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PREFACE

There are plenty of calculus books available, many free teastt cheap, that discuss
integrals. Why add another one?

Our purpose is to present integration theory at an honowulcal level and in an
easier manner by defining the definite integral in a very tiauhl way, but a way that
avoids the equally traditional Riemann sums definition.

Riemann sums enter the picture, to be sure, but the integgefined in the way that
Newton himself would surely endorse. Thus the fundamehtdrem of the calculus
starts off as the definition and the relation with Riemannsbecomes a theorem (not
the definition of the definite integral as has, most unfortelyabeen the case for many
years).

As usual in mathematical presentations we all end up in theegalace. It is just
that we have taken a different route to get there. It is onlg@dagogical issue of which
route offers the clearest perspective. The common routrudirsy with the definition of
the Riemann integral, providing the then necessary detaariinproper integrals, and
ultimately heading towards the Lebesgue integral is anguadt the best path although
it has at least the merit of historical fidelity.
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Note to the instructor

Since it is possible that some brave mathematicians wilettate to present integra-
tion theory to undergraduates students using the pregamiatthis text, it would be
appropriate for us to address some comments to them.

What should | teach the weak calculus students?

Let me dispense with this question first. Don’t teach them tiwaterial, which is aimed
much more at the level of an honor’s calculus course. | alsolavtt teach them the
Riemann integral. | think a reasonable outline for thesdesits would be this:

1. Aninformal account of the indefinite integral formula
/F’(x)dx: F(x)+C

just as an antiderivative notation with a justification pdad by the mean-value
theorem.

2. An account of what it means for a function to be continuausio intervala, bJ.
3. The definition A
| Fxdx=F(bo)~F(a)
a

for continuous functiond : [a,b] — R that are differentiable at allpoints in
(a,b). The mean-value theorem again justifies the definition. Yowa'tw\need
improper integrals, e.g.,

Tl d Hd 2 dx=2-0
h =l R aeao
4. Any properties of integrals that are direct translatiohderivative properties.

5. The Riemann sumidentity

JRCES SLICErR

where the pointg; that make this precise are selected by the mean-value theo-
rem.

..or all but finitely many points



6. The Riemann sumepproximation
b n
/ (k= Y 1) (x %)
a i=

where the point€; can be freely selected inside the interval. Continuityf of
justifies this sincef (&) ~ f(&;") if the pointsx; andx;_; are close together. [It
is assumed that any application of this approximation wbeldestricted to con-
tinuous functions.]

That's all! No other elements of theory would be essentidlthe students can then
focus largely on the standard calculus problems. Integuatieory, presented in this
skeletal form, is much less mysterious than any accounteoRiemann integral would
be.

On the other hand, for students that are not considered narfie presentation in
the text should lead to a full theory of integration on thd tie& provided at first that
the student is sophisticated enough to hamdi® arguments and simple compactness
proofs (notably Bolzano-Weierstrass and Cousin lemmafgyoo

Why the calculus integral?

Perhaps the correct question is “Why not the Lebesgue @tggAfter all, integration
theory on the real line is not adequately described by ettieecalculus integral or the
Riemann integral.

The answer that we all seem to have agreed upon is that Leddesbaory is too
difficult for beginning students of integration theory. Bhwe need a “teaching inte-
gral,” one that will present all the usual rudiments of thedty in way that prepares the
student for the later introduction of measure and integnati

Using the Riemann integral as a teaching integral requiegsrsy with summations
and a difficult and awkward limit formulation. Eventually@reaches the fundamental
theorem of the calculus. The fastest and most efficient watgathing integration
theory on the real line is, instead, at the outset to int¢heecalculus integral

/bF’(x)dx: F(b)—F(a)

as a definition. The primary tool is the very familiar meatsegheorem. That theorem
leads quickly back to Riemann sums in any case.

The instructor must then drop the habit of calling this thedamental theorem of
the calculus. Within a few lectures the main properties t#grals are available and all
of the computational exercises are accessible. This isusecaverything is merely an
immediate application of differentiation theorems. Thisrao need for an “improper”
theory of the integral since integration of unbounded fioms requires no additional
ideas or lectures.

There is a long and distinguished historical precedentiisrkdind of definition. For
all of the 18th century the integral was understaudy in this sensé The descriptive
definition of the Lebesgue integral, which too can be takemstarting point, is exactly

2Certainly Newton and his followers saw it in this sense. Feibhitz and his advocates the integral
was a sum of infinitesimals, but that only explained the cotioe with the derivative. For a lucid account
of the thinking of the mathematicians to whom we owe all thisary see Judith V. Grabinéf/ho gave
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the same: but now requirésto be absolutely continuous afdis defined only almost
everywhere. The Denjoy-Perron integral has the same géserdefinition but relaxes
the condition onF to that of generalized absolute continuity. Thus the naeabf
integration theory on the real line can told simply as anrprtation of the integral as
meaning merely

/bF’(x)dx: F(b)—F(a).

Why not the Riemann integral?

Or you may prefer to persist in teaching to your calculus etiislthe Riemann integral
and its ugly step-sister, the improper Riemann integraler&tare many reasons for
ceasing to use this as a teaching integral; the web gagp,ten reasons for dumping
the Riemann integralivhich you can find on our site

www.classicalrealanalysis.com

has a tongue-in-cheek account of some of these.

The Riemann integral does not do a particularly good job tobducing integration
theory to students. That is not to say that students shousdhééered from the notion
of Riemann sums. Itis just that a whole course confined to ttmBnn integral wastes
considerable time on a topic and on methods that are not woftbuch devotion.

In this presentation the Riemann sums approximation t@iate enters into the
discussion naturally by way of the mean-value theorem ofdifferential calculus.
It does not require several lectures on approximations edsaand other motivating
stories.

The calculus integral

For all of the 18th century and a good bit of the 19th centutggration theory, as we
understand it, was simply the subject of antidifferentiati Thus what we would call
the fundamental theorem of the calculus would have beerndemesl a tautology: that
is how an integral is defined. Both the differential and inéégalculus are, then, the
study of derivatives with the integral calculus largelydsed on the inverse problem.

This is often expressed by modern analysts by claiming treflewton integrabf
afunctionf : [a,b] — R is defined as

/bf(x)dx:F(b)—F(a)

whereF : [a,b] — R is any continuous function whose derivati#é(x) is identical
with f(x) at all pointsa < x < b. While Newton would have used no such notation
or terminology, he would doubtless agree with us that thigrézisely the integral he
intended.

The technical justification for this definition of the Newtimtiegral is nothing more
than the mean-value theorem of the calculus. Thus it is lidealited for teaching

you the epsilon? Cauchy and the origins of rigorous calcuhmmerican Mathematical Monthly 90 (3),
1983, 185-194.
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integration theory to beginning students of the calculusdeéd, it would be a rea-
sonable bet that most students of the calculus drift evéntid@o a hazy world of
little-remembered lectures and eventually think that thisxactly what an integral is
anyway. Certainly it is the only method that they have usetbtopute integrals.

For these reasons we have called it ¢agulus integral. But none of us teach the
calculus integral. Instead we teach the Riemann integitaénTwhen the necessity of
integrating unbounded functions arise, we teach the imgsrBemann integral. When
the student is more advanced we sheepishly let them knowhbantegration theory
that they have learned is just a moldy 19th century concegit\las replaced in all
serious studies a full century ago.

We do not apologize for the fact that we have misled them;addee likely will
not even mention the fact that the improper Riemann integrdithe Lebesgue integral
are quite distinct; most students accept the mantra thdtgéhesgue integral is better
and they take it for granted that it includes what they ledrné/e also do not point
out just how awkward and misleading the Riemann theory isjustedrop the subject
entirely.

Why is the Riemann integral the “teaching integral” of cleoighen the calculus
integral offers a better and easier approach to integraktieary? The transition from
the Riemann integral to the Lebesgue integral requiresdadrang Riemann sums in
favor of measure theory. The transition from the impropeznkann integral to the
Lebesgue integral is usually flubbed.

The transition from the calculus integral to the Lebesgtegiral (and beyond) can
be made quite logically. Introduce, first, sets of measure aad some simple related
concepts. Then an integral which completely includes theutss integral and yet is
as general as one requires can be obtained by repeating INewé&dinition above: the
integral of a functionf : [a,b] — R is defined as

/bf(x)dx:F(b)—F(a)

whereF : [a,b] — R is any continuous function whose derivativgX) is identical with
f(x) at all pointsa < x < b with the exception of a set of points that is of measure
zero and on whiclF has zero variation.

We are employing here the usual conjurer’s trick that matitenans often use. We
take some late characterization of a concept and reverggekentation by taking that
as a definition. One will see all the familiar theory gets preésd along the way but
that, because the order is turned on its head, quite a diffperspective emerges.

Give ita try and see if it works for your students. By the enthis textbook the stu-
dent will have learned the calculus integral, seen all ofdndliar integration theorems
of the integral calculus, worked with Riemann sums, fumgiof bounded variation,
studied countable sets and sets of measure zero, and giverkegvdefinition of the
Lebesgue integral.

3The play on the usual term “integral calculus” is intentiona
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Chapter 1

What you should know first

This chapter begins a review of the differential calculue §, perhaps, deeper than
the reader has gone before because we need to justify ang gverything we shall do.
If your calculus courses so far have left the proofs of certheorems (most notably
the existence of maxima and minima of continuous functidosd “more advanced
course” then this will be, indeed, deeper. If your courses/g@d such theorems then
there is nothing here in Chapters 1-3 that is essentialigemnar

The text is about the integral calculus. The entire theorynt#gration can be
presented as an attempt to solve the equation

Y

for a suitable functioly = F (x). Certainly we cannot approach such a problem until we
have some considerable expertise in the study of derigatse that is where we begin.
Well-informed (or smug) students, may skip over this chapted begin immediately
with the integration theory. The indefinite integral start<Chapter 2. The definite
integral continues in Chapter 3. The material in Chaptekdddhe integration theory,
which up to this point has been at an elementary level, to ¢éxé stage.

We assume the reader knows the rudiments of the calculus am@rswer the
majority of the exercises in this chapter without much tteubLater chapters will
introduce topics in a very careful order. Here we assume Varaxk that you know
basic facts about functions, limits, continuity, derivas, sequences and series and
need only a careful review.

1.1 Whatis the calculus about?

The calculus is the study of the derivative and the integhalfact, the integral is so
closely related to the derivative that the study of the irdegs an essential part of
studying derivatives. Thus there is really one topic onhe terivative. Most univer-
sity courses are divided, however, into the separate tapiCsfferential Calculus and
Integral Calculus, to use the old-fashioned names.

Your main objective in studying the calculus is to underdtéhoroughly) what the
concepts of derivative and integral are and to compreheaaniény relations among
the concepts.



2 CHAPTER 1. WHAT YOU SHOULD KNOW FIRST

It may seem to a typical calculus student that the subjectostliynall about com-
putations and algebraic manipulations. While that may apfmebe the main feature of
the courses it is, by no means, the main objective.

If you can remember yourself as a child learning arithme&thpps you can put
this in the right perspective. A child’s point of view on theidy of arithmetic cen-
ters on remembering the numbers, memorizing addition arltpieation tables, and
performing feats of mental arithmetic. The goal is actyatpugh, what some peo-
ple have called numeracy: familiarity and proficiency in Warld of numbers. We all
know that the computations themselves can be triviallygreréd on a calculator and
that the mental arithmetic skills of the early grades areamoénd in themselves.

You should think the same way about your calculus problenmsthé end you
need to understand what all these ideas mean and what tictustrof the subject is.
Ultimately you are seeking mathematical literacy, theigbtb think in terms of the
concepts of the calculus. In your later life you will mostteanly not be called upon
to differentiate a polynomial or integrate a trigonomegipression (unless you end up
as a drudge teaching calculus to others). But, if we are sstdein our teaching of
the subject, you will able to understand and use many of theequis of economics, fi-
nance, biology, physics, statistics, etc. that are exfiless the language of derivatives
and integrals.

1.2 Whatis an interval?

We should really begin with a discussion of the real numidegmselves, but that would
add a level of complexity to the text that is not completelgessary. If you need a full
treatment of the real numbers see our {@8B] 1. Make sure especially to understand
the use of suprema and infima in working with real numbers. frbby defining
what we mean by those sets of real numbers catittvals

All of the functions of the elementary calculus are definedrtarvals or on sets
that are unions of intervals. This language, while simpleusd be clear.

An interval is the collection of all the points on the realdithat lie between two
given points [the endpoints], or the collection of all paithat lie on the right or left
side of some point. The endpoints are included for closeshrats and not included for
open intervals.

1.2.1 What do open and closed mean?

The terminology here, the words open and closed, have aitathmeaning in the
calculus that the student should most likely learn. Takeraaynumbers andb with
a< b. We say thata,b) is an open interval and we say thatb| is a closed interval.
The interval(a,b) contains only points betweenandb; the interval[a, b] contains all
those points and in addition contains the two poaédb as well.

IThomson, Bruckner, BruckneElementary Real Analysi@nd Edition (2008). The relevant chapters
are available for free download atssicalrealanalysis.com
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1.2. WHAT IS AN INTERVAL? 3

Open The notion of an open set is built up by using the idea of an apenval. A
setG is said to beopenif for every pointx € G it is possible to find an open interval
(c,d) that contains the pointand is itself contained entirely inside the &et
It is possible to give an, d type of definition for open set. (In this case just &is
required.) A seGis open if for each point € G it is possible to find a positive number
d(x) so that
(x—9(x),x+9d(x)) C G.

Closed A setis said to belosedif the complement of that set is open. Specifically,
we need to think about the definition of an open set just givAiecording to that
definition, for every poink that is not in a closed sét it is possible to find a positive
numberd(x) so that the interval

(Xx—3(x),x+6(x))
contains no point ifr. This means that points that are not in a closed~sate at some

positive distance away from every point that isSinCertainly there is no point outside
of F that is any closer thad(x).

1.2.2 Open and closed intervals

Here is the notation and language: Take any real nun#ansib with a < b. Then the
following symbols describatervalson the real line:

e (open bounded interval) (a,b) is the set of all real numbers between (but not
including) the points andb, i.e., allx € R for whicha < x < b.

e (closed, bounded interval)[a,b] is the set of all real numbers between (and
including) the points andb, i.e., allx € R for whicha <x <h.

e (half-open bounded interval) [a,b) is the set of all real numbers between (but
not includingb) the pointsa andb, i.e., allx € R for whicha < x < b.

¢ (half-open bounded interval) (a,b] is the set of all real numbers between (but
not includinga) the pointsa andb, i.e., allx € R for whicha < x < h.

e (open unbounded interval)(a, ») is the set of all real numbers greater than (but
not including) the poing, i.e., allx € R for whicha < x.

e (open unbounded interval)(—o, b) is the set of all real numbers lesser than (but
not including) the poinb, i.e., allx € R for whichx < b.

e (closed unbounded interval)[a, ) is the set of all real numbers greater than
(and including) the poing, i.e., allx € R for whicha < x.

e (closed unbounded interval)(—co, b] is the set of all real numbers lesser than
(and including) the poinb, i.e., allx € R for whichx < b.

e (the entire real line) (—oo,) is the set of all real numbers. This can be reason-
ably written as alk for which —co < x < o0,
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Exercise 1 Do the symbols- and e stand for real numbers? What are they then?
Answer O

Exercise 2 (bounded sets)A general set E is said to be bounded if there is a real
number M so thafx| < M for all x € E. Which intervals are bounded? Answer O

Exercise 3 (open setsShow that an open intervdh,b) or (a,o) or (—,b) is an
open set. Answer O

Exercise 4 (closed setsphow that a closed intervah, b| or [a, o) or (—oo b] is an
closed set. Answer O

Exercise 5 Show that the intervali, b) and(a, b] are neither closed nor open.
Answer O

Exercise 6 (intersection of two open intervals)ls the intersection of two open inter-
vals an open interval?
Answer O

Exercise 7 (intersection of two closed intervals)s the intersection of two closed in-
tervals a closed interval?
Answer O

Exercise 8 Is the intersection of two unbounded intervals an unboundesaval?
Answer O

Exercise 9 When is the union of two open intervals an open interval? Answer O
Exercise 10 When is the union of two closed intervals an open intervalRnswer O
Exercise 11 Is the union of two bounded intervals a bounded set? Answer O

Exercise 12 If | is an open interval and C is a finite set what kind of set rlgghl\ E?
Answer O

Exercise 13 If | is a closed interval and C is a finite set what kind of settmhlge I\ C?
Answer O

1.3 Sequences and series

We will need the method of sequences and series in our stoflifte integral. In
this section we present a brief review. Byequencave mean an infinite list of real
numbers

$1,9,%3, %4, -
and by aserieswe mean that we intend to sum the terms in some sequence
ataptaztag+....
The notation for such a sequence would{sg} and for such a serieg;’_; a.
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1.3.1 Sequences

Convergent sequence A sequence converges to a numbeif the terms of the se-
guence eventually get close to (and remain close to) the aumb

Definition 1.1 (convergent sequencep sequence of real numbefs,} is said to
convergeto a real number L if, for everg > 0, there is an integer N so that
L-e<si<L+e
for all integers n> N. In that case we write
lims,=L.

n—o0

Cauchy sequence A sequence is Cauchy if the terms of the sequence eventuglly g
close together (and remain close together). The two notibrt®nvergent sequence
and Cauchy sequence are very intimately related.

Definition 1.2 (Cauchy sequence)A sequence of real numbefs,} is said to be
a Cauchy sequendg for everye > 0 there is an integer N so that

|Sh—sm| <€
for all pairs of integers n, m> N.

Divergent sequence When a sequence fails to be convergent it is said to be dimerge
A special case occurs if the sequence does not converge iy apexial way: the terms
just get too big.

Definition 1.3 (divergent sequence)lf a sequence fails to converge it is said to
diverge.

Definition 1.4 (divergent toe) A sequence of real numbefs, } is said todiverge
to « if, for every real number M, there is an integer N so that-dM for all integers
n> N. In that case we write

lim s, = o.
n—o

[We donot say the sequence “convergescd]

Subsequences Given a sequencgs,} and a sequence of integers
I<m<m<m<m<...
construct the new sequence
{Snc} = S S S S S -+
The new sequence is said to beubsequencef the original sequence. Studying the

convergence behavior of a sequence is sometimes clarifiedrisidering what is hap-
pening with subsequences.

Bounded sequence A sequenceds,} is said to beboundedf there is a numbeM so
that|s,| < M for all n. It is an important part of the theoretical development teath
that convergent sequences are always bounded.
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1.3.2 Exercises

In the exercises you will show that every convergent sequéna Cauchy sequence
and, conversely, that every Cauchy sequence is a convesggoence. We will also

need to review the behavior of monotone sequences and afcudasces. All of the ex-

ercises should be looked at as the techniques discussedriarsed freely throughout
the rest of the material of the text.

Boundedness and convergence

Exercise 14 Show that every convergent sequence is bounded. Give amplexafra
bounded sequence that is not convergent. Answer O

Exercise 15 Show that every convergent sequence is bounded. Give aplexafra
bounded sequence that is not convergent. Answer O

Exercise 16 Show that every Cauchy sequence is bounded. Give an examale o
bounded sequence that is not Cauchy. Answer O

Theory of sequence limits

Exercise 17 (sequence limitsSuppose thafs,} and{t,} are convergent sequences.
1. What can you say about the sequence-as, + bt, for real numbers a and b?
2. What can you say about the sequenge: itn?
3. What can you say about the sequen{:ef;“?

4. What can you say if,s< t, for all n?
Answer O

Monotone sequences
Exercise 18 A sequencds,} is said to be nondecreasing [or monotone nondecreas-
ing] if
< <<H<....
Show that such a sequence is convergent if and only if it isdbed, and in fact that
r!il"])o&, =sup{s,:n=1,23,... }.

Answer O

Exercise 19 Show that every sequenés,} has a subsequence that is monotone, i.e.,
either monotone nondecreasing

Sy <SS, <SS <SSy < ...
or else monotone nonincreasing
Sy 2S5, 2SSy = -
Answer O



1.3. SEQUENCES AND SERIES 7

Nested interval argument

Exercise 20 (nested interval argument)A sequence[a,,by]} of closed, bounded in-
tervals is said to be aested sequence of intervals shrinking to a piint

[a‘]-?bl] 0 [a27b2] > [a37b3] D) [a47b4] D...
and
lim (b, —an) = 0.

n—o0

Show that there is a unique point in all of the intervals. Answer O

Bolzano-Weierstrass property

Exercise 21 (Bolzano-Weierstrass property)Show that every bounded sequence has
a convergent subsequence. Answer O

Convergent equals Cauchy

Exercise 22 Show that every convergent sequence is Cauchy. [The cenggpsoved
below after we have looked for convergent subsequences.] Answer O

Exercise 23 Show that every Cauchy sequence is convergent. [The cenvassproved
earlier.] Answer O

Closed sets and convergent sequences

Exercise 24 Let E be a closed set ar{d, } a convergent sequence of points in E. Show
that x= limp_, X, must also belong to E. Answer O

1.3.3 Series

The theory of series reduces to the theory of sequence lyiisterpreting the sum of
the series to be the sequence limit

0o n
PRLPRS
Convergent series The formal definition of a convergent series depends on tfie de
nition of a convergent sequence.
Definition 1.5 (convergent series)A series
iakz at+ataztagt....
k=1

is said to beconvergentand to have a sum equal to L if the sequence of partial
sums

n
S=>a=atatatast - +an
k=1

converges to the number L. If a series fails to converge &id ® diverge
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Absolutely convergent series A series may converge in a strong sense. We say that
a series is absolutely convergent if it is convergent, andemer the series obtained
by replacing all terms with their absolute values is alsoveogent. The theory of ab-
solutely convergent series is rather more robust than g ytfor series that converge,
but do not converge absolutely.

Definition 1.6 (absolutely convergent series)A series
Z ax=at+apt+agt+ag+....
k=1

is said to beabsolutely convergernt both of the sequences of partial sums
n

S$i=) ax=art+at+agtat -+an
k=1

and i
Th=> la =laa|+|az| +[ag| +[as| + -~ + |an]
K=1

are convergent.

Cauchy criterion

Exercise 25 Let ]
S$=>a=atatagtast - +an
k=1

be the sequence of partial sums of a series

[ee]

Ya=atagtagtast....
k=1

Show that gis Cauchy if and only if for every > O there is an integer N so that

<€

foralln>m> N. Answer O

Exercise 26 Let ]
S$=)a=atatagtast - +an
k=1

and
n
Th=> la| =laa|+ ez +[ag| + [au| + -+ [an|.
K=1

Show that iff T, } is a Cauchy sequence then so too is the sequgBge What can you
conclude from this? Answer O

1.4 Partitions

When working with an interval and functions defined on inédswve shall frequently
find that we must subdivide the interval at a finite number ah{go For example if
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[a,b] is a closed, bounded interval then any finite selection afitgoi
a=Xg <X <X < <X_1<X =D
breaks the interval into a collection of subintervals
{X-1,%]:1=1,2,3,...,n}
that are nonoverlapping and whose union is all of the orlgirtarval [a, b.

Most often when we do this we would need to focus attention emam points
chosen from each of the intervals.lfis a point in[x_1, %] then the collection

{([Xi—17xi]aai) = 172737" . ’n}
will be called apartition of the interval[a, b].
In sequel we shall see many occasions when splitting up anvadtthis way is
useful. In fact our integration theory for a functidndefined on the intervgh, b] can

often be expressed by considering the sum
n

> F&) (% —Xk-1)
r=1

over a partition. This is known asRiemann sunfor f.

1.4.1 Cousin’s partitioning argument

The simple lemma we need for many proofs was first formulayeRierre Cousin.

Lemma 1.7 (Cousin) For every point x in a closed, bounded intenjalb] let
there be given a positive numbéfx). Then there must exist at least one parti-
tion

{([Xiflaxi]azi) 11=123,... 7n}
of the interval[a, b] with the property that each interv@l_1,x] has length smaller
thand(&;).

Exercise 27 Show that this lemma is particularly easydifx) = & is constant for all x
in [a,b]. Answer O

Exercise 28 Prove Cousin’s lemma using a nested interval argument. Answer O
Exercise 29 Prove Cousin’s lemma using a “last point” argument. Answer O

Exercise 30 Use Cousin’s lemma to prove this version of the Heine-Bdrebiem:

Let C be a collection of open intervals covering a closed, bouridestval [a, b]. Then

there is a finite subcollectiofi(ci,d;) : i =1,2,3,...,n} from C that also coversa, b].
Answer O

Exercise 31 (connected setsA set of real numbers E disconnectedf it is possible

to find two disjoint open sets;@&nd G so that both sets contain at least one point of E
and together they include all of E. Otherwise a setaanected Show that the interval
[a,b] is connected using a Cousin partitioning argument. Answer O
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Exercise 32 (connected setsphow that the intervala,b] is connected using a last
point argument. Answer O

Exercise 33 Show that a set E that contains at least two points is condeténd only
if it is an interval. Answer O

1.5 Continuous functions

The integral calculus depends on two fundamentally impbitancepts, that of a con-
tinuous function and that of the derivative of a continuousction. We need some
expertise in both of these ideas. Most novice calculus stisdearn much about deriva-
tives, but remain a bit shaky on the subject of continuity.

1.5.1 Whatis a function?

For most calculus students a function is a formula. We useyh#ol
f:E—-R

to indicate a function (whose name i$"} that must be defined at every poirtin
the setE (E must be, for this course, a subsetR)f and to which some real number
value f (X) is assigned. The way in whichx) is assigned need not, of course, be some
algebraic formula. Any method of assignment is possibleoag bs it is clear what is
the domainof the function [i.e., the sefE] and what is the value [i.ef(x)] that this
function assumes at each poiin E.

More important is the concept itself. When we see

“Let f:[0,1] — R be the function defined by(x) = x? for all x in the
interval [0,1] ...”

or just simply
“Letg:[0,1] > R...”

we should be equally comfortable. In the former case we knamhvcan compute every
value of the functionf and we can sketch its graph. In the latter case we are justl aske
to consider that some functianis under consideration: we know that it has a value
g(x) at every point in its domain (i.e., the intenjal 1]) and we know that it has a graph
and we can discuss that functigras freely as we can the functidn

Even so calculus students will spend, unfortunately foir thiture understanding,
undue time with formulas. For this remember one rule: if ecfiom is specified by a
formula it is also essential to know what is the domain of thecfion. The convention
is usually to specify exactly what the domain intended sthdad, or else to take the
largest possible domain that the formula given would perniftus f(x) = /x does
not specify a function until we reveal what the domain of thiection should be; since
f(X) = /X (0 < x < ) is the best we could do, we would normally claim that the
domain is|0, «).
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Exercise 34 In a calculus course what are the assumed domains of thenigetric
functionssinx, cosx, andtanx? Answer O

Exercise 35 In a calculus course what are the assumed domains of thesewggono-
metric functionsarcsirx andarctarx?
Answer O

Exercise 36 In a calculus course what are the assumed domains of the eriahand
natural logarithm functions’eandlogx? Answer O

Exercise 37 In a calculus course what might be the assumed domains ofitfitidns
given by the formulas
1 :
f(x) = Ex— 1)’ g(x) = VX2 —x—1, and Hx) = arcsinx® —x—1)?
Answer O

1.5.2 Uniformly continuous functions

Most of the functions that one encounters in the calculuscarginuous. Continuity
refers to the idea that a functiodnshould have small incrementgd) — f(c) on small
intervals[c,d]. That is, however, a horribly imprecise statement of it; twhie wish is
that the increment (d) — f(c) should be as small as we please provided that the interval
[c,d] is sufficiently small.

