

If instead w 6∈ N then ∫ v

u
fn(t)dt = [ f (w)−1/n](v−u).

Putting these together give∫ b

a
fn(t)dt = ∑

([u,v],w)∈π

[ f1(w)−1/n](v−u)+ ∑
([u,v],w)∈π[N]

n(v−u)

≥ ∑
([u,v],w)∈π

f1(w)v−u)− (b−a)/n−n/n2

≥
∫ b

a
f (t)dt−1/n− (b−a)/n−n/n2

proving (4.34).
This is nearly the sequence of l.s.c. step functions that we want, however it is

not monotone. Take

gn =max{ f1, f2, f3, . . . , fn}.
This is also a sequence of l.s.c. step functions, but now it is a monotone sequence.
Then it remains just to check the details so that we can be sure that

lim
n→∞

gn(x) = f (x)

for a.e. x in [a,b] and ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
gn(x)dx.

4.14.5 Characterization of the Lebesgue integral

Some notation will help us express our ideas a bit better. Let S [a,b] denote some
set of integrable functions on the interval [a,b]. We then write S ↑[a,b] for the set
of all functions f integrable on [a,b] for which there is a sequence of functions
{ fn} for which

1. each fn is in S [a,b].
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2. the sequence is monotone nondecreasing, i.e., for each x and each n,
fn(x)≤ fn+1(x).

3. the integrals are bounded, i.e.,

sup
n

∫ b

a
fn(x)dx< ∞.

4. f (x) = limn→∞ fn(x) a.e. in [a,b].

A similar definition would apply to define S ↓[a,b] but using monotone de-
creasing sequences of functions from S [a,b]. We write L [a,b] for the class of all
Lebesgue integrable functions on [a,b]. Because of the monotone convergence
theorem we know already that

L [a,b] = L↑[a,b] = L↓[a,b].

A sum and difference notation is useful as well. If S1[a,b] and S2[a,b] are sets of
integrable functions on the interval [a,b], then

S1[a,b]+S2[a,b]

would denote the set of all functions f such that f (x) = f1(x) + f2(x) for a.e.
x ∈ [a,b] for some choice of f1 ∈ S1[a,b] and f2 ∈ S2[a,b]. Similarly

S1[a,b]−S2[a,b]

would denote the set of all functions f such that f (x) = f1(x)− f2(x) for a.e.
x ∈ [a,b].

Theorem 4.63 Let Sℓ[a,b] denote the class of all l.s.c. step functions on the in-

terval [a,b] and let Su[a,b] denote the class of all u.s.c. step functions on [a,b].

Then

L [a,b] = S ↑
ℓ
↓[a,b] = S ↓

u
↑[a,b]

= S ↑
ℓ [a,b]+S ↓

u [a,b] = S ↑
ℓ [a,b]−S ↑

ℓ [a,b] = S ↓
u [a,b]−S ↓

u [a,b].

Proof. We know, because of Theorems 4.61 and 4.62, exactly what functions
belong to S ↑

ℓ [a,b] and S ↓
u [a,b]. In particular if g is equal a.e. to an integrable

l.s.c. function on [a,b] then g belongs to S ↑
ℓ [a,b].

It is evident that L [a,b]⊃ S ↑
ℓ [a,b]. We know from the monotone convergence

theorem that L [a,b] = L↓[a,b] and hence that L [a,b] ⊃ S ↑
ℓ
↓[a,b]. The same in-

clusion is true for S ↓
u
↑[a,b]. We prove the opposite direction.

Suppose first that f is a nonegative function in L [a,b]. Let ε > 0. By Theo-
rem 4.26, we can express f as the pointwise sum of a series of simple functions

f (x) =
∞

∑
k=1

ckχEk
(x)
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where {Ek} is a sequence of measurable subsets of [a,b] (not necessarily dis-
joint) and ck are positive numbers. Note that∫ b

a
f (x)dx=

∞

∑
k=1

ck

(∫ b

a
χEk

(x)dx

)

=
∞

∑
k=1

ckλ(Ek).

Chooose compact sets Kk and open sets Gk so that

Kk ⊂ Ek ⊂ Gk

and such that

λ(Gk−Kk)<
ε

ck2k+2
.

Define the function

L(x) =
∞

∑
k=1

ckχGk
(x).

This is a sum of l.s.c. functions and so L(x) is defined at each point (most likely
equal to ∞ at some points) and is itself a l.s.c. function. Certainl L(x) ≥ f (x) at
each point.

Similarly (but not quite similarly), first choose an integer N so that
∞

∑
k=N+1

ckλ(Ek)< ε/4

and write the function

U(x) =
N

∑
k=1

ckχKk
(x).

This is a finite sum of u.s.c. functions and so U(x) is defined at each point and is
itself a u.s.c. function. Certainly U(x)≤ f (x) at each point.

We have

0≤ L(x)−U(x)≤
N

∑
k=1

ckbχGk\Kk
(x)+

∞

∑
k=N+1

ckbχEk
(x).

From this we deduce that ∫ b

a
[L(x)−U(x)]dx< ε.

It follows, in particular, that L is in S ↑
ℓ [a,b], f ≤ L and∫ b

a
f (x)dx≤

∫ b

a
L(x)dx≤

∫ b

a
f (x)dx+ ε.

We also know a similar fact for U , namely that that U is in S ↓
ℓ [a,b], f ≥U and∫ b

a
f (x)dx≥

∫ b

a
U(x)dx≥

∫ b

a
f (x)dx− ε.

Thus we easily construct a sequence of functions {Ln} from S ↑
ℓ [a,b] for which
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f ≤ Ln, Ln → f pointwise a.e. and∫ b

a
f (t)dt = lim

n→∞

∫ b

a
Ln(t)dt.

But we need a monotone nonincreasing sequence. Simply write

L′n =min{L1,L2,L3, . . . ,Ln}
to produce a monotone sequence {L′n} with the correct properties. In the same
way we can also construct a monotone nondecreasing sequence of functions
{U ′

n} from S ↓
ℓ [a,b] for which f ≥Un, U ′

n → f pointwise a.e. and∫ b

a
f (t)dt = lim

n→∞

∫ b

a
U ′
n(t)dt.

The proof so far assumes that f is nonnegative. In general take f = f+− f−,
expressing f as a difference of integrable functions that are nonnegative. Produce
the corresponding monotone sequences {L+n }, {U+

n }, {L−n }, and {U−
n } for these

two functions f+ and f−. Then the sequences

Ln = L+n −U−
n and Un =U+

n −L−n

will do the duty for the function f .
It follows that every integrable function f belongs to both Sℓ

↑↓[a,b] and

S ↓
u
↑[a,b]. This completes the proof for the identities

L [a,b] = S ↑
ℓ
↓[a,b] = S ↓

u
↑[a,b].

We have seen that every integrable function can be approximated by semi-
continuous functions and we know that semicontinuous functions can be approx-
imated by functions in Sℓ. This is the basis for establishing that L = S ↑

ℓ −S ↑
ℓ . We

already know that L ⊃ S ↑
ℓ −S ↑

ℓ .
Let f be an arbitrary element of L . Choose, for each n = 1,2,3, . . . a step

function gn so that ∫ b

a
| f (x)−gn(x)|dx< 2−n. (4.35)

Note that
∞

∑
n=1

∫ b

a
|gn(x)−gn−1(x)|dx

≤
∞

∑
n=1

{∫ b

a
|gn(x)− f (x)|dx+

∫ b

a
| f (x)−gn−1(x)|dx

}

<
∞

∑
n=1

(

2−n+2−n+1
)

= 3.

This implies that the series
∞

∑
n=1

|gn(x)−gn−1(x)|
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converges for a.e. point x ∈ [a,b]. From that it follows that

lim
n→∞

gn(x)

exists as a finite value for a.e. point x ∈ [a,b]. Applying Fatou’s lemma to the
inequality (4.35) shows us that, in fact,

lim
n→∞

gn(x) = f (x) a.e.

Define

sn = [g1]
++

n

∑
k=1

[gk−gk−1]
+ , f1 = lim

n→∞
sn ,

tn = [g1]
−+

n

∑
k=1

[gk−gk−1]
− , and f2 = lim

n→∞
tn.

We observe that

lim
n→∞

sn(x)− lim
n→∞

tn(x) = f1(x)− f2(x) = lim
n→∞

gn(x) = f (x) a.e.

and that the sequences {sn} and {tn} are monotone nondecreasing sequences
of step functions for which

sup
n

∫ b

a
sn(x)dx< ∞ and sup

n

∫ b

a
tn(x)dx< ∞.

This proves the identity L = S ↑−S ↑, where S is the collection of all step func-
tions. If we adjust each of the functions in the two sequences at a finite number of
points in an appropriate manner we can produce sequences of l.s.c. step functions
with exactly the same properties. Thus we can conclude also that L = S ↑

ℓ − S ↑
ℓ .

The remaining identities in the statement of the theorem are left to the reader.

For an alternative account of these methods we refer the reader to the litera-
ture on the Riesz method of presenting the Lebesgue integral. For example

http://www.math.canterbury.ac.nz/~d.bridges/

includes a link to Professor D. S. Bridges [9] lecture notes on a Riesz-method
development of the Lebesgue integral. In that theory one defines L [a,b] to be

S ↑
ℓ [a,b]−S ↑

ℓ [a,b].

The obligation then is to develop all of the theory of the Lebesgue integral from
that definition, including the necessary measure theory. An advantage of such
a theory is that essentially the same steps can be used in abstract settings to
develop an integration theory. One gains a deeper understanding of the structure
of Lebesgue integration theory than the measure-theoretic approach offers. Many
students, though, may not find the details all that palatable.
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4.14.6 Vitali-Carathéodory property

It is useful to extract from the preceding arguments a general statement about the
approximation of measurable functions by semicontinuous functions. The follow-
ing theorem has been attributed by Saks [60, p.76] to Vitali 16 and Carathédory17.

Theorem 4.64 (Vitali-Carathéodory) Let f : [a,b] → R be a measurable func-

tion. Then there exist two monotone sequences of functions {Ln} and {Un} (pos-

sibly infinite-valued) such that

1. Ln are l.s.c. andUn are u.s.c. on [a,b].

2. Ln are bounded below andUn are bounded above.

3. the sequence {Ln} is nonincreasing and {Un} is nondecreasing.

4. Ln(x)≥ f (x)≥Un(x) for every x in [a,b].

5. limn→∞Ln(x) = limn→∞Un(x) = f (x) for a.e. x in [a,b].

6. If E is a measurable subset of [a,b] and fχE is integrable on [a,b] then

lim
n→∞

∫ b

a
LnχE(x)dx= lim

n→∞

∫ b

a
UnχE(x)dx=

∫ b

a
f (x)χE(x)dx.

Note on infinite values: We can allow f in the statement of the theorem to
be infinite-valued provided, as usual, the set of points where f asssumes infinite
values is of measure zero. We cannot, however, insist that the semicontinuous
functions Un and Ln are finite-valued, even if we require f to assume finite values
(see Exercise 245). If f happens to be bounded, then there is no trouble making
Un and Ln also bounded.

4.14.7 Exercises

Exercise 237 Show that Sℓ[a,b] has these “lattice” properties:

1. For all f , g ∈ Sℓ[a,b] and all nonnegative r and s, r f + sg ∈ Sℓ[a,b].

2. For all f , g ∈ Sℓ[a,b] both functions

f ∧g=min{ f ,g} and f ∨g=max{ f ,g}
belong to Sℓ[a,b]

16G. Vitali [74] Una proprietà delle funzioni misurabili, Istit. Lombardo Rend. (2), 38 (1905) 599–
603.

17[14, p. 406] C. Carathédory [14, p. 406], Vorlesungen über reelle Funktionen, Leipzig-Berlin
(1918).
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Exercise 238 Show that S ↑
ℓ [a,b] has these “lattice” properties:

1. For all f , g ∈ S ↑
ℓ [a,b] and all nonnegative r and s, r f + sg ∈ S ↑

ℓ [a,b].

2. For all f , g ∈ S ↑
ℓ [a,b] both functions

f ∧g=min{ f ,g} and f ∨g=max{ f ,g}
belong to S ↑

ℓ [a,b]

Exercise 239 Show that S ↑
ℓ [a,b] and S

↓
u [a,b] include all regulated functions.

Exercise 240 Show that Sℓ
↑↑[a,b] = S ↑

ℓ [a,b].

Exercise 241 Define C [a,b] to be the set of all continuous functions on [a,b].

Characterize C ↑[a,b], C ↓[a,b], C ↑↓[a,b], and C ↓↑[a,b].

Exercise 242 Show that E ⊂ [a,b] is a set of measure zero if and only if there is

a Riesz sequence { fn} of step functions so that limn→∞ fn(x) = ∞ for all x ∈ E.

Exercise 243 Suppose that E ⊂ [a,b] is a set of measure zero and ε > 0. Show

that there must exist a Riesz sequence { fn} of nonnegative step functions so that

limn→∞ fn(x) = ∞ for all x ∈ E and∫ b

a
fn(x)dx< ε

for all n= 1,2,3, . . . .

Exercise 244 It is easy to misread the statement L = S ↑
ℓ −S ↑

ℓ as asserting that if

f is Lebesgue integrable on an interval then f+ and f− must belong to S ↑
ℓ . Show

that this is not necessarily so. Answer

Exercise 245 Show that there is a Lebesgue integrable function f : [0,1] → R

such that for no finite-valued l.s.c. function L is f (x)≤ L(x) for every x in [0,1].

Answer

4.15 Characterizations of the indefinite integral

Under what conditions can we be sure that a function F : [a,b]→R can be written
as

F(t) =C+
∫ t

a
f (t)dt

for a constant C and an integrable function f belonging to some specified class.
We have already solved this problem for the class of Riemann integrable functions
and several smaller classes as well. See Section 2.12.
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The property and the characterization itself for absolutely integrable (i.e.,
Lebesgue integrable) functions were given by Giuseppe Vitali in 1905, only shortly
after the publication by Lebesgue of his integration theory. We repeat the definition
here for convenience, although it has played a role earlier in our discussions.

Definition 4.65 Suppose that F : [a,b] → R is a function. Then F is absolutely
continuous in the Vitali sensea on [a,b] if for all ε > 0 there is a δ > 0 so that

∑
i

|F(vi)−F(ui)|< ε

whenever {[ui,vi]} are nonoverlapping subintervals of [a,b] for which ∑i[vi−ui]<

δ.

aMost texts call this (as did Vitali himself) simply “absolute continuity.”

There are several simple consequences of this definition that we will require
in order to better understand this concept. Let us recall from Lemma 2.30 that, if
F : [a,b]→ R is absolutely continuous in Vitali’s sense on [a,b], then

1. F is uniformly continuous on [a,b].

2. F has bounded variation on [a,b] and, consequently, is a.e. differentiable in
[a,b].

3. F is λ-absolutely continuous on (a,b), i.e. F has zero variation on every
measure zero subset of (a,b).

4. F maps subsets of (a,b) of Lebesgue measure zero into sets of Lebesgue
measure zero.

4.15.1 Indefinite integral of nonnegative, integrable functions

We now present some answers to our general problem. Proofs follow below in
Section 4.15.4. The first statement is for nonnegative integrable functions.

Theorem 4.66 Let F : [a,b] → R. A necessary and sufficient condition in order

that F can be written as

F(x) =C+
∫ x

a
f (t)dt

for a constant C and a nonnegative integrable function f is that F is absolutely

continuous in the Vitali sense and monotonic nondecreasing.

4.15.2 Indefinite integral of Lebesgue integrable functions

The second statement is for arbitrary absolutely integrable (i.e., Lebesgue) func-
tions.
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Theorem 4.67 Let F : [a,b] → R. A necessary and sufficient condition in order

that F can be written as

F(x) =C+
∫ x

a
f (t)dt

for a constant C and an absolutely integrable function f is that F is absolutely

continuous in the Vitali sense.

As a corollary we can rewrite this assertion in different language.

Corollary 4.68 Let F : [a,b]→ R. A necessary and sufficient condition in order

that F can be written as

F(x) =C+
∫ x

a
f (t)dt

for a constantC and an absolutely integrable function f is that

1. F is absolutely continuous in the variational sense (ACG∗) on [a,b].

2. Var(F, [a,b])< ∞.

4.15.3 Indefinite integral of nonabsolutely integrable functions

The final statement is for arbitrary nonabsolutely integrable functions.

Theorem 4.69 Let F : [a,b] → R. A necessary and sufficient condition in order

that F can be written as

F(x) =C+
∫ x

a
f (t)dt

for a constantC and a nonabsolutely integrable function f are that

1. F is absolutely continuous in the variational sense (ACG∗) on [a,b].

2. Var(F, [a,b]) = ∞.

3. F is differentiablea almost everywhere in (a,b).

aIt is possible but not easy to show that when F is absolutely continuous in the variational sense,
F must be almost everywhere differentiable. Thus (3) follows from (1).

4.15.4 Proofs

The necessity of the conditions in the three theorems can be addressed first.
Suppose that

F(x) =C+
∫ x

a
f (t)dt

for a constant C and an integrable function f .
If f is nonnegative then F is certainly nondecreasing We check that it is also

absolutely continuous in the Vitali sense.
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Let fn(x) = min{ f (x),n} and note that fn is measurable and nonnegative,
and that limn→∞ fn(x) = f (x) everywhere. Then, by the monotone convergence
theorem, on every subinterval [c,d]⊂ [a,b],

0<
∫ d

c
f (x)dx−

∫ d

c
fn(x)dx<

∫ d

c
[ f (x)− fn(x)]dx→ 0.

Choose N so large that ∫ b

a
f (x)dx<

∫ b

a
fN(x)dx+ ε/2.

Choose δ = ε/(2N). Then check that, if [ci,di] are nonoverlapping subintervals
of [a,b] with ∑i(di− ci)< δ, then

0≤ ∑
i

[F(di)−F(ci)] = ∑
i

∫ di

ci

f (x)dx

≤ ∑
i

∫ di

ci

fN(x)dx+ ε/2

≤ ∑
i

N((di− ci)+ ε/2< Nδ+ ε/2< ε.

This verifies that F is absolutely continuous in the Vitali sense.
If we assume instead that f is absolutely integrable we can again obtain the

fact that F is absolutely continuous in the Vitali sense merely by splitting f into its
positive and negative parts.

Finally, if f is merely integrable, then we already know that the relation

F(x) =C+
∫ x

a
f (t)dt

requires that F is continuous everywhere, and that F is absolutely continuous. The
fundamental theorem of the calculus requires F ′(x) = f (x) almost everywhere in
[a,b]. Thus each of the necessity parts of the three theorems is proved.

Conversely the stated conditions in the theorems are sufficient to verify that

F(x) =C+
∫ x

a
f (t)dt

for some function f as stated and constant C. For the third theorem we already
know this from the fundamental theorem of the calculus.

That same theorem shows that the proof of the first theorem is also complete
provided we know that F is differentiable almost everywhere and that F ′(x) ≥ 0

almost everywhere. But we already know that nondecreasing functions are almost
everywhere differentiable. Take f (x) = F ′(x) at points where the derivative exists
and f (x) = 0 elsewhere and the first theorem is proved.

We complete the proof of the second theorem in the same way. The assump-
tion that F is absolutely continuous in the Vitali sense assures us that F is contin-
uous and has bounded variation. So again F is almost everywhere differentiable
and again the same argument supplies the representation.
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Exercises

Exercise 246 Show that a function that is Lipschitz on [a,b] is also absolutely

continuous in the Vitali sense on [a,b].

Exercise 247 Give an example of a uniformly continuous on an interval [a,b] that

is not absolutely continuous in the Vitali sense there.

Exercise 248 Given an example of a function that is not Lipschitz on [a,b] but is

absolutely continuous in the Vitali sense on [a,b].

Exercise 249 Show that any continuously differentiable function on an interval

[a,b] is absolutely continuous in the Vitali sense on [a,b].

Exercise 250 Show that a differentiable function on an interval [a,b] need not be

absolutely continuous in the Vitali sense on [a,b] but that it must be absolutely

continuous in the variational sense.

Exercise 251 Show that a function may be absolutely continuous in the varia-

tional sense but not absolutely continuous in the Vitali sense.

Answer

Exercise 252 (Fichtenholz) Suppose that F : [a,b] → R satisfies the following

condition: for every ε > 0 there is a δ > 0 so that whenever {[ci,di]} is any
sequence of subintervals of [a,b] satisfying ∑i(di − ci) < δ then necessarily

∑i |F(di)−F(ci)|< ε. Show that this condition is strictly stronger than absolutely

continuity in the Vitali sense. Answer

4.16 Extending Lebesgue’s integral

The Lebesgue integral integrates all bounded, measurable functions on an interval
[a,b]. Is there a “better” integral, one that integrates all bounded functions?

More precisely we would like to have an integral which extends Lebesgue’s
integral in such a way that it integrates all bounded functions and agrees with
the Lebesgue integral if the function integrated happens to be measurable. In this
section we consider this problem.

A simple scheme is to search for a more general way to take limits of Riemann
sums. We know that a uniform limit of Riemann sums produces only the very
limited Riemann integral; a pointwise limit of Riemann sums handles all Lebesgue
integrable functions. Here is a general framework.

Fix a compact interval [a,b] and let Π denote the collection of all partitions π

of this interval. By an integration scheme on [a,b] we shall mean a filter F on Π,
i.e., F is a nonempty collection of nonempty subsets of Π with the two properties
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1. If α ∈ F and if α ⊂ α′ ⊂ Π then α′ ∈ F .

2. If α1,α2 ∈ F then α1∩α2 ∈ F .

Let now f : [a,b]→ R and simply write upper and lower integrals relative to
the filter F in the usual way (as in Section 3.1).

Definition 4.70 For a function f : [a,b]→ R and a filter F on Π we define

(F )
∫ b

a
f (x)dx= inf

α∈F
sup
π∈α

{

∑
([u,v],w)∈π

f (w)(v−u)

}

and

(F )
∫ b

a
f (x)dx= sup

α∈F
inf
π∈α

{

∑
([u,v],w)∈π

f (w)(v−u)

}

A function f would be said to be F -integrable if the upper and lower integrals
agree and are finite.

There are three filters that we should consider:

• R denotes the collection of all nonempty subsets α ⊂ Π with the property
that there is a δ > 0 so that every partition π ∈ Π with v− u < δ for all
([u,v],w) ∈ π must belong to α.

• H denotes the collection of all nonempty subsets α ⊂ Π with the property
that for each x ∈ [a,b] there is a δ(x)> 0 so that every partition π ∈ Π with
v−u< δ(w) for all ([u,v],w) ∈ π must belong to α.

• U is an ultrafilter on Π, i.e., U is maximal in the sense that there is no
larger filter, no other filter that contains U.

The integral based on R is the Riemann integral on [a,b]. The integral based
on H is precisely the Henstock-Kurzweil integral. The integral based on an ultra-
filter has the following property.

Theorem 4.71 Let U be an ultrafiltera that includes H . Then for every function

f : [a,b]→ R,

(H )
∫ b

a
f (x)dx≤ (U)

∫ b

a
f (x)dx= (U)

∫ b

a
f (x)dx≤ (H )

∫ b

a
f (x)dx.

In particular every bounded function is U-integrable and the U-integral extends

both the Lebesgue integral and the Henstock-Kurzweil integral.

aIt follows from the axiom of choice that such an ultrafilter must exist.
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There is no practical importance, however, in such a theorem. An ultrafilter
cannot be constructed; we can claim that an ultrafilter exists only by appealing to
a logical principle such as the axiom of choice. Nonetheless we have an integral,
based like our usual integrals on Riemann sums, that extends the Lebesgue in-
tegral. We will not have available all of the properties of the Lebesgue integral;
in particular we cannot claim translation invariance nor that a monotone conver-
gence theorem would hold for the extended integral.

For a different approach to the problem of extending the Lebesgue integral
see Chapter 12, Section 12.6 of our text Bruckner, Bruckner, and Thomson, Real
Analysis, 2nd Ed., ClassicalRealAnalysis.com (2008). There the extension is ac-
complished as an application of the Hahn-Banach theorem. That theorem pro-
duces a linear functional that behaves very much like an integral but there is no
actual connection with integration theory since the integral is not constructed by
any recognizable method.

Exercise 253 What property of a filter F would guarantee that

(F )
∫ b

a
f (x)dx≤ (F )

∫ b

a
f (x)dx?

Exercise 254 Prove Theorem 4.71. Answer

4.17 The Lebesgue integral as a set function

In many presentations of the Lebesgue integral (although not in Lebesgue’s orig-
inal thesis) the integral is defined over arbitrary measurable sets E and denoted
as ∫

E
f (x)dx.

Then the integral over a compact interval [a,b] would be written as∫
[a,b]

f (x)dx

and all of the theory is stated, as far as is possible, for the more general set-valued
integral (rather than the interval-valued integral of this chapter). We can define this
set-valued integral in somewhat greater generality by using estimates arising from
full and fine covers.

Definition 4.72 Let f : R→ R be a function and β a covering relation. We write

Var( fλ,β) = sup
π⊂β

{

∑
([u,v],w)∈π

| f (w)|λ(([u,v])
}

where the supremum is taken over all π, arbitrary subpartitions contained in β.
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Definition 4.73 (Full and Fine Variations) Let f : R → R and let E be any set

of real numbers. Then we define the full and fine variational measures associated

with fλ by the expressions:

V ∗( fλE) = inf{Var( fλ,β) : β a full cover of E}
and

V∗( fλ,E) = inf{Var( fλ,β) : β a fine cover of E}.

In the special case where f is a nonnegative function and E an arbitrary set
we write ∫

E
f (x)dx=V ∗( fλ,E)

and we will check later to see if fine variation can be used as well. We have already
sufficient techniques to study this set-valued integral and so we shall develop the
theory in the exercises.

Exercises

Exercise 255 (measure estimates for Lebesgue’s integral) Suppose that f :

R → R is an arbitrary nonnegative function and that 0 ≤ r < f (x) < s for all x

in a set E. Then

rλ(E)≤
∫
E
f (x)dx≤ sλ(E).

Answer

Exercise 256 (comparison with upper integral) Show that if f is a nonnegative

function and E is an arbitrary set contained in an interval [a,b] then
∫
E
f (x)dx=

∫ b

a
χE(x) f (x)dx.

Exercise 257 (comparison with Lebesgue integral) Show that if f is a non-

negative measurable function and E is a measurable set contained in an interval

[a,b] then ∫
E
f (x)dx=

∫ b

a
χE(x) f (x)dx

where the integral may be interpreted as a Lebesgue integral. (In particular the

value of the integral
∫
E f (x)dx can be constructed by Lebesgue’s methods.)

Exercise 258 (measure properties) Show that if f is a nonnegative function and

E, E1, E2, E3, . . . is a sequence of sets for which E ⊂⋃∞
n=1En then∫

E
f (x)dx≤

∞

∑
n=1

∫
En

f (x)dx

i.e., the set function integral is a measure in the sense of Theorem 4.3.
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Exercise 259 (absolute continuity (zero/zero)) Show that if f is a nonnegative

function and E is a set of Lebesgue measure zero then∫
E
f (x)dx= 0.

Answer

Exercise 260 Show that if f is a nonnegative function and∫
E
f (x)dx= 0

then f (x) = 0 for almost every point x ∈ E.

Exercise 261 Show that if f is a nonnegative function and E1, E2, E3, . . . is a

sequence of pairwise disjoint closed sets for which E =
⋃∞

n=1En then∫
E
f (x)dx=

∞

∑
n=1

∫
En

f (x)dx

i.e., the set function integral is additive over disjoint closed sets as in Corol-

lary 4.11.

Exercise 262 Suppose that f is a nonnegative, bounded function and that E is a

measurable set. Show that for every ε > 0 there is an open set G so that E \G is

closed and ∫
E\G

f (x)dx< ε.

[This is a warm-up to the next exercise where bounded is dropped.]

Exercise 263 Suppose that f is a nonnegative, measurable function and that E

is a measurable set. Show that for every ε > 0 there is an open setG so that E \G
is closed and ∫

E\G
f (x)dx< ε.

[This is an improvement on the preceding exercise where it was assumed that the

function is bounded.]

Exercise 264 Show that if f is a nonnegative measurable function and E1, E2,

E3, . . . is a sequence of pairwise disjoint measurable sets for which E =
⋃∞

n=1En

then, for any set A, ∫
A∩E

f (x)dx=
∞

∑
n=1

∫
A∩En

f (x)dx

i.e., the set function integral is additive over disjoint sets as in Lemma 4.14 pro-

vided we assume that the sets and the function are measurable.

Exercise 265 Show that if f is a nonnegative measurable function and E1 ⊂E2 ⊂
E3 ⊂ . . . , is an increasing sequence of measurable sets for which E =

⋃∞
n=1En
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then ∫
E
f (x)dx= lim

n→∞

∫
En

f (x)dx.

Exercise 266 Suppose that f : R→ R and that f is nonnegative and bounded.

Then for every ε > 0 there is a δ > 0 so that if G is an open set with λ(G) < δ

then ∫
G
f (x)dx< ε.

[This is a warm-up to the next exercise where bounded is dropped.] Answer

Exercise 267 (absolute continuity (ε, δ)) Suppose that f : R → R, that f is

nonnegative and measurable, and that∫
E
f (x)dx< ∞.

Then for every ε > 0 there is a δ > 0 so that if G is an open set with λ(G) < δ

then ∫
E∩G

f (x)dx< ε.

Answer

Exercise 268 (construction of the Lebesgue integral) Suppose that f : R →
R and that f is a nonnegative, measurable function. Let r > 1 and write

Akr = {x : rk−1 < f (x)≤ rk}.
Then, for any set E,∫

E
f (x)dx≤

∞

∑
k=−∞

rkλ(E ∩Akr)≤ r

∫
E
f (x)dx.

[In particular as rր 1 the sum approaches the value of the integral.] Answer

Exercise 269 (full and fine characterization) Suppose that f :R→R and that

f is a nonnegative, measurable function. Show that∫
E
f (x)dx=V ∗( fλ,E) =V∗( fλ,E).

Answer



Chapter 5

Stieltjes Integrals

Recall that the total variation of a function F on a compact interval is the supre-
mum of sums of the form

Var(F, [a,b]) = ∑
([u,v],w)∈π

|F(v)−F(u)|

taken over all possible partitions π of [a,b]. This is a measure of the variability of
the function F on this interval. Functions of bounded variation play a significant
role in real analysis. The earliest application was to the study of arc length of
curves, a subject we will review in this chapter as well.

Our main tool in the study of this important class of functions is a slight gener-
alization of the integral, called the Stieltjes integral. Our definitions for this integral
will now be of the Henstock-Kurzweil type. Ideas related to the usual integral will
certainly return.

5.1 Stieltjes integrals

The definition of the total variation Var(F, [a,b]) and the definition of the
Lebesgue-Stieltjes measure both contain what looks very much like one of our
Riemann sums, but in place of the usual sum

∑
([u,v],w)∈π

f (w)(v−u)

we are here checking values of the sum

∑
([u,v],w)∈π

|F(v)−F(u)|.

This might suggest to us that integration methods would prove a useful tool in the
study of functions of bounded variation.

Let us, accordingly, enlarge the scope of our integration theory by considering
limits of Riemann sums that are more general than we have used so far. Let f ,
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G : [a,b]→ R and by analogy with∫ b

a
f (x)dx ∼ ∑

([u,v],w)∈π

f (w)(v−u)|

we introduce new integrals by making only the obvious changes suggested by the
following slogans:∫ b

a
f (x)dG(x) ∼ ∑

([u,v],w)∈π

f (w)(G(v)−G(u))

∫ b

a
f (x) |dG(x)| ∼ ∑

([u,v],w)∈π

f (w)|G(v)−G(u)|

∫ b

a
f (x) [dG(x)]+ ∼ ∑

([u,v],w)∈π

f (w)[G(v)−G(u)]+

∫ b

a
f (x) [dG(x)]− ∼ ∑

([u,v],w)∈π

f (w)[G(v)−G(u)]−

as well as a few other variants we consider in later sections:∫ b

a

√

|dG(x)|dx ∼ ∑
([u,v],w)∈π

√

|G(v)−G(u)|(v−u)

and ∫ b

a

√

[dG(x)]2+[dx]2 ∼ ∑
([u,v],w)∈π

√

|G(v)−G(u)|2+(v−u)2.

Notation Here we are using the expression [r]+ for any real number to denote
(|r|+ r)/2 (or equivalently max{r,0}). Similarly [r]− for any real number is (|r|−
r)/2 (or equivalently max{−r,0}). Note that, with these definitions,

|r|= [r]++[r]− and r = [r]+− [r]−.

We will refer to all of these as Stieltjes integrals, although it is only the first
variant of these, ∫ b

a
f (x)dG(x),

that the Dutch mathematician Thomas Stieltjes (1856–1894) himself used and the
one that most people would mean by the terminology.

5.1.1 Definition of the Stieltjes integral

The slogans in the preceding section should be enough to lead the reader to the
correct definition of the various Stieltjes integral. Even so, let us give a precise
definition for the simplest case. This is just a copying exercise: take the usual
definition and repeat it with the Riemann sums adjusted in the manner required.
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Definition 5.1 For functions G, f : [a,b]→ R we define an upper integral by
∫ b

a
f (x)dG(x) = inf

β
sup
π⊂β

∑
([u,v],w)∈π

f (w)(G(v)−G(u))

where the supremum is taken over all partitions π of [a,b] contained in β, and the

infimum over all full covers β.

Similarly we define a lower integral, as∫ b

a
f (x)dG(x) = sup

β

inf
π⊂β

∑
([u,v],w)∈π

f (w)(G(v)−G(u))

where, again, π is a partition of [a,b] and β is a full cover.
If the upper and lower integrals are identical we say the integral is determined

and we write the common value as∫ b

a
f (x)dG(x).

We are interested, mostly, in the case in which the integral is determined and
finite.

Exercises

Exercise 270 Let G : [a,b]→ R. Show that∫ b

a
dG(x) = G(b)−G(a).

Exercise 271 Let G :R→R defined so that G(x) = 0 for all x 6= 0 and G(1) = 1.

Compute ∫ 2

0
|dG(x)| and

∫ 2

0
|dG(x)|.

Exercise 272 Let G : [0,1]→R and let f (x) = 0 for all x 6= 1/2 with f (1/2) = 1.

What are ∫ 1

0
f (x)dG(x) and

∫ 1

0
f (x)dG(x)?

Exercise 273 Let G, f : [0,1] → R and let G(x) = 0 for all x ≤ 1/2 and with

G(x) = 1 for all x> 1/2. What are

∫ 1

0
f (x)dG(x) and

∫ 1

0
f (x)dG(x)?

Answer
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Exercise 274 Let G, f : [a,b]→ R and let f be continuous and let G be a step

function, i.e. there are points

a< ξ1 < ξ2 < · · ·< ξm < b

so that G is constant on each interval (ξi−1,ξi). What are possible values for

∫ b

a
f (x)dG(x) and

∫ b

a
f (x)dG(x)?

Answer

Exercise 275 Let G, F : [−1,1] → R be defined by F(x) = 0 for −1 ≤ x < 0,

F(x) = 1 for 0 ≤ x ≤ 1, G(x) = 0 for −1 ≤ x ≤, and G(x) = 1 for 0 < x ≤ 1.

Discuss
∫ 1
−1F(x)dG(x) and

∫ 1
−1G(x)dF(x). Answer

Exercise 276 If a< b< c is the formula∫ b

a
f (x)dG(x)+

∫ c

b
f (x)dG(x) =

∫ c

a
f (x)dG(x)

valid? Answer

Exercise 277 Show that a function f can be altered at a finite number of points

whereG is continuous without altering the values of the upper and lower integrals.

Give an example to show that continuity may not be dropped here.

Exercise 278 Show that a function f can be altered at a countable number of

points where G is continuous without altering the values of the upper and lower

integrals.

Exercise 279 Give a Cauchy I criterion for

∫ b

a
f (x)dG(x).

Exercise 280 Give a Cauchy II criterion for

∫ b

a
f (x)dG(x).

Exercise 281 Give a McShane criterion for

∫ b

a
f (x)dG(x).

Exercise 282 Give a Henstock criterion for

∫ b

a
f (x)dG(x).

Exercise 283 For integrals of the form

∫ b

a
f (x) |dG(x)| what changes have to be

made in the various criteria? Answer

Exercise 284 For integrals of the form

∫ b

a
f (x) [dG(x)]+ what changes have to

be made in the various criteria?
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Exercise 285 Let F : [0,2]→ R with F(t) = 0 for all t 6= 1 and F(1) = 1. Show

that ∫ 2

0
|dF(x)|<

∫ 2

0
|dF(x)|= Var(F, [0,2]).

Exercise 286 Let F : [a,b] → R. Show that the total variation of F can be ex-

pressed as an upper integral:

Var(F, [a,b]) =
∫ b

a
|dF(x)|.

Exercise 287 Let F : [a,b]→ R and suppose that one at least of the integrals

∫ b

a
|dF(x)| ,

∫ b

a
[dF(x)]+ or

∫ b

a
[dF(x)]−

is finite. Show that F is a function of bounded variation on [a,b] and that, for all

a< t ≤ b,

F(t)−F(a) =
∫ t

a
[dF(x)]+−

∫ t

a
[dF(x)]−. (5.1)

The identity (5.1) is a representation of F as a difference of two nondecreasing

functions.

Exercise 288 Let F : [a,b] → R be a continuous function. Show that F has

bounded variation on [a,b] if and only if there is a continuous, strictly increasing

functionG : [a,b]→R for which F(d)−F(c)<G(d)−G(c) for all a≤ c< d ≤ b.

Exercise 289 What basic properties of the ordinary integral

∫ b

a
f (x)dx can you

prove for Stieltjes integrals without any but the most obvious of changes in the

proofs?

5.1.2 Definition of the Riemann-Stieltjes integral

The most familiar version of the Stieltjes integral is the Riemann-Stieltjes integral.
The reader is likely to encounter the latter integral in the literature, rather than the
more general one defined here. The difference is only in the use of uniform full
covers rather than full covers in general. Just as the Riemann integral is a weak
cousin compared to the integral we have studied, so too is the Riemann version
of a Stieltjes integral a weak special case.

Even so the reader should be aware of the distinction. We occasionally allude
to the Riemann-Stieltjes integral but it is not our main preoccupation.
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5.1.3 Henstock’s zero variation criterion

Since the Stieltjes integral is defined in exactly the same way as the ordinary in-
tegral one expects almost the same properties. Indeed this integral has the same
linear, additive, and monotone properties (suitably expressed). There also must
be an indefinite integral. Finally, the most important of these properties that car-
ries over, is the Henstock criterion. We give that now.

Theorem 5.2 Let F , G, f : [a,b]→ R. Then a necessary and sufficient condition

for the existence of the Stieltjes integral and the formula∫ d

c
f (x)dG(x) = F(d)−F(c) [c,d]⊂ [a,b]

is that ∫ b

a
|dF(x)− f (x)dG(x)|= 0.

The proof would merely be a copying exercise of material from earlier. Note
that we are taking advantage of our general Stieltjes notation here to allow us to
interpret the integral ∫ b

a
|dF(x)− f (x)dG(x)|

as a limit of the Riemann sums

∑
([u,v],w)∈π

|F(v)−F(u)− f (x)[G(v)−G(u)]| .

5.2 Regulated functions

Recall that the one-sided limit F(c+) exists if, for all sequences of positive num-
bers tn tending to zero,

lim
n→∞

F(c+ tn) = F(c+).

Similarly, we say F(c−) exists if, for all sequences of positive numbers tn tending
to zero,

lim
n→∞

F(c− tn) = F(c−).
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Definition 5.3 Let F : [a,b]→ R. Then

• F is said to be regulated if the one-sided limit F(c+) exists and is finite for

all a≤ c< b and the limit on the other side F(c−) exists and is finite for all

a< c≤ b.

• F is said to be naturally regulated if F is regulated and, for all a < c < b,

either

F(c+)≤ F(c)≤ F(c−)

or else

F(c−)≤ F(c)≤ F(c+).

Theorem 5.4 Let F : [a,b]→ R be monotonic. Then F is naturally regulated.

Proof. Simply notice that

F(c−) = sup{F(t) : a≤ t < c} ≤ F(c)

≤ inf{F(t) : c< t ≤ b}= F(c+).

for all a< c< b.

Theorem 5.5 Let F : [a,b] → R be a function of bounded variation. Then F is

regulated and has at most countably many discontinuitiesa.

aIn fact it can be proved that all regulated functions have at most countably many discontinuities.

Proof. Suppose that a< c≤ b and F(c−) does not exist. Then there is a positive
number ε and a sequence of numbers cn increasing to c so that, for all n,

F(cn)−F(cn+1)<−ε < ε < F(cn+2)−F(cn+1).

But then, for all m,

∞ > Var(F, [a,b])≥
m

∑
n=1

|F(cn)−F(cn+1)|> mε.