The interpretation of

...assmall as ... provided ...is sufficiently small ...

is invariably expressed in the languageepd, definitions that you will encounter in all
of your mathematical studies and which it is essential totemaslearly everything in
this course is expresseddnd language.

Continuity is expressed by two closely related notions. Wedito make a dis-
tinction between the concepts, even though both of themheseame fundamentally
simple idea that a function should have small incrementgmalsntervals.

Uniformly continuous functions  The notion of uniform continuity below is a global
condition: it is a condition which holds throughout the wdnolf some interval. Often
we will encounter a more local variant where the continuiipdition holds only close
to some particular point in the interval where the functiedefined. We fix a particular
point xg in the interval and then repeat the definition of uniform @ity but with the
extra requirement that it need hold only near the pgrint

Definition 1.8 (uniform continuity) Let f: 1 — R be a function defined on an
interval 1. We say that f is uniformly continuous if for every 0 there is ad > 0
so that

|f(d)—f(c)| <e
whenever c, d are points in | for whigtl — c| < d.

The definition can be used with reference to any kind of irtlerclosed, open,
bounded, or unbounded.
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1.5.3 Pointwise continuous functions

The local version of continuity uses the same idea but withrédquired measure of
smallness (the deltd) adjustable at each point.

Definition 1.9 (pointwise continuity) Let f:1 — R be a function defined on an
open interval | and let xbe a point in that interval. We say that f [iointwise]
continuous aky if for everye > O there is ad(xg) > 0 so that

[0 —fxo) <e

whenever x is a point in | for whiclx— Xg| < 8(Xp). We say f igontinuous on the
open interval provided f is continuous at each point of I.

Note that continuity at a point requires that the functiomlé$ined on both sides
of the point as well as at the point. Thus we would be very casstiabout asserting
continuity of the functionf(x) = /x at 0. Uniform continuity on an intervdh, bj
does not require that the function is defined on the rigta of the left ofb. We are
comfortable asserting thd{x) = \/x is uniformly continuous o0, 1]. (It is.)

A comment on the language:For most textbooks the language is simply
“continuous on a set” vs. “uniformly continuous on a set”

and the word “pointwise” is dropped. For teaching purposesimportant to grasp the
distinction between these two definitions; we use here tih@ise/uniform language
to emphasize this very important distinction. We will seis ttame idea and similar
language in other places. A sequence of functions can agapertwiseor uniformly.

A Riemann sum approximation to an integral carpbentwiseor uniform

1.5.4 Exercises

The most important elements of the theory of continuity &eseg, all verified in the
exercises.

1. If f: (a,b) — R is uniformly continuous otfa, b) thenf is pointwise continuous
at each point ofa,b).

2. If f:(a,b) — R is pointwise continuous at each point @ b) then f may or
may not be uniformly continuous da, b).

3. If two functionsf, g: (a,b) — R are pointwise continuous at a poiof (a,b)
then most combinations of these functions [e.g., sum, finembination, prod-
uct, and quotient] are also pointwise continuous at thetpgin

4. If two functionsf, g: (a,b) — R are uniformly continuous on an interviathen
most combinations of these functions [e.g., sum, linearhination, product,
quotient] are also uniformly continuous on the interval

Exercise 38 Show that uniform continuity is stronger than pointwise teanty, i.e.,
show that a function (&) that is uniformly continuous on an open interval | is neces-

sarily continuous on that interval.
Answer O
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Exercise 39 Show that uniform continuity is strictly stronger than pgaiise continuity,
i.e., show that a function(k) that is continuous on an open interval | is not necessarily
uniformly continuous on that interval. Answer O

Exercise 40 Construct a function that is defined on the inter¢all, 1) and is contin-
uous only at the pointgx= 0.
Answer O

Exercise 41 Show that the function (k) = x is uniformly continuous on the interval
(—00,00). Answer O

Exercise 42 Show that the function(k) = x? is not uniformly continuous on the inter-
val (—oo, ).
Answer O

Exercise 43 Show that the function(k) = x? is uniformly continuous on any bounded
interval. Answer O

Exercise 44 Show that the function(k) = x? is not uniformly continuous on the inter-
val (—oo, ) but is continuous at every real numbey. x
Answer O

Exercise 45 Show that the function(k) = 1 is not uniformly continuous on the inter-
val (0,) or on the interval(—c, 0) but is continuous at every real numbey O.
Answer O

Exercise 46 (linear combinations)Suppose that F and G are functions on an open
interval | and that both of them are continuous at a poigtrxthat interval. Show that
any linear combination ki) = rF (x) + sG(x) must also be continuous at the poigt x
Does the same statement apply to uniform continuity? Answer O

Exercise 47 (products) Suppose that F and G are functions on an open interval | and
that both of them are continuous at a poigtir that interval. Show that the product
H(x) = F(x)G(x) must also be continuous at the point XDoes the same statement
apply to uniform continuity? Answer O

Exercise 48 (quotients)Suppose that F and G are functions on an open interval |
and that both of them are continuous at a poiptix that interval. Must the quotient
H (x) = F (x)/G(x) must also be pointwise continuous at the pointlg there a version
for uniform continuity? Answer O

Exercise 49 (compositions)Suppose that F is a function on an open interval | and
that F is continuous at a pointpxin that interval. Suppose that every value of F is
contained in an interval J. Now suppose that G is a functiortheninterval J that is
continuous at the poingz= f(Xp). Show that the composition functiorn(¥] = G(F (x))
must also be continuous at the poigt x Answer O
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Figure 1.1: Graph of a step function.

Exercise 50 Show that the absolute value functiofxf= || is uniformly continuous
on every interval. O

Exercise 51 Show that the function
1 ifxisirrational,
D(X) - 1 m ;
= ifx= 7 in lowest terms,

where m, n are integers expressing the rational number¥, is continuous at every
irrational number but discontinuous at every rational nuemb O

Exercise 52 (Heaviside’s function)Step functions play an important role in integra-
tion theory. They offer a crude way of approximating funtioThe function
0 ifx<O
H(X)_{ 1 ifx>0
is a simple step function that assumes just two valdesd 1, whereO is assumed on

the interval(—c,0) and1is assumed ofD, ). Find all points of continuity of H.
Answer O

Exercise 53 (step Functions)A function f defined on a bounded interval isstep
functionif it assumes finitely many values, say by, ..., by and for eachl <i <N
the set

) = {x: f(x) = b},
which represents the set of points at which f assumes the ¥glis a finite union of
intervals and singleton point sets. (See Figfiré for an illustration.) Find all points
of continuity of a step function. Answer O

Exercise 54 (characteristic function of the rationals) Show that function defined by
the formula
_ fim & [N
R(X) rLanoo rl]mo |cogmiT) |

is discontinuous at every point. Answer O
Exercise 55 (distance of a closed set to a pointlet C be a closed set and define a

function by writing
d(x,C) =inf{|x—y| :yeC}.
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This function gives a meaning to the distance between a satl@ point x. If ¥ € C,

then dxp,C) =0, and if % ¢ C, then dxo,C) > 0. Show that function is continuous at

every point. How might you interpret the fact that the dis&function is continuous?
Answer O

Exercise 56 (sequence definition of continuity)Prove that a function f defined on an
open interval is continuous at a poing ¥ and only iflimp . f(x,) = f(X) for every
sequencdXxn} — Xo. Answer O

Exercise 57 (mapping definition of continuity) Let f: (a,b) — R be defined on an
open interval. Then f is continuous ¢a,b) if and only if for every open set ¥ R,
the set

fHV)={xeA: f(x) eV}

is open. Answer O

1.5.5 Oscillation of a function

Continuity of a functionf asserts that the increment 6fon an interval(c,d), i.e.,
the valuef(d) — f(c), must be small if the intervdk,d] is small. This can often be
expressed more conveniently by the oscillation of the fionabn the intervalc, d].

Definition 1.10 Let f be a function defined on an interval |. We write

wf(l) =sup{|f(x) - f(y)| :xy€El}
and call this theoscillationof the function f on the interval I.

Exercise 58 Establish these properties of the oscillation:
1. wf([c,d]) < wf([a,b]) if [c,d] C [a,b].

2. wf([a,c) < wf([a,b]) +wf([b,c]) ifa<b<c.
O

Exercise 59 (uniform continuity and oscillations) Let f: | — R be a function defined
on an interval I. Show that f is uniformly continuous on | ifleanly if, for everye > 0,
there is ad > 0 so that

wf(lc,d]) <€
wheneveic,d]| is a subinterval of | for whichd — c| < &.
[Thus uniformly continuous functions have small increraefil) — f(c) or equiva-

lently small oscillationswof ([c,d]) on sufficiently small intervals.]
Answer O

Exercise 60 (uniform continuity and oscillations) Show that f is a uniformly contin-
uous function on a closed, bounded inter{ab] if and only if, for everye > 0, there
are points

A=X <X <X <Xg< <X 1<X =D
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so that each of

wf ([Xo,x1]), wf ([X1,%2]),..., and wf([X—1,X%])
is smaller thare. (Is there a similar statement for uniform continuity on npeter-
vals?)
Answer O

Exercise 61 (continuity and oscillations) Show that f is continuous at a poing in
an open interval | if and only if for everg> 0 there is ad(xg) > 0 so that

wf ([Xo— (%), X0+ d(X0)]) < &.
Answer O

Exercise 62 (continuity and oscillations)Let f: 1 — R be a function defined on an
open interval I. Show that f is continuous at a poigirx! if and only if for everye > 0
there is ad > 0 so that
wf([c,d]) <€
wheneveic,d] is a subinterval of | that contains the poing and for which|d — c| < &.
Answer O

Exercise 63 (limits and oscillations) Suppose that f is defined on a bounded open in-
terval (a,b). Show that a necessary and sufficient condition in order En@t+) =
limy_.at F (X) should exist is that for akt > 0 there should exist a positive numid&g)
so that

wf((a,a+0(a)) <e.

Answer O

Exercise 64 (infinite limits and oscillations) Suppose that F is defined ¢n, «). Show
that a necessary and sufficient condition in order théblr= limy_,. F (x) should exist
is that for all € > 0 there should exist a positive number T so that

wf((T,»)) <e&.
Show that the same statement is true for-ko) = limy_, . F (X) with the requirement
that
Wf((—e0,—T)) <E&.

Answer O

1.5.6 Endpoint limits

We are interested in computing, if possible the one-sidaitdi
F(at) = XILrérll+ F(x) and F(b—)= XILrpi F(X)

for a function defined on a bounded, open intefeab).

The definition is a usual, o definition and so far familiar to us since continuity is
defined the same way. That means there is a close connectiwedrethese limits and
continuity.
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Definition 1.11 Let F: (a,b) — R. Then the one-sided limits
A=

exists if, for everg > 0 there is ad > 0 so that
IF(a+)-F(X)| <€

whenevel < x—a < o.

The other one-sided limk (b—) is defined similarly. Two-sided limits are defined
by requiring that both one-sided limits exist. Thusfifs defined on both sides at a
point xg we write
L= lim F(x)

X—Xp

L=F(xo+) = F (%)
both exist and are equal.

Fundamental theorem for uniformly continuous functions This is an important
fundamental theorem for the elementary calculus. How cabevassured that a func-
tion defined on a bounded open interyalb) is uniformly continuous? Check merely
that it is pointwise continuous ofa,b) and that the one-sided limits at the endpoints
exist.

Similarly, how can we be assured that a function defined onuaded closed in-
terval [a, b is uniformly continuous? Check merely that it is pointwisgtinuous on
(a,b) and that the one-sided limits at the endpoints exist anceagith the valued (a)
andf(b).

Theorem 1.12 (endpoint limits) Let F: (a,b) — R be a function that is continu-
ous on the bounded, open interal b). Then the two limits

F(at) = Xl_mr F(x) and F(b—)= X|_I)T_ F(x)
exist if and only if F is uniformly continuous da,b).

This theorem should be attributed to Cauchy but cannot lrehdofailed to no-
tice the difference between the two concepts of pointwisk wiform continuity and
simply took it for granted that they were equivalent.

Corollary 1.13 (extension property) Let F: (a,b) — R be a function that is con-
tinuous on the bounded, open intenfalb). Then F can be extended to a uni-
formly continuous function on all of the closed, boundedrival [a, b] if and only

if F is uniformly continuous offa, b). That extension is obtained by defining

F(a) =F(a+) = lim F(x) and F(b)=F(b-) = lim F(x)
both of which limits exist if F is uniformly continuous ¢mb).

Corollary 1.14 (subinterval property) Let F: (a,b) — R be a function that is
continuous on the bounded, open interfab). Then F is uniformly continuous on
every closed, bounded subinterf@ald] C (a,b), but may or may not be a uniformly
continuous function on all afa, b).
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Corollary 1.15 (monotone property) Let F: (a,b) — R be a function that is con-
tinuous on the bounded, open interyalb) and is either monotone nondecreasing
or monotone nonincreasing. Then F is uniformly continuougaob) if and only

if F is bounded or{a,b).

Exercise 65 Prove one direction of the endpoint limit theorem [Theorerid]: Show
that if F is uniformly continuous ofe, b) then the two limits

F(at) = XILrQ+ F(x) and F(b—)= XILnQ_ F(x)
exist. Answer O
Exercise 66 Prove the other direction of the endpoint limit theorem [dieen 1.17

using Exercisé3 and a Cousin partitioning argument: Suppose that(@,b) — R is
continuous on the bounded, open intertalb) and that the two limits

F(at) = X&r& F(x) and F(b—)= xing_ F(x)

exist. Show that F is uniformly continuous @b). Answer O
Exercise 67 Prove the extension property [Corollafy13. Answer O
Exercise 68 Prove the subinterval property [Corollary.14]. Answer O
Exercise 69 Prove the monotone property [Corollafy15. Answer O

Exercise 70 Prove the other direction of the endpoint limit theorem gsinBolzano-
Weierstrass compactness argument: Suppose thdafb) — R is continuous on the
bounded, open intervdh, b) and that the two limits

F(at) = Xirgk F(x) and F(b—)= Xirtr)li F(x)

exist. Show that F is uniformly continuous @b). Answer O

Exercise 71 Prove the other direction of the endpoint limit theorem gsinHeine-
Borel argument: Suppose that:Fa,b) — R is continuous on the bounded, open inter-
val (a,b) and that the two limits

F(at) = XILrQ+ F(x) and F(b—)= XILrtr)li F(x)

exist. Show that F is uniformly continuous @b). Answer O
Exercise 72 Show that the theorem fails if we drop the requirement thairkerval is
bounded. Answer O

Exercise 73 Show that the theorem fails if we drop the requirement thairkerval is
closed. Answer O

Exercise 74 Criticize this proof of the false theorem that if f is contdus on an inter-
val (a,b) then f must be uniformly continuous ¢mb).
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Suppose iff is continuous on(a,b). Lete > 0 and for anyxp in (a,b)
choose & > 0 so that|f(x) — f(xo)| < € if [x—Xo| < &. Then ifc and
d are any points that satisfy — d| < & just setc = x andd = xp to get
|f(d) — f(c)| <&. Thusf must be uniformly continuous af,b).

Answer O

Exercise 75 Suppose that G(a,b) — R is continuous at every point of an open inter-
val (a,b). Then show that G is uniformly continuous on every closedntéed subin-
terval [c,d] C (a,b).

Answer O

Exercise 76 Show that, if F (a,b) — R is a function that is continuous on the bounded,
open interval(a, b) but not uniformly continuous, then one of the two limits

F(at) :XirQJrF(x) or F(b-) :Xint;liF(x)

must fail to exist. Answer O

Exercise 77 Show that, if F (a,b) — R is a function that is continuous on the bounded,
open interval(a, b) and both of the two limits

F(a+)= lim F(x) and F(b—)= Ilim F
(a+) = Jim F(x) (b-) = lim F(x)
exist then F is in fact uniformly continuous ¢ab). Answer O

Exercise 78 Suppose that F(a,b) — R is a function defined on an open interyal b)
and that c is a point in that interval. Show that F is continsai c if and only if both
of the two one-sided limits

F(c+):xm1+F(x) and F(c—)= lim F(x)

X—C—

exist and Hc) = F(c+) =F(c—). Answer O

1.5.7 Boundedness properties

Continuity has boundedness implications. Pointwise oaity supplies local bound-
edness; uniform continuity supplies global boundednagsily on bounded intervals.

Definition 1.16 (bounded function) Let f: 1 — R be a function defined on an
interval |. We say that f iboundedon | if there is a number M so that

X[ <M
for all x in the interval I.

Definition 1.17 (locally bounded function) A function f defined on an interval |
is said to bdocally boundedht a point x if there is ad(xg) > 0 so that f is bounded
on the set

(X0 —8(X0), X0+ O(X0)) N1.

Theorem 1.18 Let f: | — R be a function defined on a bounded interval | and
suppose that f is uniformly continuous on |. Then f is a bodrfdaction on I.
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Theorem 1.19 Let f: | — R be a function defined on an open interval | and sup-
pose that f is continuous at a poirg i I. Then f is locally bounded apx

Remember that, if is continuous on an open intervid, b), then f is uniformly
continuous on each closed subinteri@d] C (a,b). Thus, in order forf to be un-
bounded or{a, b) the large values are occurring only at the endpoints. Leaystatf
is locally bounded on the right atif there is at least one intervgh, a-+ ;) on which
f is bounded. Similarly we can define locally bounded on thied&th. This corollary
is then immediate.

Corollary 1.20 Let f: (a,b) — R be a function defined on an open interyalb).
Suppose that

1. fis continuous at every point {ia,b).
2. fislocally bounded on the right at a.
3. fislocally bounded on the left at b.

Then f is bounded on the interv@, b).
Exercise 79 Use Exercisé0to prove Theorem.18 Answer O

Exercise 80 Prove Theorenmi..19 by proving that all continuous functions are locally
bounded. Answer O

Exercise 81 It follows from Theoreni.18that a continuouspnboundedunction on

a bounded open intervdl, b) cannot be uniformly continuous. Can you prove that
a continuous boundedfunction on a bounded open interv@, b) must be uniformly
continuous? Answer O

Exercise 82 Show that f is not bounded on an interval | if and only if thergstrexist
a sequence of points, } for which f|(x,)| — co. Answer O

Exercise 83 Using Exercise32 and the Bolzano-Weierstrass argument, show that if a
function f is locally bounded at each point of a closed, bahihterval|a, b] then f
must be bounded da, b]. 0

Exercise 84 Using Cousin’s lemma, show that if a function f is locally bded at
each point of a closed, bounded interalb] then f must be bounded ¢a b]. O

Exercise 85 If a function is uniformly continuous on an unbounded irdmust the
function be unbounded? Could it be bounded? Answer O

Exercise 86 Suppose f, gl — R are two bounded functions on I. Is the sum function
f + g necessarily bounded on 1? Is the product function fg nec#égdounded on
1? Answer O
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Exercise 87 Suppose f, gl — R are two bounded functions on | and suppose that
the function g does not assume the value zero. Is the qudtiection f/g necessarily
bounded on 1? Answer O

Exercise 88 Suppose f, gR — R are two bounded functions. Is the composite func-
tion h(x) = f(g(x)) necessarily bounded?
Answer O

Exercise 89 Show that the function(k) = sinx is uniformly continuous on the interval
(—00700)_ Answer O

Exercise 90 A function defined on an interval | is said to satisfizipschitz condition
there if there is a number M with the property that

IF() —F(y)| <Mx—y]|

for all x, y € I. Show that a function that satisfies a Lipschitz conditioraa interval
is uniformly continuous on that interval. Answer O

Exercise 91 Show that f is not uniformly continuous on an interval | if aoly if
there must exist two sequences of poifis} and {x,} from that interval for which
Xn —Yn — 0 but f(x,) — f(yn) does not converge to zero. Answer O

1.6 Existence of maximum and minimum

Uniformly continuous function are bounded on bounded i@kt Must they have a
maximum and a minimum value? We know that continuous funstioeed not be
bounded so our focus will be on uniformly continuous funesicon closed, bounded
intervals.

Theorem 1.21 Let F: [a,b] — R be a function defined on a closed, bounded in-
terval [a,b] and suppose that F is uniformly continuous [arb]. Then F attains
both a maximum value and a minimum value in that interval.

Exercise 92 Prove Theoreni.21using a least upper bound argument. Answer O
Exercise 93 Prove Theoreni.21using a Bolzano-Weierstrass argumentAnswer O
Exercise 94 Give an example of a uniformly continuous function on theriral (0,1)

that attains a maximum but does not attain a minimum. Answer O

Exercise 95 Give an example of a uniformly continuous function on theriral (0, 1)
that attains a minimum but does not attain a maximum. Answer O

Exercise 96 Give an example of a uniformly continuous function on theriral (0, 1)
that attains neither a minimum nor a maximum. Answer O
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Exercise 97 Give an example of a uniformly continuous function on theriral (—co, )
that attains neither a minimum nor a maximum. Answer O

Exercise 98 Give an example of a uniformly continuous, bounded funcatiothe in-
terval (—oo, ) that attains neither a minimum nor a maximum.
Answer O

Exercise 99 Let f: R — R be an everywhere continuous function with the property
that

im f(x) = Xl_lm)o f(x) =0.
Show that f has either an absolute maximum or an absolutermimi but not neces-

sarily both.
Answer O

Exercise 100Let f: R — R be an everywhere continuous function that is periodic in
the sense that for some number x4 p) = f(x) for all x € R. Show that f has an
absolute maximum and an absolute minimum. Answer O

1.6.1 The Darboux property of continuous functions

We define the Darboux property of a function and show thataitiouous functions
have this property.

Definition 1.22 (Darboux Property) Let f be defined on an interval I. Suppose
that for each ab € | with f(a) # f(b), and for each d between(d) and f(b),
there exists ¢ between a and b for whicft)f=d. We then say that f has the
Darboux propertyintermediate value property] on I.

Functions with this property are call&arbouxfunctions after Jean Gaston Dar-
boux (1842-1917), who showed in 1875 that for every diffeéadhe functionF on an
intervall, the derivativeF’ has the intermediate value propertylon

Theorem 1.23 (Darboux property of continuous functions)Let f: (a,b) — R
be a continuous function on an open interyalb). Then f has the Darboux
property on that interval.

Exercise 101 Prove Theoreni.23using a Cousin covering argument. Answer O

Exercise 102 Prove Theoreni.23using a Bolzano-Weierstrass argument.
Answer O

Exercise 103 Prove Theoreni..23using the Heine-Borel property. Answer O

Exercise 104 Prove Theoreni.23using the least upper bound property. Answer O
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Exercise 105 Suppose that f(a,b) — R is a continuous function on an open interval
(a,b). Show that f mapga,b) onto an interval. Show that this interval need not be
open, need not be closed, and need not be bounded. Answer O

Exercise 106 Suppose that f [a,b] — R is a uniformly continuous function on a
closed, bounded intervadé, b]. Show that f map$a, b| onto an interval. Show that
this interval must be closed and bounded. Answer O

Exercise 107 Define the function
sinxt ifx#£0
F(X)—{ 0 if x = 0.
Show that F has the Darboux property on every interval but Ehies not continuous on

every interval. Show, too, that F assumes every value innteevial [—1, 1] infinitely
often. Answer O

Exercise 108 (fixed points)A function f: [a,b] — [a,b] is said to have dixed point
c € [a,b] if f(c) =c. Show that every uniformly continuous function f mapgab]
into itself has at least one fixed point. Answer O

Exercise 109 (fixed points)Let f: [a,b] — [a,b] be continuous. Define a sequence
recursively by z=x1, 2 = f(z1), ..., % = f(z-1) where % € [a,b]. Show that if the
sequencez,} is convergent, then it must converge to a fixed point of f.Answer O

Exercise 1101s there a continuous function :fl — R defined on an interval | such
that for every real y there are precisely either zero or twdéusons to the equation
f(x) =y? Answer O

Exercise 111 s there a continuous function:fR — R such that for every real y there
are precisely either zero or three solutions to the equafign = y? Answer O

Exercise 112 Suppose that the function: R — R is monotone nondecreasing and has
the Darboux property. Show that f must be continuous at gveint. Answer O

1.7 Derivatives

A derivative’ of a function is another function “derived” from the first fition by a
procedure (which we do not have to review here):

/i) lim PO —F00)

Thus, for example, we remember that, if
F(X) =X +x+1
then the derived function is
F/(x) =2x+1.

2The word derivative in mathematics almost always refersigodoncept. In finance, you might have
noticed,derivativesare financial instrument whose values are “derived” from eamderlying security.
Observe that the use of the word “derived” is the same.
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The values of the derived functionx2 1, represent (geometrically) the slope of the
tangent line at the poin{, x* +x+1) that are on the graph of the functién There are
numerous other interpretations (other than the geométri¢he values of the derivative
function.

Recall the usual notations for derivatives:

d .
— SiNX = COSX.

dx
F(x) = sinx, F’(x) = cosx.
y = sinx @’ = COSX.
" dx

The connection between a function and its derivative isghiteorward: the values
of the functionF (x) are used, along with a limiting process, to determine thaesal
of the derivative functior’(x). That’s the definition. We need to know the definition
to understand what the derivative signifies, but we do notrnteto the definition for
computations except very rarely.

The following facts should be familiar:

e A function may or may not have a derivative at a point.

e In order for a functionf to have a derivative at a poing the function must be
defined at least in some open interval that contains that.poin

e A function that has a derivative at a pomgtis said to balifferentiableat xg. If it
fails to have a derivative there then it is said tonmadifferentiableat that point.

e There are many calculus tables that can be consulted foratiggs of functions
for which familiar formulas are given.

e There are many rules for computation of derivatives for fioms that do not
appear in the tables explicitly, but for which the tables apaetheless useful
after some further manipulation.

o Information about the derivative function offers deepg@hsiinto the nature of the
function itself. For example a zero derivative means thetion is constant; a
nonnegative derivative means the function is increasingh@nge in the deriva-
tive from positive to negative indicates that a local maximpoint in the function
was reached.

Exercise 113 €, d(x) version of derivative) Suppose that F is a differentiable func-
tion on an open interval I. Show that for evergx and everye > 0 there is ad(x) > 0
so that

F(y) = F(X) = F ()(y—x)| <ely—x
whenever y and x are points in | for whigh— x| < 8(x). Answer O

Exercise 114 (differentiable implies continuous)Prove that a function that has a deriva-
tive at a point ¥ must also be continuous at that point.
Answer O
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Exercise 115 €, d(x) straddled version of derivative) Suppose that F is a differen-
tiable function on an interval I. Show that for every=X and everye > 0O there is a
d(x) > 0 so that

F(2)—F(y)—F'(0(z-y)| <&z
whenever y and z are points in | for whigh-z| < 8(x) and either y<x<zorz<x<y.
Answer O

Exercise 116 €, 5(x) unstraddled version of derivative) Suppose that F is a differ-
entiable function on an open interval |I. Suppose that fonewec | and everye > 0
there is ad(x) > 0 so that

[F(@—F(y) - F'(x(z-y)| <ez—y|
whenever y and z are points in | for whigh— z| < 8(x) [and we do not require either
y<x<zorz<x<y]. Show that not all differentiable functions would havésth
property but that if F is continuous then this property does hold. Answer O

Exercise 117 (locally strictly increasing functions)Suppose that F is a function on
an open interval I. Then F is said to tbecally strictly increasingat a point % in the
interval if there is a > 0 so that

F(y) <F(x0) <F(2)
for all
Xo—0 <Y< X< Z< X9+ 0.

Show that, if F(xg) > 0, then F must be locally strictly increasing at.>Show that the
converse does not quite hold: if F is differentiable at a poinin the interval and is
also locally strictly increasing atgs then necessarily Fxg) > 0 but that F(xg) = 0is
possible. Answer O

Exercise 118 Suppose that a function F is locally strictly increasing aéey point of
an open intervala,b). Use the Cousin partitioning argument to show that F is #iric
increasing on(a, b).
[In particular, notice that this means that a function withpasitive derivative is in-
creasing. This is usually proved using the mean-value #radhat is stated in Sec-
tion 1.9 below.]

Answer O

1.8 Differentiation rules

We remind the reader of the usual calculus formulas by ptegethe following slo-
gans. Of course each should be given a precise statemerhi@pdoper assumptions
clearly made.

Constant rule: If f(x) is constant, theri’ = 0.
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Linear combination rule: (rf +sg)’ = rf’ +sd for functions f andg and all real
numbers ands.

Product rule: (fg)' = f’g+ fd for functionsf andg.

(5) =5
g 9?

for functions f andg at points wherg does not vanish.

Quotient rule:

Chain rule: If f(x) =h(g(x)), then

1.9 Mean-value theorem

There is a close connection between the values of a funatiothe values of its deriva-
tive. In one direction this is trivial since the derivatiwedefined in terms of the values
of the function. The other direction is more subtle. How dimdsrmation about the
derivative provide us with information about the functioBfie of the keys to providing
that information is the mean-value theorem.

The usual proof presented in calculus texts requires pgoaiweak version of the
mean-value theorem first (Rolle’s theorem) and then usiagtthprove the full version.

1.9.1 Rolle’s theorem
Theorem 1.24 (Rolle’s Theorem)Let f be uniformly continuous da, b] and dif-

ferentiable on(a,b). If f(a) = f(b) then there must exist at least one padinin
(a,b) such that f(§) =0.
Exercise 119 Prove the theorem. Answer O

Exercise 120 Interpret the theorem geometrically. Answer O

Exercise 121 Can we claim that the poirgwhose existence is claimed by the theorem,
is unique?. How many points might there be? Answer O

Exercise 122 Define a function fx) = xsinx~!, f(0) =0, on the whole real line. Can
Rolle’s theorem be applied on the interv@l 1/17? Answer O

Exercise 123ls it possible to apply Rolle’s theorem to the functigix)f= v/1— x2 on
[—1,1]. Answer O

Exercise 1241s it possible to apply Rolle’s theorem to the functiofx)f= /|x| on
[—1,1]. Answer O
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Exercise 125 Use Rolle’s theorem to explain why the cubic equation
X+ +B=0
cannot have more than one solution wheneaver O. Answer O

Exercise 126 If the nth-degree equation

has n distinct real roots, then how many distinct real rootesi the(n — 1)st degree
equation p(x) = 0 have? Answer O

Exercise 127 Suppose that’fx) > ¢ > 0for all x € [0,c0). Show thatimy_, f(X) = .
Answer O

Exercise 128 Suppose that fR — R and both f and f” exist everywhere. Show that
if f has three zeros, then there must be some fosat that f'(§) = 0. Answer O

Exercise 129 Let f be continuous on an interv, b| and differentiable orja, b) with
a derivative that never is zero. Show that f ma@$| one-to-one onto some other
interval. Answer O

Exercise 130Let f be continuous on an intervg, b] and twice differentiable ofe, b)
with a second derivative that never is zero. Show that f nfeaj$ two-one onto some
other interval; that is, there are at most two pointgj@nb] mapping into any one value
in the range of f. Answer O

1.9.2 Mean-Value theorem

If we drop the requirement in Rolle’s theorem thga) = f(b), we now obtain the
result that there is a poiite (a,b) such that

/ f(b)—f(a)
f'(c) = b a
Geometrically, this states that there exists a poiat(a,b) for which the tangent to
the graph of the function dt, f(c)) is parallel to the chord determined by the points
(a, f(a)) and(b, f(b)). (See Figurd.2)
This is the mean-value theorem, also known as the law of thennoe the first
mean-value theorem (because there are other mean-vabrernis).

Theorem 1.25 (Mean-Value Theorem)Suppose that f is a continuous function
on the closed interval [a,b] and differentiable on (a,b) .ehhthere exists a point
¢ € (a,b) such that
f(b) — f(a)

b—a

f'(€) =

Exercise 131 Prove the theorem. Answer O
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Figure 1.2: Mean value theorenfi[c) is slope of the chord].

Exercise 132 Suppose f satisfies the hypotheses of the mean-value theorgb].
Let S be the set of all slopes of chords determined by pairsiafgon the graph of f
and let

D={f'(x):xe (ab)}.

1. Prove that S— D.

2. Give an example to show that D can contain numbers notin S.
Answer O

Exercise 133 Interpreting the slope of a chord as an average rate of chaengs the
derivative as an instantaneous rate of change, what does\#an-value theorem say?
If a car travels 100 miles in 2 hours, and the positigh) ®f the car at time t, measured
in hours satisfies the hypotheses of the mean-value theosmwe be sure that there
is at least one instant at which the velocity is 50 mph? Answer O

Exercise 134 Give an example to show that the conclusion of the mean-viakarem
can falil if we drop the requirement that f be differentiabtesgery point in (a,b) .
Answer O

Exercise 135 Give an example to show that the conclusion of the mean-viakarem
can falil if we drop the requirement of continuity at the endpmof the interval.

Answer O
Exercise 136 Suppose that f is differentiable ¢ ) and that
iy
imf (x) =C.
Determine
leo[f(XJra)— f(x)].
Answer O

Exercise 137 Suppose that f is continuous @mb] and differentiable orja, b). If
lim f'(x)=C

X—a+
what can you conclude about the right-hand derivative of &at Answer O
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Exercise 138 Suppose that f is continuous and that

lim '(x)

X—X0
exists. What can you conclude about the differentiabilftydWhat can you conclude
about the continuity of'® Answer O

Exercise 139Let f: [0,0) — R so that f is decreasing and positive. Show that the
series
f(i)
2
is convergent if and only if f is bounded. Answer O

Exercise 140Prove this second-order version of the mean-value theorem.

Theorem 1.26 (Second order mean-value theoretrgt f be continuous on [a,b]
and twice differentiable on (a,b) . Then there exists(@,b) such that
21"(¢)

21

f(b)=f(a)+(b—a)f'(a)+(b—a)
Answer

Exercise 141 Determine all functions fR — R that have the property that
eSS ATRICERIN)
2 X—Yy
for every x£y. Answer O

Exercise 142 A function is said to bemoothat a point x if
f(x+h)+ f(x—h) —2f(x)

[im =0.

h—0 h2
Show that a smooth function need not be continuous. Shovif tiYats continuous at
X, then f is smooth at x. Answer O

Exercise 143 Prove this version of the mean-value theorem due to Cauchy.

Theorem 1.27 (Cauchy mean-value theorerhgt f and g be uniformly continu-
ous on[a,b] and differentiable on(a,b). Then there exist§ € (a,b) such that

[f(b) — f(a)]d'(§) = [9(b) — 9(a)] ' (&) (1.1)
Answer O

Exercise 144 Interpret the Cauchy mean-value theorem geometrically. Answer O
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Exercise 145 Use Cauchy’s mean-value theorem to prove any simple veo$iohidpital's
rule that you can remember from calculus. Answer O

Exercise 146 Show that the conclusion of Cauchy’s mean-value can be futieter-
minant form as

Answer O

Exercise 147 Formulate and prove a generalized version of Cauchy’s medne whose
conclusion is the existence of a point ¢ such that
f(a) g(@ ha)
f(b) g(b) h(b) |=0.
f'(c) g(c) h(c)
Answer O

Exercise 148 Suppose that f [a,c] — R is uniformly continuous and that it has a
derivative f(x) that is monotone increasing on the interyalc). Show that

(b—a)f(c)+ (c—b)f(a) > (c—a)f(b)
forany a<b<c. Answer O

Exercise 149 (avoiding the mean-value theoremYhe primary use [but not the only
use] of the mean-value theorem in a calculus class is to kskathat a function with
a positive derivative on an open interv@, b) would have to be increasing. Prove this
directly without the easy mean-value proof. Answer O

Exercise 150 Prove the “converse” to the mean-value theorem:

LetF, f:[a,b] — R and suppose that f is continuous there. Suppose that
for every pair of points a< X < y < b there is a point x § <y so that
FY=FX _ ¢
y—X
Then F is differentiable ofe,b) and f is its derivative.
Answer O

Exercise 151 Let f: [a,b] — R be a uniformly continuous function that is differentiable
at all points of the interva(a, b) with possibly finitely many exceptions. Show that there
is a point a< § < b so that

<[f'@).

‘f(b)— f(a)
b—a

Answer O
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Exercise 152 (Flett's theorem)Given a function differentiable at every point of an
interval [a,b] and with f(a) = f’(b), show that there is a poir§ in the interval for

e f(5) -~ f(a)
—T(a
“ta @

Answer O

1.9.3 The Darboux property of the derivative

We have proved that all continuous functions have the Dacpooperty. We now prove
that all derivatives have the Darboux property. This waygudby Darboux in 1875;
one of the conclusions he intended was that there must beumdaice of functions
that have the Darboux property and are yet not continuousgsll derivatives have
this property and not all derivatives are continuous.

Theorem 1.28 (Darboux property of the derivative) Let F be differentiable on
an open interval |. Supposelac I, a < b, and F(a) # F’(b). Lety be any
number between’Fa) and F (b). Then there must exist a po&t (a,b) such that

F'(§) =Y.

Exercise 153 Compare Rolle’s theorem to Darboux’s theorem. Suppose Geg/e
where differentiable, that a b and Ga) = G(b). Then Rolle’s theorem asserts the
existence of a poing in the open intervala,b) for which G(§) = 0. Give a proof
of the same thing if the hypothesigap = G(b) is replaced by Ga) < 0 < G/(b) or
G'(b) <0< G/(a). Use that to prove Theorefin28 Answer O

Exercise 154 Let F: R — R be a differentiable function. Show that i5 continuous if
and only if the set
Ea = {X:F'(x) =a}

is closed for each real number. Answer O

Exercise 155A function defined on an interval ecewise monotond the interval

can be subdivided into a finite number of subintervals on edathich the function is

nondecreasing or nonincreasing. Show that every polynids@ecewise monotone.
Answer O

1.9.4 Vanishing derivatives and constant functions

When the derivative is zero we sometimes use colorful lagguay saying that the
derivativevanishes When the derivative of a function vanishes we expect thetion
to be constant. But how is that really proved?

Theorem 1.29 (vanishing derivatives)Let F: [a,b] — R be uniformly continuous
on the closed, bounded intervial b] and suppose that’fFx) = 0 for every a< x <
b. Then F is a constant function ¢a b).
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Corollary 1.30 LetF: (a,b) — R and suppose that’fx) = 0 for every a< x < b.
Then F is a constant function da, b).

Exercise 156 Prove the theorem using the mean-value theorem. Answer O
Exercise 157 Prove the theorem without using the mean-value theoreminswer O

Exercise 158 Deduce the corollary from the theorem. Answer O

1.9.5 Vanishing derivatives with exceptional sets

When a function has a vanishing derivative then that functhmst be constant. What
if there is a small set of points at which we are unable to ddtex that the derivative
is zero?

Theorem 1.31 (vanishing derivatives with a few exceptionslhet F : [a,b] — R

be uniformly continuous on the closed, bounded intefaah] and suppose that
F’(x) = 0 for every a< x < b with finitely many possible exceptions. Then F is a
constant function ofg, b.

Corollary 1.32 Let F: (a,b) — R be continuous on the open interv@, b) and
suppose that fx) = 0 for every a< x < b with finitely many possible exceptions.
Then F is a constant function da, b).

Exercise 159 Prove the theorem by subdividing the interval at the exoegtipoints.

Answer O
Exercise 160 Prove the theorem by applying ExercisgL O
Exercise 161 Prove the corollary. Answer O

Exercise 162Let F, G: [a,b] — R be uniformly continuous functions on the closed,
bounded intervala, b] and suppose thatFx) = f(x) for every a< x < b with finitely
many possible exceptions, and thadtx3 = f(x) for every a< x < b with finitely many
possible exceptions. Show that F and G differ by a conséaht. Answer O

Exercise 163 Construct a non-constant function which has a zero deneadt all but
finitely many points. Answer O

Exercise 164 Prove the following major improvement of Theor&r81 Here, by many
exceptions, we include the possibility of infinitely marngegtions provided, only, that
it is possible to arrange the exceptional points into a segee

Theorem 1.33 (vanishing derivatives with many exceptionst F: [a,b] — R be
uniformly continuous on the closed, bounded interj@ab] and suppose that
F’(x) = O for every a< x < b with the possible exception of the points c;,
cs, ... forming an infinite sequence. Show that F is a constarttion on[a, b].
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[The argument that was successful for TheoteBiL will not work for infinitely many
exceptional points. A Cousin partitioning argument doeskwo Answer O

Exercise 165 Suppose that F is a function continuous at every point of &a line
and such that Fx) = 0 for every x that is irrational. Show that F is constant.
Answer O

Exercise 166 Suppose that G is a function continuous at every point of ¢lak Ime
and such that Gx) = x for every x that is irrational. What functions G have such a
property? Answer O

Exercise 167 Let F, G: [a,b] — R be uniformly continuous functions on the closed,
bounded intervala,b| and suppose that Fx) = f(x) for every a< x < b with the
possible exception of points in a sequeRcg, Cy,Cs, ... }, and that G(x) = f(x) for
every a< x < b with the possible exception of points in a sequefated,,ds,...}.
Show that F and G differ by a constdat b]. Answer O

1.10 Lipschitz functions

A function satisfies a Lipschitz condition if there is sommitation on the possible
slopes of secant lines, lines joining poiiits f (x)) and(y, f(x). Since the slope of such
a line would be

Fly) —f(x)

y—X
any bounds put on this fraction is called a Lipschitz cooditi

Definition 1.34 A function f is said to satisfy laipschitz conditionon an interval
| if

£ — F(Y)| <M|x—y]|
for all x, y in the interval.

Functions that satisfy such a condition are callggschitz functionsnd play a key
role in many parts of analysis.

Exercise 168 Show that a function that satisfies a Lipschitz condition orirderval
must be uniformly continuous on that interval. 0

Exercise 169 Show that if f is assumed to be continuous[an] and differentiable
on (a,b) then f is a Lipschitz function if and only if the derivativei§ bounded on
(a,b). Answer O

Exercise 170 Show that the function(k) = /X is uniformly continuous on the interval
[0,00) but that it does not satisfy a Lipschitz condition on thaéiagl. Answer O

Exercise 171 A function F on an interval | is said to haw®unded derived numbeifs
there is a number M so that, for eaclked one can choosé > 0 so that
‘ F(x+h)—F(x)

<
h <M
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whenever %-h € | and |h| < 8. Using a Cousin partitioning argument, show that F is
Lipschitz if and only if F has bounded derived numbers. Answer O

Exercise 1721s a linear combination of Lipschitz functions also Lipszfli

Answer O
Exercise 173 Is a product of Lipschitz functions also Lipschitz? Answer O
Exercise 1741s f(x) = logx a Lipschitz function? Answer O
Exercise 175Is f(x) = |x| a Lipschitz function? Answer O

Exercise 1761f F : [a,b] — R is a Lipschitz function show that the functior(g=
F (x) + kx is increasing for some value k and decreasing for some otiae of k. Is
the converse true? O

Exercise 177 Show that every polynomial is a Lipschitz function on anyrided in-
terval. What about unbounded intervals? 0

Exercise 1781In an idle moment a careless student proposed to study a Kiedpzr
Lipschitz condition: he supposed that

(x) = f(y)] <M[x—y[?
for all x, y in an interval. What functions would have this jpeoty? Answer O

Exercise 179 A function f is said to be bi-Lipschitz on an interval | if tkés an M> 0
so that

1
XY ST = T)[ <Mix—y]

for all x, y in the interval. What can you say about such furl? Can you give
examples of such functions? O

Exercise 180Is there a difference between the following two statements:
|f(x)— f(y)| <|x—y| forallx,yinan interval

and
|f(x)— f(y)] <K|x—y| forallx,yinan interval, for some K 1?

Answer O

Exercise 181If F, : [a,b] — R is a Lipschitz function for each & 1,2,3,... and
F(X) = limy_ Fy(x) for each a< x < b, does it follow that F must also be a Lips-
chitz function.

Answer O



Chapter 2

The Indefinite Integral

You will, no doubt, remember the formula

x3
2
x*dx=—=+C
/ 3 *
from your first calculus classes. This assertion includeddalowing observations.
d [x3
— |=+C| =%
* dx[S * }

e Any other functionF for which the identityF’(x) = x? holds is of the form
F(x) = x3/3+C for some constarg.

e Cis called theconstant of integratiorand is intended as a completely arbitrary
constant.

e The expressiorf x*dx s intended to be ambiguous and is to include any and all
functions whose derivative i&.

In this chapter we will make this rather more precise and w generalize by
allowing a finite exceptional set where the derivative neacerist. Since the indefinite
integral is defined directly in terms of the derivative, #thare no new elements of theory
required to be developed. We take advantage of the theomymincious functions and
their derivatives as outlined in Chapter 1.

2.1 An indefinite integral on an interval

We shall assume that indefinite integrals are continuousvemdequire them to be
differentiable everywhere except possibly at a finite sefte definition is stated for
open intervals only.

Definition 2.1 (The indefinite integral) Let (a,b) be an open interval (bounded
or unbounded) and let f be a function defined on that intervaept possibly
at finitely many points. Then any continuous function (&,b) — R for which
F'(x) = f(x) for all a < x < b except possibly at finitely many points is said to be
an indefinite integralor f on(a,b).

35



36 CHAPTER 2. THE INDEFINITE INTEGRAL

Warning An indefinite integral is always defined relative to some opégrval. Con-
fusions can easily arise if this is forgotten.

Notation The familiar notation
/Pumxzam+c

will frequently be used along (one hopes) with some allusmithe interval under
considerabtion, This notation is justified by the fact thalt,indefinite integrals for
the functionF’ can be written in this form for some choice of constantUse of the
notation, however, requires the user to be alert to the lyidgrinterval (a,b) on which

the statement depends.

Continuous functions differentiable mostly everywhere Our indefinite integration
theory is essentially the study of continuous functibnga, b) — R defined on an open
interval, for which there is only a finite number of points amaifferentiability. Note
that, if there are no exceptional points, then we do not hawahéck that the function
is continuous: every differentiable function is continaou

The indefinite integration theory is, consequently, all@lgerivatives of continu-
ous functions. We shall see, in the next chapter, thatiéffi@iteintegration theory is all
about derivatives of uniformly continuous functions.

Exercise 182 Suppose that F (a,b) — R is differentiable at every point of the open
interval (a,b). Is F an indefinite integral for F? Answer O

Exercise 183If F is an indefinite integral for a function f on an open inteh(a,b)
and a< x < b, is it necessarily true that'fx) = f(x). Answer O

Exercise 184 LetF, G: (a,b) — R be two continuous functions for which(k) = f(x)
for all a < x < b except possibly at finitely many points andxp= f(x) for all a <
X < b except possibly at finitely many points. Then F and G mustrdif/ a constant.
In particular, on the intervala, b) the statements

/W@W:Fm+q
and
/m@mzew+q

are both valid (where €and G represent arbitrary constants of integration).
Answer O

2.1.1 Role of the finite exceptional set

The simplest kind of antiderivative is expressed in theasitun F'(x) = f(x) for all
a < x < b[no exceptions]. Our theory is slightly more general in thvatallow a finite
set of failures and compensate for this by insisting thafthetion F is continuous at
those points.

There is a language that is often adopted to allow excepiiomathematical state-
ments. We do not use this language in Chapter 2 or Chapter, ¥dyutlassroom
presentation, it might be useful. We will use this languag€lhapter 4.
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mostly everywhere A statement holdsnostly everywherd it holds everywhere with
the exception of a finite set of points, ¢y, C3, ...,Cn.

nearly everywhere A statement holdsearly everywheré it holds everywhere with
the exception of a sequence of poin{scy, Cs, .. ..

almost everywhere A statement holdalmost everywher# it holds everywhere with
the exception of a set of measure Zero

The mostly everywhere version Thus our indefinite integral is the study of contin-
uous functions that are differentiable mostly everywhdies only alittle bit more
ambitious to allow a sequence of points of nondifferenligbi But for Chapters 2
and 3 we do only this version.

The nearly everywhere version The point of view taken in the elementary analysis
text by Elias Zakohis that the “nearly everywhere” version of integration thyeis the
one best taught to undergraduate students. Thus, in hijsatekitegrals concern con-
tinuous functions that are differentiable except possé#tlihe points of some sequence
of exceptional points.

The mostly everywhere case is the easiest since it needpeaalamly to the mean-
value theorem for justification. The nearly everywhere daseather harder, but if
you have worked through the proof of Theorén33you have seen all the difficulties
handled fairly easily.

The almost everywhere version The more advanced integration theory sketched in
Chapter 4 allows sets of measure zero for exceptional $etsheory is more difficult
since one must then, at the same time, strengthen the hygimtfecontinuity.

Thus the final step in the program of improving integratioeatty is to allow sets
of measure zero and study certain kinds of functions thatidferentiable almost ev-
erywhere. This presents new technical challenges and wersltaattempt it until
Chapter 4. Our goal is to get there using Chapters 2 and 3 m&ptary warmups.

2.1.2 Features of the indefinite integral

We shall often in the sequel distinguish among the followimg cases for an indefinite
integral.

1This notion of a set of measure zero will be defined in Chaptefat now understand that a set of
measure zero is small in a certain sense of measurement.
2E. Zakon,Mathematical Analysis, ISBN 1-931705-02-X, published by The Trillia Group, 2004.
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Theorem 2.2 Let F be an indefinite integral for a function f on an open intgr
(ab).

1. F is continuous offa,b) but may or not be uniformly continuous there.

2. If f is bounded then F is Lipschitz da, b) and hence uniformly continuous
there.

3. If f unbounded then F is not Lipschitz e b) and may or not be uniformly
continuous there.

4. If f is nonnegative and unbounded then F is uniformly ecotus on(a, b)
if and only if F is bounded.

It will be important for our theory of the definite integral @hapter 3 that we know
which of the situations holds. It would be good practice arsgidle in this chapter,
then, to spot in any particular example whether the fundtiasLipschitz, or uniformly
continuous, or simply continuous but not uniformly contins on the interval given.

Exercise 185 Give an example of two functions f and g possessing indeiinégrals
on the interval(0,1) so that, of the two indefinite integrals F and G, one is unifigrm
continuous and the other is not. Answer O

Exercise 186 Prove this part of Theorer.2 If a function f is bounded and possesses
an indefinite integral F or{a,b) then F is Lipschitz orfa,b). Deduce that F is uni-
formly continuous orfa, b).

Answer O

2.1.3 The notation| f(x)dx

Since we cannot avoid its use in elementary calculus classedefine the symbol

/f(x)dx

to mean the collection ddll possible functions that are indefinite integralsfadn an
appropriately specified interval. Because of Exerd¢i8éwe know that we can always
write this as

/f(x)dx:F(x)+C

whereF is any one choice of indefinite integral férandC is an arbitrary constant
called the constant of integration. In more advanced madiieal discussions this
notation seldom appears, although there are frequentsdigms of indefinite integrals
(meaning a function whose derivative is the function beirtggrated).

Exercise 187 Why exactly is this statement incorrect:
/xzdx: X /3417

Answer O
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Exercise 188 Check the identities
g(x+ 1)? = 2(x+1)

dx
and g
&(x2+2x) = 2X+2=2(x+1).

Thus, on(—o, o),

/(2x+2)dx: (x+1)2+C
and

/(2x+2)dx: (3¢ +2x) +C.
Does it follow that(x + 1)2 = (x*> + 2x)? Answer O

Exercise 189 Suppose that we drop continuity from the requirement of aefinite
integral and allow only one point at which the derivative niay (instead of a finite
set of points). lllustrate the situation by finding all pddsiindefinite integrals [in this
new sense] of (i) = x? on (0,1). Answer O

Exercise 190 Show that the function(k) = 1/x has an indefinite integral on any open
interval that does not include zero and does not have an imitlefntegral on any open
interval containing zero. Is the difficulty here becaug8)fis undefined?

Answer O
Exercise 191 Show that 1
X
and 1
X
are both true in a certain sense. How is this possible? Answer O

Exercise 192 Show that the function

has an indefinite integral on any open interval, even if tiégrival does include zero.
Is there any difficulty that arises here becaug®)fis undefined? Answer O

Exercise 193 Which is correct
1 1 1
/;dx:longrC or/idx:log(—x)JrC or/;dx:log\xHC?

Answer O

2.2 Existence of indefinite integrals

We cannot be sure in advance that any particular functitias an indefinite integral
on a given interval, unless we happen to find one. Thus evécuyloa students knows



40 CHAPTER 2. THE INDEFINITE INTEGRAL

the existence of the indefinite integral

/sinxdx

on (—oo, ) merely because of the fact that

d o

&[— cosx| = sinx

is true at every value of. If we did not happen to remember that fact, then what
properties might we spot in the function githat would guarantee that an indefinite
integral exists, even given that we couldn’t explicitly fiode?

We turn now to the problem of finding sufficient conditions endhich we can be
assured that one exists. This is a rather subtle point. Maginhing students might
feel that we are seeking to ensure ourselves that an ingefiégralcan be foundWe
are, instead, seeking for assurances that an indefinitgraitgdoes indeed existWe
might still remain completely unable to write down some fatanfor that indefinite
integral because there is no “formula” possible.

We shall show now that, with appropriate continuity assuomstonf, we can be
assured that an indefinite integral exists without any requént that we should find
it. Our methods will show that we can also describe a proeethat would, in theory,
produce the indefinite integral as the limit of a sequenceirpker functions. This
procedure would work only for functions that are mostly aombus. We will still
have a theory for indefinite integrals of discontinuous fiors but we will have to be
content with the fact that much of the theory is formal, anscdi®es objects which are
not necessarily constructile

2.2.1 Upper functions

We will illustrate our method by introducing the notion of apper function. This is a
piecewise linear function whose slopes dominate the fancti

Let f be defined at all but finitely many points of an open intertalb) and
bounded or{a,b) and let us choose points

A=X <X <X <Xg< -+ <Xp_1< Xy =h.

Suppose thék is a uniformly continuous function da, b| that is linear on each interval
[Xi—1,%] and such that
F(m) F.(mfl) > FE)
X —Xi-1
for all points€ at which f is defined and for whiclkj_1 <& <x (i=1,2,...,n). Then
we can callF anupper functiorfor f on[a,b].

The method of upper functions is to approximate the indefimtegral that we
require by suitable upper functions. Upper functions aex@iise linear functions
with the break points (where the corners arexatxo, ..., x,_1. The slopes of these
line segments exceed the values of the functidn the corresponding intervals. See
Figure2.1for an illustration of such a function.

3Note to the instructor: Just how unconstructible are indefinite integrals in gdfeB@e Chris Freil-
ing, How to compute antiderivativeBull. Symbolic Logic 1 (1995), no. 3, 279-316. This is by noang
an elementary question.
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(]

Figure 2.1: A piecewise linear function ¢n3,3].