This is impossible. Similarly F(c+) must exist for all a≤ c< b.
Let us show that there are only countably many points c ∈ [a,b) for which

F(c) 6= F(c+). Let c1, c2, . . . cm denote some set of m points from (a,b) for which

|F(cm+)−F(c)|> 1/n.

Then there is a disjointed collection of intervals [ci, ti] for which

|F(ti)−F(ci)|> 1/(2n).

In particular

∞ > Var(F, [a,b])≥
m

∑
i=1

|F(ti)−F(ci)|> m/(2n).

Thus there are only finitely many such choices of points c1, c2, . . . cm for which

|F(cm+)−F(cm)|> 1/n.
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It follows that there are only countably many choices of points ci for which

|F(ci+)−F(ci)|> 0.

A similar argument handles the points c ∈ (a,b)] for which F(c) 6= F(c−). It fol-
lows that the set of points of discontinuity must be countable.

5.2.1 Approximate additivity of naturally regulated functions

Our study of the integration properties of naturally regulated functions will require
a simple lemma.

Lemma 5.6 (Approximate additivity) Suppose that F : [a,b]→ R is a function

that is naturally regulated. Then at any point a< c< b, and for any ε > 0 there is

δ > 0 so that, for all c−δ < u< c< v< c+δ,

|F(v)−F(c)|+ |F(c)−F(u)| ≥ |F(v)−F(u)|
and

|F(v)−F(u)| ≥ |F(v)−F(c)|+ |F(c)−F(u)|− ε. (5.2)

Proof. Since F is naturally regulated we know that

|F(c+)−F(c−)|= |F(c+)−F(c)|+ |F(c−)−F(c)|
for each a< c< b. At such points there is a δ > 0 so that

|F(u)−F(c−)|< ε/4 and |F(v)−F(c+)|< ε/4

for all c−δ < u< c< v< c+δ. In particular

|F(c+)−F(c−)| ≤ |F(c+)−F(v)|+ |F(v)−F(u)|+ |F(u)−F(c−)|
≤ |F(v)−F(u)|+ ε/2

and so

|F(v)−F(c)|+ |F(c)−F(u)| ≤
|F(v)−F(c+)|+ |F(c+)−F(c)|+ |F(c−)−F(c)|+ |F(c−)−F(u)|

≤ |F(c+)−F(c−)|+ ε/2≤ |F(v)−F(u)|+ ε.

Thus

|F(v)−F(u)| ≥ |F(v)−F(c)|+ |F(c)−F(u)|− ε.

The other inequality

|F(v)−F(c)|+ |F(c)−F(u)| ≥ |F(v)−F(u)|
is obviously true.
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5.3 Variation expressed as an integral

We begin by pointing out the obvious relation between the Jordan variation and a
certain Stieljtes integral.

Lemma 5.7 Suppose that F : [a,b]→ R. Then

Var(F, [a,b]) =
∫ b

a
|dF(x)|.

Our interest is in the special case where this integral exists and we are not
forced to use the upper integral.

Lemma 5.8 Suppose that F : [a,b]→R is a function of bounded variation that is

naturally regulated. Then

Var(F, [a,b]) =
∫ b

a
|dF(x)|.

Proof. It is clear that

Var(F, [a,b])≥
∫ b

a
|dF(x)|.

In fact these are equal for all functions, but we do not need that. Let ε > 0 and
select points

a= s0 < s1 < · · ·< sn−1 < sn = b

so that
n

∑
i=1

|F(si)−F(si−1)|> Var(F, [a,b])− ε.

Define a covering relation β to include only those pairs ([u,v],w) for which
either w 6= s1,s2, . . . ,sn−1 and [u,v] contains no point s1,s2, . . . ,sn−1, or else w= si
for some i= 1,2, . . . ,n−1 and

|F(v)−F(u)| ≥ |F(v)−F(si)|+ |F(si)−F(u)|− ε/n. (5.3)

It is clear that β is full at every point w. For points w 6= s1,s2, . . . ,sn−1 this is
transparent, while for points w = si for some i = 1,2, . . . ,n− 1, Lemma 5.6 may
be applied.

We use a standard endpointed argument. Take any partition π of [a,b] chosen
from β. Scan through π looking for any elements of the form ([u,v],si) for u< si <

w and i = 1,2, . . . ,n− 1. Replace each one by the new elements ([u,si],si) and
([si,v],si). Call the new partition π′. Because of (5.3) we see that

∑
([u,v],w)∈π

|F(v)−F(u)| ≥ ∑
([u,v],w)∈π′

|F(v)−F(u)|− ε.

Write πi = π′([si−1,si]) and note that, by the way we have arranged π′, each
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πi is a partition of the interval [si−1,si]. Consequently

∑
([u,v],w)∈π

|F(v)−F(u)| ≥ ∑
([u,v],w)∈π′

|F(v)−F(u)|− ε

≥
n

∑
i=1

∑
([u,v],w)∈πi

|F(v)−F(u)|− ε

≥
n

∑
i=1

|F(si)−F(si−1)|− ε > Var(F, [a,b])−2ε.

We have shown that for every partition π of [a,b] contained in β this sum is larger
than Var(F, [a,b])−2ε. It follows that∫ b

a
|dF(x)| ≥ Var(F, [a,b])−2ε.

Since ε is arbitrary the inequality

Var(F, [a,b])≤
∫ b

a
|dF(x)| ≤

∫ b

a
|dF(x)| ≤ Var(F, [a,b])

must hold and the theorem is proved.

Corollary 5.9 Suppose that F : [a,b]→R is a function of bounded variation that

is naturally regulated. Then

Var(F, [a,b]) =
∫ b

a
|dF(x)|=

∫ t

a
[dF(x)]++

∫ t

a
[dF(x)]−.

Proof. The proof of the lemma can easily be adjusted to prove that all three of
these integrals must exist. The identity is trivial: the expression

|dF(x)|= [dF(x)]++[dF(x)]−

integrated over [a,b] produces the required identity.

The role of the naturally regulated assumption is exhibited in Exercise 285. It
can be checked that if a function is not naturally regulated then the integral is not
determined and the variation must be displayed using the upper integrals.

5.4 Representation theorems

5.4.1 Jordan decomposition

The structure of functions of bounded variation is particularly simplified by a theo-
rem of Jordan: every function of bounded variation is merely a linear combination
of monotonic functions. We prove this for functions that are naturally regulated,
by interpreting the statement as an integration assertion about certain Stieltjes
integrals. The statement is true in general for all functions of bounded variation,
but then the upper integrals would be needed (cf. Exercise 287).
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Theorem 5.10 Let F : [a,b]→R be a function of bounded variation and suppose

that F is naturally regulated. Then, for all a< t ≤ b,

F(t)−F(a) =
∫ t

a
[dF(x)]+−

∫ t

a
[dF(x)]−. (5.4)

The identity (5.4) is a representation of F as a difference of two functions, both

nondecreasing, both naturally regulated.

Proof. The existence of the integrals is given in Corollary 5.9. The identity is triv-
ial: the expression

dF(x) = [dF(x)]+− [dF(x)]−

integrated over [a,b] produces the required identity. (If you have forgotten the
meaning of [r]+ and [r]− see page 212.)

Corollary 5.11 Let F : [a,b]→R be a function of bounded variation and suppose

that F is continuous. Then, for all a< t ≤ b,

F(t)−F(a) =
∫ t

a
[dF(x)]+−

∫ t

a
[dF(x)]−. (5.5)

The identity (5.5) is a representation of F as a difference of two functions, both

continuous and nondecreasing.

5.4.2 Jordan decomposition theorem: differentiation

We know that all functions of bounded variation and all monotonic functions are
almost everywhere differentiable. This and the integral representation given in
Theorem 5.10 allows the following corollary.

Corollary 5.12 Let F : [a,b]→R be a function of bounded variation and suppose

that F is naturally regulated. Write

F1(t) =
∫ t

a
[dF(x)]+ (a≤ t ≤ b), (5.6)

and

F2(t) =
∫ t

a
[dF(x)]− (a≤ t ≤ b), (5.7)

Then

F(t)−F(a) = F1(t)−F2(t) and T (t) = Var(F, [a, t]) = F1(t)+F2(t).

Moreover, at almost every t in [a,b],

F ′(t) = F ′
1(t)−F ′

2(t), F ′
1(t) =max{F ′(t),0}, F ′

2(t) =max{−F ′(t),0},
T ′(t) = F ′

1(t)+F ′
2(t) = |F ′(t)| and F ′

1(t)F
′
2(t) = 0.

Proof. There are three tools needed for the differentiation statements: the
Lebesgue differentiation theorem (that monotonic functions have derivatives a.e.),



222 CHAPTER 5. STIELTJES INTEGRALS

the Henstock zero variation criterion for integrals, and the zero variation implies
zero derivative a.e. rule.

We illustrate with a proof for one of the statements in the corollary. Define

h([u,v],w) = F1(v)−F1(u)− [F(v)−F(u)]+.

The identity F1(t) =
∫ t
a [dF(x)]

+ requires that h have zero variation on (a,b). This,
in term, requires that

lim
h→0+

F1(t+h)−F1(t)−max{F(t+h)−F(t),0}
h

= lim
h→0+

F1(t)−F1(t−h)−max{F(t)−F(t−h),0}
h

= 0

for almost every t in (a,b). From that we deduce that F ′
1(t) =max{F ′(t),0} must

be true for almost every t in (a,b). Proofs for the other statements are similar.

5.4.3 Representation by saltus functions

Theorem 5.13 Let F : [a,b]→R be a monotonic nondecreasing function and let

C be the set of points of continuity of F in [a,b]. Then, for all a< t ≤ b,

F(t)−F(a) =
∫ t

a
χC(x)dF(x)+

∫ t

a
[1−χC(x)]dF(x). (5.8)

and ∫ t

a
[1−χC(x)]dF(x) = [F(t)−F(t−)]+ ∑

s∈[a,t)\C
[F(s+)−F(s−)]

The identity (5.8) is a representation of F as a sum of two functions, the first

continuous and nondecreasing, the second a saltus function.

5.4.4 Representation by singular functions

Theorem 5.14 Let F : [a,b]→ R be a continuous monotonic function. Let D be

the set of points of differentiability of F in [a,b]. Then

F(t)−F(a) =
∫ t

a
χD(x)dF(x)+

∫ t

a
[1−χD(x)]dF(x) (5.9)

and ∫ t

a
χD(x)dF(x) =

∫ t

a
F ′(x)dx.

The identity (5.9) is a representation of F as a sum of two monotonic functions,

the first absolutely continuous in the sense of Vitali and the second a continuous

singular function.

A continuous monotonic function S : [a,b]→ R would be said to be singular

provided S′(x) = 0 for almost every point x in (a,b). The proof reduces to checking
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that the integrals exist and then checking that the two expressions have the stated
properties.

5.5 Reducing a Stieltjes integral to an ordinary integral

The Stieltjes integral reduces to an ordinary integral in a number of interpretations.
When the integrating function G is an indefinite integral the whole theory reduces
to ordinary integration. The formula is compelling since, as calculus students often
learn,

dG(x) = G′(x)dx

can be assigned a meaning. That meaning is convenient here too and suggests
that ∫ b

a
f (x)dG(x) =

∫ b

a
f (x)G′(x)dx.

Theorem 5.15 Suppose that G, f , g : R→ R and that g is integrable on a com-

pact interval [a,b] with an indefinite integral

G(d)−G(c) =
∫ d

c
g(x)dx (a≤ c< d ≤ b).

Then the Stieltjes integral ∫ b

a
f (x)dG(x)

exists if and only if f g is integrable on [a,b], in which case∫ b

a
f (x)dG(x) =

∫ b

a
f (x)g(x)dx.

Proof. The proof depends simply on the Henstock criterion. The existence of the
ordinary integral ∫ b

a
g(x)dx

with an indefinite integral G is equivalent to the zero criterion:∫ b

a
|dG(x)−g(x)dx|= 0

Whenever this identity holds, then one checks that, for any function f ,∫ b

a
| f (x)dG(x)− f (x)g(x)dx|= 0

would also be true. For example, if we have a bounded f this is trivial; for un-
bounded one only has to split [a,b] into the sequence of sets

{x ∈ [a,b] : n−1≤ | f (x)|< n}
and argue on each of these (cf. Exercise 291).
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The existence of the Stieltjes integral∫ b

a
f (x)dG(x)

with an indefinite integral F is equivalent to the zero criterion:∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Together these give

∫ b

a
|dF(x)− f (x)g(x)dx| ≤

∫ b

a
|dF(x)− f (x)dG(x)|+

∫ b

a
| f (x)dG(x)− f (x)g(x)dx|= 0.

From this it is easy to read off the required identity.

5.6 Properties of the indefinite integral

Theorem 5.16 Suppose that

F(t) =
∫ t

a
f (x)dG(x) (a≤ t ≤ b).

Then

1. F is continuous at every point at which G is continuous.

2. F is absolutely continuous in any set E ⊂ (a,b) in which G is absolutely

continuous.

3. F has zero variation on any set E ⊂ (a,b) on which G has zero variation.

4. F has bounded variation on [a,b] if f is bounded and if G has bounded

variation.

5. If G is Vitali absolutely continuous on [a,b] and if f is bounded then F is

also Vitali absolutely continuous on [a,b].

6. If G is a saltus function on [a,b] and f is nonnegative then so too is the

indefinite integral F . Moreover the jumps of F occur precisely at points that

are jumps of G for which f does not vanish.
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Theorem 5.17 (Differentiation properties) Suppose that

F(t) =
∫ t

a
f (x)dG(x) (a≤ t ≤ b).

Then

1. For almost every point x in [a,b]

lim
y→x

F(y)−F(x)− f (x)(G(y)−G(x))

y− x
= 0.

2. For almost every point x in [a,b],

DF(x) = f (x)DG(x) and DF(x) = f (x)DG(x)

or else

DF(x) = f (x)DG(x) and DF(x) = f (x)DG(x)

depending on whether f (x)≥ 0 or f (x)≤ 0.

3. In particular, F ′(x) = f (x)G′(x) at almost every point x at which either F or

G is differentiable.

4. Finally, F ′(x) = 0 at almost every point x where f (x) = 0.

The proof for each of these statements depends simply on the Henstock cri-
terion. The existence of the Stieltjes integral∫ b

a
f x)dG(x)

with an indefinite integral F is equivalent to the zero criterion:∫ b

a
|dF(x)− f (x)dG(x)|= 0

From the latter will flow each of the statements of the theorem. The individual
proofs are left in the Exercises to the reader.

Exercises

Exercise 290 Suppose that∫ b

a
|dF(x)− f (x)dx|= 0.

Show that if g is any bounded function on [a,b] then∫ b

a
|g(x)dF(x)− f (x)g(x)dx|= 0.

Exercise 291 Suppose that∫ b

a
|dF(x)− f (x)dx|= 0.
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Show that if g is any real-valued function on [a,b] then∫ b

a
|g(x)dF(x)− f (x)g(x)dx|= 0.

Exercise 292 Suppose that∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Show that F is continuous at any point at which G is continuous. Is the converse

necessarily true?

Exercise 293 Suppose that∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Show that F has zero variation on any set on which G has zero variation. Is the

converse necessarily true?

Exercise 294 Suppose that∫ b

a
|dF(x)− f (x)dG(x)|= 0

and suppose that G has bounded variation on [a,b] and that f is bounded. Show

that F has bounded variation on [a,b].

Exercise 295 Suppose that∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Show that

lim
y→x

F(y)−F(x)− f (x)(G(y)−G(x))

y− x
= 0

almost everywhere by using the zero variation implies zero derivative criterion.

Exercise 296 Complete the remaining arguments needed to establish the parts

of the theorem.

Exercise 297 Suppose that∫ b

a
|dF(x)− f (x)dG(x)|= 0.
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Show that, for every point x in [a,b]

lim
y→x

F(y)−F(x)

G(y)−G(x)
= f (x)

except perhaps for points x in a set N in which G has fine variation zero.

Exercise 298 Suppose that at every point x of a compact interval [a,b]

lim
y→x

F(y)−F(x)− f (x)[G(y)−G(x)]

y− x
= 0.

Show that ∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Exercise 299 Suppose that at every point x of a compact interval [a,b]

lim
y→x

F(y)−F(x)− f (x)[G(y)−G(x)]

y− x
= 0

except for points x in a set N for which both F and G have zero variation. Show

that ∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Exercise 300 Suppose that∫ b

a
|dF(x)− f (x)dG(x)|= 0.

Show that, at almost every point x,

DF(x) = f (x)DG(x) and DF(x) = f (x)DG(x)

if f (x)≥ 0 while

DF(x) = f (x)DG(x) and DF(x) = f (x)DG(x)

if f (x)≤ 0. In particular F ′(x) = 0 at almost every point x where f (x) = 0.

5.6.1 Existence of the integral from derivative statements

The existence of the integral ∫ b

a
f (x)dG(x)

can be deduced from a variety of differentiation statements. For example, using
Exercise 299, we can prove the following simple version:
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Theorem 5.18 Suppose that at every point x of a compact interval [a,b]

lim
y→x

F(y)−F(x)− f (x)[G(y)−G(x)]

y− x
= 0

except for points x in a set N for which both F and G have zero variation. Then

the Stieltjes integral exists and∫ b

a
f (x)dG(x) = F(b)−F(a).

5.6.2 Existence of the integral for continuous functions

Theorem 5.19 Let f , G :R→R and suppose that f is continuous on a compact

interval [a,b] and that G is monotonic nondecreasing throughout that interval.

Then the Stieltjes integral existsa and
∣

∣

∣

∣

∫ b

a
f (x)dG(x)

∣

∣

∣

∣

≤ ‖ f‖∞[G(b)−G(a)].

where ‖ f‖∞ =maxt∈[a,b] | f (t)|.
aThis integral exists also in the Riemann-Stieltjes sense.

Proof. The inequality is easy since, for any pair ([u,v],w) with [u,v]⊂ [a,b],

| f (w)(G(v)−G(u)| ≤ ‖ f‖∞[G(v)−G(u)]. (5.10)

To prove that the integral exists we can invoke a version of the McShane criterion
here. The details are left as an exercise.

The next theorem is similar.

Theorem 5.20 Let f , G :R→R and suppose that f is continuous on a compact

interval [a,b] and that G has bounded variation throughout that interval. Then the

Stieltjes integral existsa and
∣

∣

∣

∣

∫ b

a
f (x)dG(x)

∣

∣

∣

∣

≤ ‖ f‖∞Var(G, [a,b]).

where ‖ f‖∞ =maxt∈[a,b] | f (t)|.
aThis integral exists also in the Riemann-Stieltjes sense.

5.7 Integration by parts

Integration by parts for the Stieltjes integral assumes the following form1:

1For the Riemann-Stieltjes integral the extra term
∫ b
a dF(x)dG(x) does not appear, since this

would be zero whenever the integral exists in that sense. (See Corollary 5.23, which should look
familiar to fans of the Riemann-Stieltjes integral.)
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Theorem 5.21 Let F , G : R→ R. Then∫ b

a
[F(x)dG(x)+G(x)dF(x)] = F(b)G(b)−F(a)G(a)−

∫ b

a
dF(x)dG(x)

in the sense that if one of the integrals exists, so too does the other with the stated

identity.

Proof. First check a simple identity: that, for any u and v,

F(u)[G(v)−G(u)]+G(u)[F(v)−F(u)]

= F(v)G(v)−G(u)G(u)− [F(v)−F(u)][G(v)−G(u).

This suggests that∫ b

a
|F(x)dG(x)+G(x)dF(x)−dF(x)dG(x)−dF(x)dG(x)|= 0 (5.11)

is simply true because of an identity. If indeed this is true then the statement in
the theorem is obvious because∫ b

a
dF(x)dG(x) = F(b)G(b)−F(a)G(a).

To complete the proof we have to address just one concern here. If a partition
π of the interval [a,b] contains only pairs ([u,v],u) or ([u,v],v) [i.e., ([u,w],w) with
w only at an endpoint] then our simple identity would indeed supply

∑
([u,v],w)∈π

[F(w)[G(v)−G(u)]+G(w)[F(v)−F(u)]−F(v)G(v)−G(u)G(u)]

= ∑
([u,v],w)∈π

[F(v)−F(u)][G(v)−G(u)].

That surely proves (5.11) if we are allowed to use only such partitions. But what
happens if we permit (as we must) partitions π containing a pair ([u,v],w) ∈ π for
which u< w< v?

To clear this up note that we can always adjust full covers and partitions π by
replacing any pair ([u,v],w) ∈ π for which u < w < v by the two items ([u,w],w)

and ([w,v],w). That does not change the sums here because, for example,

F(w)[G(v)−G(u)] = F(w)[G(w)−G(u)]+F(w)[G(v)−G(w)].

This “endpointed” argument (which we have seen before in Exercise 185) means
that in these simple Stieltjes integrals the partitions used can all be restricted to
ones where only elements of the form ([u,v],u) or ([u,v],v) can appear.
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Corollary 5.22 Let F , G : R→ R and suppose that∫ b

a
|dF(x)dG(x)|= 0.

Then ∫ b

a
[F(x)dG(x)+G(x)dF(x)] = F(b)G(b)−F(a)G(a).

If, in addition one of the following two integrals exists then so too does the other

and ∫ b

a
F(x)dG(x)+

∫ b

a
G(x)dF(x) = F(b)G(b)−F(a)G(a).

Corollary 5.23 Let F , G : R→ R and suppose that F is continuous and G has

bounded variation. Then∫ b

a
F(x)dG(x)+

∫ b

a
G(x)dF(x) = F(b)G(b)−F(a)G(a).

Proof. The assumption that F is continuous and G has bounded variation re-
quires that ∫ b

a
|dF(x)dG(x)|= 0.

Thus Theorem 5.21 can be applied. But we know, from Theorem 5.19, that the in-
tegral

∫ b
a F(x)dG(x) must exist. It follows, from Corollary 5.22, that

∫ b
a G(x)dF(x)

must also exist and that the integration by parts formula is valid.

5.8 Lebesgue-Stieltjes measure

The variation of a function F on an interval [a,b] can be described by the identity

Var(F, [a,b]) = sup ∑
([u,v],w)∈π

|F(v)−F(u)|

where the supremum is taken over all possible partitions π of the interval [a,b].
We recall that a somewhat similar expression describes the Lebesgue measure
λ(E) of a set E:

λ(E) = inf
β
sup
π⊂β

∑
([u,v],w)∈π

(v−u).

Here π denotes an arbitrary subpartition contained in β and the infimum is taken
over all full covers β of the set E. There is an obvious generalization of Lebesgue
measure available by replacing (v−u) by |F(v)−F(u)|.
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Definition 5.24 Let F be a function defined at least on an open set G and we

suppose that E ⊂ G. Then we write

λF(E) = inf
β
sup
π⊂β

∑
([u,v],w)∈π

|F(v)−F(u)|.

Here π denotes an arbitrary subpartition contained in β. The set function λF de-

fined for all subsets of G is called the Lebesgue-Stieltjes measure associated with

F or, often, the variational measure associated with F .

In the literature often the Lebesgue-Stieltjes measure is studied only for mono-
tonic functions that are continuous on the left-hand side at every point. It is conve-
nient for us to usurp this language for the completely general case. The definition
of the Lebesgue-Stieltjes measure is closely related to the Stieltjes integral, just
as the definition of Lebesgue measure in Lemma 4.2 was expressible as an upper
integral.

Lemma 5.25 If F is defined on a compact interval [a,b] and E ⊂ (a,b) then

λF(E) =
∫ b

a
χE(x) |dF(x)|.

By comparing this definition with some earlier notions that are almost identical
we will be able to deduce the following properties of this measure:

Properties of the Lebesgue-Stieltjes measures

1. λF is a measure, i.e., if F is defined on an open set G and E, E1, E2, E3,
. . . are subsets of G for which E ⊂⋃∞

n=1En then this inequality must hold:

λF(E)≤
∞

∑
n=1

λF(En).

2. If F is monotonic then

λF([a,b]) = |F(b+)−F(a−)|,
λF((a,b)) = |F(b−)−F(a+)|,

and

λF({x0}) = |F(x0+)−F(x0−)|.

3. F has zero variation on a set E if and only if λF(E) = 0.

4. F is continuous at a point x0 if and only if λF({x0}) = 0.

5. F is continuous at every point of an open interval (a,b) if and only if
λF(C) = 0 for every countable subset of (a,b).

6. F is absolutely continuous on an interval (a,b) if and only if λF(N) = 0 for
every subset N of (a,b) that has measure zero.
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7. λF((a,b)) = 0 if and only if F is constant on (a,b).

8. F is locally bounded at a point x0 if and only if λF({x0})< ∞.

9. If F is defined on a compact interval [a,b] then F has bounded variation on
[a,b] if and only if λF((a,b))< ∞.

10. If F is defined on an open set G and has a bounded derivative at each point
of a bounded subset E of G then λF(E)< ∞.

11. If F is defined on an open set G and λF(E)< ∞ then F is differentiable at
almost every point of E.

It is clear from the definitions that F has zero variation on a set E if and only
if λF(E) = 0. Thus the assertions (4)–(8) are immediate from our early study of
zero variation. The other assertions are proved in the exercises.

Exercises

Exercise 301 Prove that λF is a measure. Answer

Exercise 302 Show that if F is monotonic then F is monotonic then

λF([a,b]) = |F(b+)−F(a−)|,
λF((a,b)) = |F(b−)−F(a+)|,

and

λF({x0}) = |F(x0+)−F(x0−)|.

Exercise 303 Show that, if the one-sided limits F(x0+) and F(x0−) exist then

λF({x0}) = |F(x0+)−F(x0)|+ |F(x0−)−F(x0)|.

Exercise 304 Suppose that F is defined on an open set G. Show that F is locally

bounded at a point x0 ∈ G if and only if λF({x0})< ∞.

Exercise 305 Suppose that F is defined on a compact interval [a,b]. Show

that F has bounded variation on [a,b] if and only if λF((a,b)) < ∞. Show that

λF((a,b))≤ Var(F, [a,b]) but that the inequality may be strict unless F is contin-

uous.

Answer

Exercise 306 Suppose that F is defined on an open set G and has a bounded

derivative at each point of a bounded subset E of G. Show that λF(E)< ∞.

Answer

5We recall that every function of bounded variation is
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5.9 Mutually singular functions

Definition 5.26 Let F , G : [a,b]→ R be functions of bounded variation. Then F

and G are said to be mutually singular provided that∫ b

a

√

|dF(x)dG(x)|= 0.

Lemma 5.27 Let F , G : [a,b]→ R be functions of bounded variation. If F and G

are mutually singular, then F ′(x)G′(x) = 0 almost everywhere in [a,b].

Proof. This follows easily (as usual) from the zero variation implies zero derivative
a.e. rule together with the fact that both F ′(x) and G′(x) must exist a.e..

Our main theorem shows that mutually singular functions grow on separate
parts of the interval [a,b] in a sense made precise here.

Theorem 5.28 Let F , G : [a,b]→ R be functions of bounded variation. Then F

and G are mutually singular on [a,b] if and only for every ε > 0 there is a full cover

β with the property that every partition π of [a,b] contained in β can be split into

two disjoint subpartitions π = π′∪π′′ so that

∑
([u,v],w)∈π′

|F(v)−F(u)|< ε

and

∑
([u,v],w)∈π′′

|G(v)−G(u)|< ε.

Proof. Suppose that ∫ b

a

√

|dF(x)dG(x)|= 0.

Let ε > 0 and select a full cover β so that

∑
([u,v],w)∈π

√

|[F(v)−F(u)][G(v)−G(u)]|< ε

for all partitions π of [a,b] contained in β. Split such a π as follows:

π′ = {([u,v],w) : |[F(v)−F(u)]| ≤ |[G(v)−G(u)]|}
and

π′′ = {([u,v],w) : |[F(v)−F(u)]|> |[G(v)−G(u)]|}.
Verify that π = π′∪π′′ and that

∑
([u,v],w)∈π′

|[F(v)−F(u)]| ≤ ∑
([u,v],w)∈π′

√

|[F(v)−F(u)][G(v)−G(u)]|< ε
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and that

∑
([u,v],w)∈π′′

|[G(v)−G(u)]| ≤ ∑
([u,v],w)∈π′′

√

|[F(v)−F(u)][G(v)−G(u)]|< ε.

This proves one direction in the theorem.
For the converse select a number M > 0 and a full cover β1 so that

∑
([u,v],w)∈π

[|[F(v)−F(u)]|+ |[G(v)−G(u)]|]<M

for all partitions π of [a,b] from β1. This is possible merely because the functions F
and G have bounded variation. Select a full cover β2 with the property presented in
the statement of the theorem (for ε). Let β = β1∩β2. This is a full cover. Consider
any partition π of [a,b] contained in β. There must be, by hypothesis, a split π =

π′∪π′′ so that

∑
([u,v],w)∈π′

|[F(v)−F(u)]|< ε

and

∑
([u,v],w)∈π′′

|[G(v)−G(u)]|< ε.

We now compute

∑
([u,v],w)∈π

√

|[F(v)−F(u)][G(v)−G(u)]|=

∑
([u,v],w)∈π′

√

|[F(v)−F(u)][G(v)−G(u)]|

+ ∑
([u,v],w)∈π′′

√

|[F(v)−F(u)][G(v)−G(u)]|

≤
√

∑
([u,v],w)∈π′

|[F(v)−F(u)]|
√

∑
([u,v],w)∈π′

|[G(v)−G(u)]|

+

√

∑
([u,v],w)∈π′′

|[F(v)−F(u)]|
√

∑
([u,v],w)∈π′′

|[G(v)−G(u)]|

≤ 2
√
Mε.

Here we have used the Cauchy-Schwartz inequality. Since ε is an arbitrary posi-
tive number it follows that ∫ b

a

√

|dF(x)dG(x)|= 0.

Consequently F and G must be mutually singular.
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5.10 Singular functions

We have defined the notion of a singular function elsewhere and given the usual
remarkable example of such a function, the Cantor function (Devil’s staircase).
We show that there are further characterizations of this notion, in particular one
given exactly by a Stieltjes-type integral.

Theorem 5.29 Let F : [a,b] → R be a function of bounded variation. Then the

following are equivalent:

1. F is singular.

2. F ′(x) = 0 almost everywhere in [a,b].

3.

∫ b

a

√

|dF(x)|dx= 0.

Proof. It is only the third property that we show here, since we know from else-
where that the first two are equivalent. If the third statement is true then we can
check, using the zero variation implies zero derivative a.e. rule that F ′(x) = 0 a.e..

Conversely suppose that F ′(x) = 0 almost everywhere. Let ε > 0 and choose
a sequence of open intervals {(ci,di)} with total length smaller than ε so that
F ′(x) = 0 for all x∈ [a,b] not in one of the intervals. Define two covering relations.
The first β1 consists of all pairs ([u,v],w) subject only to the condition that if w is
in [a,b] and not covered by an open interval {(ci,di)} then

|F(v)−F(u)|< ε(v−u)/(b−a).

The second β2 consists of all pairs ([u,v],w) subject only to the condition that if
w is contained in one of the open intervals {(ci,di)} then so too is [u,v]. Then β1,
β2, and β = β1∩β2 are all full covers.

Note that if π is a subpartition contained in β1 consisting of pairs ([u,v],w) not
covered by an open interval from {(ci,di)} then

∑
([u,v],w)∈π

|F(v)−F(u)| ≤ ∑
([u,v],w)∈π

ε(v−u)/(b−a)≤ ε.

Note that if π is a subpartition contained in β2 consisting of pairs ([u,v],w) that
are covered by an open interval from {(ci,di)} then

∑
(I,x)∈π

(v−u)≤
∞

∑
i=1

(di− ci)< ε.

Thus any partition of [a,b] chosen from β can be split into two subpartitions with
these inequalities. This verifies the conditions asserted in Theorem 5.28 for F and
the function G(x) = x. But that is exactly our third condition in the statement of the
theorem.
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5.11 Length of curves

A curve is a pair of continuous functions F , G : [a,b]→ R. We consider that the
curve is the pair of functions itself, rather than that the curve is the geometric set
of points

{(F(t),G(t)) : t ∈ [a,b]}
that is the object we might likely think about when contemplating a curve.

Definition 5.30 Suppose that F , G : [a,b]→ R is a pair of continuous functions.

By the length of the curve given by the pair F and G we shall mean∫ b

a

√

[dF(x)]2+[dG(x)]2.

That this integral is determined (but may be infinite) is pointed out in the proof
of the next theorem.

Theorem 5.31 A curve given by a pair of continuous functions F , G : [a,b]→ R

has finite length if and only if both functions F and G have bounded variation.

Proof. Note that as F and G are continuous, then so too is the interval function

h([u,v]) =
√

[F(v)−F(u)]2+[G(v)−G(u)]2.

A simple application of the Pythagorean theorem will verify that the function h here
is a continuous, subadditive interval function. The existence of the integral can be
established by a repetition of the argument of Lemma 5.8.

Thus the integral ∫ b

a

√

[dF(x)]2+[dG(x)]2

in the definition must necessarily be determined, although it might have an infinite
value. It will have a finite value if h has bounded variation. That follows from a
simple computation:

max

{∫ b

a
|dF(x)|,

∫ b

a
|dG(x)|

}

≤
∫ b

a

√

[dF(x)]2+[dG(x)]2

and ∫ b

a

√

[dF(x)]2+[dG(x)]2 ≤
∫ b

a
|dF(x)|+

∫ b

a
|dG(x)|.

5.11.1 Formula for the length of curves

In the elementary (computational) calculus one usually assumes that a curve is
given by a pair of continuously differentiable functions (i.e., a pair F , G of contin-
uous functions for which F ′ and G′ are also continuous). In that case the familiar
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formula for length used in elementary applications is∫ b

a

√

[F ′(x)]2+[G′(x)]2 dx.

We study this now. Note that the formula is rather compelling if we think that
dF(x) = F ′(x)dx and dG(x) = G′(x)dx would be possible here.

Lemma 5.32 For any pair of continuous functions F , G : [a,b]→ R of bounded

variation on [a,b] define the following function

L(t) =
∫ t

a

√

[dF(x)]2+[dG(x)]2 (a< t ≤ b).

Then

L′(t) =
√

[F ′(t)]2+[G′(t)]2

almost everywhere in [a,b].

Proof. We are now quite familiar with the zero variation implies zero derivative
a.e. rule. This is all that is needed here to establish this fact, since the statement
in the Lemma can be expressed, by the Henstock zero variation criterion, as∫ b

a

∣

∣

∣

∣

dL(x)−
√

[dF(x)]2+[dG(x)]2
∣

∣

∣

∣

= 0.

.

Lemma 5.33 The function L in the lemma is Vitali absolutely continuous if and

only if both F and G are Vitali absolutely continuous.

Proof. This follows easily from the inequalities of Lemma 5.31.

The length of the curve is now available as a familiar formula precisely in the
case where the two functions defining the curve are absolutely continuous.

Lemma 5.34 For any pair of continuous functions F , G : [a,b]→ R of bounded

variation on [a,b],∫ b

a

√

[dF(x)]2+[dG(x)]2 ≥
∫ b

a

√

[F ′(x)]2+[G′(x)]2 dx.

The two expressions are equal if and only if both F and G are Vitali absolutely

continuous on [a,b].

Proof. Using the function L introduced above we see that this assertion is easily
deduced from the fact that

L(t)≥
∫ t

a
L′(x)dx

with equality precisely when L is Vitali absolutely continuous.
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Exercises

Exercise 307 For any continuous function F : [a,b]→ R define the length of the

graph of F to mean ∫ b

a

√

[dx]2+[dF(x)]2.

Show that the graph has finite length if and only if F has bounded variation. Dis-

cuss the availability of the familiar formula for length used in elementary applica-

tions: ∫ b

a

√

1+[F ′(x)]2 dx.

Exercise 308 Let F , G : [a,b]→ R where [a,b] is a compact interval. Suppose

that the Hellinger integral2

H(t) =
∫ t

a

dF(x)dG(x)

dx
(a< t ≤ b)

exists. Show that H ′(t) = F ′(t)G′(t) at almost every point t in [a,b] at which both

F and G are differentiable. Answer

Exercise 309 (Reduction theorem) Let F , G : [a,b]→ R where [a,b] is a com-

pact interval. Suppose that F is Vitali absolutely continuous on [a,b] and that G

is a Lipschitz function. Show that∫ t

a

dF(x)dG(x)

dx
=

∫ b

a
F ′(x)dG(x) =

∫ b

a
F ′(x)G′(x)dx.

Exercise 310 Let F , G : [a,b]→ R where [a,b] is a compact interval. Suppose

that F is Vitali absolutely continuous on [a,b] and that G is the indefinite integral

of a function of bounded variation. Show that∫ t

a

dF(x)dG(x)

dx
=

∫ b

a
F ′(x)dG(x) =

∫ b

a
F ′(x)G′(x)dx.

5.12 Change of variables

We include now an application of the Stieltjes integral to a discussion of change of
variables formulas for integrals on the real line, giving some particularly easy and
transparent versions as well as a deeper one. The traditional change of variables

2Named after Ernst Hellinger (1883–1950).
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formula is

F(G(b))−F(G(a)) =
∫ G(b)

G(a)
f (s)ds=

∫ b

a
f (G(t))dG(t) =

∫ b

a
f (G(t))g(t)dt

where

F(x) =
∫ x

G(a)
f (s)ds and G(t) =

∫ t

a
g(u)du.

Certainly some assumptions are needed in order for the integrals to exist and
also for the identities to hold. We address this now. We recall that the part of this
identity that asserts that∫ b

a
f (G(t))dG(t) =

∫ b

a
f (G(t))g(t)dt

is available trivially. We state it explicitly here.

Lemma 5.35 Let g be an integrable function with an indefinite integral G on an

interval [a,b] and suppose that f is a real-valued function on G([a,b]). Then∫ b

a
f (G(x))dG(x) =

∫ b

a
f (G(t))g(t)dt

where. if one of the integrals exists. so too does the other and the stated identity

is valid.

5.12.1 Easy change of variables

We now apply Robbins’s theorem (Theorem 1.9) to give what may be the simplest
nontrivial version of a change of variables formula. Robbins gave no applications
of his adjusted Riemann sums result in [59], contenting himself with a brief state-
ment and proof amounting to little more than a single page. His paper alludes,
however, to this idea occurring during an investigation of change of variables for-
mulas. Thus, no doubt, the theorem which follows uses the simple method he had
in mind.

Lemma 5.36 Let G be a continuous function of bounded variation on an interval

[a,b] and suppose that f is continuous on G([a,b]). Then∫ G(b)

G(a)
f (x)dx=

∫ b

a
f (G(t))dG(t)

where the integrals exista.

aIn fact the two integrals must exist in the stronger Riemann and Riemann-Stieltjes senses re-
spectively.

Proof. Let ε > 0 and define C = Var(G, [a,b]). Since f is continuous we may
apply Robbins’s theorem (Theorem 1.9) to find a δ > 0 so that

∣

∣

∣

∣

∣

∫ G(b)

G(a)
f (x)dx−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε
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for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from the interval G([a,b])
satisfying

n

∑
i=1

|xi− xi−1| ≤C

where G(a)= x0, G(b)= xn, 0< |xi−xi−1|< δ and each ξi belongs to the interval
with endpoints xi and xi−1 for i= 1,2, . . . ,n.

Choose δ1 > 0 so that

|G(s)−G(t)|< δ

if s and t are points in [a,b] with |s−t|< δ1. Choose any points a= t0 < t1 < · · ·<
tn = b and ti−1 ≤ τi ≤ ti for which 0< ti− ti−1 < δ1 and consider the Stieltjes sum

n

∑
i=1

f (G(τi))[G(ti)−G(ti−1)].

Consider the points xi = G(ti), ξi = G(τi). Note that x0 = G(a), xn = G(b),
|xi− xi−1|< δ and

n

∑
i=1

|xi− xi−1|=
n

∑
i=1

|G(ti)−G(ti−1)| ≤ Var(G, [a,b]) =C.

In order to use what we now have easily we would need to know that ξi is between
the points xi−1 and xi, i.e., that G(τi) is between G(ti−1) and G(ti). This may not
be the case. Should one of these fail we return to our original Stieltjes sum and
replace the offending term by using

f (G(τi))[G(ti)−G(ti−1)] = f (G(τi))[G(τi)−G(ti−1)]+ f (G(τi))[G(ti)−G(τi)].

Having prepared our sum in this way we can then proceed as described and claim,
that in each case, ξi is between the points xi−1 and xi.

Consequently, using the steps above, we have
∣

∣

∣

∣

∣

∫ G(b)

G(a)
f (t)dt−

n

∑
i=1

f (G(τi)[G(ti)−G(ti−1)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ G(b)

G(a)
f (t)dt−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

< ε.

This proves the existence of the Stieltjes integral and establishes the formula.