Exercise 194 Let f(x) = x? be defined on the intervdD, 1]. Define an upper function
for f using the point®, 7,3, 2, 1. Sketch the graph of that upper functionAnswer o

Exercise 195 (step functions)Let a function f be defined by requiring that, for any
integer n (positive, negative, or zero)(xj = nif n—1 < x< n. (Values at the inte-
gers are omitted.) This is a simple example of a step funcfiamd a formula for an
indefinite integral and show that this is an upper functionffo Answer O

2.2.2 The main existence theorem for bounded functions

For bounded, continuous functions we can always deterrhimestistence of an indef-
inite integral by a limiting process using appropriate upip@ctions. The lemma is a
technical computation that justifies this statement.

Lemma 2.3 Suppose that f(a,b) — R is a bounded function on an open interval
(a,b) [bounded or unbounded]. Then there exists a Lipschitz fandt : (a,b) —
R so that F(x) = f(x) for every point a< x < b at which f is continuous.

Existence of indefinite integral of continuous functions If we apply this theorem
to a bounded, continuous function we immediately obtainratefinite integral. The
indefinite integral is necessarily Lipschitz. Thus thisatlary will answer our question
as to what conditions guarantee the existence of an indefimtiégral. We shall use it
repeatedly.

Theorem 2.4 Suppose that f (a,b) — R is a bounded function on an open in-
terval (a,b) [bounded or unbounded] and that there are only a finite nundfer
discontinuity points of f in(a,b). Then f has an indefinite integral of@&,b),
which must be Lipschitz afa,b).
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2.2.3 The main existence theorem for unbounded functions

Our theorem applies only to bounded functions, but we renegithiat if f is continuous
on(a,b) then itis uniformly continuous, and hence bounded, on ahingerval(c,d] C
(a,b). This allows the following version of our existence theoreote that we will
not get an indefinite integral that is Lipschitz on all(afb) unlessf is bounded.

Theorem 2.5 Suppose that f(a,b) — R is a function on an open intervéh, b)
[bounded or unbounded] and that there are no discontinuiints of f in(a,b).
Then f has an indefinite integral da, b).

The exercises establish the lemma and the theorem. Thisimspomtant technical
tool in the theory and it is essential that the reader unaedst how it works.

Exercise 196 Use the method of upper functions to prove Ler@rBalt will be enough
to assume that f(0,1) — R and that f is nonnegative and bounded. (Exercik@s
and 198ask for the justifications for this assumption.) Answer O

Exercise 197 Suppose that f(a,b) — R and set ¢t) = f(a+t(b—a)) forall 0 <t <
1. If G is an indefinite integral for g 00, 1) show how to find an indefinite integral for
f on(a,b). Answer O

Exercise 198 Suppose that f(a,b) — R is a bounded function and that
K =inf{f(x):a<x<b}.
Set dgt) = f(t) —K for alla <t < b. Show that g is nonnegative and bounded. Suppose

that G is an indefinite integral for g ofa,b); show how to find an indefinite integral
for f on(a,b). Answer O

Exercise 199 Show how to deduce Theored from the lemma. Answer O

2.3 Basic properties of indefinite integrals

We conclude our chapter on the indefinite integral by disogssome typical calculus
topics. We have developed a precise theory of indefinitgats and we are beginning
to understand the nature of the concept.

There are a number of techniques that have traditionally beeght in calculus
courses for the purpose of evaluating or manipulating naleg Many courses you will
take (e.g., physics, applied mathematics, differentialagiqns) will assume that you
have mastered these techniques and have little difficul@&pplying them.

The reason that you are asked to study these techniques ihélyaare required
for working with integrals or developing theory, not merdéty computations. If a
course in calculus seems to be overly devoted to evaluatidgfinite integrals it is
only that you are being drilled in the methods. The skill irdfitg an exact expression
for an indefinite integral is of little use: it won't help inlalases anyway. Besides, any
integral that can be handled by these methods can be handiedands in by computer
software packages such as Maple or Mathematica (see Secsidh
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2.3.1 Linear combinations

There is a familiar formula for the derivative of a linear damation:
%{ {rF (X) +sG(x)} = rF’(x) + sG (X).

This immediately provides a corresponding formula for tigeffinite integral of a linear
combination:

/(rf(x)+sg(x))dx:r/f(x)dx+s/g(x)dx

As usual with statements about indefinite integrals thisniy accurate if some
mention of an open interval is made. To interpret this fomdrrectly, let us make it
very precise. We assume that bdthndg have indefinite integral andG on the same
intervall. Then the formula claims, merely, that the functidx) = rF (x) + sG(x) is
an indefinite integral of the functioln(x) = rf (x) + sg(x) on that interval .

Exercise 200 (linear combinations)Prove this formula by showing that
H(X) = rF (x) + sG(x)

is an indefinite integral of the function
h(x) = rf (x) +sg(x)

on any interval |, assuming that both f and g have indefinitegrals F and G on the
interval 1. Answer O

2.3.2 Integration by parts

There is a familiar formula for the derivative of a product:
d
ax (FIGM)} = F'(X)G(X) + F (x)G'(x).

This immediately provides a corresponding formula for tigefinite integral of a prod-
uct:

/F(X)G’(x)dx: F(x)G(x)—/F’(x)G(x)dx

Again we remember that statements about indefinite intega only accurate if
some mention of an open interval is made. To interpret thisifika correctly, let us
make it very precise. We assume tdG has an indefinite integrdi on an open
intervall. Then the formula claims, merely, that the functib(x) = F (x)G(x) — H (X)
is an indefinite integral of the functidf(x)G'(x) on that interval.

Exercise 201 (integration by parts) Explain and verify the formula. Answer O

Exercise 202 (calculus student notation)f u = f(x), v=g(x), and we denote d
f’(x)dx and dv= g (x)dx then in its simplest form the product rule is often desmib

as
/udv: uv—/vdu

Explain how this version is used. Answer O
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Exercise 203 (extra practice)If you need extra practice on integration by parts as a
calculus technique here is a standard collection of examplecooked in advance so
that an integration by parts technique will successfullyedaine an exact formula for
the integral. This is not the case except for very selectathpies.

[The interval on which the integration is performed is nogésified but it should be
obvious which points, if any, to avoid.]

/xé‘dx, /xsinxdx,/xlnxdx, /xcosS(dx,/In dx, /arcsinB(dx,

/Inxdx, /Zxarctarxdx /x2e3xdx /x3ln5xdx /(Inx) dx /xﬁdx,
/xsinxcosxdx,/ Inx /xE’eX dx, /x3cos )dx / x'/5+ 3x4dx,

de, e*sin(e 3X)dx )@idx g‘cosxdx and | sin3xcos 5 dx.
(X2 +5)2 (@ +1)
Answer O

2.3.3 Change of variable

The chain rule for the derivative of a composition of funnsas the formula:

SF(G00) = F/(G00)G ().
This immediately provides a corresponding formula for tigeffinite integral of a prod-

/F X))G' (x) dx— /F’ )du=F(U)+C=F(G(X)+C [u=G(X)]

where we have used the familiar device- G(x), du= G'(x) dx to make the formula
more transparent.

This is called thechange of variable rulealthough it is usually callethtegration
by substitutioris most calculus presentations.

Again we remember that statements about indefinite integua only accurate if
some mention of an open interval is made. To interpret thisifita correctly, let us
make it very precise. We assume tkais a differentiable function on an open interval
I. We assume too thd®’' has an indefinite integrdb on an intervald and assumes
all of its values in the interval. Then the formula claims, merely, that the function
F(G(x)) is an indefinite integral of the functioR’(G(x))G'(x) on that interval [not
on the interval please].

Note that we have not addressed the question of allowingpgiecal points in this
formula. If G is continuous and differentiable mostly everywherganb) andF is
continuous and differentiable mostly everywhere in an appate interval, then what
can be said?

Exercise 204 In the argument for the change of variable rule we did not addrthe
possibility that F might have finitely many points of noretéhtiability. Discuss.
Answer O

Exercise 205 Verify that this argument is correct:

1 1 1. 1.
/xcos(x2+l)dx: E/2xcos(x2+l)dx: E/cosudu: 5sinu+C= Es,ln(x2+1)+C.
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Answer O

Exercise 206 Here is a completely typical calculus exercise (or exam tes You
are asked to determine an explicit formula ﬂ")xe?‘zdx. What is expected and how do
you proceed? Answer O

Exercise 207 Given that [ f(t)dt = F(t) + C determine[ f(rx + s)dx for any real
numbers r and s. Answer O

2.3.4 What is the derivative of the indefinite integral?

What is

d
= / F(x)dx?
By definition this indefinite integral is the family of all fations whose derivative

is f(x) [on some pre-specified open interval] but with a possiblydiaet of exceptions.
So the answer trivially is that

%{/f(x)dx:f(x)

at most points inside the interval of integration. (But netessarily at all points.)

The following theorem will do in many situations, but it dasat fully answer our
guestion. There are exact derivatives that have very latged points at which they
are discontinuous.

Theorem 2.6 Suppose that f(a,b) — R has an indefinite integral F on the in-
terval (a,b). Then F(x) = f(x) at every point in(a,b) at which f is continuous.

Exercise 208 Prove the theorem. Answer O

2.3.5 Partial fractions

Many calculus texts will teach, as an integration tool, thethmd of partial fractions. It
is, actually, an important algebraic technique with alliity in numerous situations,
not merely in certain integration problems. It is best tanethis in detail outside of
a calculus presentation since it invariably consumes a gies of student time as the
algebraic techniques are tedious at best and, often, raveahkness in the background
preparation of many of the students.

It will suffice for us to recount the method that will permietlexplicit integration

/ X+ 3 dx
X2 —3x—40

The following passage is a direct quotation from the Wikipesite entry for partial
fractions.

of

“Suppose it is desired to decompose the rational function

X+3
X2 —3x—40
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into partial fractions. The denominator factors as
(x—8)(x+5)

and so we seek scalafsandB such that

X+3 X+3 A n B
X2—3x—40 (x—8)(x+5) Xx—8 x+5

One way of findingA andB begins by "clearing fractions", i.e., multiplying both
sides by the common denominatar— 8)(x+ 5). This yields

X+3=A(x+5)+B(x—8).
Collecting like terms gives
x+ 3= (A+B)x+ (5A— 8B).
Equating coefficients of like terms then yields:

A + B =1
5A. — 8B = 3

The solution isA = 11/13,B = 2/13. Thus we have the partial fraction decom-
position

x+3  11/13 2/13 11 N 2
X2—-3x—40 x—8 x+5 13(x—8) 13(x+5)

Alternatively, take the original equation

X+3 A . B
(x—8)(x+5) x—8 x+5

multiply by (x— 8) to get

X+3 B(x—8)
X+5 =AT X+5

Evaluate ak = 8 to solve forA as

11
A
13

Multiply the original equation byx-+5) to get

x+3  A(X+5)

— = B.
X—8 X—8 +

Evaluate ak = —5 to solve forB as

-2 2
TP

As a result of this algebraic identity we can quickly detarenihat

/ %dx: [11/13log(x - 8) + [2/13]log(x+5) +C.



2.3. BASIC PROPERTIES OF INDEFINITE INTEGRALS a7

This example is typical and entirely representative of ey examples that would be
expected in a calculus course. The method is, however, mocé extensive than this
simple computation would suggest. But it is not part of inéign theory even if your
instructor chooses to drill on it.

Partial fraction method in Maple

Computer algebra packages can easily perform indefiniégiation using the partial
fraction method without a need for the student to mastehelldetails. Here is a short
Maple session illustrating that all the partial fractiortadls given above are handled
easily without resorting to hand calculation. That is nos&y that the student should
entirely avoid the method itself since it has many theoa¢tpplications beyond its use
here.

[ 32] dogwood% mapl e

[\~ Mapl e 12 (SUN SPARC SOLARI S)
AN |/]_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008
\ MAPLE / Al rights reserved. Maple is a trademark of
< > \terloo Maple Inc.

>int( (x+3) /[ ( x"2-3*x-40), Xx);
11
2/13 In(x +5) +-- In(x - 8)
13

# No constant of integration appears in the result for indefinite integrals.

Exercise 209 In determining that
X+3
/ = dx= [11/13 log(x— 8) + [2/13log(x+5) +-C
we did not mention an open interval in which this would bedsdlliscuss. Answer O

2.3.6 Tables of integrals

Prior to the availability of computer software packages hkaplé€, serious users of the
calculus often required access to tables of integrals. ifdefinite integral did have an
expression in terms of some formula then it could be foundhéntables [if they were
extensive enough] or else some transformations using clniigues above (integration
by parts, change of variable, etc.) could be applied to finéguivalent integral that
did appear in the tables.

Most calculus books (not this one) still have small tablestdgrals. Much more
efficient, nowadays, is simply to rely on a computer appitcasuch as Maple or Math-
ematica to search for an explicit formula for an indefiniteegral. These packages will
even tell you if no explicit formula exists.

It is probably a waste of lecture time to teach for long anyhudtthat uses tables
and it is a waste of paper to write about them. The interestadar should just Google
“tables of integrals” to see what can be done. It has the sasterical interest that

4See especially Sectiof.11.1
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logarithms as devices for computation have. Store youraibtes of integrals in the
same drawer with your grandparent’s slide rules.



Chapter 3

The Definite Integral

We have defined already the notion of an indefinite integral
/F’(x)dx: F(x) +C.

on an open intervala,b). The theory of the indefinite integral is described best as
the study of continous functions on open intervals that avstiy everywhere differen-
tiable.

The definite integral

/bF’(x)dx: F(b)—F(a)

on a bounded, closed intenjal b] is defined as a special case of that and the connection
between the two concepts is immediate. We can describe dwytiof thedefinite
integral as the study afniformly continous functions onlosed and boundeihtervals

that are mostly everywhere differentiable.

In other calculus courses one might be introduced to a diftefalso very limited)
version of the integral introduced in the middle of the 19thtary by Riemann. Then
the connection with the indefinite integral is establishgdrieans of a deep theorem
known as the fundamental theorem of the calculus. Here wehigrmprogram back-
wards. We take the simpler approach of starting with the dnmehtal theorem as a
definition and then recover the Riemann integration methetes.

There are numerous advantages in this. We can immediagetydsting some very
interesting integration theory and computing integralisic& we have already learned
indefinite integration we have an immediate grasp of the m@ery. We are not con-
fined to the limited Riemann integral and we have no need todate the improper
integral. We can make, eventually, a seamless transitidhetd.ebesgue integral and
beyond.

This calculus integral (also known as “Newton’s integra$’a limited version of
the full integration theory on the real line. It is intendesl @ateaching method for
introducing integration theory. Later, in Chapter 4, wel wiesent an introduction to
the full modern version of integration theory on the reaglin

49
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3.1 Definition of the calculus integral

The definite integral is defined directly by means of the imdtfiintegral and uses a
similar notation.

Definition 3.1 (The definite integral) Let f be a function defined at every point of
a closed, bounded intervé, b] with possibly finitely many exceptions. Then f is
said to bentegrablgcalculus sense] if there exists a uniformly continuouscfion

F : [a,b] — R that is an indefinite integral for f on the open internal b). In that
case the number

/bf(x)dx:F(b)—F(a),

is called the definite integral of f o, b].

To make this perfectly clear let us specify what this statgmeould mean: We
require:

1. f is defined orja,b] except possibly at points of a finite set. [In particufds)
andf(b) need not be defined.]

2. There is a uniformly continuous functiéhon [a,b.
3. F/(x) = f(x) at every point < X < b except possibly at points of a finite set.
4. We computd-(b) — F(a) and call this number the definite integral obn [a, b.

Thus our integration focuses on the study of uniformly awndius functiond- :
[a,b] — R for which there is at most a finite number of points of nondéfeiability in
(a,b). For these functions we can write

/bF’(x)dx: F(b)—F(a). 3.1)

The integration theory is, consequently, all about deivest just as was the indefinite
integration theory. The statemef@ 1) is here a definition not (as it would be in many
other textbooks) a theorem.

3.1.1 Alternative definition of the integral

In many applications it is more convenient to work with a diébn that expresses
everything within the corresponding open intertalb).

Definition 3.2 (The definite integral) Let f be a function defined at every point
of a bounded, open intervé, b) with possibly finitely many exceptions. Then f is
said to beintegrable[calculus sense] on the closed interval b if there exists a
uniformly continuous indefinite integral F for f da,b). In that case the number

b
/ f(x)dx=F(b—) — F(a}),
a
is called the definite integral of f o, b].

This statement would mean.
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1. f is defined at least ofa, b) except possibly at points of a finite set.

2. There is a uniformly continuous functidhon (a,b), with F’(x) = f(x) at every
pointa < x < b except possibly at points of a finite set.

3. Becausé is uniformly continuous orta, b), the two one-sided limits
XlrQ+F(x) =F(a+) and x_“ﬂl F(x) =F(b—)
will exist.

4. The numbeF (b—) — F(a+) is the definite integral of on [a, b].

Exercise 210 To be sure that a function f is integrable on a closed, boundést-
val [a,b] you need to find an indefinite integral F ¢a,b) and then check one of the
following:

1. F is uniformly continuous ofa, b), or
2. F is uniformly continuous ofa, b|, or
3. F is continuous offia, b) and the one-sided limits,
XirQJrF(x) =F(a+) and Xing_ F(x) =F(b-)
exist.

Show that these are equivalent. Answer O

3.1.2 Infinite integrals
Exactly the same definition for the infinite integrals

/w () dx /°° f(x)dx and /b £ (x) dx
can be given as for tr;:integral ovaer a closed bouna:d interva

Definition 3.3 (Infinite integral) Let f be a function defined at every point of
(o0, 00) with possibly finitely many exceptions. Then f is said tonbegrablein
the calculus sense dm, ) if there exists an indefinite integral Hco, o) — R for

f for which both limits

F(0) = lim F(x) and F(—c) = lim F(x)

X—>00 X——00
exist. In that case the number

| fdx=F (@)~ F (o),
is called the definite integ}ZI of f ofeo, ) .
This statement would mean.
1. f is defined at all real numbers except possibly at points ofite fiet.

2. There is a continuous functidh on (0, ), with F'(x) = f(x) at every point
except possibly at points of a finite set.
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3. The two infinite limits
F () = )I(moF(x) and F(—o) = Xl_lmmF(x)

exist. This must be checked. For this either compute thedion else use Exer-
cise64: for all € > 0 there should exist a positive numbeso that

WF ((T,0)) <& and WF ((—,T)) <E&.
4. The numbeF () — F(—0) is the definite integral of on [a,b].
Similar assertions define
/b £(x) dx = F (b) — F (—)
and _o:o
/a f(x)dx= F () — F(a).

In analogy with the terminology of an infinite series

ay
P

/: f(x)dx

convergesvhen the integral exists. That suggests language asséntinghe integral
converges absolutelfyboth integrals

/:f(x)dx and /:|f(x)|dx

we often say that the integral

exist.

3.1.3 Notation: [2 f(x)dxand [Z f(x)dx
The expressions
a a
/af(x)dxand/b f(x)dx

for b > a do not yet make sense since integration is required to hold closed,
bounded interval. But these notations are extremely coemén
Thus we will agree that

/:f(x)dx:o

and, ifa< band the integraf;’ f(x)dxexists as a calculus integral, then we assign this
meaning to the “backwards” integral:

/baf(x)dx:—/abf(x)dx

Exercise 211 Suppose that the integr{;(f f(x)dx exists as a calculus integral and that
F is an indefinite integral for f on that interval. Does therfaula

/t f)dx=F(t)—F(s) (stelab])
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work even if s=t orifs>1t? Answer O

Exercise 212 Check that the formula

/abf(x)dXJr/bcf(x)dx:/acf(x)dx

works forall real numbers a, b and c. Answer O

3.1.4 The dummy variable: what is the X" in f;’ f(x)dx?
If you examine the two statements
2
/x2dx:x3/3+c and / Rdx—23/3—13/3=7/3
1

you might notice an odd feature. The first integral [the ind&diintegral] requires the
symbolx to express the functions on both sides. But in the secondraitfthe definite
integral] the symbok plays no role except to signify the function being integdatk
we had given the function a name, sgx) = x? then the first identity could be written

/Q(X)dx:x3/3 Or/g(t)dt:t3/3+c

while the second one might be more simply written as

/129:7/3.

In definite integrals the symbaoksanddx are considered as dummy variables, useful
for notational purposes and helpful as aids to computalioh¢arrying no significance.
Thus you should feel free [and are encouraged] to use any tdtiers you like to
represent the dummy variable. But do not use a letter thaesesome other purpose
elsewhere in your discussion.

Here are some bad and even terrible abuses of this:

Exercise 213 What is wrong with this? Letx 2 and let

2
y:/ X2 dx
1

Exercise 214 What is wrong with this? Show that
X
/ Rdx—>x3/3—1/3.
1

O

Exercise 215 Do you know of any other bad uses of dummy variables?Answer O

3.1.5 Definite vs. indefinite integrals

The connection between the definite and indefinite integealmmmediate; we have
simply defined one in terms of the other.
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If F is an indefinite integral of an integrable functiéron an intervala, b) then

/bf(x)dx:F(b—)—F(a+)

provided that these two one-sided limits do exist.
In the other direction iff is integrable on an interva, b] then, on the open interval
(a,b), the indefinite integral can be expressed as

/f(x)dx:/:f(t)dwc.

Both statements are tautologies; this is a matter of dedmitiot of computation or
argument.

Exercise 216 A student is asked to find the indefinite integral ¥fand he writes
/eZde: /Xeztdt+c.

How would you grade? i Answer O

Exercise 217 A student is asked to find the indefinite integral Bfand she writes

/e?‘zdx:/oxetde—C.

How would you grade? Answer O

3.1.6 The calculus student’s notation

The procedure that we have learned in order to compute a teeiimegral is actually
just the definition. For example, if we wish to evaluate

6
/ X2 dx
-5

/xzdx:x3/3+C

on any interval. So that, using the functibrix) = x3/3 as an indefinite integral,

we first determine that

/65X2dX: F(6)—F(-5)=6°/3—(~5)%/3=(6%+5%/3.

Calculus students often use a shortened notation for thigatation:
6 X3 X=6
/ 2 dx = 5} _63/3— (=5)%/3.

-5 x=—5

Exercise 218 Which of these is correct;
6 X=6 6 X=6
/ X2 dx = f} or / X2 dx = £+1] ?
-5 3 s -5 3 x=-5

Exercise 219 Would you accept this notation:

Answer O

© dx 217"
e
VR ﬁL_l =2
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Answer O

3.2 Integrability

What functions are integrable on an interfab]|? According to the definition we need
to find an indefinite integral ofa, b) and then determine whether it is uniformly con-
tinuous. If we cannot explicitly obtain an indefinite intabwe can still take advantage
of what we know about continuous functions to decide whethgiven function is
integrable or not.

This focus on continuity, however, will not answer the peshlin general. But it
does give us a useful and interesting theory. Continuity lvélour most used tool in
this chapter. For a more advanced theory we would need todime ®ther ideas.

3.2.1 Integrability of bounded, continuous functions

If there does exist an indefinite integral of a bounded fumgtive know that it would
have to be Lipschitz and so must be uniformly continuous.sThiegrability of bounded
functions on bounded intervals reduces simply to ensutiagthere is an indefinite in-
tegral.

Theorem 3.4 If f : (a,b) — R is a bounded function that is continuous at all but
finitely many points of an open bounded interfeab) then f is integrable ofe, b).

Corollary 3.5 If f : [a,b] — R is a uniformly continuous function then f is inte-
grable on[a, b].

Exercise 220 Show that all step functions are integrable. Answer O

Exercise 221 Show that all differentiable functions are integrable. Answer O

3.2.2 Integrability of unbounded continuous functions

What unbounded functions are integrable on an intgeval? We know that &ounded
function f : (a,b) — R that is continuous at each point of the open interval would be
integrable. The unbounded case is covered in this theorem.

Theorem 3.6 Suppose that f (a,b) — R is a function that is continuous at all
points of a bounded open intervéh, b). Then f is integrable on every closed,
bounded subintervgk,d] C (a,b). Moreover f is integrable ofa, bj itself if and
only if the one-sided limits
© t
lim [ f(xdx and lim / £(x)dx
t—a+ Jt t—b—Jc
exist for some & ¢ < b. In that case
b c t
/ fx)dx= lim [ fo)dx+ lim [ f(x)dx
a

t—at Jt t—b—Jc

Exercise 222 Prove Theoren3.6. Answer O
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3.2.3 Comparison test for integrability

What unbounded functions are integrable on an intefadl]? What functions are
integrable on an unbounded interyalo, c0)?

Sometimes the most convenient way of checking for integtabs to compare
an unknown case to the case of a known integrable functiore féllowing simple
theorem is sometimes called a comparison test for integrals

Theorem 3.7 (comparison test |) Suppose that f, g(a,b) — R are functions on
(a,b), both of which have an indefinite integral ¢a,b). Suppose thaff (x)| <
g(x) for all a < x < b. If g is integrable orja, b] then so too is f.

We recall that we know already:

If f:(ab)— Risan unbounded function that is continuous at all points
of (a,b) then f has an indefinite integral of@, b). That indefinite integral
may or may not be uniformly continuous.

That provides a quick corollary of our theorems.

Corollary 3.8 Suppose that f is an unbounded functior(arb) that is continuous
at all but a finite number of points, and suppose thatgb) — R with | f(x)| <
g(x) for all a < x < b. If g is integrable orja,b] then so too is f.

3.2.4 Comparison test for infinite integrals

For infinite integrals there are similar statements aviglab

Theorem 3.9 (comparison test Il) Suppose that f, g(a,«) — R are functions
on (a, ), both of which have an indefinite integral @m ). Suppose thdtf (x)| <
g(x) for all a < x. If g is integrable orja, «) then so too is f.

Corollary 3.10 Suppose that f is function da,«) that is continuous at all but a
finite number of points, and suppose that(g,«) — R with | f(x)| < g(x) for all
a< x. If g is integrable orja, ») then so too is f.

Exercise 223 Prove the two comparison tests [TheoreBngand 3.9]. Answer O
Exercise 224 Prove Corollary3.8. Answer O
Exercise 225 Prove Corollary3.10 Answer O

Exercise 226 Which, if any, of these integrals exist:
/2 i /2 i /2 i
/ \/ﬂ(dx, / \/ﬂ(dx, and/ \/ﬂ(dx?
0 X 0 X2 0 X3

Exercise 227 Apply the comparison test to each of these integrals:

® sinx ® sinx ® sinx
— dx, / —dx, and/ —-dx
1 \/)_( 1 X 1 X

Answer O

Answer O
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Exercise 228 (nonnegative functionsShow that a nonnegative function fa,b) —
R is integrable ona, b] if and only if it has a bounded indefinite integral ¢ab).
Answer O

Exercise 229 Give an example of a function:f(a,b) — R that is not integrable on
[a,b] and yet it does have a bounded indefinite integra(ab). Answer O

Exercise 230 Discuss the existence of the definite integral
/b p(x) dx
a d(x)
where gx) and ¢x) are both polynomials. Answer O

Exercise 231 Discuss the existence of the integral
/ PO 4y
a d(x)
where gx) and g x) are polynomials. Answer O

3.2.5 The integral test

It is useful to have a way of comparing infinite integrals taes When one converges
so too does the other.

Theorem 3.11 (The integral test)Let f be a continuous, nonnegative, decreasing
function on[1,). Then the definite integraf;” f(x)dx exists if and only if the
seriesy _, f(n) converges.