5.12.2 Another easy change of variables

Exactly the same method used in Lemma 5.36 gives another elementary ver-
sion of a change of variables formula; replace an appeal to Robbins’s theorem
(Theorem 1.9) by an appeal to Theorem 1.10 . (This time the integral cannot be
interpreted in the stronger Riemann sense.)
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Theorem 5.37 LetG be a continuous function of bounded variation on an interval

[a,b] and suppose that F is differentiable on G([a,b]). Then

F(G(b))−F(G(a)) =
∫ G(b)

G(a)
F ′(x)dx=

∫ b

a
F ′(G(t))dG(t).

5.12.3 A general change of variables

Finally we give a more formal version that continues the theme and uses a recog-
nizably similar argument.

Theorem 5.38 Let g and G be functions defined on an interval [a,b] for which

G′(t)= g(t) for a.e. point t in [a,b] and suppose that f and F are functions defined

on an interval [c,d] that includes G([a,b]) for which F ′(x) = f (x) for a.e. point x

in [c,d]. Then

F(G(b))−F(G(a)) =
∫ b

a
f (G(t))g(t)dt (5.12)

where

1. the identity (5.12) holds if and only if the composition F ◦G is absolutely

continuous in the variational sensea on [a,b].

2. the identity (5.12) holds in the sense of the Lebesgue integral if and only if

the composition F ◦G is absolutely continuous in Vitali’s sense on [a,b].

ai.e., is ACG∗ in classical terminology from the 1930s.

Proof. Recall that a continuous function H : [a,b]→ R is absolutely continuous
in the variational sense if the function has zero variation on all sets of measure
zero; this means that, for all ε > 0 and all sets N ⊂ (a,b) of measure zero, there
is a positive function δ on N so that

k

∑
i=1

|H(qi)−H(pi)|< ε

if [p1,q1], . . . [pk,qk] are nonoverlapping subintervals of [a,b] satisfying, for some
choice of τi ∈ N∩ [pi,qi], the inequalities

0< qi− pi < δ(τi) (i= 1,2,3, . . . ,k).

The proof uses only one idea that is not a near trivial manipulation of Riemann
sums. We need to know that a function H that has a derivative H ′(t) at each point
of a set E for which H(E) is of measure zero must have H ′(t) = 0 at a.e. point
of E. See, for example, [64] who also use this fact to prove their version of this
theorem. This also follows from the variational material of our Chapter 2. (See
Exercise 165.).

The condition that the composition F ◦G should be absolutely continuous in
the variational sense is clearly necessary since all indefinite [Henstock-Kurzweil]
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integrals have this property. We shall show that it is also sufficient. Thus let us
assume that F ◦G is absolutely continuous in the variational sense on [a,b].

Let N1 ⊂ [a,b] be the measure zero set of points t ∈ [a,b] at which G′(t) does
not exist. Let M be the measure zero set of points x ∈ [c,d] at which F ′(x) = f (x)

fails. Let N2 be the set of points t in [a,b] at which G′(t) exists, is not equal to zero
and for which G(t) is in M. Since M has measure zero it follows (from our remark
above) that N2 also has measure zero.

Let g1(t) = 0 if t is in either of the sets N1 or N2 and let g1(t) = g(t) at all
other values of t. Since g and g1 agree almost everywhere it is enough to prove
the theorem using g1 instead of g.

Let ε > 0 and for each point t in [a,b] but not in N1∪N2 choose δ(t) > 0 so
that

|F(G(p))−F(G(q))− f (G(t))g(t)(q− p)|< ε

2(b−a)
(q− p)

if t ∈ [p,q] and 0< q− p< δ(t). This just uses the fact that we can compute the
derivative of F ◦G at each such point.

For all points t in N1∪N2 choose δ(t)> 0 so that

k

∑
i=1

|F(G(qi))−F(G(pi))|<
ε

2

if the intervals [p1,q1], . . . [pk,qk] are nonoverlapping and satisfy

0< qi− pi < δ(τi)

for some choice of τi ∈ (N1 ∪N2)∩ [pi,qi]. This just uses the fact that F ◦G is
absolutely continuous in the variational sense on [a,b] which we have assumed.

Choose any partition of [a,b] that is finer than δ, i.e., take any points a= t0 <

t1 < · · ·< tn = b and ti−1 ≤ τi ≤ ti for which 0< ti− ti−1 < δ(τi). We must have
∣

∣

∣

∣

∣

F(G(b))−F(G(a))−
n

∑
i=1

f (G(τi))g1(τi)(ti− ti−1)

∣

∣

∣

∣

∣

≤
n

∑
i=1

|F(G(ti))−F(G(ti−1))− f (G(τi))g1(τi)(ti− ti−1)|

≤ ∑
τi∈N1∪N2

|F(G(ti))−F(G(ti−1))|

+ ∑
τi 6∈N1∪N2

|F(G(ti))−F(G(ti−1))− f (G(τi))g1(τi)(ti− ti−1)|

<
ε

2
+

ε

2(b−a)

n

∑
i=1

(ti− ti−1)≤ ε.

By definition then the identity

F(G(b))−F(G(a)) =
∫ b

a
f (G(t))g1(t)dt
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and hence also the identity (5.12) holds [in our general sense, i.e., in the sense of
the Henstock-Kurzweil integral].

For the second part of the theorem we need, also, to remember that a function
is absolutely continuous in the Vitali sense if and only if it is absolutely continuous
in the variational sense and has bounded variation. Since indefinite Lebesgue
integrals are absolutely continuous in the Vitali sense, part two follows from part
one.

5.12.4 Change of variables for Lipschitz functions

Theorem 5.38 is a more general version of a theorem on change of variables given
by Serrin and Varberg [64]. In a sense it appears definitive but, on inspecting the
proof, it is clear that it is not deep and merely gives a formal condition for the for-
mula. The formula itself is then essentially always true provided one can establish
integrability. But, in any application, it might not be so easy or straightforward to
determine properties of the composition F ◦G.

In general, it is possible for two function F and G to be absolutely continuous
and yet the composition F ◦G is not (see [60, p. 286]). When F is Lipschitz (as
Corollaries 5.39 and 5.40 now illustrate) this is not a difficulty. It is easy to establish
that the composition F ◦G is absolutely continuous (in either sense) when F is
Lipschitz and G is absolutely continuous.

Corollary 5.39 Let g be Lebesgue integrable on [a,b], let G be its indefinite inte-

gral, and suppose that F is a Lipschitz function defined on the interval G([a,b]).

Then

F(G(b))−F(G(a)) =
∫ b

a
F ′(G(t))g(t)dt

where the integral exists as a Lebesgue integral.

Corollary 5.40 Let g be integrable on [a,b], let G be its indefinite integral, and

suppose that F is a Lipschitz function defined on the interval G([a,b]). Then

F(G(b))−F(G(a)) =
∫ b

a
F ′(G(t))g(t)dt.

5.12.5 Theorem of Kestelman, Preiss, and Uher

Theorem 5.38 can also be used to clarify the situation for the Riemann integral.
The complete picture is available in Kestelman [34] and Preiss and Uher [57]. We
reproduce this result here.
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Theorem 5.41 (Kestelman-Preiss-Uher) Suppose that g is Riemann integrable

on an interval [a,b] with an indefinite integral

G(t) =
∫ t

a
g(u)du (a≤ t ≤ b)

and that f is a bounded function on G([a,b]). Then the identity∫ G(b)

G(a)
f (s)ds=

∫ b

a
f (G(t))dG(t) =

∫ b

a
f (G(t))g(t)dt

holds with all integrals interpreted in the Riemann sense provided either f is Rie-

mann integrable on G([a,b]), or the second integral exists as a Riemann-Stieltjes

integral, or finally the function ( f ◦G)g is Riemann integrable on [a,b].

Proof. Suppose first that f is Riemann integrable on G([a,b]) and that F is its
indefinite integral. By Corollary 5.39 we have immediately that

F(G(b))−F(G(a)) =
∫ G(b)

G(a)
f (s)ds=

∫ b

a
f (G(t))g(t)dt

where the function ( f ◦G)g must be Lebesgue integrable on [a,b].
Thus it is sufficient that we prove that this function is also Riemann integrable

as well. Clearly the function is bounded so it is enough to prove that it is continuous
a.e. on [a,b] (i.e., to use Lebesgue’s criterion for Riemann integrability).

Our analysis3 is similar to the methods in Kestelman [34]. Roy Davies [18]
gave an alternative proof that directly uses Riemann’s criterion for integrability.

Let S1 be the set of points in [a,b] at which g is not continuous. Let N be the
set of points in G([a,b]) at which f is not continuous. Let S2 be the set of points t
in [a,b]\S1 at which G(t) ∈ N and g(t) 6= 0.

The function ( f ◦G)g is continuous at any point t that is not in S1∪S2. The set
S1 is a set of measure zero because g is Riemann integrable. The set S2 maps by
G into the zero measure set N and G is differentiable with a nonzero derivative at
each point of S2.

Recall that we previously used (in the proof of Theorem 5.38) the fact that a
function H that has a derivative H ′(t) at each point of a set E for which H(E) is
of measure zero must have H ′(t) = 0 at a.e. point of E. This implies here that S2
must be a measure zero set. Consequently ( f ◦G)g is continuous a.e. in [a,b] as
we require.

Let us now suppose that the function ( f ◦G)g is Riemann integrable on [a,b]

and prove that f must also be Riemann integrable. Then it must follow that∫ G(b)

G(a)
f (s)ds=

∫ b

a
f (G(t))g(t)dt

3This is harder than one might think. If f (G(t)) is itself Riemann integrable on [a,b] then certainly
so too is f (G(t))g(t). Kestelman [34] includes an example to show that even if f (G(t))g(t) is
integrable on [a,b] and f is integrable on G([a,b]) it may well happen that f (G(t)) is not Riemann
integrable on [a,b]. This, he remarks, is the source of the difficulty for the problem.
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by what we just proved. It is sufficient, then, simply to show that f is continuous
a.e. in G([a,b]).

Our proof is similar to the analysis given in the first part of the theorem. Preiss
and Uher [57] directly use the Riemann criterion for integrability. There is also a
proof of this fact in Navrátil [52] where he uses the Darboux integral instead. (Both
of these papers are in Czech which presents difficulties to some of us.)

Let A be the set of points in [a,b] at which either g is not continuous or ( f ◦G)g
is not continuous. This is a set of measure zero since both of these functions are
Riemann integrable. It is also true that G(A) is a set of measure zero in G([a,b])

since G is Lipschitz.
Let B be the set of points t in [a,b] at which g is continuous and g(t) = 0. This

need not be a set of measure zero but G(B) is a set of measure zero in G([a,b])

since G′ vanishes on B.
Finally letC be the set of points t in [a,b] at which g is continuous and ( f ◦G)g

is continuous and g(t) 6= 0. We show that f is continuous at every point of G(C).
Since [a,b] = A∪B∪C and since both G(A) and G(B) have measure zero we
will have proved that f is a.e. continuous in G([a,b]).

Suppose x=G(t) for some t ∈C and that G′(t) = g(t)> 0. Then G is strictly
increasing on an interval containing the point t. If f is discontinuous at x then
( f ◦G)g would have to be discontinuous at t which is not the case. The same
argument works if G′(t) = g(t)< 0.

This completes the proof except for mention of the Riemann-Stieltjes integral
in the statement of the theorem. But the methods of Lemma 5.35 show that∫ b

a
f (G(t))dG(t) =

∫ b

a
f (G(t))g(t)dt

where the existence of one integral in the Riemann sense implies the existence of
the other.
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Chapter 6

Nonabsolutely Integrable

Functions

The study of the Lebesgue integral usually marks the culmination of the study
of integration theory on the real line for most mathematics students. They are
prepared now for the more abstract theories of integration on measure spaces
and studies of the important function spaces.

But the story is still not complete; part of the narrative remains. What about
those functions that are integrable, but not absolutely integrable? If f is integrable
on an interval [a,b] but ∫ b

a
| f (x)|dx= ∞

then f is not Lebesgue integrable. Its indefinite integral

F(x) =
∫ x

a
f (t)dt

has infinite variation on the interval [a,b] since it is always true that

Var(F, [a,b]) =
∫ b

a
| f (x)|dx.

To complete the story of the integral on the real line we must persist1 to study
the nonabsolute case and to the study of indefinite integrals that do not have
bounded variation. Most of the theory was developed in the decades shortly after
Lebesgue’s thesis. The standard account is given in

Stanislaw Saks, Theory of the Integral. 2nd revised edition. English
translation by L. C. Young. Monografje Matematyczne, vol. 7. War-
saw, 1937.

1Note to the instructor: Well you may not want to persist. These topics, while well-known to all
specialists in real analysis, are not necessary to the backgrounds of all students, who should be
encouraged now to study general measure theory and return to this subject later. The level of this
chapter is, accordingly, somewhat raised above the expository level of the preceding chapters.
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and much of what we shall do can be found there but expressed in different lan-
guage. Many mathematicians know none of this theory since the usual courses of
instruction move directly to the measure-theoretic treatment of integration theory
that does not address such questions.

Since we have committed our text to an account of the calculus integral we
must forge ahead. The Lebesgue integral does not encompass the calculus inte-
gral for there are derivatives that are unbounded and nonabsolutely integrable. All
bounded derivatives are, of course, Lebesgue integrable so that it is in the realm
of the unbounded derivatives and some rather delicate considerations that this
chapter will lead.

6.1 Variational Measures

The Jordan variation is restricted to the study of functions of bounded variation on
a compact interval [a,b]. When Var( f , [a,b]) = ∞ there is not much more to be
said. For a large part of the calculus program this is a sufficiently useful tool. But
there are differentiable functions which do not have bounded variation and all non-
absolutely integrable functions have indefinite integrals that are not of bounded
variation.

Jordan’s theory was extended in the early 20th century to handle functions
of finite variation on arbitrary compact sets by A. Denjoy, N. Lusin, and S. Saks.
This theory was clarified later by the introduction, by R. Henstock, of measures
carrying the variational information of a function. This theory includes the Jordan
version and the Denjoy-Lusin-Saks versions and is the appropriate technical tool
for the full range of problems arising in the calculus program.

We have already introduced the Lebesgue-Stieltjes measures λ f and we re-
turn to that study now with an additional variational measure that is dual to the
measure λ f called the fine variation.

6.1.1 Full and fine variational measures

The variation of a function f on an interval [a,b] is described by the identity

Var( f , [a,b]) = sup
π

(

∑
([u,v],w)∈π

| f (v)− f (u)|
)

(6.1)

where the supremum is taken over all possible partitions π of the interval [a,b].
We recall that a similar expression describes the Lebesgue-Stieltjes measure

λ f (E) = inf
β

{

sup
π⊂β

(

∑
([u,v],w)∈π

| f (v)− f (u)|
)}

(6.2)

where the supremum is taken over all possible subpartitions π contained in β and
the infimum is taken over all full covers β of the set E. The two expressions (6.1)
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and (6.2) are clearly closely related but the exact relationship needs some thinking
(see Exercise 322).

The generalization of Lebesgue measure to the Lebesgue-Stieltjes measure
arises by replacing (v−u) by | f (v)− f (u)|. It is more convenient for our purposes
to write

∆ f ([u,v]) = f (v)− f (u)

so that ∆ f (I) is an interval function that computes the increment of the function
f on the interval I. This is often useful in conjunction with the notation ω f (I)

denoting the oscillation of the function f on the interval I, defined, we recall, as

ω f (I) = sup
u,v∈I

| f (v)− f (u)|.

We review the Lebesgue-Stieltjes measure construction and add to it a new
variational measure based on fine covers instead of full covers.

Definition 6.1 Let f : R→ R be a function and β a covering relation. We write

Var(∆ f ,β) = sup
π⊂β

{

∑
([u,v],w)∈π

|∆ f ([u,v])|
}

where the supremum is taken over all subpartitions π contained in β.

Definition 6.2 (Full and Fine Variations) Let f : R→ R and let E be any set of

real numbers. Then we define the full and fine variational measures associated

with f by the expressions:

λ f (E) =V ∗(∆ f ,E) = inf{Var(∆ f ,β) : β a full cover of E}
and

λ⋆
f (E) =V∗(∆ f ,E) = inf{Var(∆ f ,β) : β a fine cover of E}.

Note that the star ⋆ (not an asterisk ∗) indicates the fine variation. In general
the inequality λ⋆

f (E) ≤ λ f (E) holds and identity holds only for a certain (impor-
tant) class of functions. These set functions share the same properties as the
measure λ. Specifically they are countably subadditive for sequences of sets and
they are countably additive for disjoint sequences of closed sets.

6.1.2 Finite variation and σ-finite variation

Definition 6.2 allows us to extend the notion of bounded variation to describe the
situation on arbitrary sets.

1. f has bounded variation on an interval [a,b] if Var( f , [a,b])< ∞.

2. f has finite variation on a set E if λ f (E)< ∞.
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3. f has σ-finite variation on a set E if there is a sequence of sets {En} cov-
ering E and λ f (En)< ∞ for each n= 1,2,3, . . . .

We shall state now and prove (eventually) that the Lebesgue differentiation
theorem of Chapter 2 can be extended to this larger class of functions. Recall that
our original statement required that the function have bounded variation on the
whole of some interval.

Theorem 6.3 (Lebesgue differentiation theorem) Let f be a continuous func-

tion defined on some open set that contains a set E on which f has σ-finite

variation. Then f is differentiable λ-almost everywhere in E and has a finite or

infinite derivative λ f -almost everywhere in E.

The proof follows from Theorem 6.20 that we shall prove much later.

6.1.3 The Vitali property

The two measures λ f and λ⋆
f together express the variation of the function f .

We recall that they are analogous to the full and fine versions of Lebesgue mea-
sure, λ∗ and λ∗. Those two measures are identical because of the Vitali covering
theorem and the identity

λ f = λ⋆
f

(when it holds) would be considered a generalization of the Vitali covering theo-
rem. It is not the case that λ f = λ⋆

f in general, but for a most important class of
functions this will be true. When the Vitali theorem holds for these measures we
say that the function f has the Vitali property.

Definition 6.4 Let f : R→ R and let E be any set of real numbers. Then we say

that the function f has the Vitali property on E provided that the two measures λ f

and λ⋆
f agree on all subsets of E.

6.1.4 Kolmogorov equivalence

The variation describes a convenient equivalence relation between functions. The
notion originated with the Russian mathematician Kolmogorov, and was exploited
in this context by Henstock who used the terminology “variational equivalence.”

Definition 6.5 (Kolmogorov equivalent) Two functions f and g are said to be

Kolmogorov equivalent on E if

V ∗(∆ f −∆g,E) = 0.

By means of this equivalence relation we can lift a number of properties that
we already know for functions of bounded variation to a more general class of
functions. When two functions are equivalent in this sense then they must share
many properties in common. Here is a list of such properties. Proofs are left for
the exercises.
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Implications of Kolmogorov equivalence. If the functions f and g are Kol-
mogorov equivalent on E then:

1. f ′(x) = g′(x) at almost every point in E at which g is differentiable. [A partial
converse is given in Exercise 316.]

2. f is continuous at every point in E at which g is continuous.

3. f is locally bounded at every point in E at which g is locally bounded.

4. f has the Vitali property on E if and only if g has the Vitali property on E.

5. f has finite variation on E if and only if g has finite variation on E.

6. f has zero variation on E if and only if g has zero variation on E.

7. λ f (E) = λg(E) and λ⋆
f (E) = λ⋆

g(E).

6.1.5 Variation of continuous, increasing functions

In special cases it is easy to estimate the full and fine variations. Note that as a re-
sult of this first computation we see that continuous, increasing functions possess
the Vitali property.

Theorem 6.6 Let f : R→ R be continuous and strictly increasing. Then, for any

set E,

λ⋆
f (E) = λ f (E) = λ( f (E))

and f has the Vitali property on every set.

Proof. If β is a full [fine] cover of E then check that

β′ = {( f (I), f (x)) : (I,x) ∈ β}
is a full [fine] cover of f (E). Note too that ∆ f (I) = λ( f (I)) for such a function.
From this we deduce that

λ∗( f (E)) = λ f (E)

and

λ∗( f (E)) = λ⋆
f (E).

By the Vitali covering theorem λ∗ = λ∗ so that the identity in the theorem now
follows.

6.1.6 Variation and image measure

In general the full variation is larger than the image measure.
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Theorem 6.7 For an arbitrary function f : R→ R and any real set E,

λ( f (E))≤ λ f (E).

Proof. Let λ f (E)< t and select a full cover β of E so that Var(∆ f ,β)< t. We ap-
ply the decomposition lemma, Lemma 2.7, for β. There is an increasing sequence
of sets {En} with E =

⋃∞
n=1En and a sequence of nonoverlapping compact inter-

vals {Ikn} covering E so that if x is any point in En and I is any subinterval of Ik
that contains x then (I,x) belongs to β([En∩ Ikn]).

Thus let us estimate the λ-measure of the set f (En∩ Ikn). Our estimate need
only be crude: if f (x1), f (x2) with x1 < x2 are any two points in this set then
certainly ([x1,x2],x1) ∈ β(Ik). Thus

| f (x1)− f (x2)|= |∆ f ([x1,x2])| ≤ Var(∆ f ,β(Ikn))

so it follows that

λ( f (En∩ Ikn)≤ Var(∆ f ,β(Ikn)).

Hence, using Exercise 311 and usual properties of Lebesgue measure„ we have
that

λ( f (En))≤ ∑
k

λ( f (En∩ Ikn)≤ ∑
k

Var(∆ f ,β(Ikn)≤ Var(∆ f ,β)< t.

Note that the sequence {En} is expanding and that its union is the whole set
E; it follows that { f (En)} is expanding and that its union is the whole set f (E).
Accordingly then, by Theorem 4.16,

lim
n→∞

λ( f (En)) = λ( f (E)).

It follows that

λ( f (E))≤ t.

Since t was merely chosen so that λ f (E)< t it follows that λ( f (E))≤ λ f (E) as
required.

6.1.7 Variational classifications of real functions

Let us review and enlarge some of our terminology for the behavior of functions.
All of the following ideas are expressible in the language of the variation. Let
f : R→ R and let E be any set of reals.

(zero variation) f has zero variation on E if λ f (E) = 0.

(finite variation) f has finite variation on E if λ f (E)< ∞.

(σ-finite variation) f has σ-finite variation on E if E ⊂⋃∞
k=1Ek so that λ f (Ek)<

∞ for each k = 1,2,3, . . . .

(Kolmogorov equivalent) f and g are Kolmogorov equivalent on E if V ∗(∆ f −
∆g,E) = 0.
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(Vitali property on a set) f has the Vitali property on E provided that, for all
subsets A of E, λ f (A) = λ⋆

f (A).

(continuous at a point) f is continuous at a point x0 provided that λ f ({x0}) = 0.

(weakly continuous at a point) f is weakly continuous at a point x0 provided
that λ⋆

f ({x0}) = 0.

(λ-absolutely continuous on a set) f is λ-absolutely continuous on E provided
that, for every set N ⊂ E that has Lebesgue measure zero, λ f (N) = 0.

(λ-singular on E) f is λ-singular on E provided λ f (E \N) = 0 for some set N ⊂
E that has Lebesgue measure zero.

(mutually singular) Two functions f and g are said to be mutually singular on a
set E if E = E1∪E2 and λ f (E2) = λg(E1) = 0.

(saltus function) f is a saltus function on an open interval (a,b) if there is a
countable set C so that λ f ((a,b)\C) = 0 and λ f ((a,b)∩C)< ∞.

Since each of these terms is definable or describable directly in terms of the
variational measures it should be expected that there are many interrelationships.
Some of these are explored in the exercises.

Exercises

Exercise 311 Let β be a covering relation and f : R→ R. If {Ik} is a sequence

of nonoverlapping subintervals of an interval I (open or closed) then show that
∞

∑
k=1

Var(∆ f ,β(Ik))≤ Var(∆ f ,β(I)).

Exercise 312 (Subadditivity property) Let h1 and h2 be real-valued functions

defined on interval-point pairs. Then, for any set E, show that

V∗(h1+h2,E)≤V∗(h1,E)+V ∗(h2,E)

and

V ∗(h1+h2,E)≤V ∗(h1,E)+V ∗(h2,E).

Answer

Exercise 313 Let f , g : R → R. Write f ∼ g on E if f and g are Kolmogorov

equivalent on E. Show that this is an equivalence relation.

Exercise 314 Let f , g :R→R. Show that, if f and g are Kolmogorov equivalent

on a set E, then λ f (E) = λg(E) and λ⋆
f (E) = λ⋆

g(E).
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Exercise 315 Let f , g :R→R. Show that, if f and g are Kolmogorov equivalent

on each of the sets E1, E2, E3, . . . then f and g are Kolmogorov equivalent on the

union of these sets.

Exercise 316 Let f , g :R→R. Show that, if f ′(x) = g′(x) at every point of a set

E then f and g are Kolmogorov equivalent on E.

Exercise 317 Let f : R→ R. Show that f is λ-singular on a set E if f ′(x) = 0 at

almost every point x of E. Answer

Exercise 318 Let f : R→ R. Show, conversely, that if f is λ-singular on a set E

then f ′(x) = 0 at almost every point x of E.

Exercise 319 Show that if f :R→R has finite variation or σ-finite variation on a

set E then f is continuous at each point of E with countably many exceptions.

Answer

Exercise 320 Show that a function f : R→ R is weakly continuous at a point x0
if and only if there are sequences cn ր x0 and dn ց x0 so that dn− cn > 0 and

f (dn)− f (cn)→ 0.

Answer

Exercise 321 Let f : R → R. Show that f must be weakly continuous at every

point with at most countably many exceptions. Answer

Exercise 322 Let f :R→R. Establish the following relation between the Jordan

variation and the variational measures:

λ f ((a,b))≤ Var( f , [a,b])≤ λ f ([a,b]) = λ f ((a,b))+λ f ({a})+λ f ({b}).
In particular show that

λ f ((a,b)) = λ f ([a,b]) = Var( f , [a,b])

if f is continuous at a and b.

Exercise 323 Let f : R→ R. Show that f has bounded variation on [a,b] if and

only if f has finite variation on (a,b). Give an example to show that, even so,

Var( f , [a,b]) may be different from λ f ((a,b)). Answer

Exercise 324 Let E ⊂ (a,b) be a compact set and let {(ai,bi)} be the com-

ponent intervals of (a,b) \E. Suppose that f is a continuous function satisfying

f (x) = 0 for all x ∈ E and that

∑
i

ω f ([ai,bi])< ∞.

Show that λ f (E) = 0.
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Exercise 325 (local recurrence) A function f : R → R is locally recurrent at a
point x if there is a sequence of points xn with xn 6= x and limn→∞ xn = x so that

f (x) = f (xn) for all n. Let f : R → R and suppose that f is locally recurrent at

every point of a set E. Show that λ⋆
f (E) = 0. Answer

Exercise 326 (local monotonicity) A function f : R→ R is locally nondecreas-
ing at a point x if there is a δ > 0 so that ∆ f (I) ≥ 0 for every compact interval

I containing x for which λ(I) < δ. Let f : R → R and suppose that f is locally

nondecreasing at every point of a set E and that λ f ({x}) < ∞ for each x in E.

Show that f has σ-finite variation on E. Answer

Exercise 327 (continuous functions have σ-finite fine variation) Let f : R→
R be a continuous function. Show that λ⋆

f must be σ-finite. Answer

Exercise 328 (Lebesgue differentiation theorem) Prove Theorem 6.3:

Let f be a continuous function defined on some open set that con-

tains a set E on which f has σ-finite variation. Then f is differentiable

at almost every point of E.

Hint: You may assume here the conclusion of Theorem 6.20 that there is a se-

quence of compact sets covering E on each of which f is Kolmogorov equivalent

to some continuous function of bounded variation. Answer

6.2 Derivates and variation

If the derivates of a function f : R→ R are finite on a set E this has implications
for the variation λ f on E.

6.2.1 Ordinary derivates and variation

Theorem 6.8 Let f : R→ R and suppose that f is differentiable at every point x

of a set E. Then

λ f (E) = λ⋆
f (E) =

∫
E
| f ′(x)|dx.

In particular f has σ-finite variation, is λ-absolutely continuous, and has the Vitali

property on that set.

Proof. The fact that f ′(x) exists on E leads immediately to the variational identity

V ∗(∆ f − f ′λ,E) = 0.

From this, using Exercise 312, we can deduce that

V ∗(∆ f ,E)≤V ∗(∆ f − f ′λ,E)+V ∗( f ′λ,E)
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and hence that

λ f (E) =V ∗(∆ f ,E)≤V ∗( f ′λ,E) =
∫
E
| f ′(x)|dx.

The opposite inequality is proved the same way.
Again, using the other inequality in Exercise subaddprop, we can deduce that

V∗( f
′λ,E)≤V ∗(∆ f − f ′λ,E)+V∗(∆ f ,E) = λ⋆

f (E)

Since f ′ is measurable the identity∫
E
| f ′(x)|dx=V∗( f

′λ,E) =V ∗( f ′λ,E)

can be used to complete the proof.

Theorem 6.9 Let f : R → R and suppose at every point x of a set E that

λ f ({x}) < ∞ and that either D f (x) < ∞ or D f (x) > −∞. Then f has σ-finite

variation in E.

Proof. For example let us consider that the set E consists of all points at which
D f (x)>−∞. Write

En = {x : D f (x)>−n}.
Note that E is the union of the sequence of sets {En}.

Observe that the function fn(x) = f (x)+nx is locally nondecreasing at each
x ∈ En. It follows (from Exercise 326) that fn has σ-finite variation on En. But

λ f ≤ λ fn +nλ.

Thus f too has σ-finite variation on En. In consequence, f has σ-finite variation
on E.

6.2.2 Dini derivatives and variation

For many functions a closer analysis is needed than would be available using the
upper and lower derivates: we require one-sided versions.

Definition 6.10 (Dini derivatives) Let f : R→ R and suppose that x ∈ R. Then

the four values

D+ f (x) = inf
δ>0

sup

{

f (x+h)− f (x)

h
: 0< h< δ

}

D+ f (x) = sup
δ>0

inf

{

f (x+h)− f (x))

h
: 0< h< δ

}

D− f (x) = inf
δ>0

sup

{

f (x)− f (x−h)

h
: 0< h< δ

}

D− f (x) = sup
δ>0

inf

{

f (x)− f (x−h)

h
: 0< h< δ

}

are called the Dini derivatives of f at x.
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We do not need much more information than this for our main theorem. The
reader interested in pursuing the Dini derivatives further should try Exercises 329–
338. We will return in Section 6.16 to the Dini derivatives and show how a contin-
uous function can be recovered by integrating one of its Dini derivatives.

Theorem 6.11 Let f :R→R be a continuous function and suppose that at every

point x of a set E either

−∞ < D+ f (x)≤ D+ f (x)< ∞

or

−∞ < D− f (x)≤ D− f (x)< ∞.

Then f has σ-finite variation in E and is λ-absolutely continuous there.

Proof. We first show that, for any positive integer c, f has σ-finite variation and is
λ-absolutely continuous on the set of points

A= {x :−c< D+ f (x)≤ D+ f (x)< c}.
The geometry of this situation is expressed by the covering relation

β = {[x,x+h],x) : |∆ f ([x,x+h])|< cλ([x,x+h])}.
This relation has none of the properties we have so far encountered, but a modi-
fication of our methods will handle.

First apply the ideas of the decomposition from Section 2.7 for β. There is
an increasing sequence of sets {An} with A =

⋃∞
n=1An and a sequence of com-

pact intervals {Ikn} covering A so that if x is any point in An and [x,x+ h] is any
subinterval of Ikn then ([x,x+h],x) belongs to β.

In particular if {[ci,di]} is a sequence of subintervals of Ikn with endpoints in
the set An, then a brief computation shows that

∞

∑
i=1

ω f ([ci,di])≤
∞

∑
i=1

2cλ([ci,di])≤ 2cλ(Ikn).

Let Cnk denote the closure of the set An ∩ Ikn. Since f is continuous this same
inequality extends to points in that closure. Thus if {[ci,di]} is a sequence of
intervals with endpoints in the compact set Cnk, then

∞

∑
i=1

ω f ([ci,di])≤
∞

∑
i=1

2cλ([ci,di])≤ 2cλ(Ikn)< ∞.

Define a function gn so that gn(x) = f (x) for all x∈Cnk and extend to all of the
real line so as to be continuous and linear on all of the complementary intervals
toCnk. Such a function gn is evidently continuous and has bounded variation. The
same inequality shows that gn is absolutely continuous in the sense of Vitali and
so also λ-absolutely continuous.

The computations of Exercise 324 can be used here to check that

V ∗(∆ f −∆gn,Ckn) = 0.
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This shows that f is Kolmogorov equivalent on each setCnk to a continuous func-
tion of bounded variation. In particular λ f is finite on each set Cnk. It follows that
λ f is σ-finite on A. The function f also inherits from gn the property of being
λ-absolutely continuous on Cnk.

Finally the set E of the theorem can be expressed as a union of a sequence
of sets of the same type as A, so that λ f is σ-finite and vanishes on null subsets
of each member of the sequence. The theorem follows.

6.2.3 Lipschitz numbers

A Lipschitz condition on a function is a global upper estimate of the ratio
∣

∣

∣

∣

F(y)−F(x)

y− x

∣

∣

∣

∣

=

∣

∣

∣

∣

∆F([x,y])

λ([x,y])

∣

∣

∣

∣

We can make this same estimate locally in which case the estimates are called
Lipschitz numbers and they serve as a local estimate of the growth of a function.
We refine this a bit by introducing a lower estimate as well. In Section 6.2.4 we
show how these numbers relate to the variations.

If h(I,x) is any function which assigns real values to interval-point pairs we
recall that in Section 2.8.2 we introduced the following notation for the limits:

limsup
(I,x) =⇒ x

= inf
δ>0

(sup{h(I,x) : λ(I)< δ, x ∈ I})

and

liminf
(I,x) =⇒ x

= sup
δ>0

(inf{h(I,x) : λ(I)< δ, x ∈ I}) .

These are just convenient expressions for the lower and upper limits of h(I,x) as
the interval I (always assumed to contain x) shrinks to the point x. As usual if the
limsup and liminf are same then the common value (including ∞ and −∞) would
be written as

lim
(I,x) =⇒ x

h(I,x).

When working with such limits Exercises 345 and 346 offer useful estimates of
some associated variations.

Definition 6.12 Let f : R→ R. Then

lip f (x) = limsup
(I,x) =⇒ x

∣

∣

∣

∣

∆ f (I)

λ(I)

∣

∣

∣

∣

lip
f
(x) = liminf

(I,x) =⇒ x

∣

∣

∣

∣

∆ f (I)

λ(I)

∣

∣

∣

∣

are called the upper and lower Lipschitz number of f at a point x.
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Lemma 6.13 Let f : R→ R. For any real number r the sets

{x : lip f (x)< r} and {x : lip
f
(x)< r}

are measurable.

This is nearly identical to Lemma 4.21.

6.2.4 Six growth lemmas

The growth lemmas we present all follow easily from the general limit lemmas of
Exercises 345 and 346. Proofs are left to the student. They can be considered as
generalizations of these simple facts:

1. If f ′(x)≤ r for all x then

f (b)− f (a)≤ r(b−a).

2. If f ′(x)≥ r for all x then

f (b)− f (a)≥ r(b−a).

Now, however, the derivative is replaced by upper and lower Lipschitz estimates,
the interval [a,b] is replaced by an arbitrary set and the increments are replaced
by variational measures.

Lemma 6.14 Let f : R→ R. If lip
f
(z)< r for every z ∈ E then

λ⋆
f (E)≤ rλ(E).

Lemma 6.15 Let f : R→ R. If lip f (z)> r > 0 for every z ∈ E then

rλ(E)≤ λ f (E).

Lemma 6.16 Let f : R→ R. If lip f (z)< r for every z ∈ E then

λ f (E)≤ rλ(E).

Lemma 6.17 Let f : R→ R. If lip
f
(z)> r > 0 for every z ∈ E then

rλ(E)≤ λ⋆
f (E).

Lemma 6.18 Let f : R → R. If λ f (E) < ∞, then lip f (x) < ∞ for almost every

point x in E.

Lemma 6.19 Let f :R→R. If λ⋆
f (E)< ∞ then lip

f
(z)< ∞ for almost every point

x in E.
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Exercises

Exercise 329 Show that

D f (x)≤ D+ f (x)≤ D+ f (x)≤ D f (x) and D f (x) =max{D− f (x),D+ f (x)}.

Exercise 330 (Beppo Levi) Let f : R → R and suppose that f has one-sided

derivatives f ′+(x) and f ′−(x) at each point of a set E. Show that the set of points

x in E at which

f ′+(x) 6= f ′−(x)

is countable. [See Exercise 61.]

Exercise 331 (Grace Chisolm Young) Let f : R → R. Show that the sets of

points

{x : D− f (x)< D+ f (x)}
and

{x : D+ f (x)< D− f (x)}
are both countable. Answer

Exercise 332 It is easy to misinterpret the theorem of Beppo Levi (Exercise 330).

To avoid this construct a continuous function f : R → R so that for some un-

countable set E the right-hand derivative f ′+(x) exists at each point of E and the

left-hand derivative f ′−(x) fails to exist at each point of E.

Exercise 333 (William Henry Young) Let f : R → R be a continuous function.

Show that the sets of points

{x : D− f (x) = D+ f (x)}
and

{x : D− f (x) = D+ f (x)}
are both residual subsets of R. Answer

Exercise 334 Let f : [a,b] → R be a continuous function. Show that the set of

points at which f has a right-hand derivative but no left-hand derivative is a mea-

ger subset of [a,b].

Exercise 335 Let f : [a,b]→ R be a continuous function with f ([a,b]) = [c,d].

Write

D= {x ∈ [a,b] : D+ f (x)≤ 0}.
Show that either f is nondecreasing on [a,b] or else f (D) contains a compact

subinterval of [c,d]. Answer
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Exercise 336 (Anthony P. Morse) Let f : [a,b] → R be a continuous function

with f ([a,b]) = [c,d]. Write

A= {x ∈ [a,b] : D+ f (x)≥ 0},
B= {x ∈ [a,b] : D+ f (x)< 0},

and

C = {x ∈ [a,b] : D+ f (x) = 0}.
Suppose that A is dense in [a,b]. Show that B is a meager subset of [a,b] and

f (B) is a meager subset of [c,d]. Moreover, show that either f is nondecreasing

on [a,b] or else f (C) contains a residual subset of some compact subinterval of

[c,d]. Answer

Exercise 337 (Darboux property of Dini derivatives) Let f : R→ R be a con-

tinuous function and suppose that the Dini derivative D+ f (x) is unbounded both

above and below on each interval. Show, for every real number r and compact

interval [a,b], that f maps the set

Er = {x ∈ [a,b] : D+ f (x) = r}
onto a residual subset of some compact interval. (In particular D+ f (x) assumes

every real number at many points in any subinterval.)

Exercise 338 For any continuous function f :R→R and any real number r show

that the sets

{x : D+ f (x)≤ r} and {x : D+ f (x)≤ r}
are Lebesgue measurable. Answer

Exercise 339 Let f : R→ R. Verify that

lip f (x) =max{|Df (x)|, |Df (x)|}
and also

lip f (x) =max{|D+
f (x)|, |D+ f (x)|, |D−

f (x)|, |D− f (x)|}.

Exercise 340 Let f : R→ R. Suppose that f has a derivative at x (finite or infi-

nite). Show that lip f (x) = lip
f
(x) = | f ′(x)|.

Exercise 341 Let f : R → R be a continuous function, and suppose that

lip f (x) = lip
f
(x)< ∞. Show that f has a finite derivative at x and that

lip f (x) = lip
f
(x) = | f ′(x)|.

Answer
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Exercise 342 If f :R→R is continuous and lip
f
(x)=∞ show that either f ′(x)=

∞ or f ′(x) =−∞. Give an example to show that continuity cannot be dropped.

Exercise 343 Let f :R→R be a continuous function. Show that lip
f
(z)< ∞ for

almost every point x. Answer

Exercise 344 For this exercise and the next three exercises we shall use the

following generalized variations. Let h be any real-valued function defined on

interval-point pairs and define

Var(h,β) = sup
π⊂β

{

∑
([u,v],w)∈π

|h([u,v],w)|
}

where the supremum is taken over all π, arbitrary subpartitions contained in β;

h∗(E) = inf{Var(h,β) : β a full cover of E}
and

h∗(E) = inf{h,β) : β a fine cover of E}.
Show that h∗ and h∗ are measures and that h∗ ≤ h∗.

Exercise 345 (limsup comparison lemma) Suppose that, for every x in a set E,

s< limsup
(I,x) =⇒ x

∣

∣

∣

∣

h(I,x)

λ(I)

∣

∣

∣

∣

< r

Show that

sλ(E)≤V ∗(h,E)≤ rλ(E)

and

V∗(h,E)≤ rλ(E).

Answer

Exercise 346 (liminf comparison lemma) Suppose that, for every x in a set E,

s< liminf
(I,x) =⇒ x

∣

∣

∣

∣

h(I,x)

k(I,x)

∣

∣

∣

∣

< r

Show that

sλ(E)≤V∗(h,E)≤ rλ(E)

and

sλ(E)≤V ∗(h,E).