Exercise 232 Prove the integral test. Answer O

Exercise 233 Give an example of a function f that is continuous and nontieg@n
[1,00) so that the integral;” f (x) dx exists but the seriegyy_; f(n) diverges.
Answer O

Exercise 234 Give an example of a function f that is continuous and noninega@n
[1,00) so that the integral/;” f (x) dx does not exist but the serig§_; f(n) converges.
Answer O

3.2.6 Products of integrable functions

When is the product of a pair of integrable functions intbtga When both functions
are bounded and defined on a closed, bounded interval welikleall be successful.
When both functions are unbounded, or the interval is undedrsimple examples
exist to show that products of integrable functions neededhtegrable.

Exercise 235 Suppose we are given a pair of functions f and g such that esachit
formly continuous offia, b]. Show that each of f, g and the product fg is integrable on
[a,b]. Answer O
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Exercise 236 Suppose we are given a pair of functions f and g such that each i
bounded and has at most a finite number of discontinuiti¢s,in). Show that each of
f, g and the product fg is integrable da,b]. Answer O

Exercise 237 Find a pair of functions f and g, integrable d@,1] and continuous on
(0,1) but such that the product fg is not. Answer O

Exercise 238 Find a pair of continuous functions f and g, integrable[trr) but such
that the product fg is not. Answer O

Exercise 239 Suppose that F, G[a,b] — R are uniformly continuous functions that
are differentiable at all but a finite number of points(ia b). Show that FG is inte-
grable on|a, b if and only if FG is integrable ona, b].

Answer O

3.3 Properties of the integral

The basic properties of integrals are easily obtained fbegause the integral is defined
directly by differentiation. Thus we can apply all the ruies know about derivatives
to obtain corresponding facts about integrals.

3.3.1 Integrability on all subintervals

When a function has a calculus integral on an interval it nalsbd have a calculus
integral on all subintervals.

Theorem 3.12 (integrability on subintervals) If f is integrable on a closed,
bounded intervala, b] then f is integrable on any subintervil d] C [a,b].

3.3.2 Additivity of the integral

When a function has a calculus integral on two adjacentvaterit must also have a
calculus integral on the union of the two intervals. Moraa¥® integral on the large
interval is the sum of the other two integrals.

Theorem 3.13 (additivity of the integral) If f is integrable on the closed,
bounded intervalga,b] and [b,c] then f is integrable on the intervah, c] and,
moreover,

/abf(x)dx+/bcf(x)dx:/:f(x)dx

3.3.3 Inequalities for integrals

Larger functions have larger integrals. The formulaif@qualities
b

/abf(x)dxg/ g(x)dx

a

if f(x) <g(x) for all but finitely many pointxin (a,b).
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Theorem 3.14 (integral inequalities) Suppose that the two functions f, g are
both integrable on a closed, bounded interfalb] and that fx) < g(x) for all
X € [a,b] with possibly finitely many exceptions. Then

/abf(x)dxg /abg(x)dx

The proof is an easy exercise in derivatives. We know tht i$ uniformly con-
tinuous onfa, b] and if

d
— >
H() >0

for all but finitely many pointxin (a,b) thenH (x) must be nondecreasing ¢mb.

Exercise 240 Complete the details needed to prove the inequality fornofil@heo-
rem thm:intinegal.
Answer O

3.3.4 Linear combinations

Formula forlinear combinations
b

/b[rf(x)+sg(x)]dx:r/ f(x)dx+s/ gx)dx (r,seR).

Here is a precise statement of what we intend by this formiflaoth functions
f(x) andg(x) have a calculus integral on the interValb] then any linear combination
rf(x)+sgx) (r, s€ R) also has a calculus integral on the interjab] and, moreover,
the identity must hold. The proof is an easy exercise in dévigs. We know that
%( (rF (X) +sG(X)) = rF’(x) +sG (x)
at any pointx at which bothF andG are differentiable.

b

Exercise 241 Complete the details needed to prove the linear combindtionula. O

3.3.5 Integration by parts

Integration by partformula:

b b
/ F(x)G (x)dx= F (X)G(x) —/ F'(x)G(x) dx
a a
The intention of the formula is contained in the product folederivatives:

d

Tx (FXIG()) = F()G'(x) +F'(x)G(x)

which holds at any point where both functions are diffeisie. One must then give
strong enough hypotheses that the functidx)G(x) is an indefinite integral for the
function

F(X)G'(x) +F'(x)G(x)

in the sense needed for our integral.
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Exercise 242 Supply the details needed to prove the integration by partadla in the
special case where F and G are continuously differentiakryavhere. O

Exercise 243 Supply the details needed to state and prove an integratyguabts for-
mula that is stronger than the one in the preceding exercise. 0

3.3.6 Change of variable

Thechange of variabléormula (i.e., integration by substitution):
g(b)

b
| flawgmdt= [ “xdx
a 9(a)

The intention of the formula is contained in the followingtstment which contains
a sufficient condition that allows this formula to be provedt | be an interval ang :
[a,b] — I a continuously differentiable function. Suppose that — R is an integrable
function. Then the functiorf-(g(t))d (t) is integrable ora,b] and the functionf is
integrable on the intervdy(a),g(b)] (or rather ong(a),g(b)] if g(b) < g(a)) and the
identity holds. There are various assumptions under wiiishnight be valid.

The proof is an application of the chain rule for the derxaf a composite func-
tion:

SF(G09) = F/(600)G ().
Exercise 244 Supply the details needed to prove the change of variabiautar in the
special case where F and G are differentiable everywhere. Answer O

Exercise 245 (a failed change of variables) et F(x) = |x| and Gx) = x?sinx~*, G(0) =
0. Does

/01 F'(G(x))G'(x) dx= F(G(1)) — F(G(0)) = |sin1?

Answer O

Exercise 246 (calculus student notation)Explain the procedure being used by this
calculus student:

In the integral [Zxcos(x% + 1) dx we substitute & x2 + 1, du= 2xdx and

obtain
2 1 ru=>5 1
/ xcogX* + 1) dx = = cosudu= =(sin(5) —sin(1)).
0 2 Ju=1 2

Exercise 247 (calculus student notation)Explain the procedure being used by this
calculus student:

The substitution x= sinu, dx= cosudu is useful, becausg¢’ 1 — sifu=
cosu. Therefore

1 I n
/ \/l—xzdx:/zx/l—sinzucosu du:/zcoszu du
0 0 0
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Exercise 248 Supply the details needed to prove the change of variabieutar in the
special case where G is strictly increasing and differdsliBaeverywhere. Answer O

Exercise 249 Show that the integral

ﬂzcos\ﬁ(dx
o VX

exists and use a change of variable to determine the exastval Answer O

3.3.7 What is the derivative of the definite integral?
What is

d /X
— [ f(t)dt?
axl, 1

We know thatf f (t)dt is an indefinite integral of and so, by definition,

%/:f(t)dt:f(x)

at all but finitely many points in the intervgh, b) if f is integrable ona, b.
If we need to know more than that then there is the followingsiom which we

have already proved:

%(/axf(t)dt:f(x)

at all pointsa < x < b at which f is continuous. We should keep in mind, though, that
there may also be many points wheres discontinuous and yet the derivative formula
holds.

Advanced note. If we go beyond the calculus interval, as we do in Chaptereh the
same formula is valid

%(/:f(t)dt:f(x)

but there may be many more than finitely many exceptions lplesgror “most” values
of t this is true but there may even be infinitely many exceptiarssiple. It will still
be true at points of continuity but it must also be true at nposits when an integrable
function is badly discontinuous (as it may well be).

Exercise 250 Prove Theoren3.12both for integrals orja,b] or (—o, ). Answer O
Exercise 251 Prove Theoren3.13both for integrals orja, b] or (—, ). Answer O
Exercise 252 Prove Theoren3.14both for integrals orja, b] or (—c0, ). Answer O

Exercise 253 Show that the function(k) = x? is integrable or{—1,2] and compute its
definite integral there. Answer O
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Exercise 254 Show that the function(k) = x~* is not integrable ori—1,0], [0, 1], nor
on any closed bounded interval that contains the poiat& Did the fact that f0) is
undefined influence your argument? Is this function inteigrab (co, —1] or on[1,)?

Answer O

Exercise 255 Show that the function(k) = x /2 is integrable on0,2] and compute
its definite integral there. Did the fact tha{ @) is undefined interfere with your argu-
ment? Is this function integrable d@,c)?

Answer O

Exercise 256 Show that the function(k) = 1/./|x| is integrable on any intervdk, bj
and determine the value of the integral. Answer O

Exercise 257 (why the finite exceptional set?)n the definition of the calculus inte-
gral we permit a finite exceptional set. Why not just skip tkeeptional set and just
split the interval into pieces? Answer O

Exercise 258 (limitations of the calculus integral)Define a function F [0,1] — R
in such a way that F0) = 0, and for each odd integer & 1,3,5..., F(1/n) = 1/n
and each even integer12,4,6..., F(1/n) = 0. On the intervald1/(n+1),1/n] for
n=1,2,3, the function is linear. Show thz;(fF ) dx exists as a calculus integral for
all 0 < a< b < 1but that f; F'(x) dx does not.

Hint: too many exceptional points. Answer O

Exercise 259 Show that each of the following functions is not integralviéle interval
stated:

1. f(x) = 1for all x irrational and f(x) = O if x is rational, on any intervala,b.

2. f(x) = 1for all x irrational and f(x) is undefined if x is rational, on any interval

[a,b].
3. f(x)=1forallx#1,1/2,1/3,1/4,... and f(1/n) = c, for some sequence of
positive numbers;¢ ¢, cs, ..., on the intervalo, 1].
Answer O
Exercise 260 Determine all values of p for which the integrals
1 0
/ xPdx or / xPdx
0 1

exist. Answer O

Exercise 261 Are the following additivity formulas for infinite integsalalid:

1/f X) dx = / dx+/ dx+/f X) dx?
2. /f dx—Z/nl
3/ F(x oo/nlf(x)dx.?

Answer O
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3.4 Mean-value theorems for integrals

In general the expression

—1 bf d
b—a/a (x)dx

is thought of as an averaging operation on the functipretermining its “average
value” throughout the whole intervé, b]. Thefirst mean-valugheorem for integrals
says that the function actually attains this average vaserae point inside the inter-
val, i.e., under appropriate hypotheses there is a @oing < b at which
1 b
—— [ f(x)dx= ().
= [ 10dx=1(®)

But this is nothing new to us. Since the integral is definedsiggian indefinite integral
F for f this is just the observation that

1 /b F(b)—F(a)
— [ f(x)dx=—"F——==f
o5 [ fodx= 52 = 1)
the very familiar mean-value theorem for derivatives.

Theorem 3.15 Let f: (a,b) — R be integrable orja, b] and suppose that F is an
indefinite integral. Suppose further that(k) = f(x) for all a < x < b with no
exceptional points. Then there must exist a pgiat(a,b) so that

/bf(x)dx: £(8)(b—a).

Corollary 3.16 Let f: (a,b) — R be integrable ona,b| and suppose that f is
continuous at each point @&, b). Then there must exist a poi (a,b) so that

b
/ f(x)dx= f(&)(b—a).
a
Exercise 262 Give an example of an integrable function for which the firsamvalue
theorem for integrals fails. Answer O

Exercise 263 (another mean-value theorempBuppose that Gla,b] — R is a contin-
uous function ang : [a,b] — R is an integrable, nonnegative function. I{iGp(t) is
integrable, show that there exists a numBet (a,b) such that

b b
| cmewdt=c@) [ o

Answer O

Exercise 264 (and another)Suppose that G[a,b] — R is a positive, monotonically
decreasing function andl : [a,b] — R is an integrable function. Suppose tha$ &
integrable. Then there exists a numiget (a, b] such that

b &
/ae(t)q)(t)dtze(aw)/a o (t) dt.

Note: Here, as usual3(a+ 0) stands for lim_,a, G(X) , the existence of which follows
from the monotonicity of the functios. Note that§ in the exercise might possibly be
b. O
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Exercise 265 (...and another)Suppose that G[a,b] — R is a monotonic (not nec-
essarily decreasing and positive) function apd[a,b] — R is an integrable function.
Suppose that @is integrable. Then there exists a numRef (a,b) such that

b & b
/aG(t)cl)(t)dt:G(a+O)/a ¢(t)dt+G(b—0)/E o(t)dt.

0
Exercise 266 (Dirichelet integral) As an application of mean-value theorems, show

that the integral
* sinx
[ g
0 X

is convergent but is not absolutely convergent. Answer O

3.5 Riemann sums

The expression of an integral by its definition

/bf(x)dx:F(b)—F(a)

requires finding a functioR to serve as an antiderivative. It would be more convenient,
both for theory and practice, if we can relate the value ofititegral directly to the
actual values of the functioh. Approximations of the form

/abf(x)dm if(&i)(xi —% 1)

have long been used. Here the poixgtare chosen so as to begin at the left endpaint
and end at the right endpoiht
a= X07X17X27X37" . 7X|"I—17Xn - b
and the points; (called theassociated poinjsare required to be chosen at or between
the corresponding points_1 andx;. Most readers would have encountered such sums
under the stricter conditions that
A=X <X <X <Xg < <Xp1<Xp=Dband X1 <& <X
so that the points are arranged in increasing order. Thid neealways be the case,
but it is most frequently so.
We have used this notion before apatition and we write partitions in the form
{(4,%-a],&) 11 =1,2,...n}.
Moreover, in most settings, one is interested also in cimgopgoints close together so
that an inequality of the form
Xi-1—X <|d
might be imposed with a small choice &f
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Riemann sums and integration theory These sums
n
f(&) (X —Xi-1)
2

will be calledRiemann sumeven though their use predates Riemann’s birth by many
years. Thus we use the following language to describe thess.s

Definition 3.17 (Riemann sum) Suppose that f[a,b] — R and that a collection
of points in the intervala, b| is given
a=X0,X1,X2,X3, -, Xn-1,Xn = b

and along with associated poings at or between x; and % fori =1,2,....,n.
Then any sum of the form

n
f(&) (% —Xi-1).
2
is called aRiemann sunior the function f on the intervdh, b).

Such sums, however, and the connection with integratioaryhdo not originate
with Riemann nor are they that late in the history of the subject. Poissoh820
proposed such an investigation as “the fundamental priiposif the theory of definite
integrals.” Euler, by at least 1768, had already used sutis $o approximate integrals.
Of course, for both Poisson and Euler the integral was utmtmisin our sense as an
antiderivative.

3.5.1 Mean-value theorem and Riemann sums

The mean-value theorem allows an interpretation in termRiefmann sums that is a
convenient starting point for the theory. Ff: [a,b] — R is a uniformly continuous
function that is differentiable at every point of the opeteimal (a,b) [i.e., every point
with no exceptions] then we know théat= F' is integrable and that the first mean-value
theorem can be applied to express the integral in the form

[ f0ax=F(0) - F(@ = f(&)b-a

for someg € (a,b). This expresses the integral exactly as a very simple kiflerhann
sum with just one term. Hergy = a andx; = b.
Take now the three distinct points

a = Xo, X1, X2 = b
and do the same thing in both of the intervs«; | and[x;,b]. Then

[ 10ax=F (0) — F(@) = [F ) — Fi@)] + F (0) — F )

2
= (&) (xa—a)+ f(&2)(b—x1) = _Zlf(Ei)(Xi —Xi-1)

1Georg Friedrich Bernhard Riemann (1826—1866). His lecates on integration theory date from
the 1850s.

2See Judith V. GrabineiVho gave you the epsilon? Cauchy and the origins of rigor@isutus
American Mathematical Monthly 90 (3), 1983, 185-194.
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for some point<; € (a,x1) and&; € (x1,b). Again, this expresses the integral exactly
as a simple kind of Riemann sum with just two terms.
In fact then we can do this for any number of points. Take atlgcion

a= X0, X1,%X2,X3;...,%n—1, % =D

arranged in any order (not necessarily increasing) andsehtite associated poirgs
betweerx;_; andx; fori =1,2,...,nin such a way that

/:mx)dx:iw - Zlf (% —%0). (3.2

Using our language, we have just proved in the idenfit@)(that an integral in many
situations can be computed exactly by some Riemann sum.

This seems both wonderful and, maybe, not so wonderful.dfitbt place it means
that an integral ;’ f(x)dx can be computed by a simple sum using the values of the
function f rather than by using the definition and having, instead, iesa difficult or
impossible indefinite integration problem. On the otherdchtiniis only works if we can
select the right associated poiftg} that make this precise. In theory the mean-value
theorem supplies the points, but in practice we would be witsh unable to select the
correct points.

3.5.2 Exact computation by Riemann sums

We have just proved the following theorem that shows thatnost situations, the
definite integral can be computed exactly by a Riemann sune. pfbof, as we have
just seen, is obtained directly from the first mean-valueitke for integrals, which
itself is simply the mean-value theorem for derivatives.

Theorem 3.18 Let f: (a,b) — R be integrable orja,b] and suppose that F is an
indefinite integral. Suppose further that(k) = f(x) for all a < x < b with the
possible exception of points in a finite setGa, b). Choose any points

A=X <X <X < < Xn_1<Xy=Db

so that at least all points of C are included. Then there mxist @ssociated points
& between the pointgx and % fori=1,2,...,n so that

/: FOgdx=f(&)(x —xi-1) (1=1,23,....n)

and

b n
| f00dx= > f(E)0 %)
a i=
Exercise 267 Show that the integraf;’xdx can be computed exactly by any Riemann

sum b N 0
Xi+Xil 1
xdx= -
/a i; 5 (%= Xi1) 221& X p).

Answer O
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Exercise 268 Subdivide the intervgD, 1] at the points =0, x; = 1/3, X, = 2/3 and
x3 = 1. Determine the point§; so that

/1x2dx— S E2(% — X%
A —i; T —%i-1).

O

Exercise 269 Subdivide the intervgD, 1] at the points ¥=0, x; = 1/3, X, = 2/3 and
X3 = 1. Determine the point&; € [x_1,X] so that

3
E2(% —Xi—1).
2"
is as large as possible. By how much does this sum e>9€eédjx? O

Exercise 270 Subdivide the intervgD, 1] at the points =0, x; = 1/3, X, = 2/3 and
x3 = 1. Consider various choices of the poiiss [X_1,%] in the sum

'iEiZ(Xi —Xi—1).

What are all the possible values of this sum? What is theiogldietween this set of
values and the numbgj x?dx? 0

Exercise 271 Subdivide the intervgD, 1] by defining the pointsp= 0, x; = 1/n, % =
2/n, ... %-1=(n—1)/n,and % = n/n= 1. Determine the point&; € [x_1,%] so that

n
E2(% —Xi—1).
2"
is as large as possible. By how much does this sum eﬁeédix? O

Exercise 272Let0 < r < 1. Subdivide the intervdD, 1] by defining the pointspe 0,
X1=1"1 x%o=r"2 .. % 1=r"1 =y and %, =" (" = 1. Determine the
pointsé; € [x_1,%| so that

n
&7(% — Xi—1).
2
is as large as possible. By how much does this sum e&@e@dﬂx? O

Exercise 273 (error estimate)Let f: [a,b] — R be an integrable function. Suppose
further that F(x) = f(x) for all a < x < b where F is an indefinite integral. Suppose
that

{([Xiaxifl]azi) . | - l,2,...n}
is an arbitrary partition of[a, b]. Show that
X
[ 1600k 1@ —x0)
i—1

and that

< wf([xhxl—l])(xl _Xi—l) (I = 172737"'7n)

n

< lef([m,ml])(m —Xi-1). (3-3)

IREESIROLE
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Note: that, if the right hand side of the inequality.8) is small then the Riemann sum,
while not precisely equal to the integral, would be a goodresge. Of course, the right
hand side might also be big. Answer O

3.5.3 Uniform Approximation by Riemann sums

Theorem3.18shows that calculus integrals candectlycomputed by Riemann sums.
Since it must appeal to the mean-value theorem, it gives oceplure for determining
the correct associated points that make the computatiart.exa

Suppose we relax our goal. Instead of asking for an exact atatipn, perhaps an
approximate computation might be useful:

/ dxwzlf (X —X%_-1)7?

Here we wish to allow an arbitrary choice of associated goiithus we will certainly
introduce an error, depending on how fd§;) is from the “correct” choice of associ-
ated point. To control the error we need to make the poinéndx;_; close together.
By a uniform approximation we mean that we shall specify the smallness &ingle
small numbe® and require that the points be chosen so that, for each 2,3,...,n,

X —Xi—1] <.
In Section3.5.8we specify this smallness in a more general way, by requihagthe
points be chosen instead so that
X —Xi—1] < (&)

using a different measure of smallness at each associated pais is thepointwise
version.

Since each term in the sum can add in a small error we need@lsstrict the
choice of sequence

a=Xg,X1,%X2,...,%_1,Xn = Db

so that it is not too large. One way to accomplish this is tairegthat the points are
chosen in the natural order:

A=Xp <X <X < Xg< -+ < Xp_1 < Xy =h.

A different way is to limit the size of the variation of the sgace of points by restrict-
ing the size of the sum
n
Zl|Xi —Xi—1.
i=

We do the former for Cauchy’s theorem and the latter for Radibitheorem.

3.5.4 Cauchy’s theorem

The earliest theorem of this type is due to Cauchy in 1820hte&nth century authors
would certainly have known and recognized this result. dhiiy attributable to Cauchy
because he was the first to articulate what the notion of woityi should mean.
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Theorem 3.19 Let f be a bounded function that is defined and continuouseatev
point of (a, b) with at most finitely many exceptions: Then, f is integrafvié¢aob]
and moreover the integral may be uniformly approximated igyrlRnn sums: for
everye > Othere is ad > 0 so that

3 /: () dx— (&) (% — %)

iZl

L6

and

dlef (% —%—1)

A=X <X <X < X< < Xp_1<X=Db

whenever points are given

for which
X —Xi—1<9d
with associated points; € [xi_1,X%] chosen at any such point where f is defined.

In the special case wheffeis defined and continuous at every point of the interval
[a,b] we get the original version of Cauchy.

Corollary 3.20 (Cauchy) Let f: [a,b] — R be a uniformly continuous function.
Then, f is integrable ofa, b] and moreover the integral may be uniformly approx-
imated by Riemann sums.

Exercise 274 Prove Theoren3.19in the case when f is uniformly continuous|arb
by using the error estimate in Exercig&3. Answer O

Exercise 275 Prove Theoren3.19in the case when f is continuous @mb).
Answer O

Exercise 276 Complete the proof of TheoreBil9 Answer O

Exercise 277 Let f: [a,b] — R be an integrable function ofa, b] and suppose, more-
over, the integral may be uniformly approximated by Riensmns. Show that f would
have to be bounded. Answer O

Exercise 278 Show that the integral

1, o P24 F 24546240
/ x“dx= lim s
0 n—oo n

Answer O

Exercise 279 Show that the integral

/le dx= lim [(1—r)+r(r—r?)+r2r?—r3)+r3rd - +...].

r—1—
Answer O
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Exercise 280 Show that the integrajfo1 x>dx can be exactly computed by the method
of Riemann sums provided one has the formula
N6 NS BN4 N?

5., 55,95, 45,65, @65, ... N5 v N7 ONT N7
P24+ P+ 845+ ++ -+ N = =+ o+ 5 — .

3.5.5 Riemann’s integral

By the middle of the nineteenth century Riemann, clearlyiimesl by Cauchy’s clar-
ification of integration theory, was teaching a more genatagration theory to his
students. He took the observations of the preceding seatidngave a definition of
an integral based on it. This is a standard and time-honoaglition in mathematics.
What an earlier mathematician proposes as a theorem, ybprajlose as a definition.
Thus Theoren3.19turned into this.

Definition 3.21 Let f be a function that is defined at every poinfab]. Then,
f is said to be Riemann integrable ¢a b if it satisfies the following “uniform
integrability” criterion: there is a number | so that, for ewy € > 0 there is a
0 > 0, with the property that

I—Zlf (% —%1)

whenever points are given

A=X <X <X <Xg< -+ <Xp_1<Xn=Db
for which
X —X%-1<90
with associated points; € [X_1,%].

The numbet in the definition would then be written in integral notatian a

I:(R)/abf(x)dx

Most bounded functions (but not all) that are integrablehim ¢alculus sense that we
are using are Riemann integrable and the values of the @iseggree. Thus it is safe

to write A A
R)/ f(x)dx:/ £(x)dx

when we are sure that the functidns integrable in both senses.

Confused? There are no unbounded functions that are Riemann integralthough
many unbounded functions are integrable in the calculuseseBome highly discon-
tinuous functions are Riemann integrable, but not intdgrab we understand it.

So that is rather confusing. Should we incorporate Riensaid&as into our inte-
gration study or not? Mathematicians of the late nineteestitury did, but there was
some considerable difficulties that arose as a result. Watfivabt for our purposes to
leave the Riemann integral as an historical curiosity ungihave developed the correct
integration theory on the real line.
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Neither the calculus integral nor the Riemann integral ésdarrect theory for all
purposes. When we return to the Riemann integral we can laa¢hin the appro-
priate theoretical framework. As a “teaching integral” tiadculus integral is arguably
more appropriate since it is easier to develop and does leatwally to the correct
theory in any case.

Exercise 281 Can you find a function that is Riemann integrable but nograble in
the calculus sense taken in the text? Answer O

3.5.6 Robbins’s theorem

This section introduces some basic ideas from integratimony. Most
students learn such ideas studying the Riemann integraile elerything
remains in the context of the calculus integral.

There is another approach possible to Cauchy’s theoremle\WRigmann took the
idea as a definition of a different kind of integration theavg can find a generalization
of that theorem by refining the Riemann definition. For Catsctheorem the points of
the subdivisiora = Xg, X1, ..., X, = b were arranged in increasing order. In Robbins’s
theoremi we drop the insistence that the points in the Riemann sum foust an
increasing sequence. This allows us to characterize tleellnalintegral of uniformly
continuous functions entirely by a statement using Riensamns.

Theorem 3.22 (Robbins) A real-valued function f is uniformly continuous on an
interval [a,b] if and only if it satisfies the following strong uniform integility
criterion: there is a number | so that, for evegy> 0 and C> 0, there is ad > 0
with the property that

<€

n
=5 F(&) (% —%i-1)
2,
for any choice of pointspsxy, ..., X, and§1,&2,..., &, from [a, b] satisfying
n
X —x_1| <C
2

where a= xp, b= X, 0 < |% — X _1| < 6 and eachg; belongs to the interval with
endpoints xand x_4 fori = 1,2,...,n. In that case, necessarily,

I :/abf(x)dx

This theorem gives us some insight into integration thedmgtead of basing the
calculus integral on the concept of an antiderivative, iildonstead be obtained from
a definition of an integral based on the concept of Riemanrssurhis gives us two
equivalent formulations of the calculus integral of unifidy continuous functions: one
uses an antiderivative and one uses Riemann sums.