Answer

Exercise 347 Deduce all of the growth lemmas in Section 6.2.4 from the liminf

comparison and limsup comparison lemmas (i.e., Exercises 345 and 346).

Exercise 348 Let f : R→ R. If lip f (z)< ∞ for every z ∈ E then show that f has

σ-finite variation in E and is λ-absolutely continuous there. Answer
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6.3 Continuous functions with σ-finite variation

We begin now a deeper analysis of those continuous functions that have σ-finite
full variation on a set. Because of part (3) of this theorem we now can deduce the
Lebesgue differentiation theorem (Theorem 6.3) asserting that these functions
are almost everywhere differentiable.

Theorem 6.20 Let f : R → R be a continuous function and E a real set. Then

the following are equivalent:

1. f has σ-finite variation on E,

2. there is a sequence {En} of compact sets covering E so that f has finite

variation on each E,

3. there is a sequence {En} of compact sets covering E so that on each En, f

is Kolmogorov equivalent to some continuous function of bounded variation.

Proof. The implication (2) =⇒ (1) is trivial. The implication (3) =⇒ (2) is easy: if
(3) holds then, for some continuous function of bounded variation gn :R→R, the
equivalence relation

V ∗(∆ f −∆gn,En) = 0

implies that λ f (En) = λ∗
gn
(En)< ∞.

Thus the proof is completed by showing that (1) =⇒ (3). It is enough to con-
sider the situation for which E is a bounded set for which λ f (E) < ∞. Choose a
full cover β of E and a real number t so that

Var(∆ f ,β)< t < ∞.

Apply the decomposition in Lemma 2.7 to β. Accordingly there is an increasing
sequence of sets {Bn} with E =

⋃∞
n=1Bn and a sequence of nonoverlapping com-

pact intervals {Ikn} covering E so that if x is any point in Bn and I is any subinterval
of Ikn that contains x then (I,x) belongs to β.

Let Akn = Bn ∩ Ikn. We check some facts about the variation of f on Akn.
Suppose that {[ai,bi]} is any disjointed sequence of compact subintervals of Ikn
each of which contains at least one point, say xi, of Bn. Then {([ai,bi],xi)} must
form a subpartition contained in β. Consequently

∑
i

| f (bi)− f (ai)| ≤ Var(∆ f ,β)< t.

Now let Ckn denote the closure of Akn, i.e., Ckn is the smallest compact set
that contains Akn. We extend these considerations to estimating the variation of
f on the larger set Ckn. Suppose now that {[ai,bi]} is any disjointed sequence of
compact subintervals of Ikn each of which contains at least one point of Cnk. We
enlarge each interval slightly as needed to ensure that the intervals remain dis-
jointed but contain also a point, now, of the dense subset Akn. As f is continuous
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we can do this without much of an increase in the sums, and so we can certainly
guarantee that for the given sequence {[ai,bi]} that

∑
i

| f (bi)− f (ai)|< 2t < ∞.

Let us define a function gnk so as to be equal to f (x) on the compact set
Ckn and extended to the real line so as to be linear and continuous on the inter-
vals complementary to Ckn. Such a function gnk is continuous and has bounded
variation.

The computations of Exercise 324 can be used here to check that

V ∗(∆ f −∆gnk,Ckn) = 0.

As every compact set from the sequence {Ckn} can be treated the same way,
we have verified the implication (1) =⇒ (3) provided we merely relabel the full
collection {Ckn} as a single sequence {En}.

6.3.1 Variation on compact sets

We can refine our analysis of σ-finite variation with a few further steps.

Theorem 6.21 Let f : R → R be a continuous function and E a compact set.

Then the following are equivalent:

1. f has σ-finite variation on E.

2. Every nonempty compact subset S of E has a portion S∩ (a,b) on which f

has finite variation.

3. f has σ-finite variation on every null set Z ⊂ E that is a Gδ set.

Proof. By a Gδ set we mean a set Z of the form Z =
⋂∞

n=1Gn for some sequence
{Gn} of open sets. Every closed set can be written in this form.

We begin with (a) =⇒ (b). As we have seen in Theorem 6.20, if f has σ-
finite variation on E, then there is a sequence of compact sets {En} covering
the compact set S so that λ f (En)< ∞ for each n. By the Baire category theorem
there must be a portion S∩(a,b) of E contained in one at least from the sequence
{En}. In particular, for some n, λ f (S∩ (a,b) ≤ λ f (En) < ∞ as required to prove
(b).

Let us now prove that (b) =⇒ (a) Suppose that every nonempty closed subset
S of E has a portion S∩ (a,b) on which f has finite variation. Let G denote the
real set consisting of all real x with the property that there is a δ(x)> 0 so that f
has σ-finite variation on the set E ∩ (x−δ(x),x+δ(x)). Note that

G=
⋃
x∈G

(x−δ(x),x+δ(x))

so G is open.
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Consider the set G∩E. Any point in this set would be contained in an open
interval (c,d) with rational endpoints so that f has σ-finite variation on G∩ (c,d).
It follows that f has σ-finite variation on G∩E. If G ⊃ E then, we deduce that f
has σ-finite variation on E as we wished to prove to verify (a).

Suppose, in order to obtain a contradiction that G does not contain E. Let
E ′ = E \G. This would be a nonempty closed subset of E and so, by hypothesis,
there would have to be a portion E ′ ∩ (a,b) on which f has finite variation. But
if f has finite variation on E ′∩ (a,b) and also, evidently, has σ-finite variation on
E \E ′ then f must have σ-finite variation on E ∩ (a,b). Every point of this set
should belong to G which is impossible in view of the assumption that E ′∩ (a,b)

is a portion. This contradiction completes our proof that (b) =⇒ (a).
The implication (a) =⇒ (c) is trivial. To complete the proof, then, it will suffice

to verify that (c) =⇒ (b). Suppose that f has σ-finite variation on every set Z ⊂ E

that is a Gδ set of λ-measure zero.
Let S be a nonempty closed subset of E. To verify (b) we need to find a portion

of S on which f has finite variation. If S is a null set then we are almost there. A
closed set is also of type Gδ. Thus, λ f is σ-finite on S by hypothesis. As we
have already argued above, in this situation we are assured that S has a portion
S∩ (a,b) on which f has finite variation.

Suppose instead that S is a closed set having positive measure. Exercise 349,
which follows the proof, shows exactly how to choose a null subset Z of S that is a
Gδ-set that is dense in S. By our assumption (c), there must be a portion Z∩(a,b)

on which f has σ-finite variation. We apply Theorem 6.20 to obtain a sequence
of compact sets {Kn} whose union includes Z∩ (a,b) so that each λ f (Kn)< ∞.

Apply the Osgood-Baire theorem, now to the sequence of compact sets {Kn}
that covers the Gδ-set Z∩ (a,b). Recall that the Osgood-Baire theorem, stated in
Section 6.17 for closed sets, applies equally well to Gδ-sets. Thus we can con-
clude that there is a portion Z ∩ (c,d) and an integer k so that Z ∩ (c,d) ⊂ Kk.
Since Z is dense in the compact set S we also have S∩ (c,d)⊂ Kk. In particular

λ f (S∩ (c,d))≤ λ f (Kn)< ∞.

We have obtained again (but this time without the additional assumption that S
has measure zero) exactly property (b).

Exercise 349 Let S be a compact set. Show that there is a subset Z of S that is

of type Gδ, is a null set, and is dense in S. Answer

6.3.2 λ-absolutely continuous functions

As a corollary to Theorem 6.21 immediately we have a special observation, since
an λ-absolutely continuous function must have finite variation (indeed zero varia-
tion) on every set of λ-measure zero.
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Corollary 6.22 Let f : R→ R be a continuous function that is λ-absolutely con-

tinuous on a compact set E. Then f has σ-finite variation and is differentiable

a.e. on E.

Corollary 6.23 Let f : [a,b] → R be absolutely continuous in the variational

sense on [a,b]. Then f has σ-finite variation and is differentiable a.e. on [a,b].

6.4 Vitali property and differentiability

In this section we show that differentiability on a set implies the Vitali property on
that set and, conversely, that the Vitali property on a set implies almost every-
where differentiability.

Theorem 6.24 Let f : R → R have a finite derivative at every point of a set E.

Then f has the Vitali property on E and, moreover,

λ f (E) = λ⋆
f (E) =

∫
E
| f ′(x)|dx.

Proof. This is already proved in Theorem 6.8.

Theorem 6.25 Let f :R→R be a continuous function that has the Vitali property

on a set E. Then f has a finite derivative at almost every point of E and, except at

the points of a set N for which λ f (N) = 0, f has a finite or infinite derivative f ′(z).

Proof. We need work only with the Lipschitz numbers here. Recall that if lip
f
(z)=

∞ then necessarily f has an infinite derivative, f ′(z) = ∞ or f (z) = −∞ (see
Exercise 342). Also if

lip
f
(z) = lip f (z)< ∞

then f has a finite derivative at z (see Exercise 341).
It is enough to prove the theorem under the assumption that E is a bounded

set. We examine

A= {x ∈ E : lip
f
(x)< lip f (x)}.

As is usual in arguments of this type, introduce rational numbers 0 < r < s and
the subsets

Ars = {x ∈ A : lip
f
(x)< r < s< lip f (x)}.

Note that A is the countable union of this collection of sets taken over all rationals
r and s with r < s.

By the growth lemmas of Section 6.2.4 we obtain

λ⋆
f (Ars)≤ rλ(Ars)≤ sλ(Ars)≤ λ f (Ars).

Our assumption that f has the Vitali property on E gives the identity λ f = λ⋆
f on

each of these subsets of E. None of these numbers are infinite, r < s, and so the
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inequality makes sense only in the case that λ f (Ars) = λ(Ars) = 0. Consequently
λ f (A) = λ(A) = 0.

At every point x in E \A we know that either

lip
f
(x) = lip f (x)< ∞

or else

lip
f
(x) = lip f (x) = +∞.

In the former case, as we have already noted, f has a finite derivative and in the
latter case f has an infinite derivative. This latter case can occur only on a set of
Lebesgue measure zero (as a consequence of Lemma 6.19).

Corollary 6.26 Let f :R→R be a continuous function that has the Vitali property

on a set E and let us specify the following subsets of E at which the derivative

exists finitely or infinitely:

1. Ed = {x ∈ E : f is differentiable at x}.

2. E∞ = {x ∈ E : f ′(x) =±∞ }.

Then

λ⋆
f (E) = λ f (E) =

∫
Ed

|F ′(x)|dx+λ f (E∞).

6.5 The Vitali property and variation

The Vitali property is closely related to the finiteness of the variation. Indeed, since
the fine variation λ⋆

f of a continuous function f is always σ-finite, we know that the
identity λ⋆

f (E) = λ f (E) can only hold if f has σ-finite variation on E.

6.5.1 Monotonic functions

Theorem 6.27 Let f : R→ R be a continuous, strictly increasing function. Then

f has the Vitali property.

Proof. Theorem 6.6 supplies the identity

λ⋆
f (E) = λ f (E) = λ( f (E)).

Theorem 6.28 Let f : R → R be a continuous, monotonic nondecreasing func-

tion. Then f has the Vitali property.

Proof. Let ε > 0 and define a new function g(x) = f (x)+ εx. The function g is
continuous and strictly increasing so, by the previous theorem, λg∗ = λg

∗. From
Exercise 312 we deduce the inequalities

λ f ≤ λg
∗ ≤ λ f + ελ∗
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and

λ⋆
f ≤ λg∗ ≤ λ⋆

f + ελ∗.

From these two inequalities and the identity λg∗ = λ∗
g we can deduce λ f = λ⋆

f .

Exercise 350 Let f :R→R be a monotonic, nondecreasing function. Show that

if λ⋆
f ({x}) = λ f ({x}) for a point x then f must be continuous at x.

6.5.2 Functions of bounded variation

Theorem 6.29 Let f : R→ R be a continuous function that is locally of bounded

variation. Then f has the Vitali property on the real line.

Proof. Fix a compact interval [a,b] and let g be the total variation function of f on
[a,b]. We know that this relation between a function and its total variation function
requires the identity

V ∗(∆g−|∆ f |,(a,b)) = 0.

In particular λ f (E) = λg(E) and λ⋆
f (E) = λ⋆

g(E) for all subsets E of (a,b). By the
previous theorem λg(E) = λ⋆

g(E) and so λ f (E) = λ⋆
f (E) follows. This argument

produces the identity we require on all bounded sets, and the extension to arbi-
trary sets follows from measure properties.

6.5.3 Functions of σ-finite variation

Theorem 6.30 Let f : R→ R be a continuous function. Then f has σ-finite vari-

ation on a set E if and only if f has the Vitali property on E.

Proof. We already know that the Vitali property for a continuous function will imply
σ-finite variation. Let us prove the converse.

Suppose that f is continuous function that has σ-finite variation on E. By The-
orem 6.20 there is a sequence of compact sets {En} covering E and a sequence
of functions gn each continuous and locally of bounded variation so that

V ∗(∆ f −∆gn,En) = 0 (6.3)

We know then, from the previous theorem, that λgn∗ = λ∗
gn

. We also know that the
equivalence (6.3) requires that λgn

∗ = λ f and λgn∗ = λ⋆
f on all subsets of En.

Introduce the notation

An = En \
⋃
k<n

Ek

so that
⋃∞

n=1An =
⋃∞

n=1En and the sets {An} are pairwise disjoint, measurable
sets. The student should justify that the following computations are permitted:

λ f (E) =
∞

∑
n=1

λ f (E ∩An) =
∞

∑
n=1

λgn
∗(E ∩An) =
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∞

∑
n=1

λgn∗(E ∩An) =
∞

∑
n=1

λ⋆
f (E ∩An) = λ⋆

f (E).

As this applies as well to any subset of E we see that f must have the Vitali
property on E as required.

Corollary 6.31 If f :R→R is a continuous function that is λ-absolutely continu-

ous on a compact set E, then f has the Vitali property on E.

Proof. Use Corollary 6.23.

6.6 Characterization of the Vitali property

The class of functions satisfying the Vitali property on a set is fundamental to
an understanding of the calculus program demanding the relation among the
concepts of derivative, integral and variation. We have already found a number
of characterizations in Theorem 6.20 and Theorem 6.21. Here are some more.
Some are easy consequences of what we have proved [e.g., (1) and Theorem 327
immediately imply (2)]. Others are left as entertainments for the student.

Theorem 6.32 Let f : R→ R be a continuous real function and let E be a com-

pact set. The following are equivalent:

1. f has the Vitali property on E.

2. f has σ-finite variation on E.

3. there is a sequence of compact sets {En} with E =
⋃∞

n=1En so that for

each n there is a continuous function gn that is locally of bounded variation

so that f and gn are Kolmogorov equivalent on En.

4. f has a derivative (finite or infinite) at λ f -almost every point of E.

5. There is a continuous, increasing function g so that

limsup
(I,x) =⇒ x

∣

∣

∣

∣

∆ f (I)

∆g(I)

∣

∣

∣

∣

< ∞

at every point x ∈ E.

6. There is a continuous, increasing function g and a real function f1 so that

V ∗(∆ f − f1∆g,E) = 0.

7. There is a continuous, increasing function g so that the composed function

f ◦g has a finite derivative everywhere in the compact set g−1(E).
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6.7 Characterization of λ-absolute continuity

The Vitali property expresses the most important property arising in studies of
the derivative in the calculus. The special subclass of λ-absolutely continuous
functions plays its most significant role in the integration theory. Here are some
similar characterizations for this class, most easily proved from previously proved
statements or techniques.

Theorem 6.33 Let f : R→ R be a continuous function and let E be a compact

set. The following are equivalent:

1. f is λ-absolutely continuous on E.

2. f has σ-finite variation on E and is λ-absolutely continuous there.

3. there is a sequence of compact sets {En} with E =
⋃∞

n=1En so that for each

n there is a continuous function gn that is of locally of bounded variation and

absolutely continuous in the sense of Vitali so that f and gn are Kolmogorov

equivalent on En.

4. f has a finite derivative at λ f -almost every point of E.

5. There is an increasing, λ-absolutely continuous function g so that

limsup
(I,x)→x

∣

∣

∣

∣

∆ f (I)

∆g(I)

∣

∣

∣

∣

< ∞

at every point x ∈ E.

6. There is an increasing, λ-absolutely continuous function g and a real func-

tion f1 so that

V ∗(∆ f − f1∆g,E) = 0.

6.8 Mapping properties

For any set E and any function f :R→R the image of E under the mapping f is
written as

f (E) = { f (x) : x ∈ E}.
We already know some properties of the image set for continuous functions. We
recall from elementary studies that the image of any compact interval [a,b] under
f is again a compact interval. It is easy to check that that the image of any com-
pact set E under f is again a compact set f (E). A natural question is whether the
image of an measurable set must also be measurable .
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Theorem 6.34 Let f : R→ R be an measurable function and P an measurable

set. The following are equivalent:

(M) f (E) is measurable for every measurable subset E of P,

(N) λ( f (N)) = 0 for every subset N of P for which λ(N) = 0.

Proof. Suppose that E is measurable and that the second statement of the the-
orem holds. We need consider only the case where E is bounded. Since f is
measurable , then by definition, we can find open sets Gn so that λ(Gn) < 1/n,
E \Gn is compact and f is equal to a continuous function gn : R → R on the
compact set E \Gn.

In particular

E = Z∪
∞⋃

n=1

(E \Gn)

where

Z = E ∩
∞⋂

n=1

Gn

has λ-measure zero. By hypothesis f (Z) must be a set of λ-measure zero and
hence is measurable . Also each

f (E \Gn) = gn(E \Gn)

is a compact set (since the continuous function gn maps compact sets to compact
sets). In particular each set here is also measurable . Thus

f (E) = f (Z)∪
∞⋃

n=1

f (E \Gn)

displays f (E) as the union of a sequence of measurable sets. Thus f (E) is also
measurable .

Conversely suppose that the first statement of the theorem does not hold, yet
the second does. Then there is a set Z ⊂ P for which λ(Z) = 0 and yet f (Z)

does not have λ-measure zero. For (b) to be true, however, f (Z) should be an
measurable set of positive measure. Such a set must have a subset A that is not
measurable .

We shall not pause to prove this assertion but leave it as a project for the
student to find elsewhere (or prove). A proof will require use of a logical principle
that is beyond our current course of study.

Then there is a set Z1 ⊂ Z with f (Z1) = A. The set Z1 must be measurable
merely because λ(Z1) ≤ λ(Z) = 0. But then f maps an measurable set Z1 to a
set f (Z1) = A that is not measurable. We have contradicted the second statement
thus completing the proof.
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6.9 Lusin’s conditions

Definition 6.35 A function f :R→R is said to satisfy Lusin’s conditions on a set

P when these equivalent conditions hold:

(M) f (E) is measurable for every measurable subset E of P,

(N) λ( f (N)) = 0 for every subset N of P for which λ(N) = 0.

Theorem 6.36 If f : R→ R is λ-absolutely continuous on an measurable set P

then f satisfies Lusin’s conditions on P.

Proof. This follows immediately from Theorem 6.7 that asserts that λ( f (N)) is
smaller than the full variation of f on N. Thus for every null set N ⊂ P,

λ( f (N))≤ λ f (N) = 0.

6.10 Banach-Zarecki Theorem

In the converse direction we should expect that Lusin’s conditions play a role in
characterizing the important property of absolute continuity.

Theorem 6.37 (Banach-Zarecki) Let f : R→ R be a continuous function and E

a compact set. Then the following are necessary and sufficient conditions in order

that f is λ-absolutely continuous on E:

1. f has σ-finite variation on E, and

2. f satisfies Lusin’s condition on E.

Proof. Certainly if f is λ-absolutely continuous then we already know that (a)
holds because of Theorem 6.21 and that (b) holds because of Theorem 6.36.

Conversely let us suppose that (a) and (b) now hold. We know from Theo-
rem 6.20 that when f has σ-finite variation on a compact set E, there is a se-
quence {En} of compact sets covering E and a sequence of continuous functions
of bounded variation gn so that f and gn are Kolmogorov equivalent on En. Recall
in the proof that the construction there required f = gn on the set En. We can
insist on that here. Moreover the functions gn in the proof that extended f were
also chosen to be merely linear or constant in the intervals complementary to En.
We can insist also on that here.

We note that the condition (b) of the theorem asserting that f satisfies Lusin’s
condition on E means that gn satisfies this same condition on En. Moreover by
the nature of the construction the function gn satisfies Lusin’s condition on all
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sets. The proof is completed now by addressing the special case of proving that
gn is λ-absolutely continuous.

Note that each gn constructed in our proof above satisfies the hypotheses of
Exercise 351 below. Indeed, since gn has bounded variation on every interval it
is differentiable outside of a set N of λ-measure zero. The assumption of Lusin’s
condition on gn then provides λ(gn(N)) = 0. The finiteness of

λgn(R\N) =
∫
R\N

|g′n(x)|dx

follows from the fact that gn, as constructed have finite variation.
Now let Z be any set for which λ(Z) = 0. Let ε > 0 and choose δ > 0 by

applying the Exercise 351 to this function gn. Choose an open set G ⊂ Z with
λ(G)< δ. Choose any full cover β of Z; then β(G) is also a full cover of Z and the
exercise provides

V ∗(∆gn,Z)≤ Var(∆gn,β(G))< ε.

From this we deduce that λgn(Z) = 0. In consequence gn is λ-absolutely continu-
ous.

From this we can prove that f is λ-absolutely continuous on the set E in
question. For if Z is a set of λ-measure zero then λgn(Z) = 0 will imply that

λ f (En∩Z) = λgn(En∩Z) = 0

and hence that

λ f (E ∩Z)≤
∞

∑
n=1

λ f (En∩Z) = 0.

This will then show that f is λ-absolutely continuous on E.

Corollary 6.38 Let f : [a,b]→R. The following are necessary and sufficient con-

ditions in order that f is absolutely continuous in the variational sense on [a,b]:

1. f is continuous,

2. f has σ-finite variation on [a,b], and

3. f satisfies Lusin’s conditions on [a,b].

Corollary 6.39 Let f : [a,b]→R. The following are necessary and sufficient con-

ditions in order that f is absolutely continuous in the sense of Vitali on [a,b]:

1. f is continuous,

2. f has bounded variation on [a,b], and

3. f satisfies Lusin’s conditions on [a,b].

A crucial step in the proof of the theorem uses the following classical problem:
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Exercise 351 Let g :R→R be a continuous function. Suppose that g is differen-

tiable at each point with the exception of points in a set N for which λ(g(N)) = 0

and suppose that
∫
R\N |g′(x)|dx < ∞. Show that, for every ε > 0, there is a

δ > 0 so that any sequence of nonoverlapping intervals {[cn,dn]} for which

∑n λ([cn,dn])< δ it follows that

∑
n

|∆g([cn,dn])|< ε.

Answer

6.11 Local Lebesgue integrability conditions

A measurable function f is Lebesgue integrable on an interval [a,b] provided

that the integral
∫ b
a | f (x)|dx is finite. If the integral is not finite then f cannot be

Lebesgue integrable on [a,b]. But need it be Lebesgue integrable on some subin-
terval? The theorem we now prove gives a sufficient condition in order for an
measurable functions to have a local integrability property. In the theorem we use
the following notation for a function f and a closed set E: the function fE is defined
as fE(x) = f (x) whenever x ∈ E and fE(x) = 0 otherwise.

Theorem 6.40 Let E be a nonempty closed subset of [a,b] and f an measurable

function. Suppose that

−∞ <
∫ b

a
f (x)dx≤

∫ b

a
f (x)dx< ∞.

Then E contains a portion E ∩ (c,d) so that fE is Lebesgue integrable on [c,d].

Proof. We make a simplifying assumption that allows a small technical detail later.
We remove from the set E all points that are isolated on either the right side or
the left side or both sides. There are only countably many such points and that
does not influence either measure or integration statements. While the resulting
set is not closed, it is a set of type Gδ so that we may still apply the Baire-Osgood
theorem to it.

Choose t so that

−t <
∫ b

a
f (x)dx≤

∫ b

a
f (x)dx< t

and a full cover β of [a,b] so that2

∣

∣

∣

∣

∑
π

fλ

∣

∣

∣

∣

< t

2We are using ∑π fλ to denote the sum ∑(I,x)∈π f (x)λ(I) in this proof as many such sums will
be considered.
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for all partitions π ⊂ β of [a,b]. Let [c,d] be any subinterval and let π ⊂ β be a
partition of [c,d]. Choose π′ ⊂ β so that it consists of a partition of [a,c] and [d,b].
Then

∣

∣

∣

∣

∣

∑
π∪π′

fλ

∣

∣

∣

∣

∣

< t

so that
∣

∣

∣

∣

∑
π

fλ

∣

∣

∣

∣

≤ t+

∣

∣

∣

∣

∣

∑
π′

fλ

∣

∣

∣

∣

∣

In particular we can write

T (c,d) = sup

{∣

∣

∣

∣

∑
π

fλ

∣

∣

∣

∣

: π ⊂ β is a partition of [c,d]

}

< ∞.

We need a decomposition argument for β similar to that in Section 2.2.3.
Choose δ(x)> 0 so that x∈ I ⊂ [a,b] and λ(I)< 2δ(x) requires (I,x)∈ β. Define

E+
n = {x ∈ E : δ(x)> 1/n, 0≤ f (x)≤ n}

and

E−
n = {x ∈ E : δ(x)> 1/n, 0≥ f (x)≥−n}.

This sequence of sets exhausts the set E so that, by the Baire-Osgood theo-
rem, there must be a portion of E so that one of the sets is dense there. Thus we
are able to choose an integer m and a subinterval [c,d] so that d− c< 1/m and
so that E+

m (say) is dense in the nonempty portion E ∩ (c,d).
We shall investigate the Lebesgue integrability of fE on [c,d]. For that, let π

be an arbitrary partition of [c,d] chosen from β. We shall estimate

∑
π

f+E λ and ∑
π

f−E λ

(where, as usual, f+E and f−E denote the positive and negative parts of fE ).
Define π1 = π[E] and π2 = π\π1. We alter π1 in two different ways. The first

alteration denoted as π′
1 will replace each (I,x) ∈ π1 by (I,x′) where x′ ∈ E+

m .
Since x ∈ E and is not isolated on either side in E, and since E+

m is dense in
this portion of E, such points are available. For any such point x′ we see that the
pair (I,x′) ∈ β because λ(I) < 1/m < δ(x′). The second alteration denoted as
π′′
1 will replace each (I,x) ∈ π1 for which f (x) < 0 by (I,x′′) where x′ ∈ E+

m . For
the same reasons as before, the pair (I,x′′) ∈ β. We will make use of the fact
that, for the adjusted points x′ and x′′, we have the inequalities 0≤ f (x′)≤m and
f (x)< 0≤ f (x′′).

Now we do our computations:
∣

∣

∣

∣

∣

∑
π1∪π2

fλ

∣

∣

∣

∣

∣

≤ T (c,d) (6.4)
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∣

∣

∣

∣

∣

∣

∑
π′
1∪π2

fλ

∣

∣

∣

∣

∣

∣

≤ T (c,d) (6.5)

∣

∣

∣

∣

∣

∣

∑
π′
1

fλ

∣

∣

∣

∣

∣

∣

≤ m(d− c)≤ 1. (6.6)

Combining (6.5) and (6.6) we see that
∣

∣

∣

∣

∣

∑
π2

fλ

∣

∣

∣

∣

∣

≤ T (c,d)+1 (6.7)

Thus we can estimate

∑
π

f+E λ = ∑
π1

f+E λ = ∑
π′′
1

f+E λ ≤ ∑
π′′
1

fλ

≤ ∑
π′′
1

fλ+

[

∑
π2

fλ+T (c,d)+1

]

= ∑
π′′
1∪π2

fλ+T (c,d)+1≤ 2T (c,d)+1.

As such sums have this upper bound we can conclude that
∫ d

c
f+E (x)dx

is finite and hence that the measurable function f+E is Lebesgue integrable on
[c,d].

Now we show that f−E is also Lebesgue integrable on [c,d]. Since

f−E (x) = f+E (x)− f (x)

for every x ∈ E, we find that

∑
π

f−E λ = ∑
π1

f−E λ = ∑
π1

f+E λ−∑
π1

fλ

=

[

∑
π1

f+E λ+∑
π2

f+E λ

]

−∑
π1

fλ

≤ [2T (c,d)+1]−∑
π1

fλ−
[

∑
π2

fλ−T (c,d)−1

]

= [3T (c,d)+2]−∑
π

fλ ≤ 4T (c,d)+2.

Once again such sums have this upper bound we can conclude that the measur-
able function f−E is Lebesgue integrable on [c,d]. Finally then fE = f+E + f−E too
must be Lebesgue integrable on [c,d]. This gives us our portion E ∩ (c,d) and
completes the proof.
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6.12 Continuity of upper and lower integrals

The indefinite integral of an integrable function is continuous. We can express this
by saying that, if f is integrable on a compact interval [a,b], then for every ε > 0

there is a δ > 0 so that

−ε <
∫ d

c
f (x)dx< ε

for every subinterval [c,d] ⊂ [a,b] for which λ([c,d]) < δ. We wish a version of
this that does not assume integrability and that can be used for a characterization.

Definition 6.41 A function f is said to have continuous upper and lower integrals
on a compact interval [a,b] if for every ε > 0 there is a δ > 0 so that

−ε <
∫ d

c
f (x)dx≤

∫ d

c
f (x)dx< ε

for every subinterval [c,d]⊂ [a,b] for which λ([c,d])< δ.

Lemma 6.42 Suppose that f : [a,b] → R has continuous upper and lower inte-

grals on a compact interval [a,b]. Then

−∞ <
∫ d

c
f (x)dx≤

∫ d

c
f (x)dx< ∞

for every subinterval [c,d]⊂ [a,b].

Proof. There must be a δ > 0 so that

−1<
∫ d

c
f (x)dx≤

∫ d

c
f (x)dx< 1

for every subinterval [c,d]⊂ [a,b] for which λ([c,d])< δ. Subdivide

a= a0 < a1 < · · ·< an−1 < an = b

in such a way that each ai−ai−1 < δ. Then compute, using Exercise 183, that
∫ b

a
f (x)dx=

n

∑
i=1

∫ ai

ai−1

f (x)dx≤ n< ∞.

A similar argument handles the lower integral.

Exercises

Exercise 352 (Cauchy extension property) Let f be integrable on every subin-

terval [c,d] ⊂ (a,b). Show that f is integrable on [a,b] if and only if if f has

continuous upper and lower integrals on [a,b]. Answer
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Exercise 353 (Harnack extension property) Let F : R → R, let E be a closed

subset of [a,b], and let {(ai,bi)} be the sequence of intervals complementary to

E in (a,b). Suppose that

1. f (x) = 0 for all x ∈ E,

2. f is integrable on all intervals [ai,bi], and

3.
∞

∑
i=1

sup
ai≤ci<di≤bi

∣

∣

∣

∣

∫ di

ci

f (x)dx

∣

∣

∣

∣

< ∞.

Show that f is integrable on [a,b] and∫ b

a
f (x)dx=

∞

∑
i=1

∫ bi

ai

f (x)dx.

Answer

6.13 A characterization of the integral

The class of Lebesgue integrable functions on an interval [a,b] can be character-
ized as those measurable functions f for which∫ b

a
| f (x)|dx< ∞.

We now show that the full class of integrable functions (absolutely or nonabso-
lutely) on an interval [a,b] can be characterized as those measurable functions
that have continuous upper and lower integrals.

Theorem 6.43 A function f is integrable on [a,b] if and only if f is measurable

and f has continuous upper and lower integrals on [a,b].

Proof. We already know that an integrable function has these properties. Con-
versely suppose that f is measurable and that f has continuous upper and lower
integrals on [a,b]. An open interval (s, t) ⊂ (a,b) will be called “accepted” if f

is integrable on every [c,d] ⊂ (s, t). Let G be the union of all accepted intervals.
This is an open subset of (a,b). Note that, if [c,d] ⊂ G, then by the Heine-Borel
property [c,d] can be written as the union of a finite collection of intervals {[ci,di]}
each of which is inside an accepted interval. It follows that f is integrable on [c,d]

too.
Let

G=
∞⋃
i=1

(ai,bi),

displaying G as a union of its component intervals. We claim first that f must be
integrable on each of the compact intervals [ai,bi]. This follows directly from the
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Cauchy extension property (Exercise 352) using the hypothesis that f has contin-
uous upper and lower integrals. We shall use a single function F to represent the
indefinite integral of f on each of these intervals, but we are cautioned not to use
F outside of the intervals.

In particular if G = (a,b) then the proof is completed since then f must be
integrable on [a,b] as required. Suppose not, i.e., that the theorem fails and G 6=
(a,b). Then E = [a,b] \G is a nonempty closed set. Note that E can have no
isolated points. Indeed if c ∈ E is isolated then (c− t,c) ⊂ G and (c,c+ t) ⊂ G

for some t > 0 and another application of the Cauchy extension property would
show that (c− t,c+ t) is accepted so that (c− t,c+ t)⊂G which is not possible.

The goal of the proof now will be to obtain a portion E ∩ (c′,d′) of E with
the property that (c′,d′) is accepted, which would be impossible. Portions cannot
be empty and no point of E would be allowed to belong to an accepted interval.
The local integrability Theorem 6.40 and the Harnack extension property (Exer-
cise 353) will play key roles.

The assumption that f satisfies the continuity condition in Definition 6.41 to-
gether with Lemma 6.42 shows that the upper and lower integrals of f are fi-
nite. Thus, we can apply Theorem 6.40 to find a portion E ∩ [c,d] so that fE is
Lebesgue integrable on [c,d].

Since f has continuous upper and lower integrals on [c,d] it follows from
Lemma 6.42 that

−∞ <
∫ d

c
f (x)dx≤

∫ d

c
f (x)dx< ∞.

Since fE is Lebesgue integrable on [c,d] it follows that∫ d

c
| fE(x)|dx< ∞.

Thus we can select a real number M > 0 and a full cover β of [c,d] so that for any
partition π of [c,d] from β both

∣

∣

∣

∣

∑
π

fλ

∣

∣

∣

∣

<M

and

∑
π

| fE |λ <M.

We need a decomposition argument for β similar to that in Section 2.2.3.
Choose δ(x)> 0 so that x∈ I ⊂ [a,b] and λ(I)< 2δ(x) requires (I,x)∈ β. Define

En = {x ∈ E ∩ [c,d] : δ(x)> 1/n}.
This sequence of sets exhausts the set E ∩ [c,d] so that, by the Baire-Osgood
theorem, there must be a portion of so that one of the sets is dense there. Let
us agree that Em is dense in E ∩ (c′,d′) and that [c′,d′] is smaller in length than
1/m. Let {(ci,di)} denote the component intervals of (c′,d′)\E. There must be
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infinitely many such component intervals since otherwise it would follow that f is
integrable on [c′,d′]. We claim that

∞

∑
i=1

ωF([ci,di] = ∞. (6.8)

For, if not, then the Harnack extension property (Exercise 353) shows that f − fE
must be integrable on [c′,d′] and hence f is integrable there. But that contradicts
the fact that [c′,d′] must contain points of E.

From the continuity of F we know that

ωF([ci,di] = |F(s)−F(t)| (6.9)

for some subinterval [s, t]⊂ [ci,di]. Consequently we may choose a sequence of
intervals {[sk, tk]}, chosen from different component intervals [ci,di] in such a way
that either

0≤
∞

∑
k=1

F(tk)−F(sk) = ∞ (6.10)

or

0≥
∞

∑
k=1

F(tk)−F(sk) =−∞. (6.11)

Let us assume the former. If (6.11) holds instead the same argument with a slight
adjustment in the inequalities will work.

Now we fix an integer p and carefully construct a partition π of the interval
[c,d] from β. The first step is to choose π′ from β to form a partition of [c,c′],
then π′′ from β to form a partition of [d′,d]. For each of the intervals {[sk, tk]} for
k = 1,2,3 . . . , p we select a partition πk of [sk, tk] in such a way that

|F(tk)−F(sk)−∑
πk

fλ|< 2−k. (6.12)

This is possible since f is integrable on each such interval and F is an indefinite
integral. To complete the partition we take the remaining intervals, not yet covered
by

π′∪π′′∪
p⋃

k=1

πk.

There are only finitely many of these intervals, say I1, I2, . . . , Iq. Each is a subin-
terval of [c′,d′] and each one contains many points of E; thus each one also
contains a point of Em. Select a point xi from Em∩ Ii (i= 1,2, . . . ,q) and note that
(Ii,xi) belongs to β. Thus if we set

π′′′ = {(Ii,xi) : i= 1,2, . . . ,q}
then we have obtained a partition

π = π′∪π′′∪π′′′∪
p⋃

k=1

πk

of the interval [c,d] that is contained in β.
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Consequently, by the way in which we chose M and β,
∣

∣

∣

∣

∑
π

fλ

∣

∣

∣

∣

≤M.

We know too that
∣

∣

∣

∣

∣

∑
π′′′

fλ

∣

∣

∣

∣

∣

≤ ∑
π′′′

| fE |λ ≤M.

We combine these inequalities with (6.12) and the simple inequality
p

∑
k=1

2−k ≤ 1

to obtain
p

∑
k=1

F(tk)−F(sk)≤
∣

∣

∣

∣

∣

∑
π′∪π′′

fλ

∣

∣

∣

∣

∣

+2M+1.

This is true for any p and conflicts with our assumption that the inequality (6.10)
holds.

Since neither inequality (6.10) nor (6.11) can hold it follows that inequality
(6.9) also fails, thus f is integrable on [c′,d′]. In other words (c′,d′) is accepted,
which would be impossible. This completes the proof.

6.14 Denjoy’s program

For nonabsolutely integrable functions the integral is not constructive by any of
the methods of Lebesgue. Even the classical Newton integral is nonconstructive
in a serious way.

If we know in advance that F ′(x) = f (x) everywhere, then certainly we can
“construct” the value of the integral by using the formula∫ b

a
f (x)dx= F(b)−F(a).

But even if we are assured that f is a derivative of some function, but we are
not provided that function itself, then there may be no constructive method of
determining either the value of the integral or the antiderivative function itself.
This may surprise some calculus students since much of an elementary course is
devoted to various methods of finding antiderivatives.

“The . . . solution to the primitive problem might go something like this: First,
get the right function. Then, show it has the derivative you were searching
for.

Now try to ignore the fact that this . . . is probably the most powerful method

of integration known and, in practice, has successfully computed more an-

tiderivatives than all other solutions combined. Consider instead how hard

it is to “guess” the antiderivative. For example, try to find the integral of
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sinx/x. Well, ok you might be able to “guess” some sort of infinite series

solution. But things get worse than this. Dougherty and Kechris [21] have

shown (using Y. Matiyasevich’s work on diophantine representation of recur-

sively enumerable sets . . . ) that there are derivatives which are analytically

expressible (in terms of an explicit formula using the basic elementary func-

tions sin, cos, exponents, absolute values, etc., and the elementary oper-

ations of multiplication, division, composition, and infinite sums) but whose

primitive is immensely complicated, so that for example, there is no way to

analytically express the primitive.”

—Chris Freiling, “HOW TO COMPUTE ANTIDERIVATIVES,” BULLETIN of SYMBOLIC LOGIC, Vol. 1, No. 3 (1995).

After Lebesgue’s constructive integral was presented there still remained this
problem. All bounded derivatives can be handled by his methods, but there exist
unbounded derivatives that are nonabsolutely integrable. What procedure (out-
side of our formal integration theory) would handle these?

Starting with the class of absolutely integrable functions, Arnaud Denjoy dis-
covered in 1912 that a series of extensions of this class could be constructed that
would eventually encompass all derivatives and, indeed, all nonabsolutely inte-
grable functions. He called his process totalization. Added to Lebesgue’s meth-
ods, totalization reveals exactly how constructive our integral is. His process com-
pletely catalogs the class of nonabsolutely integrable functions. In effect the in-
tegral that is discussed in this text could be (and has been) called the Denjoy

integral.

6.14.1 Integration method

If we wish to construct an integral, as distinct from describing one in a noncon-
structive manner [e.g., this is the case for the Newton integrals and the Henstock-
Kurzweil integral] we need a language that will help outline the procedure. We
have already accumulated a few constructive ideas in this text which we should
review first.

We might use the symbol Js to denote a starting point in integration theory that
uses just the step functions. The integral of any step function is easy to compute
as a finite sum. By taking uniform limits of step functions we can compute the
integral of all regulated functions. We might write Jsu to indicate the uniform limit
step. Then the integral of any regulated function is available as a limit of some
sequence of integrals, each of which we can compute as a finite sum. That still
does not go far enough. So we might consider monotone nondecreasing limits (as
we did in Section 4.14). The symbol Jsu↑ would then indicate this new procedure.
Naturally we can then consider monotone nonincreasing limits. The symbol Jsu↑↓
could then indicate this new procedure. In fact, we know that we have by now
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arrived at a constructive procedure in four steps that encompasses all Lebesgue
integrable functions.

Can we go further? Additional uniform limits or additional monotone limits do
not progess us any further, but there are other constructive extension procedures
that do. To describe them we adopt the following notation and language.

Definition 6.44 By an integration method we shall mean a class J of locally inte-

grablea functions f : R→ R with these properties.

1. If f : R→ R is zero everywhere then f belongs to J .

2. If f ∈ J and I is a compact interval then fχI also belongs to J .

3. If f :R→R is a function for which fχ[a,b] and fχ[b,c] both belong to J , then
so too does fχ[a,c].

ai.e., functions that are integrable on every compact interval [a,b].

Although it is not part of the definition, our interest is in integration methods
(i.e., classes of locally integrable functions) for which the integral is somehow
constructible. For example, the class R of all locally Riemann integrable functions
and the class L of all locally Lebesgue integrable functions are of this type and
can be considered constructive, as too is the regulated integral of Chapter 1. Each
of the varieties of Newton integral are of this type, but would not be described as
constructive.

Definition 6.45 Let f : R→ R and let J be an integration method. Then a point

x0 is said to be an J -singular point of f if there exist arbitrarily small compact

intervals I containing the point x0 such that fχI does not belong to J .

The set of all J -singular points of a function f is clearly closed. Moreover, if
I is a compact interval that contains no singular points of f then necessarily fχI

must belong to J . (This is Exercise 354.)

Exercise 354 Let f : R→ R and let J be an integration method. Suppose that I

is a compact interval that contains no J -singular points of f . Show that fχI must

belong to J . Answer

6.14.2 Cauchy extension

Suppose that we are given an integration method J . We construct a larger class
JC of integrable functions from J by the following extension process usually at-
tributed to Cauchy. His extension process is normally applied to the class R of all
locally Riemann integrable functions. One writes R C for the extended class of all
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functions that have “improper” Riemann integrals on each compact interval. Cal-
culus students will certainly remember the definition. For readers not schooled in
such matters R C is defined by the following general definition.

Definition 6.46 Let J be an integration method. Then JC denotes the class of

all locally integrable functions f : R → R for which each J -singular point of f is

isolated in the set of singular points.

One needs to be sure that the class of functions JC so defined has all three
properties of Definition 6.44. This is easy to show.

The definition could be formulated (and should be formulated) without refer-
ence to the entire class of locally integrable functions. We prefer to express it as
a lemma.

Lemma 6.47 Let J be an integration method. Then a function f :R→R belongs

to the class JC if and only if

1. The set of J -singular points of f is finite in any compact interval [a,b].

2. For each compact interval [a,b] if a or b is a singular point but (a,b) contains

no singular points then the limit

lim
s→0+, t→0+

∫ b−t

a+s
f (x)dx

exists.

The Cauchy extension property from Exercise 352 shows us that any function
satisfying these two properties would have to be locally integrable and that the
value of the integral of any f in JC can, in all cases, be constructed from the
values of the integrals of functions in J . For example if [a,b] contains no singular
points then we already know the value of the integral

∫ b
a f (x)dx because fχ[a,b]

is in J . On the other hand if either endpoint of [a,b] is a singular point and (a,b)

contains no singular points then fχ[a,b] is not in J , but the value of the integral is
determined from ∫ b

a
f (x)dx= lim

s→0+, t→0+

∫ b−t

a+s
f (x)dx.

Each of these integrals is determined by J because the interval [a+ s,b− t] con-
tains no singular points. Similar arguments show that the integral of any f in JC

on any compact interval is computable from the integrals of functions in J .
Thus not only is the class JC constructible directly from the class J but the

value of the integral of any f in JC can be constructed from the values of the
integrals of function in J .
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6.14.3 Harnack extension

There is one more extension procedure that we shall apply to an integration
method J . We construct a larger class JCH of integrable functions from J by the
following extension process usually attributed to Harnack. This method (as we ex-
press it) includes the Cauchy extension as a special case. The Cauchy extension
used finite sets of singular points; we extend this to certain closed sets of singular
points and add some more assumptions.

If f : R→ R and (a,b) is an open interval that contains no J -singular points
of f , then we recall that fχI belongs to J for any compact interval I ⊂ (a,b). Thus
we can define, for any such interval (a,b),

‖ f‖(a,b) = sup

{∣

∣

∣

∣

∫ d

c
f (x)dx

∣

∣

∣

∣

: [c,d]⊂ (a,b)

}

.

Definition 6.48 Let J be an integration method. Then JCH denotes the class of

all locally integrable functions f : R→ R for which

1. fχE is locally Lebesgue integrable, where E is the set of all J -singular
points.

2. For each compact interval [a,b] the series

∞

∑
k=1

‖ f‖(a,b)∩(ak,bk) < ∞

where {(ak,bk)} is the sequence of component intervals of the open set

R\E.

Again one needs to be sure that the class of functions JCH so defined has all
three properties of Definition 6.44. This, too, is easy to show.

Note that the way we have defined this

J ⊂ JC ⊂ JCH .

This is so because the conditions of the definition are trivially satisfied if the set
E of all J -singular points has no accumalation points. In that case fχE is cer-
tainly locally Lebesgue integrable (it is zero a.e.) and the series in the definition
converges (there are only finitely many terms).

Again the definition can be formulated without reference to the entire class of
locally integrable functions. We can express it as a lemma.
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Lemma 6.49 Let J be an integration method. Then a function f :R→R belongs

to the class JCH if and only if

1. fχE is locally Lebesgue integrable, where E is the set of all J -singular
points.

2. For each compact interval [a,b] if a or b is in E but (a,b)∩E = /0 then the

limit

lim
s→0+, t→0+

∫ b−t

a+s
f (x)dx

exists.

3. For each compact interval [a,b] the series

∞

∑
k=1

‖ f‖(a,b)∩(ak,bk) < ∞

where {(ak,bk)} is the sequence of component intervals of the open set

R\E.

The Cauchy extension property from Exercise 352 and the Harnack extension
property of Exercise 353 together show us that any function satisfying these four
properties would have to be locally integrable. The value of the integral of any f

in JCH on any compact interval [a,b] can be constructed from the values of the
integrals of functions in J .

For example (as before) if [a,b] contains no singular points then we already
know the value of the integral

∫ b
a f (x)dx because fχ[a,b] is in J . On the other hand

if either endpoint of [a,b] is a singular point and (a,b) contains no singular points
then (again as before) fχ[a,b] is not in J , but the value of the integral is determined
from ∫ b

a
f (x)dx= lim

s→0+, t→0+

∫ b−t

a+s
f (x)dx.

Each of these integrals is determined by J because the interval [a+ s,b− t] con-
tains no singular points.

Let [a,b] be an interval that contains points of E. Let {(ak,bk)} be the se-
quence of component intervals of (a,b)\E. We know that fχ[ak,bk] is in JC so we
can compute the value of the integral∫ bk

ak

f (x)dx

from the values we know from J . But we also know that
∞

∑
k=1

‖ f‖[ak,bk] < ∞.
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Consequently, by the Harnack extension property (Exercise 353),∫ b

a
f (x)dx=

∫ b

a
f (x)χK(x)dx+

∞

∑
k=1

∫ bk

ak

f (x)dx.

Thus the class JCH is constructible directly from the class J and the value of
the integral of any f in JCH can be constructed from the values of the integrals of
functions in J .

6.14.4 Transfinite sequence of extensions of the integral

We can now describe the procedure used by Denjoy to provide a constructive
analysis of the nonabsolutely integrable functions. We start with L , the class of all
locally Lebesgue integrable functions. We know that the integral for all functions in
L can be constructed (either using measure theory or using monotone sequences
of step functions). Consequently if we set

L0 = L and L1 = LCH
0

we obtain a larger class of locally integrable functions, a class whose integrals
can be constructed from L using the Cauchy-Harnack procedure. Note that all
functions in L1 \L0 are nonabsolutely integrable on some compact interval. The
procedure continues inductively setting

Ln+1 = LCH
n (n= 0,1,2,3, . . .).

The families

L = L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ L4 . . .

form larger and larger classes of locally integrable functions, each a proper exten-
sion of the one before. We can also define

Lω =
∞⋃

n=1

Ln

which, it can be shown, is larger than each of the members in the sequence. The
Cauchy-Harnack extension procedure continues to produce proper extensions so
that one can also define

Lω+1 = LCH
ω , Lω+2 = LCH

ω+1, Lω+3 = LCH
ω+2, . . .

in the same way. This process is made more formally correct by invoking the
transfinite ordinal numbers.

6.14.5 The totalization process

A full account of the totalization process of Denjoy requires use of the countable
ordinal numbers, briefly defined as follows. A well-ordered set is a totally ordered3

3A set X equipped with a partial order relation ≺ is totally ordered if for all distinct x, y ∈ X either
x≺ y or y≺ x.
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set all of whose nonempty subsets have a minimal element. The existence of
well-ordered uncountable sets is guaranteed only by appealing to some logical
principle (usually Zorn’s Lemma or the Axiom of Choice).

Definition 6.50 The countable ordinals are defined to be an uncountable well-

ordered set Ω such that the set of predecessors

{η ∈ Ω : η ≺ ξ}
of any element ξ ∈ Ω is countable and every countable subset of Ω has an upper

bound. The first element of Ω is labelled as 0.

For a proof that such a well-ordered set exists and for the properties of ordinals
the interested reader is encouraged to study further. An excellent resource on this
and other set-theoretic topics needed by analysts is K. Ciesielski [16]. But this
brief description is enough for us to proceed.

Theorem 6.51 (Denjoy) Let L denote the collection of all locally Lebesgue inte-

grable functions and letHK denote the collection of all locally Henstock-Kurzweil

integrable functions. Write, for countable ordinals ξ,

L0 = L , Lξ =





⋃
η≺ξ

Lη





CH

, and LΩ =
⋃

ξ∈Ω

Lξ .

Then

HK = LΩ.

Proof. The way that we have defined the extension procedure CH guarantees
thatHK ⊃LΩ. Thus we need to show that if f is locally integrable then f belongs
to Lξ for some countable ordinal ξ. Fix such a functon f .

For each countable ordinal ξ we can write Eξ for the closed set of Lξ-singular
points of f . This gives us a decreasing transfinite sequence of closed sets {Eξ}.
There are three possibilities that occur to us:

1. Eξ = /0 for some ordinal ξ,

2. The sequence stabilizes, i.e., all Eξ = E 6= /0 for large enough ξ, or

3. Every member of the sequence is distinct.

The first possibility is the one that we want, since if Eξ = /0 for some ordinal ξ,
then f must belong to Lξ. That would complete the proof.

Let consider possibility (3). If every member is distinct then we have produced
a strictly decending uncountable and transfinite sequence of closed sets. This is
impossible. If there were such a sequence we could find a sequence of points
{xξ} so that xξ ∈ Eξ but xξ 6∈ Eη for any ordinal η preceding ξ. Corresponding
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then to each such point we can find an open interval (aξ,bξ) with rational end-
points containing that point and not containing any points from Eη for any ordinal
η preceding ξ. That would produce an uncountable collection of rational numbers,
which is not possible.

Finally let us dispense as well with possibility (2). If the sequence stabilizes,
i.e., all Eξ = E for large enough ξ, then we shall apply Theorem 6.40 to the
nonempty closed set E. Since f is locally integrable, there is a nonempty portion
E ∩ (a,b) satisfying the conclusion of that theorem. Thus fχ[a,b] would necessar-
ily belong to Lξ

CH and hence to Lη for all large enough η. The interval (a,b)
can’t therefore contain any Lη-singular points. But it should contain every point of
E ∩ (a,b). Thus again we have an impossibility.

Do we need all the countable ordinals? One might ask whether all of this
transfinite induction is really necessary to capture the integral. Denjoy showed
that even the classical Newton integral cannot be constructively so described by
less than the totality of all the countable ordinals. More precisely, if N denotes
the class of all functions locally integrable in the classical Newton sense (i.e., all
derivatives) then while N ⊂ LΩ there is no countable ordinal ξ for which N ⊂ Lξ.
For modern treatments and extensions of Denjoy’s ideas see [21] and [?].

6.15 The Perron-Bauer program

The transfinite procedure of Denjoy solves the problem of inverting all derivatives,
but in a way that was not at the time considered completely satifactory. Transfinite
methods were often used at the time, but it was invariably asked whenever such
methods appeared whether a proof could also be constructed without an appeal
to transfinite induction.

Thus it was natural that some authors took up the task of defining and study-
ing an integral that would accomplish the same as the Denjoy integral, but in a
much simpler way. It was this that led Perron4 in 1914 and Bauer 5 shortly after to
propose an integral that would avoid most of the complexities of Denjoy’s program.

6.15.1 Major and minor functions

The Perron-Bauer idea for capturing the classical Newton integral was to employ
the method of major and minor functions. This method appears as well in other
parts of mathematics (notably differential equations and potential theory). Applied
to the primitive problem it gives a purely formal solution.

4O. Perron, Über den Integralbelgriff, Sitzber’, Heidelberg Akad. Wiss. Abt. A 16 (1914), 1–16.
5H. Bauer, Der Perronschen Integralbegriff und seine Beziehung zum Lebesgueschen,

Monatsch. Math. Phys. 26(1915), 153–198.
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We should, perhaps, not be too quick to dismiss this, as the Henstock-Kurzweil
method is also largely formal. We can neither construct major and minor functions,
nor construct full covers that solve the primitive problem in general. On the other
hand the Henstock-Kurzweil method has proven itself to offer a flexible and coher-
ent account of integration theory. The Perron method is rather more awkward.

Definition 6.52 Let f : [a,b]→R. A functionU : [a,b]→R is said to be a Perron-

major function for f if

DU(x)≥ f (x)

at every point of the interval. Similarly L : [a,b]→ R is said to be a Perron-minor

function for f if

DF(x)≤ f (x)

at every point of the interval.

Exercise 356 shows that the major functions dominate the minor functions.
For the purposes of developing properties of the Perron integral it is useful to
allow exceptional sets. This does not change the integral but it does make some
of the proofs easier to construct. Since we intend merely to show that the Perron
integral is equivalent to our integral (i.e., the Henstock-Kurzweil integral) this is
not a concern to us. Exercises 357–359 give some of the other variants that have
appeared in the literature.

Exercise 355 Suppose that F : [a,b]→R is everywhere differentiable. Show that

F is both a Perron-major function a Perron-minor function for F ′.

Exercise 356 Let f : [a,b]→R, letU : [a,b]→R be a Perron-major function for

f and let L : [a,b]→ R be a Perron-minor function for f . Show that

[L(b)−L(a)]≤ [U(b)−U(a)].

Answer

Exercise 357 Let f be defined at every point of the interval [a,b] with infinite

values allowed. Suppose thatU , L : [a,b]→ R satisfy

−∞ 6= DU(x)≥ f (x) and +∞ 6= DF(x)≤ f (x)

at every point of the interval. Show that

[L(b)−L(a)]≤ [U(b)−U(a)].

Answer

Exercise 358 Let f be defined at every point of the interval [a,b] with infinite

values allowed. Suppose thatU , L : [a,b]→ R satisfy

DU(x)≥ f (x), DF(x)≤ f (x) for a.e. x and −∞ < DU(x)≤ DF(x)<+∞
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for all but countably many points x in that interval. Show that

[L(b)−L(a)]≤ [U(b)−U(a)].

Answer

Exercise 359 Let f be defined at every point of the interval [a,b] with infinite

values allowed. Suppose that U , L : [a,b] → R are continuous functions having

σ-finite variation on [a,b] and that they satisfy

DU(x)≥ f (x), DF(x)≤ f (x)

for a.e. x. Suppose further that the set of values assumed byU at the points where

U ′(x) = −∞ has measure zero, and that the set of values assumed by L at the

points where L′(x) = +∞ has measure zero. Show that

[L(b)−L(a)]≤ [U(b)−U(a)].

Answer

6.15.2 Major and minor functions applied to other integrals

With this definition we can quickly establish the following two suggestive theorems,
relating the existence of major and minor functions to the Lebesgue and to the
Henstock-Kurzweil integrals.

There is an immediate connection between major and minor functions and
upper and lower integrals.

Theorem 6.53 Let f : [a,b]→ R and suppose that U is a Perron-major function

for f and L is a Perron-minor function for f . Then

[L(b)−L(a)]≤
∫ b

a
f (x)dx≤

∫ b

a
f (x)dx≤ [U(b)−U(a)].

Proof. Let ε > 0. If U is a major function for f then the collection

β =

{

([u,v],w) :
U(v)−U(u)

v−u
> f (w)− ε

}

is a full cover for the interval [a,b]. Take any partition π ⊂ β of the interval [a,b]
and observe that

[U(b)−U(a)] = ∑
[u,v],w)∈π

[U(v)−U(u)]>

(

∑
[u,v],w)∈π

f (w)(v−u)

)

− ε(b−a).

Since this is true for all such partitions π
∫ b

a
f (x)dx≤ [U(b)−U(a)]+ ε(b−a).

The right-hand inequality in the theorem follows. The other inequality is similar.



292 CHAPTER 6. NONABSOLUTELY INTEGRABLE FUNCTIONS

We can characterize the Lebesgue integral by the existence of absolutely con-
tinuous major and minor functions. This theorem follows easily from the Vitali-
Carathéodory theorem (see Section 4.14.6).

Theorem 6.54 Let f : [a,b]→ R. Then f is Lebesgue integrable on [a,b] if and

only if, for every ε > 0, there are functions L,U : [a,b]→R with these properties:

1. U is a Perron-major function for f .

2. L is a Perron-minor function for f .

3. U and L are absolutely continuous in the Vitali sense on [a,b].

4. [U(b)−U(a)]− [L(b)−L(a)]< ε.

If these conditions hold then

[U(b)−U(a)]− ε <
∫ b

a
f (x)dx< [L(b)−L(a)]+ ε.

6.15.3 The Perron “integral”

We are now in a position to define the Perron integral and show that it is equiv-
alent to the Henstock-Kurzweil integral. We have placed quotation marks about
the word “integral” out of respect for Denjoy who did not consider that the Per-
ron method deserved the credit of being called a method of integration and used
every occasion to attack Perron’s creation with enthusiasm.

Theorems 6.53 and 6.54 suggest that the following definition would be a plau-
sible attempt to base an integration theory on the notion of major and minor func-
tions. It ignores, however, the difficulty of producing even a single pair of major
and minor functions except in special situations. Note that we have chosen to use
continuous major and minor functions in this presentation.

Definition 6.55 Let f : [a,b]→R. Then f is said to be Perron integrable on [a,b]

if for every ε > 0, there are functions L,U : [a,b]→ R with these properties:

1. U is a continuous Perron-major function for f .

2. L is a continuous Perron-minor function for f .

3. [U(b)−U(a)]− [L(b)−L(a)]< ε.

If these conditions hold then the value of the integral is defined to be

(P )
∫ b

a
f (x)dx= inf{[U(b)−U(a)] :U a continuous major function for f}

= sup{[L(b)−L(a)] : L a continuous minor function for f}.
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Because of Exercise 355 and Theorems 6.53 and 6.54 we have immediately
the following situation:

Theorem 6.56 The Perron integral includes both the Lebesgue integral and the

classical Newton integral and is itself included in the Henstock-Kurzweil integral.

6.15.4 Hake-Alexandroff-Looman theorem

Hake in 1921 [1] used the constructive definition of Denjoy’s integral to show that
every Denjoy integrable function is also Perron integrable. Our proof below is iden-
tical. The opposite direction (showing that every Perron integrable function is Den-
joy integrable) was obtained by P. Alexandroff [1;2] and (independently). Looman
[4] For us this latter direction is more transparent since, as we already have seen,
the equivalent Henstock-Kurzweil integral is easily shown to include the Perron
integral.

Lemma 6.57 Let P denote the collection of all locally Perron integrable functions.

Then

PCH = P .

Proof. For the moment the reader is referred to Saks [60, pp. 247–250] for a proof.
Lemma 3.1 on page 247 there handles the Cauchy extension and Lemma 3.4
on page 249 handles the Harnack extension. [A later version of the present
manuscript may include some or all of these details; for now the reader is be-
ing sent back to Saks.]

Theorem 6.58 (Hake-Alexandroff-Looman) The Perron integral is equivalent to

the Henstock-Kurzweil integral (and hence also to the Denjoy integral and the

general Newton integral).

Proof. Because of Theorem 6.56 we can write

L ⊂ P ⊂HK

and hence by Lemma 6.57, inductively, for all countable ordinals ξ,

Lξ ⊂ PCH = P .

It follows from Theorem 6.51 that HK = LΩ ⊂ P . Consequently HK = LΩ = P
as stated.

6.15.5 Marcinkiewicz theorem

Determining the integrability of a function by the Perron definition requires pro-
ducing a multitude of major and minor functions. A remarkable observation of
Marcinkiewicz [45] reveals that the finding of a single pair of continuous major
and minor functions for a function f is sufficient to deduce the integrability of f .
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This observation supports Denjoy’s attack on the Perron integral by revealing the
essential difficulty of producing any major and minor functions in general.

Theorem 6.59 (Marcinkiewicz) Let f : [a,b]→ R be a measurable function that

has at least one continuous major function and one continuous minor function.

The f is integrable on [a,b].

Proof. For the moment the reader is referred to Saks [60, p. 253] for a proof.
The proof there shows that f would have to be Perron integrable on [a,b] if such
a pair of major and minor functions exist. We have already shown that “Perron
integrable” and “integrable” are identical. [An easier proof will be likely inserted
here later on.] See also Sarkhel [61] and Tolstov [67].

6.16 Integral of Dini derivatives

If F is a continuous function on an interval [a,b] and has a finite Dini derivative,
say D+F(x), at each point then f is determined up to an additive constant by that
Dini derivative. One suspects that

F(x)−F(a) =
∫ x

a
D+F(t)dt

but this is not necessarily true and even when it is true we need some further
methods to handle.

6.16.1 Motivation

We require a variant6 on the Cousin covering lemma that is more appropriate for
handling the Dini derivatives of continuous functions.

Full covers are particularly suited to describing properties of the ordinary
derivative. For example if DF(x)> r then the covering relation

β = {(I,x) : ∆F(I)> rλ(I)

has the property that for some δ> 0, if x∈ I and λ(I)< δ then necessarily (I,x)∈
β. Indeed DF(x)> r if and only if β has this property.

We conclude this chapter by determining how to recover a function from one
of its Dini derivatives and so will require a one-sided analogue. The simplest ver-
sion could come from the observation that D+F(x)> r if and only if the covering
relation

β = {(I,x) : ∆F(I)> rλ(I)

has the property that for some δ > 0, if 0< h< δ then necessarily ([x,x+h],x)∈
β.

6Due to John Hagood [?], [?].
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But in fact our covering relation needs to be designed to handle the upper Dini
derivative, not the lower. For that the description is more delicate: D+F(x) > r if
and only if the covering relation

β = {(I,x) : ∆F(I)> rλ(I)}
has the property that for any ε > 0, there is at least one value of h with 0< h< ε

for which ([x,x+ h],x) ∈ β. We strengthen this by insisting that F is continuous.
In that case, if we found h so that

F(x+h)−F(x)

(x+h)− x
> r,

notice that there must be a δ > 0 so that
F(x′+h)−F(x)

(x′+h)− x
> r

for every value of x′ in the interval [x−δ,x].

Definition 6.60 Let K be a compact set with endpoints a= infK and b= supK.

A covering relation β is said to be a quasi-Cousin cover of K provided that

1. There is at least one pair ([a,d],a) ∈ β with a< d ≤ b.

2. For every a < x < b, x ∈ K there is a δ > 0 so that there is at least one

x< d ≤ b for which all pairs ([c,d],x) ∈ S whenever x−δ < c≤ x.

3. There is a δ > 0 so that all pairs ([c,b],b) ∈ β whenever b−δ < c< b.

6.16.2 Quasi-Cousin covering lemma

Even though the notion of a quasi-Cousin cover is much weaker than that of a full
cover the covering lemma generalizes.

Lemma 6.61 (Quasi-Cousin covering lemma) Let β be a quasi-Cousin cover

of a compact set K with endpoints a = infK and b = supK. Then β contains a

subpartition π so that

K ⊂
⋃

(I,x)∈π

I ⊂ [a,b].

Proof. Let us assume first that K = [a,b]. Let E be the set of all points z, with
b≥ z> a and with the property that β contains a partition π of [a,z].

Argue that (i) E 6= /0, (ii) if supE = t then t cannot be less than b, (iii) if supE =

b then b ∈ E.
We know that (i) is true since there is at least one pair ([a,d],a) ∈ β with

a< d ≤ b and so d ∈ E. Thus we may set t = supE and be assured that a< d ≤
t ≤ b. To see (ii) note that it is not possible for t < b for if so then there is a δ > 0

and d′ > t for which all pairs (t, [c,d′]) ∈ β with t− δ < c ≤ t. But that supplies
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a point t ′ ∈ (c− δ,c]∩E and the partition of [a, t ′] can be enlarged by including
(t, [t ′,d′]) to form a partition of [a,d′]; thus d′ ∈ E. But this violates t = supE.

Finally for (iii) if t = b and yet b 6∈ E then, repeating much the same argument,
there is a δ > 0 for which all pairs (b, [c,b]) ∈ β with b− δ < c < b. But that
supplies a point t ′ ∈ (b− δ,b)∩E and the partition for [a, t ′] can be enlarged by
including (b, [t ′,b]) to form a partition π for [a,b]. This shows that b ∈ E after all.

Now let us handle the general case for an arbitrary compact set K ⊂ [a,b].
Let G= (a,b)\K and

β1 = {(I,x) : x ∈ I and I ⊂ G}.
Since β is a quasi-Cousin cover of K we can check that β∪β1 is a quasi-Cousin
cover of [a,b]. By the first part of the proof there is a partition π ⊂ β∪β1 of [a,b].
Remove those elements of π that do not belong to β to form a subpartition with
exactly the required properties.

The proof contains explicitly the statement of the corollary:

Corollary 6.62 Let β be a quasi-Cousin cover of a compact interval [a,b]. Then

β contains a partition of [a,b] (although not necessarily of other subintervals of

[a,b]).

Exercises

Exercise 360 (variant on the quasi-Cousin covering) Let K be a compact set

and β a covering relation. Suppose that, for each x ∈ K, there are s, t > 0 so that

all pairs

([x′,x+ s],x) ∈ β

whenever x− t ≤ x′ ≤ x. Show that β contains a subpartition π for which

K ⊂
⋃

(I,x)∈π

I.

Exercise 361 Let f :R→R be continuous at each point of an open interval (a,b)

and suppose that D+ f (x)> m for each x ∈ (a,b). Then f (d)− f (c)> m(d− c)

for each [c,d]⊂ (a,b).

6.16.3 Estimates of integrals from derivates

As a warm-up to our theorem about Dini derivatives let us show that the ordinary
derivates are easily handled.
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Lemma 6.63 Let F , f : [a,b]→ R. If F is continuous at a and b and

DF(x)≥ f (x)

at every point of (a,b), then
∫ b

a
f (x)dx≤ F(b)−F(a).

Proof. Let ε > 0. Take the covering relation

β1 = {(I,x) : ∆F(I)≥ ( f (x)− ε)λ(I)}
and

β2 = {(I,x) : x= a or b, x ∈ I and |∆F(I)|+ | f (x)|λ(I)< ε}.
Check that β= β1∪β2 is a full cover of [a,b]. At the endpoints a or b the continuity
of F needs to be used in the verification, while at the points in (a,b) the inequality
DF(x)≥ f (x) is used.

Any partition π ⊂ β of the interval [a,b] will satisfy

∑
(I,x)∈π

f (x)λ(I)≤ ∑
(I,x)∈π

[∆F(I)+ ελ(I)]+2ε = F(b)−F(a)+ ε(2+b−a).

This is true for all partitions π from this β and all ε > 0 and so the conclusion that∫ b

a
f (x)dx≤ F(b)−F(a)

now follows.

Lemma 6.64 Let F , f : [a,b]→ R. If F is continuous at a and b and

DF(x)≤ f (x)

at every point of (a,b), then∫ b

a
f (x)dx≥ F(b)−F(a).

Proof. Apply Lemma 6.63 to the functions −F and − f .

6.16.4 Estimates of integrals from Dini derivatives

For Dini derivatives there is a weaker version of Theorem 6.63 available using sim-
ilar arguments (but employing quasi-Cousin covers as well as full covers). Note
that this weaker version uses lower and upper rather than upper and lower inte-
grals; in particular no corollary can be derived asserting the integrability of the
Dini derivative (indeed it may not be integrable).
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Theorem 6.65 Suppose that F : [a,b] → R is continuous and that g is a finite-

valued function. If D+F(x)≥ g(x) at every point a< x< b, then,

F(b)−F(a)≥
∫ b

a
g(x)dx. (6.13)

If D+F(x)≤ g(x) at every point a< x< b, then

F(b)−F(a)≤
∫ b

a
g(x)dx. (6.14)

Proof. Let ε > 0. Take the covering relation β1 of all pairs ([x,y],z) with

∆F([x,y])≥ ( f (z)− ε)λ([x,y])

and β2 of all pairs ([a,y],a) and ([x,b],b) for which

∆F([a,y])− f (a)λ([a,y])>−ε

and

∆F([x,b])≥ f (b)λ([x,b])− ε.

It is easy to verify that β = β1 ∪β2 is a quasi-Cousin cover of [a,b]. At the end-
points a or b the continuity of F needs to be used in the verification, while at the
points in (a,b) the inequality D+F(x)≥ g(x) is used.

This may not seem too much of a help since the integral is defined by full
covers, not by quasi-Cousin covers. But let β3 be any full cover of [a,b]. Check
that, as defined, β3 ∩ β must be a quasi-Cousin cover of [a,b]. Thus there is at
least one partition π from β3 that is also in β. For that partition a familiar argument
gives us

∑
(I,x)∈π

f (x)λ(I)≤ ∑
(I,x)∈π

[∆F(I)+ ελ([x,y])]+2ε = F(b)−F(a)+ ε(2+b−a).

Note that this means any full cover of [a,b] contains at least one partition π with
this property. Thus, while we can say nothing about the upper integral, we certainly
can assert that the lower integral must always be lesser than F(b)−F(a)+ε(2+

b−a) and from this the theorem follows.

As a consequence of this theorem we observe that if an everywhere finite
function g is assumed to be integrable on [a,b] and lies between the two derivates
then an integral identity holds. The assumption that g is integrable cannot be
dropped here.

Corollary 6.66 Let F : [a,b]→ R be continuous and g : [a,b]→ R be integrable

on [a,b] and suppose that

D+F(x)≤ g(x)≤ D+F(x)

at every point x on [a,b]. Then

F(b)−F(a) =
∫ b

a
g(x)dx.
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Exercises

Exercise 362 Suppose that F : R → R is a continuous function and that

D+F(x)> r at every point of an interval [a,b]. Verify that the covering relation

β = {(I,x) : ∆F(I)> rλ(I)}
satisfies the first two conditions (but not necessarily the third) in Definition 6.60.

Exercise 363 Continuing the previous exercise, let ε > 0 and let

β′ = {([x− t,x)],x) : |F(x− t)−F(x)|< ε}.
Show that β∪β′ is a quasi-Cousin cover of [a,b].

Exercise 364 Show that every full cover of an interval [a,b] is also a quasi-Cousin

cover for any compact subset of [a,b].

Exercise 365 Let f : R → R and suppose that the function D+ f (x) is finite-

valued and continuous at a point x0. Show that f is differentiable at x0.

6.17 Appendix: Baire category theorem

Students working on the proof of Theorem 4.8 and some of the material of Chap-
ter 6 will need to understand the Baire category theorem. Here is a full exposition
suitable for most courses of instruction or review.

6.17.1 Meager sets

A set of real numbers is countable if it can be expressed as a countable union of
a sequence of finite sets. If I is an interval and E is a countable set then I \E is
dense in I.

This generalizes to meager sets. A of real numbers is meager if it can be
expressed as a countable union of a sequence of nowhere dense sets. If I is an
interval and E is a meager set then I \E is dense in I. The proof for meager sets
and for countable sets is exactly the same, using the nested interval argument.
For example: if En is a sequence of nowhere dense sets [finite sets] inside an
interval I, then take any subinterval (c,d)⊂ I. There must be a nested sequence
of intervals with [cn,dn]⊂ I and [cn,dn]∩En = /0. There is a point that belongs to
all of the intervals and that point fails to belong to E =

⋃∞
n=1En. This shows that

I \E is dense in I.
The complement of the meager set E is said to be residual in I. Residual sets

are dense as we have just seen. This is usually described as the Baire category
theorem.
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6.17.2 Portions

If E is a closed set and (a,b) an open interval then

E ∩ (a,b)

is called a portion of E provided only that E∩(a,b) 6= /0. It is possible that a portion
could be trivial in that E∩(a,b) might contain only a single point of E; such a point
is said to be an isolated point of E and we should be alert to the possibility that a
portion might merely contain such a point.

6.17.3 Baire-Osgood Theorem

Our interest is in situations where E, E1, E2, E3, . . . is a sequence of closed sets
and we wish to be assured that one of the sets En contains a portion of E. This re-
quires a compactness argument; the nested interval property is particularly suited
to this problem.

Exercise 366 Suppose that E and E1 are nonempty closed sets and that E1 con-

tains no portion of E. Then there must exist a portion

E ∩ (a,b)

so that E1∩ (a,b) = /0. Answer

Exercise 367 Suppose that E, E1, E2, . . . , En are nonempty closed sets and that

E ⊂
n⋃

k=1

Ek.

Show that at least one of the sets Ek must contain a portion of E. Answer

The Baire-Osgood theorem, one of the basic tools in advanced analysis, takes
this exercise and extends the result to infinite sequences of closed sets.

Exercise 368 (Baire-Osgood Theorem) Suppose that E, E1, E2, . . . , En, . . . are

nonempty closed sets and that

E ⊂
∞⋃

k=1

Ek.

Then at least one of the sets Ek must contain a portion of E. Answer

Exercise 369 On occasions one will need this theorem without having to assume

that E is closed. Show that theorem remains true if E =
⋂∞

j=1G j where {G j} is

some sequence of open sets. Answer

Exercise 370 If the closed set E is contained in a sequence of sets {En} but we

cannot be assured that they are closed sets then a simple device is to replace
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them by their closures. [The closure of a set E is the set E defined as the smallest

closed set containing E.] If we do this show that the conclusion of the theorem

would have to be, not that some set En contains a portion of E, but that some set

En is dense in a portion of E.

6.17.4 Language of meager/residual subsets

The exploitation of the Osgood-Baire theorem can often be clarified by using the
language of meager and residual subsets. If E is a closed set7 of real numbers
then a meager subset is one that represents a “small,” insubstantial part of E; what
remains after a meager subset is removed would be called a residual subset. It
would be considered a “large” subset since only an insubstantial part has been
removed. Residual sets are dense, but more than dense. A countable intersection
of residual sets would still be dense.

Definition 6.67 Let E be a closed set. A subset A of E is said to be a meager
subset of E provided that there exists a sequence of closed sets {En} none of

which contains a portion of E so that

A⊂
∞⋃

n=1

En.

Definition 6.68 Let E be a closed set. A subset A of E is said to be a residual
subset of E provided that the complementary subset E \A is a meager subset of

E.

7In this section the language is restricted to subsets of closed sets. In view of Exercise 369 all
of this would apply equally well to subsets of Gδ sets, that is sets that are intersections of some
sequence of open sets.
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Chapter 7

Integration in R
n

In this chapter we shall sketch a theory of integration for functions of several vari-
ables. This is just a sketch to illustrate that the methods developed in the text
extend without too much trouble to higher dimensions. The reader is, by now,
ready for a full treatment using any of the standard presentations but may find it
convenient to see a rapid account extending some of our techniques here.

The exercises do the technical work and, for the most part we have been
content to give references to where the techniques needed can be found. We
consider this final chapter more of a guide to thinking about this subject and the
exercises and discussions in the Answers section are more a dialogue than a
course of study.

7.1 Some background

We must assume the reader is familiar with the rudiments of analysis in the space
R
n. In particular these facts will be used.

• R
n is the collection of all n-tuples of real numbers x= (x1,x2, . . . ,xn).

• Addition in R
n is defined by

(x1,x2, . . . ,xn)+(y1,y2, . . . ,yn) = (x1+ y1,x2+ y2, . . . ,xn+ yn).

• Scalar multiplication in R
n is defined by

r(x1,x2, . . . ,xn) = (rx1,rx2, . . . ,rxn).

• Distances in R
n are defined by

‖(x1,x2, . . . ,xn)− (y1,y2, . . . ,yn)‖

=
√

(x1− y1)2+(x2− y2)2+ . . .(xn− yn)2.
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• The open ball with center x= (x1,x2, . . . ,xn) and radius r in R
n is

B(x;r) = {y : ‖x− y‖< r}.

7.1.1 Intervals and covering relations

By a closed interval in R we mean, of course, the set

I = [a,b] = {x : a≤ x≤ b}.
That set has two endpoints and the interior is the open interval (a,b) between
them. The symbol |I| denotes the length of I, i.e., |I|= b−a.

By an interval in R
2 we mean a product of two intervals in R. Thus the closed

rectangle

I = [a,b]× [c,d] = {(x,y) : a≤ x≤ b, c≤ y≤ d}.
That set has four vertices, (a,c), (b,c), (b,c), and (b,d). The symbol |I| denotes
the area of I, i.e., |I|= (b−a)(d−c) which is the product of the length and width
of the rectangle.

These ideas and notation extend without difficulty to any dimension greater
than two. By an interval in R

n we shall mean a cartesian product of one-
dimensional intervals. It will be a closed interval if it is a product of closed intervals.
Thus

I = [a1,b1]× [a2,b2]×·· ·× [an,bn]

is the set of points in R
n described by these inequalities:

{(x1,x2, . . . ,xn) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, . . . , an ≤ xn ≤ bn}.
This interval has 2n vertices. The symbol |I| denotes the n-dimensional volume of
I, i.e.,

|I|= (b1−a1)(b2−a2)(b3−a3) . . .(bn−an)

which is the product of the length of all the edges in the interval.
Two intervals are nonoverlapping if their intersection has no interior points.

Thus nonoverlapping intervals are either disjoint or else they meet only at some
boundary points. A packing is a finite covering relation

{(I1,x1), (I2,x2), (I2,x2), . . . , (Ik,xk)}
where each Ii is an interval and xi is a point in the corresponding interval Ii, and
distinct pairs of intervals Ii and I j do not overlap.

By a full interval cover of a set E ⊂ R
n we mean a covering relation β that

consists of pairs (I,x) again for which each I is an interval and x is a point in the
corresponding interval I, and which is full in the following (by now familiar) sense:
for each x ∈ E there is a positive δ(x) so that β contains every pair (I,x) for which
I is an interval containing x and contained in the open ball B(x;δ(x)).

Exercise 371 (additivity of the volume) Show that the n-dimensional volume is

an additive interval function, i.e., show that if J is a closed interval in R
n and π a
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packing for which

J =
⋃

(I,x)∈π

I

then

|J|= ∑
(I,x)∈π

|I|.

Answer

Exercise 372 (Cousin’s lemma) Show that if β is a full interval cover of a closed

interval J in R
n then there is a packing π ⊂ β for which

J =
⋃

(I,x)∈π

I.

Answer

7.2 Measure and integral

The measure theory and the integration are defined by means of full interval cov-
ers and packings. This is the analogue of the Riemann sums expression that was
available in dimension one for all of our integrals in the early chapters.

Definition 7.1 Let E ⊂ R
n and let f be a nonnegative real-valued function de-

fined on E. Then we define the upper integral∫
E
f (x)dx= inf

β
sup
π⊂β

∑
(I,x)∈π

f (x)|I|

where the supremum is with regard to all packings π ⊂ β where β is an arbitrary

full interval cover of E. We use also the notation

Ln(E) =
∫
E
dx

and refer to the set function Ln as Lebesgue measure in R
n.

The reader might well have expected a higher dimensional integral to look
more like the one-dimensional version. For example if f : R2 → R perhaps we
would expect an indefinite integral F : R2 → R defined as

F(x,y) =
∫ x

a

∫ y

b
f (s, t)dsdt.

But the theory is far better expressed by the set function

E →
∫
E
f (x)dx

and it is this idea and notation that we pursue.
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Note that if E is a bounded set then the upper integral could have been simply
stated as an interval function by noticing that∫

I
f (x)χE(x)dx=

∫
E
f (x)dx

for every interval I that contains E. Thus the theory could have been developed
by Riemann sums over partitions of intervals. We prefer to pass immediately to
the set version E → ∫

E f (x)dx which is closer to the mainstream of integration
theory.

We shall not introduce a lower integral (as might be expected) but we will
instead define what is meant by a Ln-measurable set and a Ln-measurable func-
tion. When E is a Ln-measurable set and a f is a Ln-measurable function then
the Lebesgue integral ∫

E
f (x)dx

will be defined to be the value∫
E
[ f (x)]+ dx−

∫
E
[ f (x)]− dx

provided this has a meaning (i.e., is not ∞−∞). Thus the upper integral will serve
us only as a tool that leads quickly to a formal expression for the value of the
Lebesgue integral and the Lebesgue measure.