30nly one direction in the theorem is due to Robbins and a pranfbe found in Herbert E. Robbins,
Note on the Riemann integraAmerican Math. Monthly, Vol. 50, No. 10 (Dec., 1943), 61786 The
other direction is proved in B. S. Thomsddn Riemann sum®eal Analysis Exchange 37, no. 1 (2010).
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Exercise 282 Prove the easy direction in Robbins’s theorem, i.e, assiateftis uni-
formly continuous and prove that the statement holds with

I:/abf(x)dx

Exercise 283 Show that the number | that appears in the statement of Thedr22
iS unigue, i.e., that there cannot be two different numbersd I' possessing the same
property. Answer O

Answer O

Exercise 284 Show that a function satisfies the hypotheses of Robbinsethed heo-
rem3.22 on an intervalla,b] if and only if it satisfies the following equivalent strong
integrability criterion: for everye > 0and C> 0, there is a > 0 with the property that

m

> &K Zif (% —%-1)

=1
for any choice of points

X0,X1,---,Xp and &1,&>,.... &y and Y, X, ..., X, and &,&5,... &,
from [a, b] satisfying

n m
Z|Xi —X%-1f <C and  |xj—xj 4/ <C
i= j=1

where a= X = X5, b=Xn =X, 0< [xi —%i_1] < 9,0 < |x’j —x’jfl| < 9, eachg; belongs
to the interval with endpoints:and x_, fori=1,2,...,n, and eacrf’j belongs to the
interval with endpoints’xand ¥_, for j=1,2,....m, Answer O

Exercise 285 Show that, if a function satisfies the hypotheses of Roltéwsem (The-
orem3.22) on an interval[a,b] then it satisfies this same strong uniform integrability
criterion on every subintervdt,d] C [a,b]: there is a number (ic,d) so that, for every

€ > 0and C> 0, there is ad > 0 with the property that

‘cd Zlf (X —%—1)

for any choice of pointspsxy, ..., X, and§1, &2, ..., &, from[c,d] satisfying
n
% —x_1| <C
2

where c= xp, d = X,, 0 < |X — X_1| < & and each§; belongs to the interval with
endpoints xand x_1 fori =1,2,...,n. Answer O

Exercise 286 Further to Exercis&85 show that
1(x,2) = 1(x,y) +1(y,2)
foralla<x<y<z<h. O

Exercise 287 Prove the harder direction in Robbins’s theorem, i.e, asstimt f satis-
fies the strong “integrability” criterion and prove that it ust be uniformly continuous
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and that

Answer O

3.5.7 Theorem of G. A. Bliss

Students of the calculus and physics are often requiredetasfs’ integrals by which is
meant interpreting a problem as an integral. Basically dni®unts to interpreting the
problem as a limit of Riemann sums

/ dx_Ilmzlf (% —%i—1)

In this way the student shows that the integral captureshallcomputations of the
problem. In simple cases this is easy enough, but complitaitan arise.

For example iff andg are two continuous functions, sometimes the correct set up
would involve a sum of the form

Ilmzlf V(% —X—1)

and not the more convenient

Ilmzlf V(% —X_1)-

Here, rather than a single poift associated with the intervék;, x_1], two different
points; andn; must be used.

Nineteenth century students had been taught a rather mueklyoch for handling
this case known as the Duhamel principle; it involved an mrgot using infinitesimals
that, at bottom, was simply manipulations of Riemann suntissBfelt that this should
be clarified and so produced an elementary theorem of whielofBm3.23is a special
case. Itis just a minor adjustment to our Theor&i®,

Theorem 3.23 (Bliss)Let f and g be bounded functions that are defined and con-
tinuous at every point dfa,b) with at most finitely many exceptions: Then, fg is
integrable on[a,b] and moreover the integral may be uniformly approximated by
Riemann sums in this alternative sense: for exery0 there is ad > 0 so that

/abf(x) )dx— Zlf (% —Xi—1)| <

whenever points

A=X) <X <X <Xg<- - <Xp_1<Xg=Db
are given with each
0<x—X%_1<9
and whereg; and&; are any points irfjx_1, x| where fg is defined.

Exercise 288 Prove the Bliss theorem.
Answer O

4G. A. Bliss, A substitute for Duhamel’s theorernnals of Mathematics, Ser. 2, Vol. 16, (1914).
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Exercise 289 Prove this further variant of Theorefh19.

Theorem 3.24 (Bliss)Let fi, fo, ..., f, bounded functions that are defined and
continuous at every point dfi,b) with at most finitely many exceptions: Then,
the product {f,fs... fp is integrable onfa,b] and moreover the integral may be
uniformly approximated by Riemann sums in this alternateese: for everg > 0
there is ad > 0 so that

/ab f1(x) f2(x) f3(X) . .. fp(x) dx

<€

-5 &) (57) 5 (&) 10 (87) (550

whenever{([x,%-1],&) :1=1,2,...n} is a partition of[a, b] with each
X —X-1<0

and &,82 & . &P c[x_1,x] with these being points ita,b) where the
functions are defined.

Answer O

Exercise 290 Prove one more variant of Theoresl9,

Theorem 3.25Suppose that the function(slt) satisfies

IH(s,)] < M([s|+[t])
for some real number M and all real numbers s andt. Let f andlgdamded func-
tions that are defined and continuous at every pointapb) with at most finitely
many exceptions: Then, (H(x),g(x)) is integrable onfa,b] and moreover the in-

tegral may be uniformly approximated by Riemann sums insianse: for every
€ > Othere is ad > 0 so that

[ (100,000 3 H (&) .06 (4 —5-0)| <

whenever{([x,x-1],&) :i=1,2,...n} is a partition of[a, b],
X —X-1<9

and &, &, € [x_1,%] with both§; and & points in (a,b) where f and g are
defined.

Answer O

3.5.8 Pointwise approximation by Riemann sums

For unbounded, but integrable, functions there cannot taifarm approximation by
Riemann sums. Even for bounded functions there will be nfotmiapproximation by
Riemann sums unless the function is almost everywhereraanis, which is rather a
strong condition.

If we are permitted to adjust the smallness of the partitioa pointwise manner,
however, then such an approximation by Riemann sums isaé@il This is less con-
venient, of course, since for eaelwe need find not merely a single positideut a
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positive d(x) at each poink of the interval. While this appears, at the outset, to be a
deep property of calculus integrals it is an entirely tiiyieoperty.

Much more remarkable is that Henstotkyho first noted the property, was able
also to recognize that all Lebesgue integrable functione lide same property and that
this property characterized the much more general inteffaenjoy and Perron. Thus
we will see this property again, but next time it will appearaacondition that is both
necessary and sufficient.

Theorem 3.26 (Henstock property) Let f: [a,b] — R be defined and integrable
on [a,b]. Then, for everg > 0 and for each point X itja, b] there is ad(x) > 0 so
that

n

iZl

[ fo00x- 3 t@x -0

whenever whenever points

L6

[ f09ax= 1@ 06—

and

<€

A=X <X <X <Xg< - < X1 <X =Db
are given with each
X —%-1<90(&) and & € [X_1,%].

Note that our statement requires that the funcfidoeing integrated is defined at all
points of the intervala,b]. This is not really an inconvenience since we could simply
set f(x) = 0 (or any other value) at points where the given functfois not defined.
The resulting integral is indifferent to changing the vatdi@ function at finitely many
points.

Note also that, if there amgo such partitions having the property of the statements
in Theorem3.26 then the statement is certainly valid, but has no conteit i$ not the
case, i.e., no matter what choice of a funct@&i®) occurs in this situation there must
be at least one partition having this property. This is m@yi the Cousin covering
argument.

Exercise 2911In the statement of the theorem show that if the first inetuali

no| o
Zl / f(x)dx— f(&)(% —Xi—1)| <&
= Xi-1
holds then the second inequality
b n
/ (k=Y 1) 06— x| <
a i=
must follow by simple arithmetic. Answer O

SRalph Henstock (1923-2007) first worked with this concepthim 1950s while studying nonabsolute
integration theory. The characterization of the Denjoyr®e integral as a pointwise limit of Riemann
sums was at the same time discovered by the Czech matheanaligioslav Kurweil and today that integral
is called the Henstock-Kurzweil integral by most users.
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Exercise 292 Prove TheorenB.26 in the case when f is the exact derivative of an
everywhere differentiable function F. Answer O

Exercise 293 Prove Theoren3.19in the case where F is an everywhere differentiable
function except at one point c inside, b) at which F is continuous. Answer O

Exercise 294 Complete the proof of TheoreBilQ Answer O

3.5.9 Characterization of derivatives

This section continues some basic ideas from integratiearih continued
from Sectior3.5.6 Most students learn such ideas studying the Riemann
integral. Here everything remains, as before, in the candéxhe calculus
integral.

It was an old problem of W. H. Young to determine, if possiblecessary and
sufficient conditions on a functiof in order that it should be the derivative of some
other function. Elementary students know only one sufficeendition (thatf might be
continuous) and perhaps one necessary condition {tshbuld have the intermediate
value property).

We can use a pointwise version of Robbins’s theorem to givarewer to this
problem in terms of Riemann sums. We begin with the easy tibrec

Theorem 3.27 Let F: [c,d] — R be a differentiable function and let a,éb|c,d],
€ > 0, and C> 0 be given. Then there is a positive functidn[c,d] — R with
the property that

<€

[ Fax- 5 @

for any choice of pointspggxy, ..., X, and&s1,&2, . ..,&n from [c,d] with these four
properties:

1. a=xpand b= x,.
2. 0<|x —X—1| <9®(&) foralli=1,2,...,n.
3. &; belongs to the interval with endpointsand x_1 fori=121,2,...,n.

4. 3l —x%-1| <C.

Characterization of derivatives What properties should a function have in order that
we would know it to be the derivative of some other functionBe@nswer is that it
must have a strong integrability property expressed insesfiRiemann sums.
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Theorem 3.28 A function f: [a,b] — R is an exact derivative if and only if it has
the following strong pointwise integrability property:eie is a number | so that,
for any choice of > 0and C> 0, there must exist a positive functidn[a,b] — R™
with the property that

n

| — Zif(éi)(m —X-1)| <€

for any choice of pointspggxy, ..., X, and&1,&2, . ..,&n from [c,d] with these four
properties:

1. a= xp and b= x,.

2. 0<|X—x-1| <9(&) foralli=1,2,...,n

3. & belongs to the interval with endpointsand x_; fori=121,2,...,n
4. 3, —x-1| <C.

Necessarily then,

I :/abf(x)dx

This theorem too gives us some insight into integration themstead of basing
the calculus integral on the concept of an antiderivativaitld instead be based on a
definition of an integral centered on the concept of Riemamss This gives us two
equivalent formulations of the calculus integral of deliiva functions: one uses an
antiderivative and one uses Riemann sums. The latter has maretical advantages
since it is hard to examine a function and conclude that itisravative without actually
finding the antiderivative itself.

Exercise 295 Prove Theoren3.27. Answer O

Exercise 296 Show that the number | that appears in the statement of The8dr28
is unique, i.e., that there cannot be two different numbersd I' possessing the same
property. 0

Exercise 297 Show that a function satisfies the hypotheses of Thed/&son an inter-
val [a, b] if and only if it satisfies the following equivalent strongegrability criterion:
for everye > 0 and C> 0, there is a positive functiod on [a, b] with the property that

m

FED(K — F(&) (% —%-1)
,Zl lts Z
for any choice of points

X0; X1, -+, Xn and ElvEZ»"'aEﬂ and )67%17"'7)<nand E&»Elbyaén
from [a, b] satisfying a= xo = X, b= x, = X, and

n m
Zlm—m_lléc and y [Xj—xj_4/<C
i= =1

<E€
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where a=xg = X, b =Xy =X, 0 < % —Xi_1| < 8(&i),0< ]x’j —x’j_l\ < 6(E’j), eachg;
belongs to the interval with endpointsand x_; fori=1,2,...,n, and each‘,’j belongs
to the interval with endpointspand X_; for j=1,2,...,m, Answer O

Exercise 298 Show that, if a function satisfies the hypotheses of the@r@gion an
interval [a, b], then it satisfies this same strong “integrability” critem on every subin-
terval [c,d] C [a,b]: there is a number (c,d) so that, for everg > 0 and C> 0, there
is a positive functiod on [a, b] with the property that

‘cd Zif (% —%_1)

for any choice of pointspsxy, ..., xn and&1,&2, ..., &, from [c,d] satisfying

<E€

n
Zibq —X-1| <C
i=
where c= xp, d =Xy, 0 < |x —X—1| < &(§;) and each§; belongs to the interval with
endpoints xand ¥_¢ fori =1,2,...,n. Answer O

Exercise 299 Further to Exercis€298 show that

1(x,2) = 1(x,y) +1(y,2)
foralla<x<yz<h. O

Exercise 300 Prove the harder direction in TheoreBn28 Answer O

3.5.10 Unstraddled Riemann sums

Perhaps the reader can tolerate yet one more discussioemiaRin sums, albeit one of
marginal interest. When we have considered a Riemann sum

Zlf (% —%i-1)

to this point, we have always insisted that the associat@itg® should be selected
between the corresponding poins; andx;. We can relax this. We requig to be
close to the two points_; andx;, but we do not require that it appear between them.
E. J. McShane was likely the first to exploit this idea to findeartharacterization
of the Lebesgue integral in terms of Riemann sums (i.e. raddted sums). Here we
simply show that the integral of continuous functions cambi@ined by such sums.
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Theorem 3.29 Let f: [a,b] — R be a uniformly continuous function. Then the
integral may be uniformly approximated by unstraddled Riemsums: for every
€ > Othere is ad > 0 so that

> | 100x @06 —x-0)

2

[ 1ax- zi (&) % —% 1)

whenever points are given

<€

and

<E

A=X <X <X <Xg< - <Xnp_1<X =D
with associated points satisfying
§—0<X_1<X<g+0
foreachi=1,2,...,n.

The proof is sufficiently similar to that for Theoreg19that the reader need not
trouble over it. The only moral here is that one should reraéert to other formulations
of technical ideas and be prepared to exploit them (as didHdie&) in other contexts.

3.6 Absolute integrability

If a function f is integrable, does it necessarily follow that the absolatee of that
function, | f|, is also integrable? This is important in many applicatioBsce a solu-
tion to this problem rests on the concept of the total vamatf a function, we will give
that definition below in Sectio8.6.1

Definition 3.30 (absolutely integrable) A function f isabsolutely integrablen
an interval[a, b] if both f and|f| are integrable there.

Exercise 301 Show that, if f is absolutely integrable on an inter{alb] then

/abf(x)dx g/ab|f(x)|dx

Exercise 302 (preview of bounded variation)Show that if a function f is absolutely
integrable on a closed, bounded interjalb] and F is its indefinite integral then, for
all choices of points

Answer O

A=Xg <X <Xp <+ - < X1 < Xn = b,
n b
> F6) ~Fosal < 1] ax
i= a
Answer O

Exercise 303 (calculus integral is a nonabsolute integralAn integration method is
an absolute integration methaflwhenever a function f is integrable on an interval
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[a,b] then the absolute valué| is also integrable there. Show that the calculus integral
is a nonabsoluténtegration method.
Hint: Consider

gxcos(E) .
dx X
Answer O

Exercise 304 Repeat Exercis803but using

9 2gin <£>

dx X2 )"
Show that this derivative exists eterypoint. Thus there is an exact derivative which
is integrable on every interval but not absolutely intedeab Answer O

Exercise 305Let f be continuous at every point (d,b) with at most finitely many
exceptions and suppose that f is bounded. Show that f iswblointegrable on
[a,b]. Answer O

3.6.1 Functions of bounded variation

The clue to the property that expresses absolute intedyabiln Exercise302. The no-
tion is due to Jordan and the language is that of variatiomning here a measurement
of how much the function is fluctuating.

Definition 3.31 (total variation) A function F: [a,b] — R is said to be obounded
variationif there is a number M so that

3. FF)—Fs-2)| <M

for all choices of points
a=X <X <X < - <Xp1<Xh=h

The least such number M is called ttmal variationof F on [a,b] and is written
V(F,[a,b]). If F is not of bounded variation then we setf/[a, b]) = co.

Definition 3.32 (total variation function) let F : [a,b] — R be a function of
bounded variation. Then the function

T(x)=V(F[aX) (a<x<b), T(a)=0
is called thetotal variation functiorfor F on [a, b].
Our main theorem in this section establishes the propeofi¢ke total variation

function and gives, at least for continuous functions, thenection this concept has
with absolute integrability.

6Both the Riemann integral and the Lebesgue integral ardwtbsntegration methods.
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Theorem 3.33 (Properties of the total variation) Let F: [a,b] — R be a function
of bounded variation and let (k) =V (F, [a,x]) be its total variation. Then

1. foralla<c<d<b,
[F(d) —F(c)| <V(F,[c,d]) =T(d) - T(c).

. T is monotonic, nondecreasing {@mb].
If F is continuous at a point & Xy < bthen sotoois T.

If F is uniformly continuous ofa, b then so toois T.

AN

If F is continuously differentiable at a pointaxp < b then so too is T and,
moreover T(xg) = |F'(Xo)|.

6. If F is uniformly continuous ofe,b] and continuously differentiable at all
but finitely many points ifa, b) then F is absolutely integrable and

F(x)—F(a):/:F’(t)dt and T(x):/:\F’(t)\dt.

As we see here in assertion (6.) of the theorem and will desccéwther in the
exercises, the two notions of total variation and absohtigrability are closely inter-
related. The notion of total variation plays such a signifiaale in the study of real
functions in general and in integration theory in particulat it is worthwhile spend-
ing some considerable time on it, even at an elementary loaldéevel. Since the ideas
are closely related to other ideas which we are studyingtdipie should seem a natu-
ral development of the theory. Indeed we will find that ourcdission of arc length in
Section3.10.3will require a use of this same language.

Exercise 306 Show directly from the definition that if F[a,b] — R is a function of
bounded variation then F is a bounded function[arb). Answer O

Exercise 307 Compute the total variation for a function F that is monotoan [a, b)].
Answer O

Exercise 308 Compute the total variation function for the functior(X} = sinx on
[—T1T, 7. Answer O

Exercise 309 Let F(x) have the value zero everywhere except at the poinOxvhere
F(0) = 1. Choose points

—1l=X<Xg <X < - < Xp_1 < Xy =1
What are all the possible values of

3 0 —Fx-0)?

What is (F,[—1,1])? Answer O

Exercise 310 Give an example of a function F defined everywhere and witpribe
erty that V(F, [a,b]) = o for every intervala,b.
Answer O
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Exercise 311 Show that if F: [a,b] — R is Lipschitz then F is a function of bounded
variation. Is the converse true? Answer O

Exercise 312 Show that \(F + G, [a,b]) <V(F,[a,b]) +V (G, [a,b]). Answer O

Exercise 313Does
V(F +G,[a,b]) =V(F,[ab]) +V(G,|ab]).
Answer O

Exercise 314 Prove Theoren3.33 Answer O

Exercise 315 (Jordan decomposition)Show that a function F has bounded variation
on an intervalfa, b if and only if it can expressed as the difference of two marioto
nondecreasing functions. Answer O

Exercise 316 Show that the function ) = xcos(Z), F(0) = 0 is continuous every-
where but does not have bounded variation on the intgf¥al, i.e., that F,[0,1]) =
00, Answer O

Exercise 317 (derivative of the variation) Suppose that Fx) = x" cosx™* for x > 0,
F(x) = —(—x)"cosx~1 for x < 0, and finally F0) = 0. Show that if > 1 then F has
bounded variation ofi—1,1] and that F(0) = 0. Let T be the total variation function
of F. Show that 1{0) = 0if r > 2, that T'(0) = 2/mif r = 2, and that T(0) = o if
I<r<2

Note: In particular, at points where F is differentiable, the tbtariation T need not
be. Theoren3.33said, in contrast, that at points where F is continuouslyedéntiable,
the total variation T must also be continuously differeblia Answer O

Exercise 318 (uniformly approximating the variation) Suppose that F is uniformly
continuous orja, b]. Show that for any w V (F, [a,b] there is ad > 0 so that so that

V< _i]F(xi) —F(x-1)| <V(F,[a,b]

for all choices of points

A=X <X <X < < Xp1<X=Dhb
provided that each;x-x;_; < 0. Is it possible to drop or relax the assumption that F is
continuous?

Note: This means the variation of eontinuousfunction can be computed much like
our Riemann sums approximation to the integral. Answer O

Exercise 319Let K : [a,b] —» R (k=1,2,3,...) be a sequence of functions of bounded
variation, suppose that

F(x) = lim R(x)

k—rco0
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forevery k=1,2 3,... and suppose that there is a number M so that
V(K. [a b)) <M. k=123....
Show that F must also have bounded variation.

Does this prove that every limit of a sequence of functionsooihded variation
must also have bounded variation? 0

Exercise 320 (locally of bounded variation)Let F: R — R be a function. We say
that F islocally of bounded variatiorat a point x if there is some positiveso that
V(F,[x—8,x+9]) < «. Show that F has bounded variation on every compact interval
[a,b] if and only if F is locally of bounded variation at every poit R.  Answer O

Exercise 321 (comparison test for variations)Suppose that F, Ga, b] — R and that
F is uniformly continuous ofg, bJ.
1. If [F'(x)| <|G'(x)| for mostly every point x ifa, b) show that

2. If F/(x) < |G/'(x)| for mostly every point x iia, b) show that
F(b)—F(a) <V(G,[a,b]).
(If you are feeling more ambitious replace “mostly everyrmehiavith “nearly every-

where.”)
Answer O

Exercise 322 Here is a stronger version of bounded variation for a funetio: [a, b] —
R. For every C> 0O there is a number M so that

n
IF(x)—F(-1)] <M
2
for all choices of points

a:X07X17X27"'7Xn—17Xn = b
for which

n
I —xi_1| <C.
2,

Show that this property is equivalent to the statement thiat Epschitz ona, b.
Answer O

3.6.2 Indefinite integrals and bounded variation

In the preceding section we spent some time mastering thertarg concept of total
variation. We now see that it precisely describes the absahtegrability of a func-
tion. Indefinite integrals of nonabsolutely integrabledtions will not be of bounded
variation; indefinite integrals of absolutely integrablenétions must be of bounded
variation.
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Theorem 3.34 Suppose that a function:f(a,b) — R is absolutely integrable on
a closed, bounded intervé, b]. Then its indefinite integral F must be a function
of bounded variation there and, moreover,

b
V(R [abl) = [ 116l

This theorem states only a hecessary condition for absiitégrability. If we add
in a continuity assumption we can get a complete picture @twhappens. Continuity
is needed for the calculus integral, but is not needed forenaglvanced theories of
integration.

Theorem 3.35 Let F: [a,b] — R be a uniformly continuous function that is contin-
uously differentiable at every point in a bounded, opemiratie(a, b) with possibly
finitely many exceptions. Theri i integrable onfa, b] and will be, moreover, ab-
solutely integrable offa, b] if and only if F has bounded variation on that interval.

Exercise 323 Prove Theoren3.34. Answer O

Exercise 324 Prove Theoren3.35 Answer O

3.7 Sequences and series of integrals

Throughout the 18th century much progress in applicatidriteocalculus was made
through quite liberal use of the formulas

- b b -
Amo A fn(x)dx:/a {Am fn(x)} dx

) b b [
dx= d
5 oo [ S}

These are vitally important tools but they require carefiplecation and justification.
That justification did not come until the middle of the 19tmey.

We introduce two definitions of convergence allowing us teiipret what the limit
and sum of a sequence,

and

lim f,(x) and igk(x)
K=1

n—oo

should mean. We will find that uniform convergence allows asyqustification for the

basic formulas above. Pointwise convergence is equallyitapt but more delicate.
At the level of a calculus course we will find that uniform cenyence is the concept
we shall use most frequently.

3.7.1 The counterexamples

We begin by asking, naively, whether there is any difficultytaking limits in the
calculus. Suppose thdt, fy, f3, ...is a sequence of functions defined on an open
intervall = (a,b). We suppose that this sequeramverges pointwis® a functionf,

i.e., that for eaclx € | the sequence of numbef$,(x)} converges to the valug(x).
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Figure 3.1: Graphs of" on[0,1] forn=1, 3,5, 7, 9, and 50.

Is it true that
1. If f, is bounded on for all n, then isf also bounded oh?
2. If f,is continuous on for all n, then isf also continuous oh?

3. If f, is uniformly continuous on for all n, then isf also uniformly continuous
onl?

4. If f, is differentiable orl for all n, then isf also differentiable on and, if so,
does
/: H /f)
f Ml: f7
5. If fyis integrable on a subintervad, d] of | for all n, then isf also integrable on
[c,d] and, if so, does
d d
lim fn(x)dx:/ {lim a0} a2
C C

n—o0 n—so0

These five questions havegativeanswers in general, as the examples that follow
show.

Exercise 325 (An unbounded limit of bounded functions)On the interval0, ) and
for each integer n let{x) = 1/x for x> 1/n and f,(x) = n for each0 < x < 1/n. Show
that each function fis both continuous and bounded @B «). Is the limit function
f(X) =limn_e fa(X) also continuous ? Is the limit function bounded? Answer O

Exercise 326 (A discontinuous limit of continuous functios) For each integer nand
—1<x<1, let fy(x) =x". For x> 1let f3(x) = 1. Show that eachyfis a continu-

ous function or(—1, ) and that the sequence converges pointwise to a function f on
(—1,) that has a single point of discontinuity. Answer O

Exercise 327 (A limit of uniformly continuous functions) Show that the previous ex-
ercise supplies a pointwise convergence sequence of oyff@ontinuous functions on
the interval[0, 1] that does not converge to a uniformly continuous function. O
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2n

Figure 3.2: Graph of,(x) on [0,1] in Exercise329.

Exercise 328 (The derivative of the limit is not the limit of the derivative) Let f,(x) =
X'/nfor—1<x<1andlet f(x) =x— (n—1)/n for x> 1. Show that eachyfis dif-
ferentiable at every point of the interval 1, ) but that the limit function has a point
of nondifferentiability. Answer O

Exercise 329 (The integral of the limit is not the limit of theintegrals) In this exam-
ple we consider a sequence of continuous functions, eachiohwas the same inte-
gral over the interval. For each n let,fbe defined or0,1] as follows: £(0) =0,
fn(1/(2n)) = 2n, f,(1/n) =0, f, is linear on[0,1/(2n)] and on[1/(2n),1/n], and
fan=00n[1/n,1]. (See Figure3.2)

It is easy to verify thatf— 0on [0,1]. Now, for each n,

1
0

But . .
/0 (rlll_r>rc1x)nfn(x))dx:/0 0dx=0.
Thus
- l l -
rIll_rgon/0 fnx;é/o r![Qonfn(x)dx
so that the limit of the integrals is not the integral of thmili. O

Exercise 330 (interchange of limit operations)To prove the (false) theorem that the
pointwise limit of a sequence of continuous functions iginapus, why cannot we
simply write

p, (fm. 1) = . o) = (i )
and deduce that
lim 100 = 1(x0)?

This assumes;, fs continuous at xand “proves” that f is continuous atgx that
Answer O
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Exercise 331Is there anything wrong with this “proof” that a limit of bowuled func-
tions is bounded? If each, is bounded on an interval | then there must be, by definition,
a number M so thaltf,(x)| < M for all x in |. By properties of sequence limits

[F)] =1 ]im fn(x)| <M
—>00
also, so f is bounded. Answer O

Exercise 332 (interchange of limit operations)Let
0, ifm<n
Smn = { 1, ifm>n.
Viewed as a matrix,
00O -
100 ---
Sml=11 1 0

where we are placing the entry,sin the mth row and nth column. Show that

lim (rﬂﬂls‘“n) £ lim (lim smn).

n—o0 m—o0 \N—00
Answer O

Exercise 333 Examine the pointwise limiting behavior of the sequencermttions

Xn
fa(X) = ——.
n(x) 14X
O

Exercise 334 Show that the natural logarithm function can be expresseith@apoint-
wise limit of a sequence of “simpler” functions,

logx = lim n(yx—1)
n—o00
for every point in the interval. If the answer to our initialdi questions for this par-

ticular limit is affirmative, what can you deduce about thataauity of the logarithm
function? What would be its derivative? What Wouldjﬁdaogxdx? 0

Exercise 335Let x,X2,... be a sequence that contains every rational number, let

1, ifxe{x,....,%} [ 1, ifxisrational
f”(x)_{ 0, otherwise, and f(x) = 0, otherwise.

1. Show that f— f pointwise on any interval.

2. Show that f has only finitely many points of discontinuity while f has oenfs
of continuity.

3. Show that each,fhas a calculus integral on any intervét,d] while f has a
calculus integral on no interval.

4. Show that, for any intervat, d],
d

lim fn(x)dx;é/d{rl]m fol) } dx

n—oo /o
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Figure 3.3: Construction in Exerci§88.

Answer O

Exercise 336Let f,(x) = sinnx/y/n. Show thatim,_,.nf, =0 butlim,_.nf;(0) =
0, O

Exercise 337Let f, — f pointwise at every point in the intervé, b|. We have seen
that even if eachfis continuous it does not follow that f is continuous. Whitkthe
following statements are true?

1. If each fisincreasing orja,b], then sois f.
. If each f is nondecreasing ofa, b], then sois f.
. If each f is bounded orfa, b|, then so is f.

. If each f is everywhere discontinuous ¢ab], then sois f.

. If each f is positive ora,b], then so is f.

2
3
4
5. If each f is constant orja, b|, then so is f.
6
7. If each fis linear on|a,b], then sois f.

8

. If each f is convex ona,b], then so is f.
Answer O

Exercise 338 A careless studehtonce argued as follows: “It seems to me that one can
construct a curve without a tangent in a very elementary Wég/divide the diagonal of

a square into n equal parts and construct on each subdivia®hase a right isosceles
triangle. In this way we get a kind of delicate little saw. Nbput n=c. The saw
becomes a continuous curve that is infinitesimally diffefeam the diagonal. But it

is perfectly clear that its tangent is alternately parall@w to the x-axis, now to the
y-axis.” What is the error? (Figur&.3illustrates the construction.) Answer O

7In this case the “careless student” was the great Russidgsamd N. Luzin (1883-1950), who
recounted in a letter [reproduced Amer. Math. Monthly 107, (2000), pp. 64-82] how he offered this
argument to his professor after a lecture on the Weierst@stsnuous nowhere differentiable function.
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Exercise 339 Consider again the sequen¢é,} of functions f(x) = X" on the interval
(0,1). We saw that f— 0 pointwise on(0,1), and we proved this by establishing that,
for every fixed x< (0,1) ande > 0,

I%o|" < € if and only if n> loge/logxo.
Is it possible to find an integer N so that, for alkex(0,1),
X" <e iff n>N?
Discuss. Answer O

3.7.2 Uniform convergence

The most immediate of the conditions which allows an intangfe of limits in the
calculus is the notion of uniform convergence. This is a vanch stronger condition
than pointwise convergence.

Definition 3.36 Let { f,} be a sequence of functions defined on an interval . We
say that{ f,} converges uniformlyto a function f on | if, for everg > 0O, there
exists an integer N such that

| fa(x) — f(x)| < € foralln> N and all xe I.

Exercise 340 Show that the sequence of functiopéxf = x" converges uniformly on
any interval[O,n] provided that0 < n < 1. Answer O

Exercise 341 Using this definition of the Cauchy Criterion

Definition 3.37 (Cauchy Criterion) Let{ f,} be a sequence of functions defined on
an interval set|. The sequence is said taipgormly Cauchyon I if for everye > 0
there exists an integer N such that ifrN and m> N, then| f(x) — f,(x)| < € for
allxel.

prove the following theorem:

Theorem 3.38Let { f,} be a sequence of functions defined on an interval |. Then
there exists a function f defined on the interval | such thatsthquence uniformly
on | if and only if{ f,} is uniformly Cauchy on I.

Answer O

Exercise 342 In Exercise340 we showed that the sequenggxj = X" converges uni-
formly on any intervalO,n], for 0 < n < 1. Prove this again, but using the Cauchy
criterion. Answer O

Exercise 343 (Cauchy criterion for series)The Cauchy criterion can be expressed for
uniformly convergent series too. We say that a seJigs, g« convergesuniformly to
the function f on an interval | if the sequence of partial syig where

S0 = 3 %Y
k=1

converges uniformly to f on I. Prove this theorem:
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Theorem 3.39Let {gk} be a sequence of functions defined on an interval I. Then
the seriesy,’; fx converges uniformly to some function f on the interval | ifian
only if for everye > O there is an integer N so that

n
z fi(x)| <e
j=m
foralln>m> N and all xe I.
Answer O
Exercise 344 Show that the series
14X+ XX+

converges pointwise df, 1), converges uniformly on any intervi,n] for 0 <n < 1,
but that the series does not converge uniformly®d). Answer O

Exercise 345 (Weierstrasdv-Test) Prove the following theorem, which is usually known
as the Weierstrass M-test for uniform convergence of series

Theorem 3.40-Test) Let{ fx} be a sequence of functions defined on an interval
| and let{My} be a sequence of positive constants. If

z Mg <o and |fg(x)] <Mk foreachxelandk=0,1,2,...,
K=1

then the serie§’_, fx converges uniformly on the interval I.
Answer O

Exercise 346 Consider again the geometric serigs- x+x%+... (as we did in Ex-
ercise344). Use the Weierstrass M-test to prove uniform convergemcthe interval
[—a,al, forany0<a< 1. Answer O

Exercise 347 Use the Weierstrass M-test to investigate the uniform agewnee of the

series
sink®

e

on an interval for values of p- 0. Answer O

Exercise 348 (Abel's Test for Uniform Convergence)Prove Abel’s test for uniform
convergence:

Theorem 3.41 (Abel)Let {ax} and {bx} be sequences of functions on an interval
|. Suppose that there is a number M so that

N

“M<sy(X) = H a(X) <M

K=1
for all x € | and every integer N. Suppose that the sequence of fundtimhs— 0
converges monotonically to zero at each point and that thiwergence is uniform
on |. Then the serie§,_; ax(X)bk(x) converges uniformly on I.
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Answer O

Exercise 349 Apply Theoren8.41, to the following series that often arises in Fourier
analysis:
sinkB

&k

Answer O

Exercise 350 Examine the uniform limiting behavior of the sequence aftfans

XI']

On what sets can you determine uniform convergence? O

Exercise 351 Examine the uniform limiting behavior of the sequence aftfons

fa(x) = x%e ™™,
On what sets can you determine uniform convergence? On wtsatan you determine
uniform convergence for the sequence of functidifs(m)? O

Exercise 352 Prove that if{ f,} and {gn} both converge uniformly on an interval I,
then so too does the sequer{dg+ gn}- O

Exercise 353 Prove or disprove that if f,} and {g,} both converge uniformly on an
interval I, then so too does the sequeRdgg,}. O
Exercise 354 Prove or disprove that if f is a continuous function @nco, ), then
f(x+1/n) — f(X)
uniformly on(—o, ). (What extra condition, stronger than continuity, wouldrkvd
not?) 0
Exercise 355Prove that f§ — f converges uniformly on an interval I, if and only if
lim sup| fo(x) — f(x)| = 0.
N xel

O

Exercise 356 Show that a sequence of functiopf, } fails to converge to a function f
uniformly on an interval | if and only if there is some postiy so that a sequence
{x} of points in | and a subsequen¢é,, } can be found such that

[ fn (%) — F(%)| = €0
O

Exercise 357 Apply the criterion in the preceding exercise to show thatshquence
fn(x) = X" does not converge uniformly to zero @ 1). O

Exercise 358 Prove Theoren3.38 Answer O

Exercise 359 Verify that the geometric seriegﬁzoxk, which converges pointwise on
(—1,1), does not converge uniformly there. O
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Exercise 360 Do the same for the series obtained by differentiating thieesen Ex-
ercise 359, that is, show thaty,’ ; k¥~ converges pointwise but not uniformly on
(—1,1). Show that this series does converge uniformly on everedlogerval[a,b]
contained in(—1,1). O

Exercise 361 Verify that the series

converges uniformly oft-oo, ). O

Exercise 362If {f,} is a sequence of functions converging uniformly on an iwterv
| to a function f, what conditions on the function g would ®allgou to conclude that
go f, converges uniformly on | togf? 0

© ok
Exercise 363 Prove that the seriezx? converges uniformly ofD, b] for every be
k_

[0,1) but does not converge uniforr;lly M 1). O

Exercise 364 Prove that ify}’_; fx converges uniformly on an interval |, then the se-
quence of term§fy} converges uniformly on I. O

Exercise 365A sequence of functionf,} is said to beuniformly bounded on an
interval [a, b] if there is a number M so that

[T <M
for every n and also for every« [a,b]. Show that a uniformly convergent sequence

{fn} of continuous functions of&, b] must be uniformly bounded. Show that the same
statement would not be true for pointwise convergence. O

Exercise 366 Suppose that,f— f on (—,+0). What conditions would allow you to
compute that

n'i‘l, fa(x+1/n) = f(x)?
O

Exercise 367 Suppose thaf f,} is a sequence of continuous functions on the interval
[0,1] and that you know thaf,} converges uniformly on the set of rational numbers
inside [0,1]. Can you conclude tha{f,} uniformly on[0,1]? (Would this be true
without the continuity assertion?) O

Exercise 368 Prove the following variant of the Weierstrass M-test: L&t} and{gk}
be sequences of functions on an interval I. Suppose|th@t)| < gk(x) for all k and
x € | and that ¥}’ ; g« converges uniformly on I. Then the serigg_; fx converges
uniformly on I. O

Exercise 369 Prove the following variant on Theoref41 Let {ac} and {by} be
sequences of functions on an interval |. Suppose ffat ax(x) converges uniformly
on |. Suppose thafhy} is monotone for each & | and uniformly bounded on E. Then
the seriesy,’ ; akbx converges uniformly on . O
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Exercise 370 Prove the following variant on Theoref41 Let {a} and {bx} be
sequences of functions on an interval I. Suppose that teeeumber M so that

k=1
for all x € I and every integer N. Suppose that

> [0 — b
&

converges uniformly on | and thaf b+ 0 uniformly on I. Then the seriegy_; axbk
converges uniformly on 1. O

Exercise 371 Prove the following variant on Abel's test (Theor&m1): Let {ak(x)}
and {bx(x)} be sequences of functions on an interval |. SupposeXtfiatay(x) con-
verges uniformly on |. Suppose that the series

S 1509 — 23]
k=1

has uniformly bounded partial sums on |I. Suppose that theesem of functions
{b(x)} is uniformly bounded on |. Then the serig§_, ax(x)bk(x) converges uni-
formly on I. 0

Exercise 372 Suppose thaf f,(x)} is a sequence of continuous functions on an inter-
val [a,b] converging uniformly to a function f on the open interyalb). If f is also
continuous orna, b], show that the convergence is uniform|arb). O

Exercise 373 Suppose thaf f,} is a sequence of functions converging uniformly to
zero on an intervala,b]. Show thatim,_,. f,(x3) = O for every convergent sequence
{X,} of points in[a,b]. Give an example to show that this statement may be false if
fn — 0 merely pointwise. O

Exercise 374 Suppose thaff,} is a sequence of functions on an inter{ab| with the
property thatlim,_,. fn(X,) = 0 for every convergent sequenfe,} of points in[a, b).
Show thaf f,} converges uniformly to zero da,b. O

3.7.3 Uniform convergence and integrals

We state our main theorem for continuous functions. We krwt/ hounded, continu-
ous functions are integrable and we have several tools #rmatlé unbounded continu-
ous functions.
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Theorem 3.42 (uniform convergence of sequences of continusfunctions)

Let f;, fp, f3, ...be a sequence of functions defined and continuous onem op
interval (a,b). Suppose thaff,} converges uniformly ofa,b) to a function f.
Then

1. fis continuous offa,b).

=

If each f is bounded on the intervah, b) then so too is f.

w

. For each closed, bounded intervald| C (a,b)

lim dfn(x)dx:/d{r!mofn(x)}dx:/df(x)dx

. If each f is integrable on the intervdh, b| then so too is f and
b
lim [ fa(x) dx= / {1im £,09} dx= / F(x
n—o /4 n—-o0

We have defined uniform convergence of series in a simpleweasgly by requiring
that the sequence of partial sums converges uniformly. ThesCorollary follows
immediately from the theorem applied to these partial sums.

SN

Corollary 3.43 (uniform convergence of series of continuosifunctions) Let

01, O, O3, ...be a sequence of functions defined and continuous on an op
interval (a,b). Suppose that the serigs;_; gk converges uniformly ofa,b) to a
function f. Then

1. fis continuous offa,b).

2. For each closed, bounded intervjald] C (a,b)

oo d d ©o d
dx= dx= f(x)d
5 oo {3l 10

3. If each g is integrable on the intervgh, b] then so too is f and

00 b b ©o b
dx = dx= f(x)d
Zl /a gk (x) dx /a {kzlgk(x)} X /a (x)dx

Exercise 375To prove Theoren3.42 and its corollary is just a matter of putting to-
gether facts that we already know. Do this. 0

3.7.4 A defect of the calculus integral

In the preceding section we have seen that uniform conveegeicontinuous functions
allows for us to interchange the order of integration andtlimobtain the important

formula
- b b -
r!mo/a fn(x)dx:/a {M}O fn(x)} dx

Is this still true if we drop the assumption that the functidpare continuous?
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We will prove one very weak theorem and give one counterej@atoshow that the
class of integrable functions in the calculus sense is mstec! under uniform limits
We will work on this problem again in Sectidh7.6but we cannot completely handle
the defect. We will remedy this defect of the calculus inéégr Chapter 4.

Theorem 3.44 Let f;, fy, f3,...be a sequence of functions defined and integrable
on a closed, bounded intervé, b|. Suppose thaf f,} converges uniformly on
[a,b] to a function f. Then, provided we assume that f is integrablg, b],
b b
/‘m@dx:nm Fa(X) dx.
a

n—o /5

Exercise 376 Let
8(X) = 0 if0<x<1-1%
T2k i 1-teax<t

Show that the serie$,’_, g«(x) of integrable functions converges uniformly [@l] to
a function f that is not integrable in the calculus sense. Answer O

Exercise 377 Prove Theoren3.44. Answer O

3.7.5 Uniform limits of continuous derivatives

We saw in Sectio3.7.3that a uniformly convergent sequence (or series) of coatiau
functions can be integrated term-by-term . As an applicatioour integration theorem
we obtain a theorem on term-by-term differentiation. Weewtiis in a form suggesting
that the order of differentiation and limit is being revetse

Theorem 3.45 Let {F,} be a sequence of uniformly continuous functions on an
interval [a,b], suppose that each function has a continuous derivativenfa, b),
and suppose that

1. The sequencfF,} of derivatives converges uniformly to a function(arb).
2. The sequencf,} converges pointwise to a function F.

Then F is differentiable ofa, b) and, for all a< x < b,

%(F(x) 4 lim Fn(x) = lim dEFn(x) = lim F(x).

dXxn—o n—oo X N—sco

F'(x) =

For series, the theorem takes the following form:

8Had we chosen back in Sectiéhl.1to accept sequences of exceptional points rather than finite
exceptional sets we would not have had this problem here.
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Corollary 3.46 Let{Gx} be a sequence of uniformly continuous functions on an
interval [a,b], suppose that each function has a continudesvative F on (a,b),
and suppose that

1. F(X) = 31 Gk(X) pointwise ora,b].
2. Y0Gy(x) converges uniformly ofa, b).

Then, for all a< x < b,

d d 2 > d >
FFX)==—FX)=—SYGX) =Y ——GX) =} G(X).
dx ka; k; dx &
Exercise 378 Using Theoren8.42 prove Theoren3.45 Answer O
Exercise 379 Starting with the geometric series
1 2 K
m — kZOX on (—1, 1), (34)
show how to obtain
l (o]
=5 ket ~1,1). 3.5

[Note that the serie§_; kx¥-1 does not converge uniformly @a-1,1). Is this trou-
blesome?]

Answer O
Exercise 380 Starting with the definition
00 Xk
&= kZOE on (—00’00)7 (36)
show how to obtain )
d 2 X
—e&=5 — =€ on(—oc,x). (3.7)
dx k; k!

[Note that the seriegﬁ’zlﬁ—T does not converge uniformly @r-o, ). Is this trouble-
some?]

Answer O
: : sinnx : :
Exercise 381 Can the sequence of functiongX) = 3 be differentiated term-by-
term? O

, . .o sink . .
Exercise 382 Can the series of functlon§ %( be differentiated term-by-term?3
k=1

Exercise 383 Verify that the function
X xt xE 8
y(x) :1+ﬂ+z+§+m+...
is a solution of the differential equatiori 3= 2xy on (—o, ) without first finding an
explicit formula for yx). O
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3.7.6  Uniform limits of discontinuous derivatives

The following theorem reduces the hypotheses of Thedeth and, accordingly is
much more difficult to prove. Here we have dropped the coittiraf the derivatives
as an assumption.

Theorem 3.47 Let { f,} be a sequence of uniformly continuous functions defined
on an interval[a,b]. Suppose that;fx) exists for each n and eachex(a, b) except
possibly for x in some finite set C. Suppose that the sequeij¢ef derivatives
converges uniformly ofa, b) \ C and that there exists at least one poigtex[a, b]
such that the sequence of numbéfg(xo)} converges. Then the sequenda}
converges uniformly to a function f on the interyalb], f is differentiable with,
at each point x (a,b) \ C,
b b
/(4 = lim 1509 and lim [~ fixdx= [ f'(xdx
a a

n—0c0 n—0co

Exercise 384 Prove Theoren3.47. Answer O

Exercise 385 For infinite series, how can Theoredd7be rewritten? Answer O

Exercise 386 (uniform limits of integrable functions) At first sight Theorer3.47seems
to supply the following observation: {f,} is a sequence of functions integrable in the
calculus sense on an intervig, b] and g, converges uniformly to a function g ¢a b
then g must also be integrable. Is this true? Answer O

Exercise 387 In the statement of TheoreBnd7we hypothesized the existence of a sin-
gle point % at which the sequencgfy(Xp)} converges. It then followed that the se-
quence{ f,} converges on all of the interval |. If we drop that requirernbat retain
the requirement that the sequengk } converges uniformly to a function g on I, show
that we cannot conclude thétf,} converges on I, but we can still conclude that there
exists f such that '&=g=Ilimp_. f,on 1. Answer O

3.8 The monotone convergence theorem

Two of the most important computations with integrals aldn@g a limit inside an
integral,
b b
lim fn(x)dx:/ (lim fa(x)) dx
n—oo /5 a n—o0
and summing a series inside an integral,

00 b b 00
dx= d
5 [aonoc [ (S0 o

The counterexamples in Secti@r/.1, however, have made us very wary of doing
this. The uniform convergence results of Sectton.5 on the other hand, have encour-
aged us to check for uniform convergence as a guaranteehtésst bperations will be
successful.
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But uniform convergence is not @ecessaryrequirement. There are important
weaker assumptions that will allow us to use sequence amessechniques on in-
tegrals. For sequences an assumption that the sequenceatame will work. For
series an assumption that the terms are nonnegative wik.wor

3.8.1 Summing inside the integral

We establish that the summation formula

[ (élgk(x)) ax= 3 ( [ aoax)

is possible fomonnegativefunctions. We need also to assume that the sum function
f(X) = 3 no10k(X) is itself integrable since that cannot be deduced otherwise

This is just a defect in the calculus integral; in a more ganthieory of integration
we would be able to conclude both that the sum is indeed iabdgrand also that the
sum formula is correct. This defect is more serious than ghinappear. In most
applications the only thing we might know about the function

0= 5 0

is that it is the sum of this series. We may not be able to checkiruity and we
certainly are unlikely to be able to find an indefinite intégra

We split the statement into two lemmas for ease of proof. Fagahey supply the
integration formula for the sum of honnegative integrabiections.

Lemma 3.48 Suppose that f,;g g, 03, . . iS a sequence of nonnegative functions,
each one integrable on a closed bounded intefadh]. If, for all but finitely many
xin (a,b)

then

e i (/abgk(x)dx>. 3.8)

Lemma 3.49 Suppose that f,ig g, gs,. . . IS @ sequence of nonnegative functions,
each one integrable on a closed bounded intefadh]. If, for all but finitely many
xin (a,b),

10 < 3 ki),
k=1
then

/abf(x)dxg él (/abgk(x)dx> . (3.9)

Exercise 388In each of the lemmas show that we may assume, without logshef-g
ality, that the inequalities

f00< Y 6. o (0> Y G,
k=1 k=1

8
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hold for all values of x in the entire intervéd, b]. Answer O
Exercise 389 Prove the easier of the two lemmas. Answer O

Exercise 390 Prove Lemma.49 or rather give it a try and then consult the write up
in the answer section. This is just an argument manipula®Egmann sums so it is not
particularly deep; even so it requires some care. Answer O

Exercise 391 Construct an example of a convergent series of continuowgitns that
converges pointwise to a function that is not integrablehim ¢alculus sense. O

3.8.2 Monotone convergence theorem

The series formula immediately supplies the monotone agewnee theorem.

Theorem 3.50 (Monotone convergence theorem)et f, : [a,b] - R (n =
1,2,3,...) be a nondecreasing sequence of functions, each integmablae in-
terval [a,b] and suppose that

f(x) = rI]En fn(X)
for every x in[a, b] with possibly finitely many exceptions. Then, provided 1ss a
integrable on[a, bj,

b b
/ fx)dx=lim [ f.(x)dx

n—o /4
Exercise 392 Deduce Theoreri.50from Lemmas.48and3.49 Answer O

Exercise 393 Prove Theoren3.50directly by a suitable Riemann sums argument.
Answer O

Exercise 394 Construct an example of a convergent, monotonic sequencentifiu-
ous functions that converges pointwise to a function thabtsntegrable in the calculus
sense. 0

3.9 Integration of power series
A power seriess an infinite series of the form
f(x) = Zan(x—c)” —ap+a;(x— )t +ap(x—c)® +ag(x—c)>+---
n=

wherea, is called thecoefficientof the nth term andc is a constant. One usually says
that the series isenteredatc. By a simple change of variables any power series can be
centered at zero and so all of the theory is usually statesiufch a power series

f(x) = Zanx”:ao+a1x+a2x2+a3x3+....
=

n
The set of points where the series converges is calledititerval of convergencgWe
could call it asetof convergence, but we are anticipating that it will turn tube an
interval.)
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The main concern we shall have in this chapter is the integraf such series. The
topic of power series in general is huge and central to muchathematics. We can
present a fairly narrow picture but one that is complete amépfar as applications of
integration theory are concerned.

Theorem 3.51 (convergence of power seried)et

00

f(x) = ;anx”:ao+a1x+a2x2+a3x3+....

n=
be a power series. Then there is a numberOR; R < o, called theradius of
convergenc®f the series, so that

1. If R=0then the series converges only foe=X.
2. If R> 0the series converges absolutely for all x in the intefvaR R).

3. If0 < R< = the interval of convergence for the series is one of the vatisr
(-RR), (-RR, [-RR) or [-RR]
and at the endpoints the series may converge absolutelyrabsolutely.

The next theorem establishes the continuity of a power sevithin its interval of
convergence.

Theorem 3.52 (continuity of power series)Let
f(x) = ;anxn —ag+aiX+ap +agpc+. ...
n=
be a power series with a radius of convergenc® R,R < «. Then

1. f is a continuous function on its interval of convergenice. [ continuous at
all interior points and continuous on the right or left at andpoint if that
endpoint is included].

2. If0 < R< = and the interval of convergence for the series+i® R] then f
is uniformly continuous of-R,R].

Finally we are in position to show that term-by-term integma of power series is
possible in nearly all situations.
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Theorem 3.53 (integration of power series)Let
f(x) = Zbanxn = ap+ X+ a+azpcC+....
n=

be a power series and let
S L 2/2 1 2% /3 + agx®
F(x) = — a a a 44....
(%) nZofH'l AoX+ aX*/2+apX° /3 +asX’ /4 +

be its formally integrated series. Then

1. Both series have the same radius of convergence R, buenessarily the
same interval of convergence.

2. If R> 0then F(x) = f(x) for every x in(—R,R) and so F is an indefinite
integral for f on the interval —R,R).

3. fisintegrable on any closed, bounded interfaab] C (—R,R) and
b
/ f(x)dx= F (b) - F(a).
a

4. If the interval of convergence of the integrated seried-fts [—R,R] then f
is integrable oN—R, R] and

/_F;f(x)dx:F(R)—F(—R).

5. If the interval of convergence of the integrated seriesfes (—R,R] then f
is integrable on0, R] and

/oRf(x)dx:F(R)—F(O).

6. If the interval of convergence of the integrated seriesfes [—R R) then f
is integrable on—R, 0] and

/_ORf(x)dx:F(O)—F(—R).

Note that the integration theorem uses the interval of agarece of the integrated
series. It is not a concern whether the original seriesffoonverges at the endpoints
of the interval of convergence, but it is essential to lookhase endpoints for the
integrated series. The proofs of the separate statemetite itwo theorems appear
in various of the exercises. Note that, while we are intetsh integration problems
here the proofs are all about derivatives; this is not ssimgisince the calculus integral
itself is simply about derivatives.

Exercise 395 Compute, if possible, the integrals

/01 (niox”> dx and | 01 (nix”> dx

Answer O
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Exercise 396 Repeat the previous exercise but use only the fact that
2 1
XN =14 x4+ =
& 1-x
Is the answer the same? Answer O

Exercise 397 (careless student)But,” says the careless student, “both of Exerci3gs
and396 are wrong surely. After all, the series
f(X) =1+ x4+ +xC+x*+- +

converges only on the intervat-1,1) and diverges at the endpoints= 1 andx = —1
since

1-1+1-14+1-1+1-1="
and
1+1+1+1+- 4 =00,

You cannot expect to integrate on either of the interyal$, O] or [0,1].” What is your
response? Answer O

Exercise 398 (calculus student notation)ror most calculus students it is tempting to
write

/(ao+a1x+a2x2+a3x3+...) dx:/aodx+/alxdx+/a2x2dx+/a3x3dx+....

Is this a legitimate interpretation of this indefinite intatp Answer O

Exercise 399 (calculus student notation)ror most calculus students it is tempting to
write

b b b b b
/ (a0 +arx+apx® +agx> + ... ) dx:/ aodx+/ alxdx+/ a2X2dX—|-/ agXCdx+....
a a a a a

Is this a legitimate interpretation of this definite intetita Answer O

Exercise 400 Show that the series
f(X) =1+2X+ 3+ 3+ ...

has a radius of convergendeand an interval of convergence exactly equal+dl,1).
Show that f is not integrable d@, 1], but that it is integrablg—1,0] and yet the com-
putation

0 0 0 0 0
[ @38 rad+..) dx:/ldx+/12xdx+/13x2dx+/14x3dx+...

=—14+1-14+1-1+1—-...
cannot be used to evaluate the integral.

Note: Since the interval of convergence of the integrated sésiesso(—1,1), Theo-
rem3.53has nothing to say about whethkrs integrable or0, 1] or [—1,0].
Answer O
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Exercise 401 Determine the radius of convergence of the series
S KEXK = X+ 4% + 27 + .. ..
k=1
Answer O

Exercise 402 Show that, for everQ < s < oo, there is a power series whose radius of
convergence R is exactly s. Answer O

Exercise 403 Show that the radius of convergence of a series
ag + X+ apx +agx + ...
can be described as
R=sup{r:0<rand Z)akrk converges.
K=

O

Exercise 404 (root test for power series)Show that the radius of convergence of a se-
ries
ap+ X+ apx® +agC + . ..

is given by the formula
1

R= .
limsup_,. +/|a|

Exercise 405 Show that the radius of convergence of the series
ap+ X+ apx® +agC + . ..
is the same as the radius of convergence of the formallyreliffiated series
a1 + 28X+ 3agX° + 4agC + . . ..