7.2.1 Lebesgue measure in R
n

We use the special notion

Ln(E) =
∫
E
dx

and refer to this as n-dimensional Lebesgue [outer] measure on R
n. This is de-

fined for all subsets E of Rn as is the upper integral∫
E
f (x)dx

which is defined for all functions f that assign a nonnegative number at every
point of the set E.

We shall discover that for intervals Ln(I) = |I| so that Lebesgue measure is
an extension of the volume function from the class of closed intervals to the class
of all subsets of Rn. Some authors prefer to keep the same notation in which case
|E| is defined for all subsets of Rn as

|E|=
∫
E
dx.
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7.2.2 The fundamental lemma

The fundamental lemma that we need that describes the key property of the upper
integral and the measure is the following, seen already in its one-dimensional
version in Lemma 3.18. The same proof works here to give essentially the same
conclusion.

Lemma 7.2 Let E ⊂ R
n and let f , f1, f2, f3, . . . be a sequence of nonnegative

real-valued functions defined on E. Suppose that

f (x)≤
∞

∑
k=1

fk(x)

for every x ∈ E. Then ∫
E
f (x)dx≤

∞

∑
k=1

∫
E
fk(x)dx.

The two corollaries follow immediately and show that the set functions

E →
∫
E
dx

and

E →
∫
E
f (x)dx

are measures on R
n in the sense we make precise in Section 7.4 below.

Corollary 7.3 Let E, E1, E2, E3, . . . be a sequence of subsets of Rn. Suppose

that

E ⊂
∞⋃

k=1

Ek.

Then

Ln(E)≤
∞

∑
k=1

Ln(Ek).

Corollary 7.4 Let E, E1, E2, E3, . . . be a sequence of subsets of Rn. Suppose

that

E ⊂
∞⋃

k=1

Ek

and that f is a nonnegative function defined at least on the set
⋃∞

k=1Ek. Then∫
E
f (x)dx≤

∞

∑
k=1

∫
Ek

f (x)dx.

Exercise 373 Show, for all intervals I in R
n, that Ln(I) = |I|.
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Exercise 374 Let f and g be nonnegative functions on a set E ⊂ R
n and such

that f (x)≤ g(x) for all x ∈ E. Show that∫
E
f (x)dx≤

∫
E
g(x)dx.

Exercise 375 Let f be a nonnegative function on a set E ⊂ R
n and such that

r ≤ f (x)≤ s for all x ∈ E for some real numbers r and s. Show that

rLn(E)≤
∫
E
f (x)dx≤ sLn(E)

Exercise 376 Suppose that E1,E2 ⊂R
n are separated by open sets, i.e., there is

a disjoint pair of open sets G1 and G2 in R
n so that E1 ⊂ G1 and E2 ⊂ G2. Show

that ∫
E1∪E2

f (x)dx=
∫
E1

f (x)dx+
∫
E2

f (x)dx.

Exercise 377 Suppose that E1,E2 ⊂ R
n are separated, i.e.,

inf{‖e1− e2‖ : e1 ∈ E1, e2 ∈ E2}> 0.

Show that ∫
E1∪E2

f (x)dx=
∫
E1

f (x)dx+
∫
E2

f (x)dx.

Exercise 378 Suppose that E1,E2 ⊂R
n are separated by open sets, i.e., there is

a disjoint pair of open sets G1 and G2 in R
n so that E1 ⊂ G1 and E2 ⊂ G2. Show

that

Ln(E1∪E2) = Ln(E1)+Ln(E2).

Exercise 379 Show that ∫
E
f (x)dx= 0

if and only if f (x) is equal to zero for Ln-almost every x in E.

Exercise 380 Show that ∫
E∪N

f (x)dx= 0

for any set N for which Ln(N) = 0.
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7.3 Measurable sets and measurable functions

For the definition of measurability we can repeat our theory from earlier. We could
choose to generalize to higher dimensions by taking any one of the characteri-
zations of Corollary 4.30 and apply it in this setting. We choose here to take the
simplest definition.

Later on in Section 7.4 we take another of the six characterizations of mea-
surability in dimension one proved in that corollary.

Definition 7.5 A subset E of Rn is said to be Ln-measurable if for every ε > 0

there is an open set G with Ln(G)< ε and so that E \G is closed.

With only minor changes in wording we can prove, using the methods we
have already developed, that the usual properties of one-dimensional Lebesgue
measure are enjoyed also by Ln. Here is a fast summary.

• Let E1, E2, E3, . . . be a sequence of pairwise disjoint Ln-measurable sub-
sets of Rn and write E =

⋃∞
i=1Ei. Then, for any set A⊂ R

n,

Ln(A∩E) =
∞

∑
i=1

Ln(A∩Ei).

• The class of all Ln-measurable subsets of Rn forms a Borel family that
contains all closed sets and all Ln-measure zero sets.

• If E1 ⊂ E2 ⊂ E3 ⊂ . . . is an increasing sequence of subsets of Rn then

Ln

(

∞⋃
n=1

En

)

= lim
n→∞

Ln(En).

7.3.1 Measurable functions

Definition 7.6 Let E be a Ln-measurable subset of Rn and f a real-valued func-

tion defined on E. Then f is said to be Ln-measurable if

{x ∈ E : f (x)> r}
is a Ln-measurable subset of Rn for every real number r.

Definition 7.7 Let E be a Ln-measurable subset of Rn and f a Ln-measurable

function defined on E. Then the Lebesgue integral∫
E
f (x)dx

is be defined to be the value∫
E
[ f (x)]+ dx−

∫
E
[ f (x)]− dx

provided that both of these are not infinite. If both of these are finite then f is said

to be Lebesgue integrable on E and the integral
∫
E f (x)dx has a finite value.
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The key reason for this definition and for the restriction of the integration theory
to measurable functions is the following fundamental additive property.

Theorem 7.8 Let E be aLn-measurable subset ofRn and f , g beLn-measurable

functions defined on E. Then∫
E
( f (x)+g(x)) dx=

∫
E
f (x)dx+

∫
E
g(x)dx

provided that these are defined. (In particular this identity is valid if both f and g

are Lebesgue integrable on E.)

Combining this additive theorem with the property of Lemma 7.2 we have
immediately one of our most useful tools in the integration theory.

Theorem 7.9 Let be a Ln-measurable subset of Rn and let f1, f2, f3, . . . be a

sequence of nonnegative real-valued functions defined and Lebesgue integrable

on E. Suppose that the series

f (x) =
∞

∑
k=1

fk(x)

converges for every x ∈ E. Then∫
E
f (x)dx=

∞

∑
k=1

∫
E
fk(x)dx.

In particular, f is Lebesgue integrable on E if and only if the series of integrals

converges.

Exercise 381 Show that, for any simple function

f (x) =
n

∑
k=1

ckχEi
(x)

where E1, E2, E3, . . . , En are Ln-measurable, that∫
E
f (x)dx=

n

∑
k=1

ckL
n(E ∩Ek).

Answer

Exercise 382 Show that any nonnegative Ln-measurable function f : Rn → R

can be written in the form

f (x) =
∞

∑
k=1

ckχEk
(x)

for appropriate Ln-measurable sets E1, E2, E3, . . . , and that∫
E
f (x)dx=

∞

∑
k=1

ckL
n(E ∩Ek).

Answer



7.4. GENERAL MEASURE THEORY 311

Exercise 383 Suppose that f : Rn → R is a Ln-measurable function that is inte-

grable on an interval I. Show that, for every ε > 0 there is a full interval cover β of

I so that if π ⊂ β is a packing with J ⊂ I for each (J,x) ∈ π then

∑
(J,x)∈π

∣

∣

∣

∣

∫
J
f (t)dt− f (x)|J|

∣

∣

∣

∣

< ε.

7.3.2 Notation

We have preserved the notation from the elementary calculus in the expression∫
E
f (x)dx

interpreting now x as a dummy variable representing an arbitrary point in R
n.

There are other suggestive notations that assist in some situations. For example
if f : R2 → R and E is a subset of R2 then the integral may appear instead as∫ ∫

E
f (x1,x2)dx1dx2

or ∫ ∫
E
f (x,y)dxdy.

The “double” integral
∫ ∫

represents the fact that the dimension is two and con-
tains a hint that an iterated integral may be useful in its computation (see Sec-
tion 7.5 below).

7.4 General measure theory

The set function

E →
∫
E
f (x)dx

is defined for every subset E of Rn. Such set functions play a role in many in-
vestigations and the students should be made acquainted with the usual general
theory and its techniques.
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Definition 7.10 A set function M defined for all subsets E of Rn is said to be a

measure on R
n provided that

1. M ( /0) = 0.

2. 0≤M (E)≤ ∞ for all subsets E of Rn.

3. M (E1)≤M (E2) if E1 ⊂ E2 ⊂ R
n.

4. M (
⋃∞

k=1Ek)≤ ∑∞
k=1M (Ek) for any sequence {Ek} of subsets of Rn.

If, moreover,

M (E1∪E2) =M (E1)+M (E2).

whenever

inf{‖e1− e2‖ : e1 ∈ E1, e2 ∈ E2}> 0

thenM is said to be a metric measure on R
n.

Note that Lebesgue measure Ln and the set function

M (E) =
∫
E
f (x)dx

for any nonnegative function f : Rn → R are metric measures according to this
definition. Many authors reserve the term “measure” for set functions defined only
on special classes of sets and with stronger additive properties; they would then
prefer the term “outer measure” for the concept introduced in this definition. In
your readings this should not be hard to keep track of.

For the definition of measurability we take another one of the six characteri-
zations of measurability in dimension one that we presented in Corollary 4.30.

Definition 7.11 A subset E of Rn is said to be M -measurable if for every set

A⊂ R
n

M (A) =M (A∩E)+M (A\E).

We can prove that this definition of measurability, applied to the Lebesgue
measure is equivalent to that we are currently using in Definition 7.5. Using this
new definition a more general theory emerges that applies to any measure on
R
n (or indeed on any suitable space equipped with a measure). Here is a fast

summary.

• Let E1, E2, E3, . . . be a sequence of pairwise disjoint M -measurable sub-
sets of Rn and write E =

⋃∞
i=1Ei. Then, for any set A⊂ R

n,

M (A∩E) =
∞

∑
i=1

M (A∩Ei).

• The class of all M -measurable subsets of Rn forms a Borel family that
contains all M -measure zero sets.
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• If M is a metric measure then the class of all M -measurable subsets con-
tains all closed sets.

This material is standard and should be part of the background for any ad-
vanced student. Almost all texts that discuss outer measures will provide detailed
proofs of these facts. You may wish to consult Chapters 2 and 3 of our text Bruck-
ner, Bruckner, and Thomson, Real Analysis, 2nd Ed., ClassicalRealAnalysis.com
(2008). Those chapters are available for free download.

7.5 Iterated integrals

In many cases the computation of a integral in a higher dimensional space can be
accomplished only through a series of one-dimensional integrations. We do not
have anything that is as convenient and useful as the calculus computation∫ b

a
F ′(x)dx= F(b)−F(a)

that did most of the work in our first calculus course. But if we can reduce an
integral in R

n to several ordinary integrals then the computations can be carried
out.

The reader has likely seen in some elementary calculus classes the compu-
tation∫ ∫

[a,b]×[c,d]
f (x,y)dxdy=

∫ d

c

(∫ b

a
f (x,y)dx

)

dy=
∫ b

a

(∫ d

c
f (x,y)dy

)

dx.

Another similar, and no doubt also familiar, kind of computation appears in the
form ∫ ∫

E
f (x,y)dxdy=

∫ b

a

(∫ U(u)

L(u)
f (u,v)dv

)

du

when E is the set

E = {(u,v) ∈ R
2 : a≤ u≤ b, L(u)≤ v≤U(u)}.

To formulate the problem correctly we need to consider how best to state
it. For example, what would we wish to state for a three dimensional Lebesgue
integral ∫ ∫ ∫

[a,b]×[c,d]×[e, f ]
F(x,y,z)dxdydz?

We might wish to have three iterations∫ b

a

(∫ d

c

(∫ f

e
F(x,y,z)dz

)

dy

)

dx

performed in the order here as 3–2–1. But there are six possible orders in which
we could iterate. We also might wish to iterate this as∫ f

e

(∫ ∫
[a,b]×[c,d]

F(x,y,z)dxdy

)

dz
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in the order (1×2)–3. There are three possible such orders in which this might be
performed. To capture all of these it is best to keep to a level of abstraction. This
is more convenient inside the general theory of measure and integration by using
product measures. We will be a little less ambitious.

7.5.1 Formulation of the iterated integral property

Let m and n be positive integers and consider the Lebesgue integral∫
I
f (x)dx

for a function f : I → R
m+n → R where I is an interval in R

m+n. Every point x in
R
m+n can be written as

x= (u,v) (u ∈ R
m, v ∈ R

n)

and the interval I = A(1)×A(2) where A(1) is an interval in R
m and A(2) is an

interval in R
n.

We shall ask for conditions on a function f : Rm+n → R that is integrable on
the interval I = A(1)×A(2) so that

• For every1 u ∈ A(1) the function

v→ f (u,v)

is integrable over A(2) and

• the function

u→
∫
A(2)

f (u,v)dv

is integrable on A(1), and

• the identity∫
A(1)×A(2)

f (x)dx=
∫ ∫

A(1)×A(2)
f (u,v)dudv=

∫
A(1)

(∫
A(2)

f (u,v)dv

)

du

(7.1)
is valid.

Exercise 384 Check that formula 7.1 holds if f (x) = χI(x) where I=A(1)×A(2)

is an interval in R
m+n.

Exercise 385 Check that formula 7.1 holds if f (x) is a step function on I=A(1)×
A(2) assuming values c1, c2, . . . ck on subintervals I1, I2, . . . , Ik of I.

1Here we insist on every u, but as we know we could and should sometimes ignore a set of
measure zero where this fails. That will be covered in Section 7.5.2.
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Exercise 386 Check that formula 7.1 holds if f (x) is a bounded function for which

there exists a sequence of step functions S1, S2, S3, . . . on I = A(1)×A(2) such

that f (x) = limk→∞ Sk(x) for every x ∈ I. Answer

Exercise 387 Show that if f is a continuous function on the closed interval I then

Exercise 386 can be applied to verify the formula 7.1.

Exercise 388 Let f1, f2, and G be continuous functions on the closed interval I

and define a function

f (x) =

{

f1(x) if x ∈ I and g(x)> 0,

f2(x) if x ∈ I and g(x)≤ 0.

Show that Exercise 386 can be applied to verify the formula 7.1. Answer

Exercise 389 (counterexample #1) There are a number of standard counterex-

amples that show some caution is needed in applying the iterated technique to

multiple integrals of unbounded functions. On the interval [−1,1]× [−1,1] in R
2

define the function

f (x,y) = xy(x2+ y2)−2 f (0,0) = 0.

Examine the integrals ∫ ∫
[−1,1]×[−1,1]

f (x,y)dxdy,

∫ 1

−1

(∫ 1

−1
f (x,y)dx

)

dy,

and ∫ 1

−1

(∫ 1

−1
f (x,y)dy

)

dx.

Answer

Exercise 390 (counterexample #2) On the interval [0,1]× [−1,1] in R
2 define

the function

f (x,y) = yx−3 if x> 0 and −x< y< x

with f (x,y) = 0 elsewhere. Examine the integrals∫ ∫
[0,1]×[−1,1]

f (x,y)dxdy,

∫ 1

−1

(∫ 1

0
f (x,y)dx

)

dy,

and ∫ 1

0

(∫ 1

−1
f (x,y)dy

)

dx.

Answer
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Exercise 391 (counterexample #3) On the interval [0,1]× [0,1] inR2 define the

function

f (x,y) = 2(x− y)(x+ y)−3 (x> 0, y> 0)

with f (x,y) = 0 elsewhere. Examine the integrals∫ ∫
[0,1]×[0,1]

f (x,y)dxdy,

∫ 1

0

(∫ 1

0
f (x,y)dx

)

dy,

and ∫ 1

0

(∫ 1

0
f (x,y)dy

)

dx.

Answer

Exercise 392 A “clever” student points out that all this trouble over integrals in

R
2 (or indeed in any dimension) can easily be avoided by simply defining double

integrals as being two iterated integrals. Thus instead of proving that∫ ∫
[a,b]×[c,d]

f (x,y)dxdy=
∫ b

a

(∫ d

c
f (x,y)dy

)

dx

we just take that as a definition. Any comments? Answer

7.5.2 Fubini’s theorem

In the preceding section we obtained a limited version of the iterated integral prop-
erty, one that applied only to bounded functions and which required in the iteration
(7.1) that the inside integral ∫

A(2)
f (u,v)dv

exist for every value of u. The most general theorem, usually described as Fubini’s
theorem, asserts that this iteration is available for all integrable functions provided
that we accept a set of measure zero where the inside integral might not exist.

Here are the ingredients of that theorem.
Let m and n be positive integers and we suppose that f : Rm+n → R is a

function Lebesgue integrable on an interval I = A(1)×A(2) where A(1) is an
interval in R

m and A(2) is an interval in R
n. As before every point x in R

m+n is to
be written as

x= (u,v) (u ∈ R
m, v ∈ R

n) .

Then

• There is a set N(1) ⊂ A(1) with m-dimensional Lebesgue measure equal
to zero.
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• For every u ∈ A(1)\N(1) the function

v→ f (u,v)

is integrable over A(2) and

• the function

u→
∫
A(2)

f (u,v)dv

is integrable on A(1), and

• the identity ∫
A(1)×A(2)

f (x)dx=
∫ ∫

A(1)×A(2)
f (u,v)dudv

=
∫
A(1)\N(1)

(∫
A(2)

f (u,v)dv

)

du (7.2)

is valid.

This theorem is proved as Theorem 7–1, pp. 300–303 in E. J. McShane, Uni-
fied Integration, Academic Press (1983). There is a version in Chapter 6 of R. Hen-
stock, Lectures on the Theory of Integration, World Scientific (1988). His version
is more general (and less accessible) but uses the same defining structure es-
sentially. The reader is, however, encouraged now to learn this theorem in the
setting of general measure theory where the arguments are simpler and more
straightforward. For that there are an abundance of excellent texts. We cannot
resist recommending, from among them, Bruckner, Bruckner, and Thomson, Real
Analysis, 2nd Ed., ClassicalRealAnalysis.com (2008).

7.6 Expression as a Stieltjes integral

Suppose that f : Rn → R is a Ln-measurable function that is integrable on a
measurable set E. We shall show that the Lebesgue integral∫

E
f (x)dx

can be realized as a one-dimensional Stieltjes integral. Let us fix f and E for our
discussion in this section and suppose that Ln(E) < ∞. We define for each real
number s the function

w(s) = Ln ({x ∈ E : f (x)> s})
called the distribution function of the function f on the set E.

Then the following properties of the distribution function are easily estab-
lished:

• The function w : R→ [0,∞) is nonincreasing with

lim
s→∞

w(s) = 0 and lim
s→−∞

w(s) = Ln(E).
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• Ln ({x ∈ E : a< f (x)≤ b}) = w(b)−w(a).

• w(s+) = w(s) (i.e., w is continuous on the right at each point).

• w(s−) = Ln ({x ∈ E : f (x)≥ s}).

The representation theorem expresses the Lebesgue integral of f in terms of
the Stieltjes integral ∫ b

a
sdw(s).

We know from our study of the Stieltjes integral that this must exist since w is a
nonincreasing function.

Theorem 7.12 Suppose that f : Rn → R is a Ln-measurable function that is in-

tegrable on a measurable set E and that Ln(E)< ∞. Then∫
{x∈E:a< f (x)≤b}

f (x)dx=
∫ b

a
sdw(s) (7.3)

and ∫
E
f (x)dx=

∫ ∞

−∞
sdw(s). (7.4)

There are numerous textbooks where the details of this development can be
found. A most readable account appears in pp. 76–79 of Wheeden and Zygmund,
Measure and Integral, Marcel Dekker (1977).

Exercise 393 Prove the identity (7.3) in Theorem 7.12:∫
{x∈E:a< f (x)≤b}

f (x)dx=
∫ b

a
sdw(s).

Answer

Exercise 394 Deduce the identity (7.4) from the identity (7.3) in Theorem 7.12.

Answer
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ANSWERS

8.1 Answers to problems

Exercise 1, page 5

Assume that there is a nonnegative number M so that

|F(y)−F(x)| ≤M|y− x|
for all x, y ∈ [a,b]. Just check directly that

Var(F, [a,b])≤M(b−a)< ∞.

Exercise 2, page 6

The maximum value of f in each of the intervals [0, 1
4
], [ 1

4
, 1
2
], [ 1

2
, 3
4
], and [ 3

4
,1] is

1/8, 1/4, 9/16, and 1 respectively. Thus define F to be x/8 in the first interval,
1/32+1/4(x−1/1/4) in the second interval, 1/32+1/16+9/16(x−1/2) in the
third interval, and to be 1/32+1/16+9/64+(x−3/4) in the final interval. This
should be (if the arithmetic was correct) a continuous, piecewise linear function
whose slope in each segment exceeds the value of the function f .

Exercise 3, page 6

Start at 0 and first of all work to the right. On the interval (0,1) the function f has
the constant value 1. So define F(x) = x on [0,1]. Then on the the interval (1,2)
the function f has the constant value 2. So define F(x) = 1+ 2(x− 1) on [1,2].
Continue until you see how to describe F in general. This is the same construction
we used for upper functions.
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Exercise 4, page 13

The choice of midpoint
xi+ xi−1

2
= ξi

for the Riemann sum gives a sum

=
1

2

n

∑
i=1

(x2i − x2i−1) =
1

2

[

b2− x2n−1+ x2n−1− x2n−2+ · · ·−a2
]

= (b2−a2)/2.

To explain why this works you might take the indefinite integral F(x) = x2/2 and
check that

F(d)−F(c)

d− c
=

c+d

2

so that the mean-value always picks out the midpoint of the interval [c,d] for this
very simple function.

Exercise 10, page 14

Just take, first, the points ξ∗i at which we have the exact identity∫ xi

xi−1

f (x)dx− f (ξ∗i )(xi− xi−1) = 0

Then, for any other point ξi,
∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi− xi−1)

∣

∣

∣

∣

= | f (ξi)− f (ξ∗)|(xi− xi−1)≤ ω f ([xi,xi−1])(xi− xi−1).

The final comparison with
n

∑
i=1

ω f ([xi,xi−1])(xi− xi−1)

follows from this.
To get a good approximation of the integral by Riemann sums it seems that

we might need
n

∑
i=1

ω f ([xi,xi−1])(xi− xi−1)

to be small. Observe that the pieces in the sum here can be made small if (a) the
function is continuous so that the oscillations are small, or (b) points where the
function is not continuous occur in intervals [xi,xi−1] that are small. Loosely then
we can make these sums small if the function is mostly continuous, i.e., where
it is not continuous can be covered by some small intervals that don’t add up
to much. The modern statement of this is “the function needs to be continuous
almost everywhere.”
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Exercise 11, page 16

Let ε > 0 and choose δ > 0 so that

ω f ([c,d])<
ε

(b−a)

whenever [c,d] is a subinterval of [a,b] for which d− c< δ. Note then that if

{([xi,xi−1],ξi) : i= 1,2, . . .n}
is a partition of [a,b] with intervals shorter than δ then

n

∑
i=1

ω f ([xi,xi−1])(xi− xi−1)<
n

∑
i=1

[ε/(b−a)](xi− xi−1) = ε.

Consequently, by Exercise 10,
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi− xi−1)

∣

∣

∣

∣

∣

≤
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi− xi−1)

∣

∣

∣

∣

< ε.

Exercise 12, page 16

Of course we can more easily use the definition of the integral and compute that∫ 1
0 x

2 dx= 1/3−0. This exercise shows that, under certain simple conditions, not
merely can we approximate the value of the integral by Riemann sums, we can
produce a sequence of numbers which converges to the value of the integral.
Simply divide the interval at the points 0, 1/n, 2/n, . . . , n− 1)/n, and 1. Take
ξ = i/n [the right hand endpoint of the interval]. Then the Riemann sum for this
partition is

n

∑
i=1

(

i

n

)2
1

n
=

12+22+32+42+52+62+ · · ·+n2

n3
.

As n → ∞ this must converge to the value of the integral by Theorem 1.8. The
student is advised to find the needed formula for

12+22+32+42+52+62+ · · ·+N2.

and determine whether the limit is indeed the correct value 1/3.

Exercise 13, page 16

Determine the value of the integral ∫ 1

0
x2 dx
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in the following way. Let 0 < r < 1 be fixed. Subdivide the interval [0,1] by
defining the points x0 = 0, x1 = rn−1, x2 = rn−2, . . . , xn−1 = rn−(n−1) = r, and
xn = rn−(−n) = 1. Choose the points ξi ∈ [xi−1,xi] as the right-hand endpoint of
the interval. Then

n

∑
i=1

ξ2i (xi− xi−1) =
n

∑
i=1

(

rn−i
)2
(rn−i− rn−i+1).

Note that for every value of n this is a Riemann sum over subintervals whose
length is smaller than 1− r.

As r→ 1− this must converge to the value of the integral by Theorem 1.8. The
student is advised to carry out the evaluation of this limit to determine whether the
limit is indeed the correct value 1/3.

Exercise 16, page 22

Note that the calculus integral∫ b

a
F ′(x)dx= F(b)−F(a)

exists. For each point ξ in [c,d] take δ(ξ) sufficiently small that
∣

∣

∣

∣

F(y)−F(x)

y− x
−F ′(ξ)

∣

∣

∣

∣

<
ε

C

whenever x and y are points in [c,d] for which x ≤ ξ ≤ y and 0 < y− x < δ(ξ).
This gives us

∣

∣F(y)−F(x)−F ′(ξ)(y− x)
∣

∣<
ε

C
(y− x).

Then, for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] with
the four properties of the statement of the lemma,

∣

∣

∣

∣

∣

∫ b

a
F ′(x)dx−

n

∑
i=1

F ′(ξi)(xi− xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

[

F(xi)−F(xi−1)−F ′(ξi)(xi− xi−1)
]

∣

∣

∣

∣

∣

≤
n

∑
i=1

∣

∣F(xi)−F(xi−1)−F ′(ξi)(xi− xi−1)
∣

∣<
ε

C

n

∑
i=1

|xi− xi−1| ≤ ε.
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Exercise 20, page 30

Since N ⊂ (a,b) is a set of measure zero, for each integer n= 1,2,3, . . . , we can
choose a positive function δn : N → R

+ so that

∑
([u,v],w)∈π

n |v−u|< 2−n

whenever π is a subpartition anchored in N finer than δn.
First, for each integer n = 1,2,3, . . . define the function Gn(x) at each point

a< x< b by requiring Gn(x) to be the supremum of the values

∑
([u,v],w)∈π

n |v−u|

taken over all subpartitions π of [a,x] anchored in N and finer than δn. Note that
Gn : [a,b]→ R is nondecreasing, Gn(a) = 0 and Gn(b)< 2−n.

We see that, for any integer n and all k = 1,2,3, . . . ,n, if x ∈ N and if 0 <

y− x< δn(x) then ([x,y],x) is finer than δk and so

Gk(y)−Gk(x)≥ k (y− x) .

Similarly if 0< x− y< δn(x) then ([y,x],x) is finer than δk and so

Gk(x)−Gk(y)≥ k (x− y) .

We now ready to define

φ(x) =
∞

∑
k=1

Gk(x).

This is a finite-valued function, nondecreasing on (a,b). Note that, if 0< y− x <

δn(x) then
φ(y)−φ(x)

y− x
≥ n

and if 0< x− y< δn(x) then

φ(x)−φ(y)

x− y
≥ n.

Conseqently for each x ∈ N,

lim
y→x

φ(y)−φ(x)

y− x
=+∞.

Exercise 22, page 31

Suppose that H : R→ R is continuous, and that Z is a countable set. We show
that H has zero variation on Z. Let ε > 0. List the points in Z in a sequence {zn}.
For each integer n we use the fact that H is continuous at zn to choose δ(zn)> 0

so that

|H(zn+h)−H(zn)|<
ε

2n+1
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whenever |h|< δ(zn).
Consider a subpartition

π = {([ai,bi],ξi) : i= 1,2,3, . . . ,m}
finer than δ and anchored in Z. For that partition we simply note that if ξi = hn for
some n then

|H(bi)−H(ai)| ≤ |H(bi)−H(zn)|+ |H(zn)−H(ai)|<
2ε

2n+1
.

Using this observation we easily compute that
n

∑
i=1

|H(bi)−H(ai)|< ε.

Exercise 24, page 32

Hint: It is enough to prove this for bounded sets E.

Exercise 25, page 32

It is enough to suppose that E is contained in some interval (a,b). If F has a finite
derivative at every point of a set E of measure zero, then, for each x ∈ E select
δ1(x)> 0 so that

∣

∣

∣

∣

F(y)−F(x)

y− x
−F ′(x)

∣

∣

∣

∣

< ε

if 0< |y− x|< δ1(x). Also. for each x ∈ E select δ2(x)> 0 so that
n

∑
i=1

[|F ′(x)|+ ε](yi− xi)< ε

for any subpartition

{([xi,yi],ξi) : i= 1,2,3, . . .}
anchored in E and finer than δ2. Take δ as the minimum of δ1 and δ2 and consider
any subpartition

{([xi,yi],ξi) : i= 1,2,3, . . .}
anchored in E and finer than δ. Note simply that

n

∑
i=1

|F(yi)−F(xi)| ≤
n

∑
i=1

ε(yi− xi)+
n

∑
i=1

|F ′(x)|(yi− xi)< ε.

Exercise 26, page 32

This is easy to prove—make sure to use Cousin’s lemma.
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Exercise 27, page 32

Let M ⊂ [F(a),F(b)] and N ⊂ [a,b]. Suppose that G has zero variation on M. Let
ε > 0. There must be a positive function δ1 :M → R

+ so that

∑
([x,y],z)∈π

|G(y)−G(x)|< ε

whenever π is a subpartition anchored in M and finer than δ1. Suppose that
F(N)⊂M. For each w ∈ N use the continuity of F to determine δ2(w) so that

|F(t)−F(w)|< δ1(F(w))/2

provided |t−w|< δ2(w). Let π2 be a subpartition anchored in N and finer than δ2.
There is a corresponding subpartition π1 obtained by replacing each ([u,v],w) ∈
π2 by the pair

([x,y],z) = ([F(u),F(v)],F(w)).

Note that each interval-point pair ([u,v],w) corresponds to the pair ([x,y],z) with
F(u) = x, F(v) = y, and F(w) = z, w ∈ N, z ∈ F(N)⊂M, and x≤ z≤ y with

|y− x|= |F(v)−F(u)| ≤ |F(v)−F(w)|+ |F(w)−F(u)|< δ1(F(w)) = δ1(z).

The subpartition π1 is thus anchored in M and is finer than δ1. Consequently

∑
([u,v],w)∈π2

(v−u) = ∑
([x,y],z)∈π1

|G(y)−G(x)|< ε.

This verifies that N is a set of measure zero. The reverse direction is clear since
the roles of F and G are completely reversible.

Exercise 28, page 32

Exercise 27 is just the special case of this exercise for which F is assumed to be
both continuous and strictly increasing. Here we extend that exercise by dropping
the continuity of F . An inverse does not necessarily exist, but a left-inverse does
for strictly increasing functions. We shall need this variant in the text for one of our
proofs and so, for convenience, we place it here.

We give a detailed solution as some of the arguments are a bit tedious to re-
alize. The best approach here is to sketch a good picture illustrating the situation.
Then the details are easier to construct or to follow. (Use a simple function F with
one interval of constancy and two jumps; your picture for G then will have two
intervals of constancy and one jump.)

Item 1 If y1 and y2 belong to [F(a),F(b)] with y1 ≤ y2, then

{u ∈ [a,b] : F(u)≥ y2} ⊂ {u ∈ [a,b] : F(u)≥ y1}
and so

G(y1) = inf{u ∈ [a,b] : F(u)≥ y1} ≤ inf{u ∈ [a,b] : F(u)≥ y2}= G(y2).
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This shows that G is nondecreasing as stated in Item 1.
Let us check that G is left-continuous. Take a point y0 ∈ (F(a),F(b)]. By the

definition of G(y0), F(t)< y0 for all t <G(y0). Let ε > 0 and fix a point u0 chosen
so that G(y0)− ε < u0 < G(y0). Then for every point y with F(u0) < y < y0 we
have

G(y) = inf inf{u ∈ [a,b] : F(u)≥ y} ≥ u0 ≥ G(y0)− ε.

This inequality verifies that G is left-continuous at the point y0.

Item 2 Suppose that G(y0)<G(y0+) for some point y0 ∈ [F(a),F(b)). i.e, that
there is a jump at the point y0. (We know that G is left-continuous, so the jump
must occur on the right.)

By the definition of G(y0) and the fact that F is nondecreasing, we know that
F(t)≥ y0 for all t > G(y0). We also have, for any u with

G(y0)< u< G(y0+),

that G(y)> u for all y> y0. Thus F(u)< y whenever y> y0. Thus F(u)< y0. That
proves that F assumes the value y0 for all points in the interval between G(y0)

and G(y0+).
In the converse direction, suppose that F assumes the value y0 for all points

in the interval (u1,u2). Then, by definition, G(y0) ≤ u1. For values y > y0, and
every u ∈ (u1,u2),

F(u) = y0 < y

and so G(y) ≥ u by the way G(y) is defined. Let u→ u2 from above to see that
G(y) ≥ u2 for these values of y. That means G(y0+) ≥ x2. This exhibits a jump
for G at the point y0 because we see that

G(y0)≤ u1 < u2 ≤ G(y0+).

Item 3 First observe that if we use y = F(t) in the definition of G(y) we obtain
that G(F(t))≤ t. Moreover, suppose that G(F(t))< t does occur for some value
of t. Then there must be a point u< t for which F(u)≥ F(t). That must mean that
F is constant on the entire interval [u, t] as stated. It is also true that if we assume
F is constant on an entire interval [u, t] then G(F(t))≤ u< t.

Item 4 Suppose the G assumes some constant value x0 in an interval (y1,y2).
If u> u0 then F(u)≥ y for all y in the interval (y1,y2) because of the way G(y) is
defined. Let y→ y2 from above and we see that F(u)≥ y2 and so F(u0+)≥ y2.
Also if u< u0 then F(u)< y for eall y in the interval (y1,y2) again because of the
way G(y) is defined. Let y → y1 from below and we see that F(u) ≤ y1 and so
F(u0−)≤ y1.

In the converse direction let y be a value between F(u0−) and F(u0+). If
u < u0 then F(u) < y and so G(y) ≥ u0. Applying Item 3 here and recalling that



8.1. ANSWERS TO PROBLEMS 327

both functions F and G are nondecreasing, we wee that

u0 ≤ G(y)≤ G(F(u0+)≤ G(F(u))≤ u.

Let u→ u0 from above and we deduce that G(y) = u0 for all values of y between
F(u0−) and F(u0+).

Item 5 This follows directly from item 1 and item 2. If F is strictly increasing then
it cannot be constant on any interval, thus we see that G(F(t)) = T for all t and
that G has no jump discontinuities.

Item 6 Now we just repeat the argument from Exercise 27, with the necessary
modifications to handle the fact that F may not be continuous. Note that we do
assume F is strictly increasing as before, so it is only the discontinuity points that
might interfere with the argument. Also, in Exercise 27 we did use the fact that G
was an inverse, but we needed really only a left-inverse.

Let C be the set of points at which F fails to be continuous. Then C is count-
able because F is nondecreasing.

Let M ⊂ [F(a),F(b)] and N ⊂ [a,b]. Suppose that G has zero variation on
M. Let ε > 0. There must be a positive function δ1 :M → R

+ so that

∑
([x,y],z)∈π

|G(y)−G(x)|< ε

whenever π is a subpartition anchored in M and finer than δ1.
Suppose that F(N)⊂M. Write N1 =N \C. For each w∈N1 use the continuity

of F to determine δ2(w) so that

|F(t)−F(w)|< δ1(F(w))/2

provided |t−w|< δ2(w). Let π2 be a subpartition anchored in N and finer than δ2.
There is a corresponding subpartition π1 obtained by replacing each ([u,v],w) ∈
π2 by the pair

([x,y],z) = ([F(u),F(v)],F(w)).

Note that each interval-point pair ([u,v],w) corresponds to the pair ([x,y],z) with
F(u) = x, F(v) = y, and F(w) = z, w ∈ N1, z ∈ F(N1)⊂M, and x≤ z≤ y with

|y− x|= |F(v)−F(u)| ≤ |F(v)−F(w)|+ |F(w)−F(u)|< δ1(F(w)) = δ1(z).

The subpartition π1 is thus anchored in M and is finer than δ1. Consequently

∑
([u,v],w)∈π2

(v−u) = ∑
([x,y],z)∈π1

|G(y)−G(x)|< ε.

This verifies that N1 is a set of measure zero. Since C is also a set of measure
zero (in factC is countable) we see that N =N1∪C must also be a set of measure
zero.
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Exercise 31, page 34

Take F : [0,1]→R as any constant function. Note that F ′(x) = 0= P(x) for every
irrational number x and F ′(x) = 0 6= P(x) for every rational number x. This is a
countable set of exceptions which is allowed for the utility version, but not for the
classical, naive, or elementary Newton versions.

A similar closely related function, the Dirichelet function, is also Newton inte-
grable in the utility sense, but is not integrable in the classical, naive, or elementary
senses. The Dirichelet function is the function D : [0,1]→ R defined by D(x) = 0

for x irrational and D(x) = 1 if x= p/q is a rational number.
The function P is continuous at every rational number. It is regulated (see Sec-

tion 1.9.1). It is also Riemann integrable. The function D is continuous nowhere
on [0,1]. it is not regulated nor Riemann integrable. The continuity properties of a
function certainly play a role in some theories. Note, here, that the utility version of
the integral simply ignores the values of the function off some countable set and
so both functions P and D are integrable in this sense.

To find a function that is integrable in the general sense but not in the utility
sense, just take a set N ⊂ (0,1) that is uncountable and has measure zero. Define
h(x) = 0 if x ∈ [0,1]\N and h(x) = 1 for x ∈ N. Then the general integral simply
ignores the set N while the utility integral cannot.

Exercise 32, page 34

Let N be any set of measure zero. Let N1 the set of points x in N at which F ′(x)
does not exist. According to any of the versions of the integral, F has zero variation
on N1. But by Exercise 25 the function F has zero variation on N2 = N \N1.
Consequently F has zero variation on N = N1∪N2.

Exercise 33, page 34

Each of the definitions of the various Newton integrals requires just one serious
justification. If there does exist such a function F then there would exist many such
functions. Are we sure for all such functions that F(b)−F(a) is always the same
number? If so that would permit us to assign that value to the integral

∫ b
a f (x)dx.

The lemmas supply the answers and justify the definitions.
We give these explicitly and in some detail since they would be an essential

feature of any course electing to present a rigorous account of integration theory
along these lines. This first exercise justifies the naive integral.

Define H(x) = F(x)−G(x) and observe that H is continuous on [a,b] and
has a zero derivative at each point in (a,b). By Exercise 24 it follows that H has
zero variation on (a,b). By Exercise 26 then H is a constant on (a,b). Since H is
continuous on [a,b], H(b) =H(a) and, consequently F(b)−F(a) =G(b)−G(a)

as required.
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Exercise 34, page 34

Write H = F −G. Let Z1 be the countable set of points z in (a,b) at which
F ′(x) = f (x) fails. Let Z2 be the countable set of points z in (a,b) at which
G′(x) = f (x) fails. The set Z = Z1 ∪ Z2 is countable. Since H is continuous, H
has zero variation on Z by Exercise 22. But (exactly as in the preceding lemma)
H has a zero derivative and hence has zero variation on (a,b)\Z. Consequently
H has zero variation on all of (a,b). Again we conclude that H is a constant on
(a,b), that H(b) = H(a) and, consequently, F(b)−F(a) = G(b)−G(a) as re-
quired.

Exercise 35, page 35

Define H(x) = F(x)−G(x) and observe that H is continuous on [a,b] and has a
zero derivative at each point in (a,b)\ (N1∪N2). By Exercise 24 it follows that H
has zero variation on (a,b)\ (N1∪N2).

By Exercise 25 the function F has zero variation on N2 \N1. By the same ex-
ercise the function G has zero variation on N1 \N2. But since, F has zero variation
on N1 and G has zero variation on N2, it follows that H = F−G has zero variation
on N1∪N2. Consequently H has zero variation on (a,b).

By Exercise 26 then H is a constant on (a,b). Since H is continuous on [a,b],
H(b) = H(a) and, consequently F(b)−F(a) = G(b)−G(a) as required.

Exercise 36, page 36

For each function there would be a control so that there would be two strictly
increasing functions φ1, φ : (a,b)→ R to use. Take H = F1−F2 and φ = φ1+φ2

and check that

lim
y→x

H(y)−H(x)

φ(y)−φ(x)
= 0.

A simple Cousin argument applied to any compact interval [c,d] ⊂ (a,b) will re-
veal that H is constant on [c,d]. That shows that

F1(d)−F1(c) = F2(d)−F2(c)

and uniform continuity extends that to

F1(b)−F1(a) = F2(b)−F2(a).

Exercise 38, page 40

Here is the basic simple argument. Let F and G be indefinite integrals for f and
g on [a,b] and f ≤ g and set H = F −G. Then H is continuous and H ′(x) =
G′(x)−F ′(x)≥ 0 for points x in (a,b) at which both derivatives exist. Argue that
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(in all cases) the function H is nondecreasing. Thus H(b) ≥ a and so G(b)−
G(a)≥ F(b)−F(a). Consequently∫ b

a
g(x)dx−

∫ b

a
f (x)dx= [G(b)−G(a)]− [F(b)−F(a)]≥ 0.

For the utility and general versions it will take an argument to show that the func-
tion H is nondecreasing. The methods of Section 1.7 will work.

Exercise 39, page 40

This begins with a simple calculus exercise. Let h = ∑n
i=1 ci fi. Take Fi as the

indefinite integrals for the fi and just check that the function

H =
n

∑
i=1

ciFi

is a continuous function for which the relation H ′(x) = h(x) must hold except for
the collection of points where one at least of the identities F ′

i (x) = fi(x) fails.
For the classical, naive, and elementary versions of the integral it is immediate

that H is an indefinite integral of h. In that case∫ b

a
h(t)dt = H(b)−H(a) =

n

∑
i=1

ci[Fi(b)−Fi(a)]

=
n

∑
i=1

ci

(∫ b

a
fi(x)dx

)

as required.
The utility and general versions use the same steps but require a bit more

argument. For example if Zi is the set of points at which the relation F ′
i (x) = fi(x)

fails, then let Z =
⋃n

i=1Zi. This is a countable set (for the utility version) or a
measure zero set (for the general version). In the utility case it is clear than H

is an indefinite integral for h. In the general case, just note that, by Exercise 32,
each Fi hs zero variation on Z. From that it is easy to see that H must also have
zero variation on Z. So also, in the general case it is clear than H is an indefinite
integral for h.

Exercise 40, page 40

The reason the property fails for the elementary version of the Newton integral is
that the finite exceptional set does not survive a limit operation. For example take
P as the popcorn function of Exercise 31. The popcorn function is the function
P : [0,1] → R defined by P(x) = 0 for x irrational and P(x) = 1/q if x = p/q

expresses the rational number x in its lowest terms. Now, for each integer n write
Pn(x) = 0 if for x irrational and P(x) = 1/q if x = p/q expresses the rational
number x in its lowest terms and q≤ n; otherwise Pn(x) = 0. One checks that Pn
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is integrable in the elementary sense since it fails to be zero only on a finite set.
But Pn → P uniformly on [0,1], and yet P fails to be integrable in the elementary
sense (although it is integrable in the utility sense).

For the remaining Newton integrals the following arguments work.

Checking the derivative Suppose that Fn is the indefinite integral of fn on [a,b]

and that Cn is the set of points x where F ′
n(x) = fn(x) fails. Suppose that fn →

f uniformly. We check that Fn converges to a continuous function F for which
F ′(x) = f (x) except possibly at points x belonging to the set C =

⋃∞
n=1Cn.

Let ε > 0. Choose an integer N so that

| fn(x)− fm(x)|< ε

for all x ∈ [a,b] and all n, m ≥ N. Using the montone property compute that, for
any a≤ s 6= t ≤ b, and all n, m≥ N

|[Fn(t)−Fm(t)]− [Fn(s)−Fm(s)]| ≤ ε(t− s).

From this we deduce that {Fn} is uniformly convergent to a continuous function
which we will denote as F .

We wish now to show that F ′(x) = f (x) at every point x of (a,b) that is not in
C. Rewrite the inequality above as

|[Fn(t)−Fn(s)]− [Fm(t)−Fm(s)]| ≤ ε(t− s).

Deduce that, for n≥ N
∣

∣

∣

∣

Fn(t)−Fn(s)

t− s
− F(t)−F(s)

t− s

∣

∣

∣

∣

≤ ε.

This inequality provides F ′(x) = f (x) for points x not in C.

Handling zero variation To complete the proof we need to be sure that F is an
indefinite integral for f in the sense of one of the Newton integrals (other than the
elementary sense). For all but the general sense this is evident. [Eg., for the utility
sense each set Cn is countable and, hence, so too is the union C.]

Let us suppose that each set Cn has measure zero. Then C too must have
measure zero. We show that F has zero variation on C.

Let ε > 0. Choose an integer N so that

| fn(x)− fm(x)|<
ε

2(b−a)

for all x ∈ [a,b] and all n, m≥ N. As before this means too that

|[FN(t)−FN(s)]− [F(t)−F(s)]| ≤ ε(t− s))

2(b−a)
.

By Exercise 32 the function FN has zero variation on C. Choose a positive
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function δ :C→ R
+ so that that

n

∑
i=1

|FN(yi)−FN(xi)|< ε/2

whenever a subpartition

{([xi,yi],ξi) : i= 1,2,3, . . .}
is anchored in C and finer than δ.

But then, for such subpartitions, we also have
n

∑
i=1

|F(yi)−F(xi)|<
n

∑
i=1

|FN(yi)−FN(xi)|+
ε

2(b−a)

n

∑
i=1

(yi− xi)

<
ε

2
+

ε

2
= ε

This verifies that F has zero variation onC. The rest of the proof is now apparent.

Exercise 41, page 43

Suppose that f (x) = χI(x) where I ⊂ [a,b] is an interval I = [c,d], (c,d), [c,d],
or (c,d]. The case a < c < d < b is enough to consider. Define F(x) = 0 for
a≤ x≤ c, Define F(x) = x− c for c≤ x≤ d. Define F(x) = d− c for d ≤ x≤ a.
Then F ′(x) = f (x) for all x except at the two points c and d. F is continuous on
[a,b]. Consequently∫ b

a
f (x)dx=

∫ b

a
χI(x)dx= F(b)−F(a) = d− c= λ(I).

Exercise 43, page 43

Every step function s : [a,b]→ R is bounded there, is continuous on [a,b] with at
most countably many [actually finitely many] exceptions, and has finite one-sided
limits at each point of [a,b]. Each of these properties is preserved under uniform
limits.

Exercise 44, page 43

We know from Exercise 43 that every regulated function has finite one-sided limits
at each point of [a,b]. We prove the other direction and assume that f has finite
one-sided limits at each point of [a,b].

Let n be an integer. At each point x ∈ [a,b] select δ(x) > 0 so that the oscil-
lation of f in the intervals [a,b]∩ (x− δ(x),x) and [a,b]∩ (x,x+ δ(x) is smaller
than 1/n. Since f has finite one-sided limits at each x this can be done.

Use the Cousin lemma to select a partition

{([ai,bi],ξi) : i= 1,2,3, . . . ,n}



8.1. ANSWERS TO PROBLEMS 333

of the interval [a,b] finer than δ. We claim that we can select a step function
gn : [0,1]→ R so that

| f (x)−gn(x)|< 1/n

for all x ∈ [0,1].
Take any pair ([ai,bi],ξi) from the partition. If ai < ξi < bi then we just arrange

for g to assume a constant value (chosen from the values of f itself) on each
interval (ai,ξi) and (ξi,bi). If ai = ξi < bi or ai < ξi = bi then we do much the
same on (ai,bi). There are a finite number of points remaining and we simply
make f and gn agree at those points. For example, at the points ξi we would set
gn(ξi) = f (ξi).

By Exercise 42 we can see that gn is a step function. Since {gn} is a sequence
of step functions converging uniformly to f , the function f must be regulated.

Exercise 46, page 43

Every monotonic function clearly has one-sided limits at each point. Thus, Exer-
cise 44, such functions are regulated.

Exercise 47, page 43

Set f =F ′. The function f is continuous on any interval [c,d]⊂ (a,b). In particular
the integral ∫ d

c
f (x)dx

can be constructed by the methods of this chapter (as, say a limit of a sequence
of simpler integrals of step functions). This means that one can compute

F(b)−F(a) = lim
m→∞

(F(b−m−1)−F(a+m−1)

and so ∫ b

a
f (x)dx= lim

m→∞

∫ b−m−1

a+m−1
f (x)dx.

The point of the exercise is just the observation that “constructibility” of the integral
does not necessarily mean as a uniform limit of integrals of simpler functions.

Exercise 48, page 43

There are a number of ways to do this. One is just to show that if f has finite
one-sided limits at each point then the function | f | has the same property.

Exercise 49, page 44

Just show that if f is piecewise continuous and has finite one-sided limits at the
discontinuities then the function | f | has the same property.
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Exercise 50, page 46

Use one or more of these criteria to deduce that whenever a function f is Riemann
integrable on an interval [a,b] so too is the function | f |. The simplest, perhaps,
is the Lebesgue criterion. If f is bounded and a.e. continuous then | f | is clearly
bounded and easily shown to be a.e. continuous.

Exercise 51, page 51

Let N be the measure zero set where f (x) 6= g(x). Let ε> 0 and choose a positive
function δ1 : N → R

+ so that
n

∑
i=1

[| f (ξi)|+ |g(ξi)|] (yi− xi)< ε/3

whenever a subpartition of [a,b]

{([xi,yi],ξi) : i= 1,2,3, . . .}
is anchored in N and finer than δ1. This just uses the definition (i.e., the small
Riemann sums property of measure zero sets).

Choose a positive number δ2 so that both
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(yi− xi)

∣

∣

∣

∣

∣

< ε/3

and
∣

∣

∣

∣

∣

∫ b

a
g(x)dx−

n

∑
i=1

g(ξi)(yi− xi)

∣

∣

∣

∣

∣

< ε/3

whenever a partition of [a,b]

{([xi,yi],ξi) : i= 1,2,3, . . .}
is given that is finer than δ2.

Let δ : [a,b]→R
+ be chosen smaller than δ2 and smaller than δ1 on N. Using

the Cousin lemma, choose one partition of [a,b]

{([xi,yi],ξi) : i= 1,2,3, . . .}
that is finer than δ. In the obvious way you should now be able to use that partition
to deduce that

∣

∣

∣

∣

∫ b

a
f (x)dx−

∫ b

a
g(x)dx

∣

∣

∣

∣

< ε.

From that the identity is evident.
As to finding an example for which f is Riemann integrable and g is not this

is should present no difficulties. You can even arrange to have g unbounded, or
bounded but continuous nowhere.
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Exercise 52, page 53

This is the converse of Theorem 1.25 and is very easy to prove. Suppose that

∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε

for every partition of [a,b] finer than some δ. Then immediately this shows that
∣

∣

∣

∣

∣

F(b)−F(a)− ∑
([u,v],w)∈π

f (w)(v−u)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
([u,v],w)∈π

[F(v)−F(u)− f (w)(v−u)

∣

∣

∣

∣

∣

≤ ∑
([u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε.

Use this to deduce that F(b)−F(a) =
∫ b
a f (x)dx

Exercise 53, page 53

Compare with the definition of the Riemann integral.

Exercise 54, page 59

The reader should remark upon the fact that this exercise is quite easy to hanlde;
it follows with little trouble from the definitions of measure zero and zero variation.

An inspection of the five statements shows that any one of the first four implies
statement 5. So it is enough to assume that the final statement does hold. Thus we
assume that F has zero variation on a set N of measure zero, while F ′(x) = f (x)

at every point of (a,b) except for x ∈ N. We shall apply the integrability criterion
in Exercise 53 to provide a proof.

Choose a positive function δ1 : N → R
+, so that

∑
([u,v],w)∈π

| f (w)|(v−u)< ε/4

whenever π is a subpartition finer than δ1 with associated points in N. Choose a
positive function δ2 : N → R

+, so that

∑
([u,v],w)∈π

|F(v)−F(u)|< ε/4

whenever π is a subpartition finer than δ2 with associated points in N.
Since F ′(w) = f (w) for all w 6∈ N, choose δ3(w) so that

∣

∣

∣

∣

F(v)−F(u)

v−u
− f (w)

∣

∣

∣

∣

<
ε

2(b−a)

whenever 0< v−u< δ(w) with w ∈ [u,v].
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Now we can construct our function δ(x) on [a,b] so that δ(x) = δ3(x) if x ∈ N

and δ(x) = min{δ1(x),δ2(x)} otherwise. Let π be a subpartition of the interval
[a,b] finer than δ. We estimate

∑
[u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)| .

If w is a point where F ′(w) = f (w) then

|F(v)−F(u)− f (w)(v−u)| ≤ ε
v−u

2(b−a)

and the contribution to the sum of such terms is evidently smaller than ε/2.
If w is not a point where F ′(w) = f (w) then we can treat the sum of such

terms by estimating using the larger value

|F(v)−F(u)− f (w)(v−u)| ≤ |F(v)−F(u)|+ | f (w)|(v−u).

The sum of the terms

|F(v)−F(u)|
where w ∈ N cannot exceed ε/4. The sum of the terms

| f (w)|(v−u)

where w ∈ N j cannot exceed ε/4. Putting these together shows that

∑
[u,v],w)∈π

|F(v)−F(u)− f (w)(v−u)|< ε.

as required. An application of Exercise 53 now shows that f is Henstock-Kurzweil
integrable on [a,b] and that∫ x

a
f (t)dt = F(b)−F(a).

Exercise 55, page 61

If f : [a,b] → R is bounded and Riemann integrable on all subintervals [c,d] ⊂
(a,b) then, by the Lebesgue criterion we can deduce that f is a.e. continuous on
[a,b]. Consequently f is in fact Riemann integrable on all of [a,b].

Exercise 56, page 61

Take the function f : [0,1]→R defined by f (1/n) = 1 for each n= 1,2,3, . . . and
f (x) = 0 elsewhere. Check that f is integrable in the elementary Newton sense
in any interval [c,1] for 0< c< 1 and that∫ d

c
f (x)dx= 0

for all 0 < c < d ≤ 1. Check that it is not, however, integrable in that sense on
[0,1].
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Exercise 57, page 61

We considered this function in Section 1.1.3. We learned there that F ′ was New-
ton integrable but that |F ′| was not integrable, because the function F does not
have bounded variation on [0,1].

In fact F is differentiable at every point and F ′(0) = 0 while, for 0< x≤ 1,

F ′(x) = 2xsinx−2− 2

x
cosx−2.

Note that F ′ is continuous on (0,1] so that it is integrable by all of our methods on
each interval [c,1] for 0< c< 1.

In order to show that F ′ is not integrable on [0,1] in the Riemann sense it
would be enough to observe that F ′ is unbounded. To show that F ′ is not inte-
grable on [0,1] in the Lebesgue sense we simply recall that the Lebesgue integral
(by definition) is an absolute integral. We know that |F ′| is not integrable. Thus
while F ′ is integrable, it is not Lebesgue integrable. [It is nonabsolutely integrable
in other words.] This verifies that the Lebesgue integral does not possess the
Cauchy property.

Exercise 61, page 63

The result in the exercise was published by Beppo Levi in 1906 (Ricerche sulle
funzioni derivate, Rnd. dei Lincei, (5), Vol. XV, 1906 p. 437.).

The proof is well-worth attempting and also well-worth studying. It contains a
number of ideas that will prove useful in similar situations.

We suppose that F : [a,b]→ R and

A= {x ∈ (a,b) : D+F(x)< D−F(x)}
and

B= {x ∈ (a,b) : D−F(x)< D+F(x)}.
(Some early authors [eg., A. Rosenthal and W. Sierpińksi] called such points on
the graph of a function “angular points” or “cusps.”)

We show that A is countable. A similar argument would show that B is count-
able.

Inserting rational numbers r and s Note that if

D+F(x)< D−F(x)

at some point x we can select two rational numbers r and s so that

D+F(x)< r < s< D−F(x).

This means that A is contained in the union of the sets

Ars = {x ∈ (a,b) : D+F(x)< r < s< D−F(x)}
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taken over the countable collection of rational numbers r and s. Thus one needs
only to show that each set Ars is countable [since a countable union of countable
sets is also countable].

Setting up the function δ For each x ∈ Ars we know that

D+F(x)< r.

Thus we may select δ1(x)> 0 so that

F(y)−F(x)

y− x
< r

if 0< y− x< δ1(x). Since it is also true that

D−F(x)> s

we can select also δ2(x)> 0 so that

F(y)−F(x)

y− x
> s

if 0> y− x>−δ1(x). Set δ(x) as the minimum of δ1(x) and δ1(x).

Decomposing a set using δ Fix an integer n≥ 1 and consider the set

Arsn = {x ∈ Ars : δ(x)> 1/n}.
This decomposes the set Ars into a sequence of sets so that

Ars =
∞⋃

n=1

Arsn.

If x1 and x2 with x1 < x2 are two points in Arsn closer together than 1/n it
follows that 0 > x1− x2 > −δ(x2) ≥ −δ1(x2) and 0 < x2− x1 < δ(x1) ≤ δ2(x1).
Consequently

F(x1)−F(x2)

x1− x2
> s

F(x2)−F(x1)

x2− x1
< r

must both be true, which is evidently impossible since r < s. This can only mean
that two such points in Arsn do not in fact exist. Consequently Arsn must be a finite
set. It follows that Ars is the union of a sequence of finite sets and so is countable.

Note: The steps here can be used in a variety of situations. The decomposition
of the set using δ will be formalized in Section 2.2.3 to make it rather easier to use.

Exercise 62, page 64

Hint: The set of shaded points is open. Just check that every shaded point is
contained in an open interval of points that are also shaded. Now take {(ak,bk)}
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as the sequence of component intervals of that open set. Check that if H(ak) >

H(bk) for some k, then that would contradict the fact that ak and bk are not shaded
points.

Exercise 63, page 65

Suppose that G(a)≤ G(b), Take a finite number of the intervals as given

[a1,b1], [a2,b2], [a3,b3], . . . , [aN ,bN ]

and then supplement them with further nonoverlapping intervals

[c1,d1], [c2,d2], [c3,d3], . . . , [cM,dM]

to form a full partition of [a,b]. Just write

|G(b)−G(a)|= G(b)−G(a) =
N

∑
i=1

[G(bi)−G(ai)]+
M

∑
j=1

[G(di)−G(ci)]

≤
N

∑
i=1

(G(bk)−G(ak))+Var(G, [a,b]).

The first statement of the lemma follows.
For the second statement, replace G with −G. Or else just repeat the same

steps with a minor change. Thus suppose now that G(b) ≤ G(a), Again take a
finite number of the intervals

[a1,b1], [a2,b2], [a3,b3], . . . , [aN ,bN ]

and then supplement them with further nonoverlapping intervals

[c1,d1], [c2,d2], [c3,d3], . . . , [cM,dM]

to form a full partition of [a,b]. Write

|G(b)−G(a)|= G(a)−G(b) =−
N

∑
i=1

[G(bi)−G(ai)]−
M

∑
j=1

[G(di)−G(ci)]

≤−
N

∑
i=1

(G(bk)−G(ak))+Var(G, [a,b]).

The second statement of the lemma follows.

Exercise 64, page 71

Consider these two computations:

lim
n→∞

∫ ∞

−∞

1

n
χ[0,n](x)dx= 1

and

lim
n→∞

∫ ∞

−∞

1

n
χ[0,n2](x)dx= ∞.
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Exercise 65, page 71

First of all, to avoid leaping to conclusions, note the fact that the integrand is
undefined at x = 0 is entirely unimportant unless you have been schooled only
in the Riemann theory of integration. That should be ignored. The integrand is
continuous at every point provided one assigns the value 1 at x= 0.

The curious thing about the example is that, while calculus students are en-
tirely prepared to accept a situation such as∫ ∞

−∞
f (x)dx=C and

∫ ∞

−∞
| f (x)| dx= ∞,

students of the Lebesgue integral are not. All Lebesgue integrable functions are
absolutely integrable. Thus ∫ ∞

−∞

sinx

x
dx= π

cannot be accepted in the Lebesgue theory. One could, however, compute

lim
b→∞

∫ b

0

sinx

x
dx= π/2

by conventional means and then claim to interpret the infinite integral in some
“improper” Lebesgue sense. The computations are of some intrinsic interest but
the example, from the point of view of integration theory, merely points out that
an infinite integral need not and should not be interpreted only as an absolute
integral.

Exercise 67, page 76

Take any particular point x in E and check that β(G) is full at that point x. Remem-
ber that, since G is open, there is a positive number δ1 so that (x−δ1,x+δ1)⊂G.
There is also a positive number δ2 so that all pairs ([u,v],x) with x ∈ [u,v] and
0< v−u< δ2 must belong to β.

Exercise 68, page 76

This is nearly identical to the preceding exercise, Exercise 67.

Exercise 80, page 77

This is a dual of the next exercise, Exercise 81.

Exercise 81, page 77

This is a dual of the preceding exercise, Exercise 80.
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Exercise 84, page 78

For each x in E there would have to be at least one interval (x,x+ c) or (x− c,x)

that does not contain any points of the sequence.

Exercise 85, page 78

There would have to be at least one point x0 in E at which β is not fine. That would
mean that all intervals (x,x+c) and (x−c,x) contain infinitely many points of the
sequence.

Exercise 86, page 78

For each x in E there would have to be at least one interval (x−c,x+c) that does
not contain any points of the sequence other than possibly x itself.

Exercise 87, page 78

There would have to be at least one point x0 in E at which β is not full. That would
mean that all intervals (x0,x0+c) or else all intervals (x0−c,x0) contain infinitely
many points of the sequence.

Exercise 88, page 78

For each x in E every interval (x,x+ c) or else every interval (x− c,x) contains
infinitely many points of the sequence.

Exercise 89, page 78

There would have to be at least one point x0 in E at which β is not fine. Thus
some interval (x0,x0+ c) or else some interval (x0− c,x0) contains no points of
the sequence.

Exercise 90, page 78

For each x in E every interval (x,x+ c) and also every interval (x− c,x) contains
infinitely many points of the sequence.

Exercise 91, page 79

There would have to be at least one point x0 in E at which β is not full. Thus
some interval (x0,x0+ c) or else some interval (x0− c,x0) contains no points of
the sequence.
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Exercise 92, page 81

Recall from Exercise 82 the following fact.
Let G be a family of open sets so that every point in a nonempty, compact set

K is contained in at least one member of the family. Then the covering relation

β1 = {(I,x) : x ∈ I and I ⊂ G for some G ∈ G}.
is a full cover of K. Let

β2 = {(I,x) : x 6∈ K and I∩K = /0 }
and check that this is a full cover of R\K.

Consequently β = β1 ∪ β2 is a full cover. Write a = minK and b = maxK.
Choose a partition π ⊂ β of the interval [a,b]. Then corresponding to each (I,x)∈
π[K] is an open set from G covering I. This gives finitely many such open sets
covering the compact set K. We have proved:

[Heine-Borel] Let G be a family of open sets covering a compact set
K. Then there are finitely many open sets G1, G2, . . . , Gn from G
that also cover K.

Exercise 93, page 81

Recall from Exercise 83 the following fact.
Let E be an infinite set that contains no points of accumulation. Then

β = {(I,x) : x ∈ I and I∩E is finite}.
must be a full cover.

Take any bounded interval [a,b] and choose a partition π ⊂ β of the interval
[a,b]. Then, evidently, E ∩ [a,b] is a finite set. We have proved:

[Bolzano-Weiertrass] Every infinite bounded set of real numbers
must have a point of accumulation.

Exercise 94, page 81

Let E be the set of points x where F ′(x) ≥ 0 and let z1, z2, z3, . . . be a list of the
remaining points. Let ε > 0.

Define

β1 = {([u,v],w) : F(v)−F(u)>−ε(v−u)} .
This can be checked to be a full cover of E. Define

β2 =
{

([u,v],w) : w= zn for some n and F(v)−F(u)>−ε2−n
}

.
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Check that β = β1∪β2 is a full cover. Accordingly, by the Cousin covering lemma,
if [a,b] is any interval then there are are points

a= x0 < x1 < x2 < · · ·< xn = b

and associated points {ξi} so that

π = {([xi−1,xi],ξi) : i= 1,2, . . . ,n} ⊂ β.

Hence

F(b)−F(a) =
n

∑
i=1

[F(xi)−F(xi−1)]>−ε

[

b−a+
∞

∑
n=1

2−n

]

=−ε [b−a+1] .

Since ε is an arbitrary positive number F(b)≥ F(a).

Exercise 95, page 81

Define

β = {([u,v],w) : F is bounded below on [u,v]} .
Use the fact that F is lower semicontinuous to check this to be a full cover. Apply
the Cousin covering lemma.

Exercise 96, page 81

One direction is easy. If F is Lipschitz then, for some number M,

| f (x)− f (y)| ≤M|x− y|
for all x, y. In particular, for all h 6= 0,

∣

∣

∣

∣

F(x+h)−F(x)

h

∣

∣

∣

∣

≤
∣

∣

∣

∣

M|(x+h)− x|
h

∣

∣

∣

∣

=M.

The other direction uses a simple covering argument. Suppose that F satisfies
the stated condition and define

β = {([u,v],w) : w ∈ [u,v] and |F(v)−F(u)| ≤M(v−u)} .
This is evidently a full cover. Take any interval [c,d]. By the Cousin lemma there
is a partition

{([xi−1,xi],ξi) : i= 1,2,3, . . . ,n}
of the whole interval [c,d] contained in β. For this partition

|F(d)−F(c)| ≤
n

∑
i=1

|F(xi)−F(xi−1)| ≤
n

∑
i=1

M|xi− xi−1|=M(d− c).

Thus F is Lipschitz.
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Exercise 103, page 84

The former represents a sum taken over all elements in the partition π while the
latter sum contains only those elements (if any) ([u,v],w) ∈ π for which [u,v] is a
subinterval of [c,d]. It is the usual convention to consider that an empty sum has
value zero.

Exercise 104, page 84

The former represents a sum taken over all elements in the partition π while the
latter sum contains only those elements (if any) ([u,v],w)∈ π for which w belongs
to the set E. It is the usual convention to consider that an empty sum has value
zero.

Exercise 109, page 87

It satisfies the definition easily, with G= /0 in fact.

Exercise 110, page 87

If

E = {x1,x2, . . .xN}
and ε > 0, then the sequence of intervals

(

xi−
ε

2N
,xi+

ε

2N

)

i= 1,2,3, . . . ,N

covers the set E and the sum of all the lengths is ε. The union of these intervals
is an open set G that contains E; by the subadditivity property the Lebesgue
measure λ(G) is smaller than ε.

Exercise 111, page 87

If

E = {x1,x2, . . .}
and ε > 0, then the sequence of intervals

(

xi−
ε

2i+1
,xi+

ε

2i+1

)

i= 1,2,3, . . .

covers the set E. Let G be the union of these intervals. Since
∞

∑
k=1

2
( ε

2k+1

)

= ∑
k=1

ε2−k = ε,

we conclude (from Lemma 2.9) that λ(G)< ε.
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Exercise 112, page 87

Let ε > 0. Choose n so that (2/3)n < ε. Then the nth stage intervals in the con-
struction of the Cantor set give us 2n closed intervals each of length (1/3)n. This
covers the Cantor set with 2n closed intervals of total length (2/3)n, which is less
than ε. If the closed intervals trouble you (the definition requires open intervals),
see Exercise 115 or argue as follows. Since (2/3)n < ε there is a positive number
δ so that

(2/3)n+δ < ε.

Enlarge each of the closed intervals to form a slightly larger open interval, but
change the length of each only enough so that the sum of the lengths of all the 2n

closed intervals does not increase by more than δ. The resulting collection of open
intervals also covers the Cantor set, and the sum of the length of these intervals
is less than ε. Thus the Cantor set has Lebesgue measure zero.

Exercise 114, page 88

Since E has Lebesgue measure zero, there is an open set G containing E for
which λ(G)< ε. Let {(ak,bk)} denote the component intervals of G. By the Heine-
Borel theorem there is a finite N so that

{(ak,bk) : k = 1,2, . . . ,N}
covers the set E. Since

N

∑
k=1

(bk−ak)≤ λ(G)< ε.

the proof is complete.

Exercise 117, page 88

You will have to decide on which of the integrals of Chapter 1 to use to answer
this question. The general Newton integral or (equivalently) the Henstock-Kurzweil
integral would be needed in general. The Riemann integral would not exist for all
choices of sets E that have measure zero.

Exercise 140, page 91

You will have to decide on which of the integrals of Chapter 1 to use to answer
this question. For example you might wish to assume that f is Riemann integrable
and try this. cf. Exercise 117.
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Exercise 154, page 99

We know from Lemma 2.20 that, if E is an interval and if F has zero variation
on E, then F is constant on E. If E is open then F would be constant on each
component of E, but need not be constant on E itself. In general, though, the fact
that F has zero variation on a set E that contains no intervals would not say much
about whether F is constant or not.

Exercise 156, page 99

Don’t forget to include the statement that F must be defined on an open inter-
val that contains the point x0. You should verify that it means precisely that F is
defined on an open set containing the point x0 and is continuous at that point.

Exercise 165, page 103

You might develop the proof using these easy steps first:

(A) Suppose that G : [c,d]→ R satisfies

G(y)−G(x)

y− x
≥ r > 0

for all x 6= y in [c,d] and that E ⊂ [c,d] has G(E) a set of Lebesgue
measure zero. Then E also has Lebesgue measure zero.

(A) Suppose that F : [c,d]→ R and E ⊂ [c,d] satisfies

F(y)−F(x)

y− x
≥ r > 0

for all x ∈ E, y∈ [c,d] with x 6= y. Then there is a function G : [c,d]→
R that satisfies

G(y)−G(x)

y− x
≥ r > 0

for all x 6= y in [c,d] and F(x) = G(x) for all x ∈ E.

Now to prove the statement in the exercise. It is enough to assume that
F ′(x)> r > 0 for every x ∈ E. For each u ∈ E choose δ(u)> 0 so that

F(v)−F(u)

v−u
> r. (8.1)

for |u− v| < δ(u). Now, as in the proof of Theorem 2.26, we apply one of our
standard decomposition methods to obtain an increasing sequence of sets

En = {x ∈ E : δ(x)> 1/n}
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whose union is E. Take any interval [c,d] with length less than 1/n and observe
that

F(y)−F(x)

y− x
≥ r > 0

for all x ∈ En∩ [c,d], y ∈ [c,d] with x 6= y in [c,d]. Then, by statement (B), there is
a function G : [c,d]→ R that satisfies

G(y)−G(x)

y− x
≥ r > 0

for all x 6= y in [c,d] and F(x) = G(x) for all x ∈ En ∩ [c,d]. Note that F(En ∩
[c,d]) = G(En∩ [c,d]) is a set of measure zero. Then by statement (A) it follows
that En∩ [c,d] is also a set of measure zero.

Deduce now from this that E itself must also be a set of measure zero.

Exercise 172, page 108

Use Lemma 2.32.

Exercise 173, page 108

Let C the collection of points in (a,b) at which there is no derivative. This is
countable and, since F is continuous, F has zero variation on C. Now take any
Lebesgue measure zero set N ⊂ (a,b). We know that F has zero variation on
C∩N and, by Lemma 2.32, we know that F has zero variation on N \C. It follows
that F has zero variation on N.

Exercise 179, page 122

The language of the upper and lower integrals alone suggests that upper integrals
should exceed lower integrals. It is best not to take this for granted, but to prove
this fact in this exercises. Make use in your proof of the fact that the intersection
of two full covers, is again a full cover.

Exercise 182, page 122

cf. Exercise 51.

Exercise 183, page 123

Infinite values are allowed but we would have to avoid ∞+(−∞) or −∞+∞. This
is simpler if you first check that a single value f (b) is irrelevant to the computations
so that you may assume that f (b) = 0. Then ensure that any partition π contained
in your choice of β of the interval [a,b], [a,c] or [b,c] would have to contain an
element (I,b).
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Exercise 185, page 123

Check, first, that full covers do in fact contain endpointed partitions (as well as
ordinary partitions). Then note that, if a partition π contains a pair ([u,v],w) for
which u < w < v that element can be replaced by the two items ([u,w],w) and
([w,v],w). That does not change the Riemann sums here because, for example,

f (w)[v−u] = f (w)[w−u]+ f (w)[v−w].

Finally check that if β is a full cover there must be a smaller full cover β′ ⊂ β so
that ([u,v],w) ∈ β′ with u< w< v if and only if both ([u,w],w) and ([w,v],w) are
in β′.

Exercise 186, page 124

Use β to find estimates for the upper and lower integrals,
∫ b

a
f (x)dx−

∫ b

a
f (x)dx< 2ε.

(Later we will show that this condition is, in fact, both necessary and sufficient.

Exercise 191, page 139

Check first that you need only prove the case where E ⊂ (a,b). Then it is just a
matter of looking carefully at the definitions of the two concepts.

Exercise 192, page 139

Use the subadditive property of open sets expressed in Lemma 2.9.

Exercise 201, page 153

Just apply Exercise 200.

Exercise 202, page 154

Write h = f ◦ g. Let G ⊂ R be an arbitrary open set. Note that h−1(G) =

f−1
(

g−1(G)
)

. Since G is open and g is continuous we know that g−1(G) is also
open. Then by Exercise 198 we conclude that f−1

(

g−1(G)
)

is measurable. Since
h−1(G) is measurable for every choice of open set G it follows (from Exercise 198
yet again) that h is measurable.

It is clear that the argument would not apply in the different order g ◦ f . To
complete the exercise, however, requires finding a suitable counterexample. Begin
by showing that there is a continuous increasing function φ and a measurable set
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E for which φ(E) is not measurable. Let g be the function inverse to φ and let
f = χE .

Exercise 203, page 155

Let A be the set of all points where f has a finite derivative. We know that each
set of the form

{x : D f (x)> c}
and

{x : D f (x)< c}
is measurable. Thus the set A′ of points at which f does not have a derivative
(finite or infinite) can be expressed as the union of the family of sets

Apq = {x : D f (x)< p< q< D f (x)}
for rational numbers p and q. It follows that A′ is also measurable. Again the set
A′′ of points where f ′(x) =±∞ can be written as

A′′ =
∞⋂

n=1

{x : D f (x)<−n}∪
∞⋂

n=1

{x : D f (x)> n}.

Thus this set is measurable. But A= A′ \A′′.

Exercise 207, page 164

Apply Fatou’s lemma to the non-negative sequence given by g− fn.

Exercise 212, page 173

Let ε > 0 and suppose that F ′(x) = f (x) at every point. Define

β = {([u,v],w) : |F(v)−F(u)− f (w)(v−u)| ≤< ε(v−u).

Check that β is a full cover of R and that it satisfies (4.21).
Conversely suppose that β has been chosen to be a full cover of R that satis-

fies (4.21). Fix x ∈ R and determine δ > 0 so that whenever (I,x) satisfies x ∈ I

and λ(I)< δ then necessarily (I,x)∈ β. Note that if ([c,d],x) is any pair for which
c≤ x≤ d and d−c< δ then necessarily ([c,d],x) is in β and the set π containing
only this one pair is itself also a partition of [c,d]. Consequently, using (4.21),

|F(d)−F(c)− f (x)(d− c)|< ε(d− c).

But this verifies that F ′(x) = f (x).
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Exercise 213, page 173

Suppose that F ′(x) = f (x) everywhere. Apply Lemma 212 to find a full cover β

for which for every compact interval [a,b] and every partition π ⊂ β of [a,b],

∑
(I,x)∈π

|∆F(I)− f (x)λ(I)|< ελ([a,b])/2. (8.2)

Let π1, π2 ⊂ β be partitions of [a,b]. Apply (8.2) to each of them and add to obtain
that

∣

∣

∣

∣

∣

∑
(I,z)∈π

f (z)λ(I)− ∑
(I′,z′)∈π′

f (z′)λ(I′)

∣

∣

∣

∣

∣

< ελ([a,b]). (8.3)

Now simply rearrange (8.3) to obtain (4.22). Conversely suppose that the state-
ment (4.22) in the theorem holds for ε and β. This is a stronger statement than the
Cauchy second criterion and so f is integrable on every compact interval. Thus
there is a function F that will serve as the indefinite integral for f on any interval.
From (4.22) we deduce that

∣

∣

∣

∣

∣

∆F([a,b])− ∑
(I,z)∈π

f (z)λ(I)

∣

∣

∣

∣

∣

< 2ελ([a,b]) (8.4)

must be true for any partition π of [a,b] from the cover β.
Fix x ∈ R and determine δ > 0 so that whenever (I,x) satisfies x ∈ I and

λ(I) < δ then necessarily (I,x) ∈ β. Note that if ([c,d],x) is any pair for which
c≤ x≤ d and d−c< δ then necessarily ([c,d],x) is in β and the set π containing
only this one pair is itself also a partition of [c,d]. Consequently, using (8.4),

|F(d)−F(c)− f (x)(d− c)|< 2ε(d− c).

But this verifies that F ′(x) = f (x).

Exercise 219, page 175

Yes and no, uniform convergence is very strong, but the integrals are defined in
very special ways as antiderivatives with exceptional sets.

Suppose that fn are Newton integrable on [a,b] in some sense with indefinite
integrals Fn. If fn → f uniformly then Fn converges uniformly to some continuous
function F : [a,b]→ R. (Check this.)

Let x0 be a point at which F ′
n(x0) = fn(x0) for each n. Let ε > 0 and choose

an integer N so that

| fn(x)− f (x)|< ε

for all x ∈ [a,b] and all n ≥ N. Observe that f is integrable at least in the sense
of the Henstock-Kurzweil integral. (Any uniform limit of integrable functions would
be integrable.) Thus for any x, y in the interval

|F(y)−F(x)− (Fn(y)−Fn(x))| ≤
∫ y

x
| f (t)− fn(t)| dt < ε(y− x).



8.1. ANSWERS TO PROBLEMS 351

Use this to deduce that F ′(x0) = f (x0).
Thus the classical Newton has this property. that a uniform limit of a sequence

of classically Newton integrable functions is also classically Newton integrable.
The naive Newton has this property. that a uniform limit of naively Newton inte-
grable functions is also naively Newton integrable. The same can be verified for
the utility and the general versions.

The elementary version, however, employs a finite set of exceptions. At each
stage of the sequence above F ′

n(x) = fn(x) for all x except for x in some finite set
En. We can verify that F ′(x) = f (x) for all x except for x in the set E =

⋃∞
n=1En.

But that set E may not be finite itself.
For example, simply let fn(x) = 0 for all x excepting that fn(1/i) = 1/i for

each point x= 1/i with i= 1,2,3, . . . ,n. Then fn converges uniformly to a function
which is not integrable in the elementary Newton sense.

Exercise 220, page 176

The following are trivial:

[unif] ⇒ [meas]

and

[unif] ⇒ [a.u.].

The following are easy:

[unif] ⇒ [mean],

[a.u.] ⇒ [a.e.],

and

[a.u.] ⇒ [meas].

The only difficult one is

[a.e.] ⇒ [a.u.]

whose proof we supply in Section 4.10.6 as Egorov’s theorem.

Exercise 221, page 177

This is just an observational question. Look at the displays. We need counterex-
amples to justify our views that these implication are invalid:

[a.e.] 6⇒ [unif] and [a.e.] 6⇒ [mean],

[a.u.] 6⇒ [unif] and [a.u.] 6⇒ [mean],

[meas] 6⇒ any of the others.

Note, however, that we do not need counterexamples for all possible failed impli-
cations. For example, a counterexample that shows that

[meas] 6⇒ [a.u.]
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would automatically allow us to conclude that

[meas] 6⇒ [unif] and [meas] 6⇒ [a.e.],

Exercise 222, page 177

The conclusion follows from the easy inequality

λ({x ∈ [a,b] : | fn(x)− f (x)| ≥ η})≤ η−1

∫ b

a
| fn(t)− f (t)|dt.

Exercise 223, page 179

First of all select a subsequence { fnk} so that

liminf
n→∞

∫ b

a
fn(x)dx= lim

k→∞

∫ b

a
fnk(x)dx.

This subsequence { fnk} also converges in measure to f . By Exercise 4.48 there
is a further subsequence (i.e. a subsequence of the sequence { fnk}) that con-
verges almost everywhere on [a,b]. Now just apply the original version of Fatou’s
lemma to this subsubsequence.

Exercise 225, page 180

If (−∞,∞)\N contains even a single sequence of points {xn} with |xn| → ∞ then
{ fn} cannot converge uniformly on (−∞,∞)\N.

Exercise 226, page 181

The new implications, available under the assumption that the sequence is domi-
nated, are:

[a.e.] ⇒ [mean],

[meas] ⇒ [mean],

and

[a.u.] ⇒ [mean].

But a moment’s thought shows that there is only one that needs to be proved:

[meas] ⇒ [mean].

The other two implications would follow from this.
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Exercise 227, page 181

Compare with Exercise 4.35. Make sure to consult also Exercises 4.48 and 223
for some techniques useful in handling convergence in measure.

Exercise 229, page 185

It was A. Denjoy [Bull. Soc. Math. France 43 (1915), 161–248] who first introduced
the notion of approximately continuous functions of a real variable. In that paper
he proved that they belong to Baire class 1 and have the Darboux property (i.e.,
intermediate value property). More recent and simpler proofs can be found in
several texts (e.g., [?], [?] and in the article of Chen 1.

Exercise 230, page 185

Construct a covering argument that is identical to that used in the proof of Theo-
rem 94. Use the approximate version of the Cousin lemma (i.e., Lemma 4.8). See
also the references in the answer for Exercise 229.

Exercise 231, page 186

Simply show that, if this is not the case, then the indefinite integral of f would have
bounded variation on [a,b]. For a nonabsolutely integrable function, this cannot be
the case.

Exercise 232, page 187

It is easy to check that [uniform convergence] does not imply [bounded con-
vergence]. We show that [uniform convergence] does imply [dominated conver-
gence]. Suppose that fn → f uniformly on [a,b] where each fn is Lebesgue in-
tegrable. Choose an integer N so that | fn(x)− f (x)| < 1 for all x ∈ [a,b] and all
n≥ N. Set, for each x ∈ [a,b],

g(x) =max{| f1(x)|, | f2(x)|, | f3(x)|, . . . | fN−1(x)|, | fN(x)|+1}.
The g is Lebesgue integrable on [a,b] and g dominates the sequence { fn}. Thus
[uniform convergence] implies [dominated convergence] on a finite interal [a,b].
(This would not be the case on an infinite interval.)

Exercise 233, page 187

This is trivial on on a finite interal [a,b]. (This would not be the case on an infinite
interval.)

1Jau D. Chen, A note on approximate continuity, Tamkang J. Math. 5 (1974), no. 1, 109–111.
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Exercise 234, page 187

We assume that, for some Lebesgue integrable function g, | fn(x)| ≤ g(x) for all
integers n and a.e. points x ∈ [a,b]. Let ε > 0 and choose δ > 0 so that if G is an
open set for which λ(G)< δ then∫ b

a
g(x)χG(x)dx< ε.

for all integers n. [This uses Theorem 4.55.) Then∫ b

a
| fn(x)|χG(x)dx≤

∫ b

a
g(x)χG(x)dx< ε

for all integers n.

Exercise 235, page 187

Arrange such a sequence fn : [0,1]→ R converging pointwise to zero for which

lim
n→∞

∫ 1

0
fn(x)dx= 0

and for which

sup
n

{ fn(x)}= 1/x

for all 0< x< 1.

Exercise 236, page 188

If the sequence {gn} satisfies the Vitali equi-integrability condition, then Theo-
rem 4.56 supplies the limit

lim
n→∞

∫ b

a
gn(x)dx= 0.

In the other direction suppose that this limit is valid. Let ε > 0. Choose an integer
N so that ∫ 1

0
gn(x)dx< ε

if n≥N. For each integer i= 1,2, . . . ,N−1, choose δi > 0 so that if G is an open
set for which λ(G)< δi then∫ b

a
|gi(x)|χG(x)dx< ε.

Set

δ =min{δ1,δ2,δ3, . . . ,δN−1}.
Then, if G is an open set for which λ(G)< δ,∫ b

a
|gn(x)|χG(x)dx< ε
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for all integers n. Thus the sequence {gn} satisfies the Vitali equi-integrability
condition.

Exercise 244, page 201

Let E be a measurable subset of [0,1]. Then the function f (x) = χE(x) is a non-

negative integrable function. Does f = f+ belong to S ↑
ℓ [0,1]? That would mean

that there is a function g ∈ S ↑
ℓ [0,1] with f = g a.e. in that interval. Since g is l.s.c.

the set

G= {x ∈ (0,1) : g(x)> 1/2}
is an open set and a.e. point of G belongs to E. This is not the case, however, for
every measurable set. (For example take a Cantor set of positive measure.)

Exercise 245, page 201

An example is given in James Foran and Sandra Meinershagen [24], Some an-
swers to a question of P. Bullen, Real Anal. Exchange 13 (1987/88), no. 1, 265–
277.

Exercise 251, page 205

Define F : R→ R by F(0) = F(1/(2n− 1)) = 0 and F(1/2n) = 1/n for all n =
1,2,3, . . . . Extend F to be linear on each of the intervals contiguous to these
points where it has so far been defined. Show that F is absolutely continuous but
that Vitali’s condition does not hold on the interval [0,1].

Exercise 252, page 205

Perhaps hard to spot. Note that the condition does not specify that the intervals
should be nonoverlapping. Show that every Lipschitz function satisfies this condi-
tion. Then show that a function that satisfies the condition of must be a Lipschitz
function.

Exercise 254, page 207

The only property of ultrafilters that is needed for this proof is the following funda-
mental fact that the student can look up elsewhere: if U is an ultrafilter on Π and
α is any nonempty subset of Π then either α ∈U or else Π\α ∈U.

To prove Theorem 4.71 note that the only part that is not completely immediate
is the identity

(U)
∫ b

a
f (x)dx= (U)

∫ b

a
f (x)dx
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that is required to hold for all functions f : [a,b]→R. Let t be any real number for
which

t < (U)
∫ b

a
f (x)dx.

Define the following subsets of Π:

α =

{

π ∈ Π : ∑
([u,v],w)∈π

f (w)(v−u)> t

}

and its complement

α′ =

{

π ∈ Π : ∑
([u,v],w)∈π

f (w)(v−u)≤ t

}

.

By the fundamental property of ultrafilters (just mentioned) one of these two sets
must belong to U. But if α′ ∈U then that would imply that

(U)
∫ b

a
f (x)dx≤ t

which is impossible. It follows that α ∈U and, hence, that

t ≤ (U)
∫ b

a
f (x)dx.

Since this is true for all t for which

t < (U)
∫ b

a
f (x)dx

the identity

(U)
∫ b

a
f (x)dx= (U)

∫ b

a
f (x)dx

must hold.

Exercise 255, page 208

For any covering relation β it is clear that

Var(rλ,β[E])≤ Var( fλ,β)≤ Var(sλ,β)

and from this one can deduce that

rλ(E) =V ∗(rλ,E)≤V ∗( fλ,E)≤V ∗(sλ,E) = sλ(E).

Note that it would also be true that

rλ(E) =V∗(rλ,E)≤V∗( fλ,E)≤V ∗(sλ,E) = sλ(E).
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Exercise 259, page 209

This exercise asserts that when λ(E) is zero so too is
∫
E f (x)dx. This is consid-

ered an absolute continuity condition. In Exercise 267 we considered a different
version of absolute continuity asserting that if λ(E) is “small” so too is

∫
E f (x)dx.

Let En = {x ∈ E : 1/n< f (x)}. Check that

nλ(En)≤
∫
En

f (x)dx≤
∫
E
f (x)dx= 0.

Thus λ(En) = 0 for each n and so also if E ′ = {x ∈ E : f (x) 6= 0} then

λ(E ′)≤
∞

∑
n=1

λ(En) = 0.

Exercise 266, page 210

For illustrative purposes only we begin the proof with the bounded case. Suppose
that f (x)<N for all x∈E. Choose δ= ε/N and observe that, if λ(G)< δ then the
inequalities in the measure estimates of an earlier exercise in this section provide∫

E∩G
f (x)dx≤ Nλ(G)< ε.

Thus the proof in the bounded case is trivial and does not require that f be mea-
surable.

Exercise 267, page 210

This exercise asserts that when λ(E) is small so too is
∫
E f (x)dx. This is con-

sidered an absolute continuity condition. In Exercise 260 we consider a different
version of absolute continuity asserting that if λ(E) is zero so too is

∫
E f (x)dx.

Note that there are finiteness assumptions in this (stronger) version.
The argument in the preceding exercise suggests how to proceed. Let

An = {x : n−1≤ f (x)< n}.
From the fact that f is measurable we can deduce that An is measurable. Thus we
can select an open set Gn for which Bn = An \Gn is closed and λ(Gn)< ε2−nn−1.
That also requires∫

E∩An

f (x)dx≤
∫
E∩Bn

f (x)dx+
∫
E∩An∩Gn

f (x)dx

≤
∫
E∩Bn

f (x)dx+ ε2−n.

Note that {Bn} is a disjointed sequence of closed sets whose union B can be
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handled by the usual additive properties of measures over such sets. Thus
∞

∑
n=1

∫
E∩An

f (x)dx≤
∞

∑
n=1

∫
E∩Bn

f (x)dx+ ε

=
∫
E∩B

f (x)dx+ ε ≤
∫
E
f (x)dx+ ε < ∞.

In particular there must be an integer N sufficiently large that
∞

∑
n=N+1

∫
E∩An

f (x)dx< ε/2.

Choose δ = ε/(2N) and let G be any open set for which λ(G)< δ. Since

E ∩G= {x ∈ E ∩G : f (x)< N}∪
∞⋃

n=N+1

(G∩E ∩An)

we have ∫
E∩G

f (x)dx≤ Nλ(G)+
∞

∑
n=N+1

∫
E∩An

f (x)dx< ε.

Exercise 268, page 210

The proof repeats a number of techniques we have already seen in the proof of
Theorem 267.

Each of the sets appearing in the statement of the theorem is measurable,
because f is measurable. Select open sets Gkr so that Brk = Akr \Gkr is closed
and so that

λ(Gkr)< ε2−|k|−1r−k.

That also requires∫
E∩Akr

f (x)dx≤
∫
E∩Bkr

f (x)dx+
∫
E∩Akr∩Gkr

f (x)dx

≤
∫
E∩Bkr

f (x)dx+ ε2−|k|−1.

Note that {Bkr} is a disjointed sequence of closed sets whose union Br can
be handled by the usual additive properties of measures over such sets.

Now we compute: ∫
E
f (x)dx≤

∞

∑
k=−∞

∫
E∩Akr

f (x)dx

≤
∞

∑
k=−∞

∫
E∩Bkr

f (x)dx+ ε ≤
∞

∑
k=−∞

rkλ(E ∩Bkr)+ ε

≤ r
∞

∑
k=−∞

∫
E∩Bkr

f (x)dx+ ε = r

∫
E∩Br

f (x)dx+ ε ≤ r

∫
E
f (x)dx+ ε.
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Exercise 269, page 210

The first identity ∫
E
f (x)dx=V ∗( fλ,E)

is just our definition. Thus the intent of the exercise is to prove just that

V ∗( fλ,E) =V∗( fλ,E).

Repeat Exercise 268 and this time deduce the related inequality

V∗( fλ,E)≤
∞

∑
k=−∞

rkλ(E ∩Akr)≤ rV∗( fλ,E).

Essentially this is accomplished because the Lebesgue measure can be esti-
mated by either full covers or by fine covers (this is the Vitali covering theorem).

A comparison of the two inequalities shows that V ∗( fλ,E) =V∗( fλ,E).

Exercise 273, page 213

Take as a full cover β the collection of pairs ([u,v],w) for which w ∈ [u,v] but [u,v]
never overlaps both of the intervals [0,1/2] or [1/2,1] unless w = 1/2. Then all
partitions π of [a,b] from β can be split neatly at the point 1/2.

Exercise 274, page 214

Take as a full cover β the collection of pairs ([u,v],w) for which w ∈ [u,v] but [u,v]
never overlaps two of the intervals [ξi−1,ξi] unless w is one of the points {ξi}.
Then all partitions π of [a,b] from β can be split neatly at the points ξi.

Exercise 275, page 214

Both integrals exist but have different values, which you can check. If you were
schooled in the Riemann-Stieltjes integral then you might recall this example was
used to illustrate non-existence of the Riemann-Stieltjes integral. These differ-
ences in the two theories are mostly irrelevant since most applications will assume
that one function is continuous and the other has bounded variation.

Exercise 276, page 214

Warning: If you were schooled in the Riemann-Stieltjes integral before learning
this Stieltjes integral you may think not. Otherwise just check that the existence of
the integral (finitely that is) on [a,b] and [b,c] is equivalent to the existence of the
integral on [a,c].
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Exercise 283, page 214

Hint: |dG(x)| is subadditive whereas dG(x) is additive.

Exercise 301, page 232

We can simplify the argument and assume that F is defined on the whole real
line. We wish to show that

1. λF( /0) = 0.

2. For any sequence of sets E, E1, E2, E3, . . . for which E ⊂ ⋃∞
n=1En the

inequality

λF(E)≤
∞

∑
n=1

λF(En)

must hold.

This result is often described by the following language that splits the property (2)
in two parts:

Subadditivity: λF

(

∞⋃
n=1

En

)

≤
∞

∑
n=1

λF(En).

Monotonicity: λF(A)≤ λF(B) if A⊂ B.

The monotonicity is obvious. This allows us to prove the additivity assertion
above just in the special case that the sets {En} are pairwise disjoint so that
E =

⋃∞
n=1En is now a disjoint union. If λF(En) = ∞ for any integer n there is

nothing to prove so we may suppose all of these are finite.
Let ε > 0. For each integer n choose a full cover βn of En so that

sup
π⊂βn

∑
([u,v],w)∈π

|F(v)−F(u)|< λF(En)+ ε2−n.

Then write

β =
∞⋃

n=1

βn[En].

This is a full cover of E and consequently

λF(E)≤ sup
π⊂β

∑
([u,v],w)∈π

|F(v)−F(u)|.

Take any subpartition π ⊂ β and observe that

∑
([u,v],w)∈π

|F(v)−F(u)| ≤
∞

∑
n=1

∑
([u,v],w)∈π[En]

|F(v)−F(u)| ≤
∞

∑
n=1

[

λF(En)+ ε2−n
]

.

From this it follows that

λF(E)≤ ε+
∞

∑
n=1

[λF(En)]
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and the subadditive property follows.

Exercise 305, page 232

One direction is easy. If β is full cover of (a,b)) and we prune out intervals not
inside (a,b) by writing β′ = β((a,b)), then it is clear that

λF((a,b))≤ sup
π⊂β′

∑
([u,v],w)∈π

|F(v)−F(u)| ≤ Var(F, [a,b]).

In the other direction ETC

Exercise 306, page 232

Suppose that E ⊂ (−L,L) and that |F ′(x)|<M for all x ∈ E. Then

β =

{

([u,v],w) : (u,v)⊂ (−L,L),
|F(v)−F(u)|

v−u
<M

}

is a full cover of E Thus, for any subpartition π ⊂ β,

∑
([u,v],w)∈π

|F(v)−F(u)| ≤ 2ML.

It follows that λF(E)≤ 2ML and so is finite.

Exercise 308, page 238

Develop the Henstock zero variation criterion for this integral and check that the
usual zero derivative procedure will supply this fact.

Exercise 312, page 253

Note that there is no typo in the first inequality: the full variation is needed on the
right-hand side. The second inequality, the easier to check, follows from the fact
that the intersection of two full covers is again full. The first inequality follows from
the fact that the intersection of two covering relations, one of which is full and the
other fine, is again fine.

Exercise 317, page 254

If f ′(x) = 0 for all x ∈ E \N show that λ f (E \N) = 0.

Exercise 319, page 254

It is enough to suppose that λ f (E)< ∞. Let C = {x ∈ E : λ f ({x})> 0}; this set
must include every point at which f fails to be continuous. Now let Cn = {x ∈ E :
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λ f ({x})> 1/n}. From measure-properties

λ f (Cn)≤ λ f (E)< ∞.

But if Cm contains k points then

λ f (Cn)≥ k/n.

It follows that each set Cn is finite and hence the set C must be countable.

Exercise 320, page 254

Some authors would use the term weakly continuous at a point x0 to mean that
there is at least one sequence cn → x0 and so that |cn− x0|> 0 and

f (cn)− f (x0)→ 0.

This condition is a little stronger than the definition in the text. For example the
function f (x) = 0 if x 6= 0 and f (0) = 1 is weakly continuous at 0 in our sense but
not in the stronger sense. The property in the exercise is dictated by the particular
definition that we use for fine covers.

Here is a proof. Since f is weakly continuous at x0 we know, by definition, that
λ⋆
f ({x0}) = 0. For each integer n we can select a fine cover βn of the set {x0}

so that Var(∆ f ,βn) < 1/n. From βn we can select a pair ([cn,dn],x0) for which
dn− cn < 1/n. Note that cn ≤ x0 ≤ dn and

| f (dn)− f (cn)| ≤ Var(∆ f ,βn)< 1/n.

This pair of sequences {cn} and {dn} has all the properties that we need except
they need not be monotonic. But there is a monotonic subsequence of the {cn}
so that we can consider that we have selected that subsequence. Take a further
subsequence so that both sequences are monotonic. The new sequences have
all the properties that we need.

Exercise 321, page 254

Let

E = {x : liminf
(I,x) =⇒ x

|∆ f (I)|> 0}

and

E = {x : liminf
(I,x) =⇒ x

|∆ f (I)|> 1/n}.

The set of points where f is not weakly continuous is exactly the set E =
⋃

nEn.
Note that β = {(I,x) : |∆ f (I)| > 1/n} is a full cover of En and apply the decom-
position lemma from Section 2.2.3.
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Exercise 323, page 254

Recall that F has finite variation on (a,b) if there is a number M and a full cover
β of (a,b) so that

∑
([u,v],w)∈π

|F(v)−F(u)| ≤M

whenever π is a subpartition, π ⊂ β. If F has bounded variation on [a,b] then
certainly M = Var(F, [a,b]) will work.

In the converse direction we suppose that M and β have been chosen with
this property. For every subinterval [c,d] ⊂ [a,b] there is a partition π contained
in β for which evidently

|F(d)−F(c)|=
∣

∣

∣

∣

∣

∑
([u,v],w)∈π

[F(v)−F(u)]

∣

∣

∣

∣

∣

≤ ∑
([u,v],w)∈π

|F(v)−F(u)| ≤M.

Fix some point x0 in (a,b) and then we have the bound |F(x)| ≤M+ |F(x0)| for
every point x in (a,b).

Now we estimate Var(F, [a,b]). Take any choice of points

a= s0 < s1 < · · ·< sn−1 < sn = b.

We note that

|F(s1)−F(s0)| ≤ |F(a)|+M+ |F(x0)|
and that

|F(sn)−F(sn−1)| ≤ |F(b)|+M+ |F(x0)|.
We may choose a partition π from β so that π contains a partition of each of the
remaining intervals [s1,s2], [s2,s3], . . . , [sn−2,sn−1]. This provides the inequality

n

∑
i=1

|F(si)−F(si−1)| ≤ |F(a)|+M+ |F(x0)|+ |F(b)|+M+ |F(x0)|+M =

|F(a)|+ |F(b)|+3M+2|F(x0)|.
This offers us an upper bound for Var(F, [a,b]) and we have proved that F has
bounded variation on [a,b].

Exercise 325, page 254

If f is locally recurrent at every point of a set E then

β = {(I,x) : ∆ f (I) = 0}
is a fine cover of E. Thus

λ⋆
f (E)≤ Var(∆ f ,β) = 0.
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Exercise 326, page 255

Define

β = {(I,x) : ∆ f (I)≥ 0}
and notice that this is a full cover of E. Apply the decomposition from Section 2.2.3
for β. There is an increasing sequence of sets {En} with E =

⋃∞
n=1En and a

sequence of compact intervals {Ikn} covering E so that if x is any point in En and
I is any subinterval of Ikn that contains x then (I,x) belongs to β.

We check that f is nondecreasing on each set Dnk = En ∩ Ikn in a certain
strong way. For if either x or y belongs to the set Dnk and [x,y] ⊂ Ikn then one of
the pairs ([x,y],x) or ([x,y],y) belongs to β which requires that f (x)≤ f (y).

Let c = infDnk and d = supDnk. Suppose that c = d. Then Dnk contains a
single point c and λ f ({c}) < ∞, i.e., λ f (Dnk) < ∞. Suppose instead that c < d.
Let D′

nk = Dnk ∩ (c,d) so that Dnk contains, at most, two points c and d more
than the set D′

nk. Let β′ = β[Dnk]∩ β((c,d)). Then β′ is a full cover of D′
nk. Let

π = {{[ci,di],xi)} be any subpartition contained in β′. We see from the manner
in which f increases relative to the set Dnk that

∑
i

| f (di)− f (ci)| ≤ 2[ f (d)− f (c)].

It follows that

λ f (D
′
nk)≤ Var(∆ f ,β′)≤ 2[ f (d)− f (c)]< ∞.

Consequently,

λ f (Dnk)≤ λ f (D
′
nk)+λ f ({c})+λ f ({d})< ∞

too, so that in either case λ f (Dnk) is finite. It follows that λ f is σ-finite on the set
E since that set has been expressed as a union of a sequence of sets on each of
which λ f is σ-finite.

Exercise 327, page 255

Define three sets E1, E2, and E3. E1 is the set of points at which f is locally
nondecreasing. E2 is the set of points at which − f is locally nondecreasing. E3

is the set of points at which f is locally recurrent. Since f is continuous it has
the Darboux property. From that we see that E1∪E2∪E3 = R since there are no
other possibilities.

But λ⋆
f (E3) = 0 and λ f is σ-finite on E1 and E2 (Exercise 326). It follows that

the smaller measure λ⋆
f must be σ-finite.

Exercise 328, page 255

Since the hint suggests that we can use Theorem 6.20 let us do so. There must
be a sequence of compact sets {En} covering E and a sequence of continuous
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functions of bounded variation {gn} so that f is Kolmogorov equivalent to gn on
En. In particular, we know that g′n(x) exists at almost every point. Therefore the
set of points in En at which f ′(x) = g′n(x) fails is a set of measure zero, say Nn.
It follows that f is differentiable at every point of E with the possible exception of
points in the measure zero set

⋃∞
n=1Nn.

Exercise 331, page 260

Let

E = {x : D− f (x)< D+ f (x)}
and, for each rational number r, let

Er = {x : D− f (x)< r < D+ f (x)}.
Note that E is the union of the countable collection of sets Er taken over all ratio-
nals r. For each x in Er there is a δ(x)> 0 so that, for all 0< h< δ(x),

∆ f ([x−h,x])< rλ([x−h,x])

and

∆ f ([x,x+h)> rλ([x,x+h])}
because of the values of the Dini derivatives.

Let

Ern = {x ∈ E : δ(x)> 1/n}
and check that

Er =
∞⋃

n=1

Ern.

We claim that, for each n, the set Ern is countable. Indeed there cannot be two
points x and y with x < y in Ern closer together than 1/n. For if so, let h = y− x,
note that 0< h< δ(x)< 1/n and 0< h< δ(y)< 1/n. That would mean that

∆ f ([x,y])< rλ([x,y])< ∆ f ([x,y)

which is impossible. Accordingly each Ern is countable and so too also is E. The
other set of the theorem can be handled by an identical proof.

Exercise 333, page 260

Consider first the set

A= {x : D− f (x)< D+ f (x)}
and, for each rational number r, let

Ar = {x : D− f (x)< r < D+ f (x)}.
Note that A is the union of the countable collection of sets Ar taken over all rational
numbers r.
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For each x in Ar we have D− f (x)< r. Thus there is a δ(x)> 0 so that, for all
0< h< δ(x),

f (x)− f (x−h)< rh.

For each n= 1,2,3, . . . and each k = 0,±1,±2, . . . write

Arnk =

[

k−1

n
,
k

n

]

∩
{

x ∈ Ar : δ(x)>
1

n

}

.

Notice that

f (x)− f (y)< r(x− y)

for all x< y with x, y ∈ Arnk and check that

Ar =
∞⋃

k=−∞

∞⋃
n=1

Arnk.

Finally let Ernk denote the closure of the set Arnk. Each set Ernk is compact
and we claim that it contains no subinterval; in particular then it is a meager subset
of R.

Should such a set Ernk contain an interval [a,b] then, by the continuity of f we
must conclude that the inequality stated above would require, for all a< y< x< b,
that

f (x)− f (y)≤ r(x− y).

Consequently there would be no points y in (a,b) at which r < D+ f (y). But this
is impossible since the set Arnk is dense in the set Ernk.

Thus we have displayed

Ar ⊂
∞⋃

k=−∞

∞⋃
n=1

Ernk

as a subset of a union of a sequence of meager subsets of R.
It follows that the set A defined above is also a meager subset of R. In a

similar way we can conclude that each of the sets

{x : D− f (x)> D+ f (x)}
{x : D− f (x)> D+ f (x)}

and

{x : D− f (x)< D+ f (x)}
is a meager subset of R. From this the theorem follows.

Exercise 335, page 260

Suppose that f is not nondecreasing on [a,b]. Then we can choose points
a ≤ a′ < b′ ≤ b with f (b′) < f (a′). Thus [ f (b′), f (a′)] is a nonempty compact
subinterval of [c,d]. Take any y between f (b′) and f (a′). Let

M(y) = sup{x ∈ (a′,b′) : f (x) = y}.
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Check that f (x) = y and that D+ f (x) ≤ 0 whenever x =M(y). Thus, y ∈ f (D).
Consequently f (D) contains ( f (b′), f (a′)) and so, also, all compact subintervals
contained in this open interval.

Exercise 336, page 261

We break the proof into a number of steps that follow Morse’s original exposition.

Step 1. Suppose that f is strictly decreasing on a compact set E ⊂ [a,b]. If E
contains no subinterval, then we claim that f (E) is a compact subset of [c,d] that
also contains no interval.

We can define a strictly decreasing, continuous function g : R → R so that
f (x) = g(x) for all x in E by making g continuous and linear on all the open
intervals complementary to E. We know that f (E) = g(E) would be compact.
Suppose, contrary to what we want, that g(E) contains a subinterval J of [c,d].
We consider the inverse function g−1 which maps that subinterval J back into E.
Such a function would be continuous and therefore maps J to some interval. That
would require E to contain an interval.

Step 2. Define, for each integer n= 1,2,3, . . . ,

En = {x ∈ [a,b] : f (x+h)− f (x)≤−h/n whenever 0≤ h≤ 1/n}
Then we will prove that En is a compact subset of [a,b] that contains no interval
and that f (En) is a compact subset of [c,d] that contains no interval.

It is easy to check, using the continuity of f , that En is closed. Thus both En

and f (En) must be compact. We subdivide [a,b] into a finite collection {Jk} of
compact, nonoverlapping subintervals of [a,b], covering all of that interval and
each of length less than 1/n. It is easy to see that f is strictly decreasing on each
set Jk∩En. By our hypotheses the set A is dense in [a,b] so that no one of these
sets Jk∩En can contain an interval. In particular En itself can contain no interval.
Moreover, by step 1, we conclude that f (Jk ∩En) is a compact set that contains
no subintervals of [c,d]. It follows that f (En) is contained in the finite union of
such sets and so must itself contain no subintervals of [c,d].

Step 3. The set B is a meager subset of [a,b] and the set f (B) is a meager subset
of [c,d]. This follows from step 2 since B is the union of the sequence of sets {En}
each of which is a meager subset of [a,b], while f (B) is the union of the sequence
of sets { f (En)}, each of which is a meager subset of [c,d].

Step 4. Suppose now that f is not nondecreasing on [a,b]. Then we can choose
points a≤ a′ < b′ ≤ b with f (b′)< f (a′). Thus [ f (b′), f (a′)] is a nonempty com-
pact subinterval of [c,d]. We know from the proof of the preliminary lemma that f
maps the set

D= {x ∈ [a,b] : D+ f (x)≤ 0}
onto a set containing the open interval ( f (b′), f (a′)). But we already have estab-
lished that the set f (B) is a meager subset of [c,d]. Using the fact that B∪C=D,
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we conclude that f (B)∪ f (C) = f (D) ⊃ ( f (b′), f (a′)). Thus f (C) must contain
a Thus f (C) must contain a residual subset of the interval [ f (b′), f (a′)].

Exercise 338, page 261

For example, consider the set

E = {x : D+ f (x)< r}
and write, for positive integers m and n,

Emn = {x : f (x+ t)− f (x)− rt+ t/m≤ 0 for all 0≤ t ≤ 1/n}.
Since f is continuous, we can check that each set Emn is closed. But

E =
∞⋃

n=1

∞⋃
m=1

Emn

reveals that E must be Lebesgue measurable.

Exercise 341, page 261

Use the Darboux property of continuous functions. As a more challenging exercise
the student may wish to prove this without the assumption of continuity.

Exercise 343, page 261

This follows immediately from Lemma 6.19 since we know (Exercise 327) that, for
every continuous function f , the measure λ⋆

f must be σ-finite.

Exercise 345, page 262

Let

β1 = {(I,x) : sλ(I)< |h(I,x))}
and

β2 = {(I,x) : |h(I,x))|< rλ(I)} .
Note that β1 is a fine cover of E and that β2 is a full cover of E. Let β be any full
cover of E and note that β1∩β is a fine cover of E and that β2∩β is a full cover
of E. Thus

V ∗(h,E)≤ Var(h,β∩β2)≤ rVar(λ,β∩β2)≤ rVar(λ,β).

From this it follows that

V ∗(h,E)≤ rλ∗(E).

Similarly

sV∗(λ,E)≤ Var(sλ,β∩β1)≤ Var(h,β∩β1)≤ Var(h,β).
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From this it follows that

sλ∗(E)≤V ∗(h,E).

Exercise 346, page 262

Use the methods already seen for Exercise 345.

Exercise 348, page 262

Write

En = {x ∈ E : lip f (z)< n}.
By Lemma 6.16

λ f (En∩ [−n,n])≤ nλ(En∩ [−n,n])< ∞.

It follows that f has σ-finite variation in E. Note then, that if N is a null subset of
E,

λ f (N)≤
∞

∑
n=1

λ f (En∩N)≤ nλ(En∩N) = 0.

This proves the final assertion.

Exercise 349, page 265

If S is a null set then Z = S solves the exercise. Otherwise construct such a set
by first taking a countable dense subset Z1 of S. [The endpoints of the comple-
mentary intervals will suffice, unless S contains an interval. If S does contain an
interval then include all rational numbers in that interval.] Now Z1 is a countable
subset of S and so has measure zero. For each integer n choose an open set Gn

containing Z1 with λ(Gn) < 1/n. Finally check that Z = S∩⋂∞
n=1Gn is a Gδ-set

and that λ(Z) = λ(Z1) = 0.

Exercise 351, page 274

Take g′ to denote the derivative of g where that exists and 0 otherwise; such a
function is measurable and we will be able to apply Exercise 267.

Observe first that if [c,d] is any compact interval then

|∆g([c,d])| ≤
∫
[c,d]

|g′(x)|dx.

This follows from the fact that g is continuous so that

|∆g([c,d])| ≤ λ(g([c,d])≤ λ(g([c,d]∩N)+λ(g([c,d]\N) =

λ(g([c,d]∩N)≤ λg([c,d]∩N) =
∫
[c,d]

|g′(x)|dx.
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Use Theorem 6.7 and Theorem 6.24. Now apply Exercise 267 to obtain, for every
ε > 0, a δ > 0 so that if G is an open set with λ(G)< δ then∫

G
|g′(x)|dx< ε.

In particular, if we are given any sequence of nonoverlapping intervals {[cn,dn]}
for which ∑n λ([cn,dn]) < δ then there is an open set G covering these intervals
for which λ(G)< δ; it follows that

∑
n

|∆g([cn,dn])| ≤ ∑
n

∫
[cn,dn]

|g′(x)|dx≤
∫
G
|g′(x)|dx< ε.

Exercise 352, page 277

Under these hypotheses there is an indefinite integral F of the function f on the
open interval (a,b). If F is uniformly continuous on (a,b) then we know that f is
integrable on all of [a,b]. Thus it is enough to establish that when f has continuous
upper and lower integrals on [a,b] it follows that F is uniformly continuous on
(a,b).

Exercise 353, page 278

Define F appropriately, starting with

F(z) = ∑
[ai,bi]⊂[a,z]

∫ bi

ai

f (x)dx

for any z ∈ E and, for z ∈ (a j,b j), set

F(z) = F(a j)+
∫ z

a j

f (x)dx.

Obtain V ∗(∆F− fλ, [a,b]) = 0 from V ∗( fλ,E) = 0, V ∗(∆F,E) = 0, and

V ∗(∆F− fλ, [a,b]\E)≤
∞

∑
i=1

V ∗(∆F− fλ, [ai,bi]).

Exercise 354, page 283

Let

β = {(u,v],w) : fχ[u,v] belongs to J }.
This is a full cover of the set of points at which f is not J -singular. Consequently
if [a,b] is a compact interval that contains no J -singular points of f there must be
a partition π of [a,b] from β. Since fχ[u,v] belongs to J for each (u,v],w) ∈ π it
follows that fχ[a,b] also belongs to J (by property (3) of Definition 6.44 describing
integration methods).
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Exercise 356, page 290

It follows from Theorem 6.53 which we prove a little later on that, in fact,

[L(b)−L(a)]≤
∫ b

a
f (x)dx≤

∫ b

a
f (x)dx≤ [U(b)−U(a)].

That shows immediately that

[L(b)−L(a)]≤ [U(b)−U(a)].

The reader might, however, want to write out a simple proof using a Cousin cov-
ering argument, using Theorem 6.53 as a model.

Exercise 357, page 290

This is the definition that Saks [60, p. 191] uses for major and minor functions.
This allows the function being integrated to assume infinite values.

Exercise 358, page 290

This is the definition that can often be found in the literature for the major and mi-
nor functions employed in defining the Perron integral. This allows some flexibility
in choosing major and minor functions. It does not, however, change the scope of
the integral itself.

Exercise 359, page 291

Saks [60, p. 1252] alludes to this as a further possible definition for major and
minor functions that could be used to develop a Perron integral.

Exercise 366, page 300

Choose z ∈ E but not in E1. Consider the intervals

In = (z−1/n,z+1/n).

If E1 ∩ In 6= /0 for all n then we can deduce that z would have to belong to the
closed set E1.

Exercise 367, page 300

If n= 1 this is obvious. Use induction on n.
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Exercise 368, page 300

Suppose not, i.e., suppose that none of the sets Ek contain a portion of E. Then,
using Exercise 367, select a portion E ∩ (a1,b1) so that E ∩ (a1,b1) = /0 and
pass to a closed subinterval [c1,d1]⊂ (a1,b1) for which E∩ [c1,d1] 6= /0. Continue
inductively, choosing portions

E ∩ (an,bn)⊂ [cn−1,dn−1]

and closed subintervals [cn,dn]⊂ (an,bn) for which E ∩ [cn,dn] 6= /0.
The nested sequence of intervals {[cn,dn]} all must contain a point z of E in

common. But this point z cannot belong to any of the sets Ek which is in contra-
diction to the hypothesis that E ⊂⋃∞

k=1Ek.

Exercise 369, page 300

To adjust the proof, at the nth stage of the induction select the interval (an,bn)⊂
Gn. The point z you will find must belong to each of the Gn and, consequently, to
E. Sets of the form E =

⋂∞
j=1G j for some sequence {G j} of open sets are said

to be sets of type Gδ.

Exercise 371, page 305

This is “intuitively obvious.” Certainly in dimension one, length is additive, in di-
mension two area is additive, in dimension three volume is additive, etc.

Well no. While the truth of the statement is hardly surprising and it is indeed
trivial in dimension one, a proof would still be needed. Not all textbooks might sup-
ply such a proof but if you search enough there should be a number of examples.
McShane proves this as Lemma 2-1 (p. 255) of his text and includes the following
comment:

In higher-dimensional spaces the result is still true, but the proof of
that fact is tedious. Some people may think that this additivity is “in-
tuitively evident” and that it is a waste of time to prove it. But even
in the plane there are far more complicated dissections of an inter-
val into subintervals than simple checkerboard patterns. . . . Besides
that, who can honestly say that he has any clear-cut “intuitions” about
19-dimensional space?

E.J. McShane, Unified Integration, Academic Press (1983).



8.1. ANSWERS TO PROBLEMS 373

Exercise 372, page 305

This is the higher dimensional version of the Cousin lemma that was used exten-
sively in the elementary chapters. As is usual in mathematics the higher dimen-
sion version can be proved by a similar method provided one takes the time to
modify the argument as needed. The key tool in dimension one was the nested
interval property asserting that a shrinking sequence of closed bounded intervals
converged to a point. The same is true in higher dimensions. Having established
this fact the proof of the Cousin lemma is then straightforward.

If you need to see a formal proof see Theorem 3-1, p. 258 in E. J. McShane,
Unified Integration, Academic Press (1983). Henstock also takes the trouble to
prove this assertion in detail in Theorem 4.1, p. 43 of R. Henstock, Lectures on
the Theory of Integration, World Scientific (1988).

Exercise 381, page 310

Do not use Theorem 7.8 since that is not the point of the exercises.

Exercise 382, page 310

You can use Lemma 7.2.

Exercise 386, page 314

This will require an application of the dominated convergence theorem. For details
that can be used to prove this exercise as well as the preceding two exercises see
the proof of Theorem 4–1, pp. 262–264 in E. J. McShane, Unified Integration,
Academic Press (1983).

Exercise 388, page 315

This is given as Corollary 4–2, pp. 265-266 in E. J. McShane, Unified Integration,
Academic Press (1983).

Exercise 389, page 315

You should be able to verify that∫ 1

−1

(∫ 1

−1
f (x,y)dx

)

dy=
∫ 1

−1

(∫ 1

−1
f (x,y)dy

)

dx= 0

while the double integral ∫ ∫
[−1,1]×[−1,1]

f (x,y)dxdy
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fails to exist. For the double integral consider first the integrals over the squares
[n−1,1]× [n−1,1] and [−1,−n−1]× [−1,−n−1] for n= 2,3,4, . . . .

Exercise 390, page 315

You should be able to verify that∫ 1

0

(∫ 1

−1
f (x,y)dy

)

dx= 0

but that both ∫ 1

−1

(∫ 1

0
f (x,y)dx

)

dy

and the double integral ∫ ∫
[−1,1]×[−1,1]

f (x,y)dxdy

fails to exist. For the double integral consider first the integrals over the intervals
[n−1,1]× [0,1] for n= 2,3,4, . . . .

Exercise 391, page 316

You should be able to verify that∫ 1

0

(∫ 1

−1
f (x,y)dy

)

dx= 1

but that ∫ 1

−1

(∫ 1

0
f (x,y)dx

)

dy=−1

while the double integral ∫ ∫
[0,1]×[0,1]

f (x,y)dxdy

fail to exist. For the double integral consider that the function f (x,y) > 4/(27x2)

at every point in the set

{(x,y) : n−1 ≤ x≤ 1, 0< y< x/2}.

Exercise 392, page 316

Well you can indeed define anything you want but it needs to be consistent and
useful. There are (see Exercise 390) situations in which only one of the expres-
sions ∫ d

c

(∫ b

a
f (x,y)dx

)

dy
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and ∫ b

a

(∫ d

c
f (x,y)dy

)

dx

exists. So which order do we take as our definition? There are also situations
in which both exist (see Exercise 391) but have different values! This student’s
version of an integral would not even, then, allow us to rotate the axes by a right-
angle without changing the integral radically. There are also situations in which
both integrals exist and have the same value but the double integral does not exist
in our sense (see Exercise 389) and shouldn’t exist since it leads to unpleasant
conclusions.

Exercise 393, page 318

Take any subdivision of [a,b],

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

Let

Ei = {x ∈ E : xi−1 < f (x)≤ xi}
and recall that

Ln(Ei) = w(xi)−w(xi−1).

Check that

xi−1[w(xi)−w(xi−1)]≤
∫
Ei

f (x)dx≤ xi[w(xi)−w(xi−1)].

This connects the Riemann sums
n

∑
i=1

xi[w(xi)−w(xi−1)] and
n

∑
i=1

xi[w(xi)−w(xi−1)]

with the integral ∫
{x∈E:a< f (x)≤b}

f (x)dx=
n

∑
i=1

∫
Ei

f (x)dx.

Exercise 394, page 318

Remember that, the infinite integral∫ ∞

−∞
sdw(s)

would be the same as

lim
nto∞

∫ n

−n
sdw(s).

Thus we need to show that∫
E
f (x)dx= lim

nto∞
with

∫
{x∈E:−n< f (x)≤n}

f (x)dx
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which is a simple measure-theoretic computation.
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[52] Jiří Navrátil, A note on the theorem on change of variable in a Riemann
integral, (Czech. English summary) Časopis Pěst. Mat., Vol. 106 (1981), No.
1, 79–83. 245

[53] O. Perron, Über den Integralbelgriff, Sitzber’, Heidelberg Akad. Wiss. Abt. A
16 (1914), 1–16.

[54] I. N. Pesin, Classical and modern integration theory, (New York, 1970).

[55] Washek Pfeffer, The Riemann approach to integration, Cambridge University
Press, Cambridge, 1993.

[56] Washek Pfeffer, Derivation and integration, Cambridge University Press,
Cambridge, 2001.

[57] David Preiss and Jaromír Uher, A remark on the substitution for the Riemann
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