Exercise 406 Show that the radius of convergence of the series
ag + X+ apx +agx + ...
is the same as the radius of convergence of the formallyratied series
agX+a;x?/2+ a3 /3+agx? 4+ ...
Answer O

Exercise 407 (ratio test for power series)Show that the radius of convergence of the
series

ag + X+ ap +agx + ...
is given by the formula
R= lim |2 |,
k—voo | Q41

assuming that this limit exists or equats Answer O
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Exercise 408 (ratio/root test for power series)Give an example of a power series for
which the radius of convergence R satisfies

1
R= ——"F ——
limy o0 v/ |
but
lim | -2
k—eo | 8kt1
does not exist. Answer O

Exercise 409 (ratio test for power series)Give an example of a power series for which
the radius of convergence R satisfies

liminf | 22| < R < limsup| 2L |
k—yo0 Kk—00
Note: for such a series the ratio test cannot give a satigfaestimate of the radius of
convergence. Answer O

Exercise 4101f the coefficient{ax} of a power series
ap+ X+ ax® +agC + . ..
form a bounded sequence show that the radius of convergeatéeastl. Answer O

Exercise 411f the coefficient{ax} of a power series
ap+ X+ ax +agx + ...
form an unbounded sequence show that the radius of convargemo more thad.
Answer O
Exercise 412If the power series
ap+ aiX+a® +agx + ...
has a radius of convergence, Bnd the power series
bo + byX+ box® + b + ...
has a radius of convergence, Bnd |ax| < |by| for all k sufficiently large, what relation
must hold betweenjnd Ry? Answer O
Exercise 413If the power series
ag + X+ apx +agx + ...
has a radius of convergence R, what must be the radius of genvee of the series
ag+apl+axt +agé+ ...
Answer O

Exercise 414 Suppose that the series
ag + agxX+ apX® +agx® + ...

has a finite radius of convergence R and suppose|thpt- R. Show that, not only does
a0+ arXo + &Xg +agg + ...

diverge but thatimy,_, [anXg| = . O
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Exercise 415 Suppose that the series

ag + agxX+ apX® +agx® + ...
has a positive radius of convergence R. Use the Weierstrassstvto show that the
series converges uniformly on any closed, bounded subaltf b] C (—R R). O

Exercise 416 Suppose that the series
f(X) = ag+ arx+ ax® + agC + . ..

has a positive radius of convergence R. Use Exertl$do show that f is differentiable
on (—R R) and that, for all x in that interval,

f/(X) = ag + 28X+ 383X’ + 4agC + ...

Exercise 417 Suppose that the series
f(X) = ap+ arx+axx® + apxC + . ..

has a positive radius of convergence R. Use Exertisito show that f has an indefi-
nite integral on(—R, R) given by the function

F(X) = agx+ a1x? /24 axx®/3+agx* /4+ ...

Exercise 418 Suppose that the series

f(X) = ap+ arx+axx® + apxC + . ..
has a positive, finite radius of convergence R and that thieseonverges absolutely
at one of the two endpoints R eiR of the interval of convergence. Use the Weierstrass
M-test to show that the series converges uniformly-eR, R]. Deduce from this that’f
is integrable oN—R, R].
Note: this is the best that the Weierstrass M-test can do apphigdwer series. If the
series converges nonabsolutely at one of the two endpRiots-R of the interval then
the test does not help. Answer O

Exercise 419 Suppose that the series

f(X) = ap+ arx+axx® + apxC + . ..
has a positive, finite radius of convergence R and that theseonverges nonabso-
lutely at one of the two endpoints R -eR of the interval of convergence. Use a variant
of the Abel test for uniform convergence to show that theesenverges uniformly on
any closed subintervah, b| of the interval of convergence. Deduce from this tHas f
integrable on any such intervé, b.
Note: this completes the picture for the integrability problefitios section.

Answer O

Exercise 420 What power series will converge uniformly Ao, c)? 0
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Exercise 421 Show that ify >, axx® converges uniformly on an intervék-r,r), then
it must in fact converge uniformly dr-r,r|. Deduce that if the interval of convergence
is exactly of the forni—R R), or [-R,R) or [-R R), then the series cannot converge
uniformly on the entire interval of convergence.

Answer O

Exercise 422 Suppose that a function(x) has two power series representations
f(X) = ag+ arx+ ax® + agC + . ..

and
f(X) = bg + byx+ bx® + bax® + . ..

both valid at least in some intervét-r,r) for r > 0. What can you conclude? O

Exercise 423 Suppose that a function(xX) has a power series representations
f(X) = ap+ arx+axx® + apx + . ..
valid at least in some intervdl-r,r) for r > 0. Show that, for each 0,1,2.3,...,
_ 90
ki

ad

Exercise 424 In view of Exercise23it would seem that we must have the formula

o £(k
f(x) = %x“
r=
provided only that the function f is infinitely often diffetieble at x= 0. Is this a
correct observation? Answer O

3.10 Applications of the integral

It would be presumptuous to try to teach here applicatiorth@integral, since those
applications are nearly unlimited. But here are a few thdvioa simple theme and
are traditionally taught in all calculus courses.

The theme takes advantage of the fact that an integral calegertain hypotheses)
be approximated by a Riemann sum

/abf(x)dm _if(ai)(m X 1):

If there is an application where some concept can be exglessa limiting version

of sums of this type, then that concept can be captured bytagral. Whatever the
concept is, it must be necessarily “additive” and exprdssils sums of products that
can be interpreted as

F(&) x (X —Xi—1).

The simplest illustration is area. We normally think of aesaadditive. We can
interpret the product

(&) x (% —Xi—1).
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as the area of a rectangle with leng#h— x;_1) and heightf(&;). The Riemann sum
itself then is a sum of areas of rectangles. If we can detexriiat the area of some
figure is approximated by such a sum, then the area can bealmEscompletely by an
integral.

For applications in physics one might usas a time variable and then interpret

/b F(t)dt ~ i F(11) (6 —tie)

thinking of f(t;) as some measurement (e.g., velocity, acceleration, ftme¢)s oc-
curring throughout the time intervé] 1, t;].

An accumulation point of view For many applications of the calculus the Riemann
sum approach is an attractive way of expressing the conteptsarise as a definite
integral. There is another way which bypasses Riemann snchgaes directly back to
the definition of the integral as an antiderivative.

We can write this method using the slogan

x+h X
/ f(t)dt—/ F(t)dt~ (&) x h. (3.10)

Suppose that a concept we are trying to measure can be aaptueefunctionA(x) on
some intervala, b]. We suppose that we have already measiéeg and now wish to
add on a bit more to get t&(x+ h) whereh is small. We imagine the new amount that
we must add on can be expressed as

f(€) xh

thinking of f(§) as some measurement that is occurring throughout the ahferx +
h]. In that case our model for the concept is the integgéf (t)dt. This is because
(3.10 suggests thad'(x) = f(x).

3.10.1 Area and the method of exhaustion

There is a long historical and cultural connection betwéerntteory of integration and
the geometrical theory of area. Usually one takes the fafiguas the primary definition
of area.

Definition 3.54 Let f: [a,b] — R be an integrable, nonnegative function and sup-
pose that Rf,a,b) denotes the region in the plane bounded on the left by the line
X = a, on the right by the line x b, on the bottom by the line=y 0 and on the top

by the graph of the function f (i.e., by=y f(x)). Then this region is said to have
an area and value of that area is assigned to be

/abf(x)dx

The region can also be described by writing it as a set of point
R(f,a,b)={(xy): a<x<b, 0<y< f(x)}.

We can justify this definition by the method of Riemann sunsloimed with a method
of the ancient Greeks known as the method of exhaustion atare
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Let us suppose thét: [a,b] — R is a uniformly continuous, nonnegative function
and suppose th&(f,a,b) is the region as described above. Take any subdivision

a=X <X <X < - <X-1<X =Db
Then there must exist poin€g, n; € [x_1,%] for i =1,2,...,n so thatf(§;) is the

maximum value off in the interval[x_1,X] and f(n;) is the minimum value off in
that interval. We consider the two partitions

{(xi,%i-1],&) :1=1,2,...n} and {([x,x-1],ni) :1=1,2,...n}
and the two correspondmg Riemann sums

Zf (% — mlmdzfmm Xi-1)-

The larger sum is greater than the mtegﬁaglf )dx and the smaller sum is lesser than
that number. This is because there is a ch0|ce of p@inhthat is exactly equal to the

integral,
/ X)dx = Zf (X —%i—1)

and here we havé(n;) < (&) < f(&). (See SectioR.5.2)

But if the region were to have an “area” we would expect thadas also between
these two sums. That is because the larger sum represerndgsethef a collection
of n rectangles that include our region and the smaller sum septs the area of a
collection ofnrectangles that are included inside our region. If we carsidl possible
subdivisions then the same situation holds: the area ottyiem (if it has one) must lie
between the upper sums and the lower sums. But accordingeordim3.19the only
number with this property is the mtegrﬁj) f(x) dxitself.

Certainly then, for continuous functlons anyway, this débin of the area of such
a region would be compatible with any other theory of area.

Exercise 425 (an accumulation argument)Here is another way to argue that inte-
gration theory and area theory must be closely related. limaghat area has some
(at the moment) vague meaning to you. Letid b] — R be a uniformly continuous,
nonnegative function. For anyes<t < b let A(f,s t) denote the area of the region
in the plane bounded on the left by the line-3s, on the right by the line % t, on the
bottom by the line y= 0 and on the top by the curve=y f(x). Argue for each of the
following statements:

1. Alf,as)+A(f,st) =A(f,at).
2. fm< f(x) <Mforalls<x<tthennit—s) <A(f,st) <M(t—5s).
3. Atany point a< X < b,

EXA(f,a,x): f(x).

4. Atany pointa< x < b,
X
Am@m:/fmm
a

Answer O
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Exercise 426 Show that the area of the triangle
{(x,y): a<x<b,0<y<m(x—a)}.
is exactly as you would normally have computed it precakulu O

Exercise 427 Show that the area of the trapezium
{(va) rasxs< b7 OS yS C—|—m(X— )}
is exactly as you would normally have computed it precakulu O

Exercise 428 Show that the area of the half-circle

{(xy): —1<x<1,0<y<V1-x).

is exactly as you would normally have computed it precakulu Answer O

Exercise 429 One usually takes this definition for the area between twaear

Definition 3.55 Let f, g: [a,b] — R be integrable functions and suppose that
f(x) > g(x) for all a <x<b. Let Rf,g,ab) denote the region in the plane
bounded on the left by the line=a, on the right by the line x b, on the bottom
by the curve y= g(x) and on the top by the curve by=y f(x). Then this region is
said to have an area and value of that area is assigned to be

[ 110~ goojax

Use this definition to find the area inside the circfetxy? = r2. Answer O

Exercise 430 Using Definition3.55compute the area between the graphs of the func-
tions gx) = 1+x2 and h(x) = 2x2 on [0, 1]. Explain why the Riemann sum
n

Zi[g(ﬁi) —h(&)](% —xi-1)

and the corresponding integrg(})l[g(x) —h(x)] dx cannot be interpreted using the method
of exhaustion to be computing both upper and lower boundthfsrarea. Discuss.
Answer O

Exercise 431 In Figure 3.4 we show graphically how to interpret the area that is rep-
resented by(;”x 2dx. Note that

2 4 8
/x*de:l/z,/ X 2dx=1/4, / x 2dx=1/8
1 2 4
and so we would expect
/x‘zdx:1/2+1/4+1/8+....
1

Check that this is true. Answer O
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1 2 4 8 b

Figure 3.4: Computation of an area;fy x~2dx
i

3.10.2 Volume

A full treatment of the problem of defining and calculatindurnes is outside the scope
of a calculus course that focuses only on integrals of thge:ty

/abf(x)dx

But if the problem addresses a very special type of volunuselvolumes obtained by
rotating a curve about some line, then often the formula

b
n/ [f(x)]?dx
a

can be interpreted as providing the correct volume intéaios and computation.

Once again the justification is the method of exhaustion. ¥8erme that volumes,
like areas, are additive. We assume that a correct computatithe volume of cylinder
that has radius and heighth is Tr2h. In particular the volume of a cylinder that has
radiusf(&;) and height(x — x_1) is

T (&)]2(% —%i—1).

The total volume for a collection of such cylinders would bim¢e we assume volume
is additive)

n
Ty [f(&)]%(% —Xi—1).
2,
We then have a connection with the formula

n/b[f(x)]zdx

One example with suitable pictures illustrates the methtake the graph of the
function f(x) = sinx on the intervalO, 1] and rotate it (into three dimensional space)
around thec-axis. Figure3.5shows the football (i.e., American football) shaped object

Subdivide the interva, 11,
O=X <X <X <+ < Xp1 < Xpn =TI

Then there must exist poingg, n; € [xi_1,%] fori =1,2,....n so that siit;) is the
maximum value of sir in the interval[x_1,X] and sir{n;) is the minimum value of
sinx in that interval. We consider the two partitions

{([%,%-1],&) 11 =1,2,...n} and {([x,%-1],ni):1=21,2,...n}
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Figure 3.5: six rotated around the-axis.

and the two corresponding Riemann sums
n n
S sir?(&)(x —x_1) and Ty sin?(n;) (% —Xi—1)-
e 2

The “football” is entirely contained inside the cylindeepresenting the first sum and
the cylinders representing the second sum are entirelgiartbie football.

There is only one value that lies between these sums for abiple choice of
partition, namely the number

Tt
T[/ [sinX]? dx.
0
We know this because this integral can be uniformly apprexéu by Riemann sums.
The method of exhaustion then claims that the volume of tiogb&dl must be this
number.

In general this argument justifies the following working défon. This is the ana-
logue for volumes of revolution of DefinitioB.55.

Definition 3.56 Let f and g be continuous, nonnegative functions on an iaterv
[a,b] and suppose that(g) < f(x) for all a < x < b. Then the volume of the solid
obtained by rotating the region between the two curvesfyx) and y= g(x) about
the x-axis is given by

b

(10012~ [909]?) i
Exercise 432 (shell method)There is a similar formula for a volume of revolution
when the curve y= f(x) on [a,b] (with a < 0) is rotated about the y-axis. One can

either readjust by interchanging x and y to get a formula (ﬂ:ftttrrmnféj [g(y)]2dy or
use the so-called shell method that has a formula

b
21'[/ X x hdx
a

where his a height measurement in the shell method. Inet¢stig 0

Exercise 433 (surface area)f a nonnegative function ¥ f(x) is continuously dif-
ferentiable throughout the intervaa, b, then the formula for the area of the surface
generated by revolving the curve about the x-axis is gelyecddimed to be

T[/be(X) 1+ [f/(x)]2dx
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Using the same football studied in this section how couldjystify this formula. O

3.10.3 Length of a curve

In mathematics aurve [sometimes called parametric curvgis a pair of uniformly
continuous function§, G defined on an intervdh, b]. The points(F(t),G(t)) in the
plane are considered to trace out the curve m®ves from the endpoird to the end-
point b. The curve is thought of as a mapping taking points in theniatga, b| to
corresponding points in the plane.  Elementary courses @ftpress the curve this
way,
x=F(), y=G(t)ast<hb,
referring to the two equations @arametric equationfor the curve and to the variable
t as aparameter
The set of points
{(Xay) CX= F(t)a y= G(t)7a§t < b}
is called thegraph of the curve It is not the curve itself but, for novices, it may be
difficult to make this distinction. The curve is thought todréentedin the sense that
ast moves in its positive direction [i.e., fromto b] the curve is traced out in that order.
Any point on the curve may be covered many times by the cusedfjtthe curve can
cross itself or be very complicated indeed, even though thptgmight be simple.

For example, take any continuous functiron [0, 1] with F(0) =0 andF (1) =1
and O< F(x) <1for 0<x< 1. Then the curvéF(t),F (t)) traces out the points on the
line connecting(0,0) to (1,1). But the points can be traced and retraced many times
and the “trip” itself may have infinite length. All this evehaugh the line segment
itself is simple and short (it has lengtf2).

The length of a curve is defined by estimating the length ofrtlute taken by the
curve by approximating its length by a polygonal path. Suldeithe interval

a=to<thi<tr<---<ti1<th=b

and then just compute the length of a trip to visit each of thits (F(a),G(a)),
(F(t1),G(t1)), (F(t2),G(t2)), ..., (F(b),G(a)) in that order. The definition should
resemble our definition of a function of bounded variation,andeed, the two ideas
are very closely related.

Definition 3.57 (rectifiable curve) A curve give by a pair of functions F, G
[a,b] — R is said to berectifiableif there is a number M so that

EM F6) —F6_0l2+[G) — Gl <M

for all choices of points

a=f<thi<bh<---<th1<thy=h
The least such number M is called tleagth of the curve

Exercise 434 Show that a curve given by a pair of uniformly continuous fions F,
G:[a,b] — Ris rectifiable if and only if both functions F and G have bouhdariation
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on [a,b]. Obtain, moreover, that the length L of the curve must satisf
max{V (F,[a,b]),V (G, [a,b])} <L <V(F[ab]) +V(G,[ab]).
Answer O

Exercise 435 Prove the following theorem which supplies the familiaegral formula
for the length of a curve.

Theorem 3.58Suppose that a curve is given by a pair of uniformly contirsuou
functions F, G [a,b] — R and suppose that both F and G have bounded, continu-
ous derivatives at every point (d, b) with possibly finitely many exceptions. Then
the curve is rectifiable and, moreover, the length L of theveunust satisfy

L= /ab\/[F/(t)]2+[G/(t)]2dt.

Answer O

Exercise 436 Take any continuous function F d@,1] with F(0) =0 and F(1) =1
and0 < F(x)1 < for 0 < x < 1. Then the curvéF(t),F(t)) traces out the points on
the line segment connectiri@, 0) to (1,1). Why does the graph of the curve contalh
points on the line segment? Answer O

Exercise 437 Find an example of a continuous function F [@n1] with F(0) = 0 and
F(1) =1and0 < F(x)1 < for 0 < x < 1 such that the curvéF(t),F(t)) has infinite
length. Can you find an example where the lengtB?sCan you find one where the
length is1?. Which choices will have length equal#® which is, after all, the actual
length of the graph of the curve? O

Exercise 438 A curve in three dimensional space is a triple of uniformiytamuous
functions(F (t),G(t),H(t)) defined on an intervala,b]. Generalize to the theory of
such curves the notions presented in this section for curnviée plane. O

Exercise 439 The graph of a uniformly continuous function [&,b] — R may be con-
sidered a curve in this sense using the pair of functiorfs) & t, G(t) = f(t) for
a<t <b. This curve has for its graph precisely the graph of the fion¢ i.e., the
set

{(x,y) :y=f(x) a<x<b}.
Under this interpretation the graph of the function has ag#mif this curve has a
length. Discuss. Answer O

Exercise 440 Find the length of the graph of the function
f(x) = %(e“re’x), 0<x<2

[The answer i%(e2 —e7?). This is a typical question in a calculus course, chosen not
because the curve is of great interest, but because it is bile wery few examples that
can be computed by hand.] Answer O
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3.11 Numerical methods

This is a big subject with many ideas and many pitfalls. As lawas student you
are mainly [but check with your instructor] responsible fearning a few standard
methods, eg., the trapezoidal rule and Simpson’s rule.

In any practical situation where numbers are needed howtmigltompute

/abf(x)dx.?

The computation of any integral would seem (judging by thfenden) to require first
obtaining an indefinite integrd [checking to see it is continuous, of course, and that
F/(x) = f(x) at all but finitely many points iia,b)]. Then the formula

/bf(x)dx:F(b)—F(a)

would give the precise value.

But finding an indefinite integral may be impractical. Thenasibe an indefinite
integral if the integral exists, but that does not mean thatust be given by an ac-
cessible formula or that we would have the skills to find iteTistory of our subject
is very long so many problems have already been solved bubh§jrahtiderivatives is
most often not the best method even when it is possible ty daout.

Finding a close enough value f(ff f(x)dx may be considerably easier and less
time consuming than finding an indefinite integral. The farfisgust a number, the
latter is a function, possibly mysterious.

Just use Riemann sums? If we have no knowledge whatever about the function
beyond the fact that it is bounded and continuous mostlyyevsgre then to estimate
fef’ f(x) dxwe could simply use Riemann sums. Divide the intefaah] into pieces of
equal lengthh

a<a+h<a+2h<a+3h<a+(n-1)h<h

Here there ara— 1 pieces of equal length and the last piece nthepiece, has (perhaps)
smaller length
b—(a+(n—1)h<h.
Then

[ 100 [180) + 182) . (& 2]+ TEn)D— (@t (- D1,

We do know that, for small enoudh the approximation is as close as we please to the
actual value. And we can estimate the error if we know thellatioin of the function
in each of these intervals.

If we were to use this in practice then the computation is m we choose
always¢; as an endpoint of the corresponding interval and we choadedoly lengths
(b—a)/n so thatall the pieces have equal length. The methods that follow aterbet
for functions that arise in real applications, but if we wannhethod that works for all
continuous functions, there is no guarantee that any otlethed would surpass this
very naive method.
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Trapezoidal rule Here is the (current) Wikipedia statement of the rule:

In mathematics, the trapezoidal rule (also known as theea@id rule, or
the trapezium rule in British English) is a way to approxiatatcalculate

the definite integral
b
/ f(x)dx
a

The trapezoidal rule works by approximating the region uride graph of
the function f(x) by a trapezoid and calculating its aredollbws that
/b F(x)dx~ (b—a) L @B
a 2
To calculate this integral more accurately, one first sfiigsinterval of in-
tegration [a,b] intan smaller subintervals, and then applies the trapezoidal
rule on each of them. One obtains the composite trapezaitial r

/f b af( Zf(+k—>].
This can alternatively be written as:

/abf(x)dm %‘(f(xo)wf(xl)+2f(x2)+~.+2f(xn_1)+ (%))

xk:a+kb;na, fork=0,1,...,n

The error of the composite trapezoidal rule is the diffeechetween the
value of the integral and the numerical result:

error= /abf(x)dx— b f@) Z f < +k—>] :

This error can be written as

b—a "
error:—(12n2) (&),

where is some number betweenandb.

It follows that if the integrand is concave up (and thus hassitjpve sec-
ond derivative), then the error is negative and the trajgetoule overesti-
mates the true value. This can also been seen from the geomieture:
the trapezoids include all of the area under the curve arehdxbver it.
Similarly, a concave-down function yields an underestartzcause area
is unaccounted for under the curve, but none is counted aldbttee in-
terval of the integral being approximated includes an ititecpoint, then
the error is harder to identify.

Simpson’s rule Simpson’s rule is another method for numerical approxiomatf
definite integrals. The approximation on a single intensgauthe endpoints and the
midpoint. In place of a trapezoidal approximation, an agpnation using quadratics
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produces:
/abf(x)dxz b—ga {f(a)+4f (a—;b> + f(b)} .

It is named after the English mathematician Thomas Simp$@h0-~1761). An ex-
tended version of the rule foir(x) tabulated at 2 evenly spaced points a distanie
apart,
a=X <X < -<Xnpn=Dh

is

X2n h

/ F(Qdx= alfo+4(f1+ fat o+ fon 1) +2(fa+ fa oo+ Fon2) + far] — R

%o

wheref; = f(x) and where the remainder term is

B nhS f////(E)
Rn= 90

for someg € [xo, Xon).

Exercise 441 Show that the trapezoidal rule can be interpreted as assgrthat a
reasonable computation of the mean value of a function omizmval,

1 ’ f(x)d
b /a (x) dx,
is simply to average the values of the function at the two eintf Answer O

Exercise 442 Establish the identity

/abf(x)dx: w(b—a) _ %/ab(x—a)(b—x)f”(x)dx

under suitable hypotheses on f. Answer O

Exercise 443 Establish the identity

b f(a)+ f(b) (b—a)%f"()
/a fogdx—-————(b-a) = ———7—
for some point a< & < b, under suitable hypotheses on f. Answer O

Exercise 444 Establish the inequality

/bf(X)dX_ w(b_a)‘ < @/b’f”(X)’dX

under suitable hypotheses on f. Answer O

Exercise 445 Prove the following theorem and use it to provide the estniat the
error given in the text for an application of the trapezoidale.
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Theorem 3.59Suppose that f is twice continuously differentiable at alhgs of

the interval[a, b]. Let
f(a b—a
@ + z f < +k—>]

denote the usual trapezoidal sum for f. Then

b
[ 1wat—- 3 &)

for appropriately chosen pointg in each interval

X_1,%] = [a+ ( _1)r§b_a),a+ i(b;a)} (i=123,....n)

Answer O

b—a
n

Tn =

Exercise 446 Prove the following theorem which elaborates on the errothia trape-
zoidal rule.

Theorem 3.60Suppose that f is twice continuously differentiable at alhgs of

the interval[a,b]. Let
f(a)+ f(b) "t b—a
@+ f( )+Zf< +k—>
2 k=1

denote the usual trapezoidal sum for f. Show that the ernon tiler using T, to
estimatef;’ f(x)dx is approximately

N2
) 1)

b—a
n

Tn =

Answer O

Exercise 447 The integral

1
/ & dx— 1.462651746
0

is correct to nine decimal places. The trapezoidal rule,rfet 1,2 would give

1 0
/ e dx~ €
0

1 0 +2et/2 1 et

erel _ 1.850140914

and
=1.753931093
At what stage in the trapezoidal rule would the approximati@ correct to nine deci-

mal places?
Answer O

3.11.1 Maple methods

With the advent of computer algebra packages like Maple aath&matica one does
not need to gain any expertise in computation to perform lefamd indefinite integra-
tion. The reason, then, why we still drill our students orsthenethods is to produce
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an intelligent and informed user of mathematics. To illatgrhere is a short Maple
session on a unix computer named dogwood. After giving theleneommand we are
in Maple and have asked it to do some calculus questions foSpscifically we are

seeking

2
/X2d><, /xz/dx, /sin(4x)dx, and /x[3x2+2]5/3dx
0

All of these can be determined by hand using the standardaudgttaught for gen-
erations in calculus courses. Note that Maple is indiffetenour requirement that
constants of integration should always be specified or Hairtterval of indefinite in-
tegration should be acknowledged.

[ 31] dogwood% napl e
[\A Mapl e 12 (SUN SPARC SOLARI S)
AN | /| _. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008
\ MAPLE / Al rights reserved. Maple is a tradenark of
< > \terloo Maple Inc.
| Type ? for help.
> int(x"2,x);

> int(x"2,x=0..2);
8/3

> int(sin(4*x),x);
-1/4 cos(4 x)

> int(x*(3*x"2+2)"(5/3),x);

If we go on to ask problems that would not normally be asked caleulus exam-
ination then the answer may be more surprising. There ismplsiexpression of the

indefinite integral/ cosx®dx and consequently Maple will not find a method. The first
try to obtain a precise value fg"@L cosx®dx produces
> int(cos(x”"3),x=0..1);

menory used=3.8MB, alloc=3.0MB, tine=0.36
menory used=7.6MB, alloc=5.4MB, tine=0.77

/ 213 2/3
12 (1/3) | 2 sin(l) 22 (-3/2 cos(1) + 3/2 sin(1))
1/6 Pi 2 [ B0/ 7 - mmmmmm e
| 12 1/2
\ Pi Pi
2/ 3 2/3

\

2 sin(1) Lommel S1(11/6, 3/2, 1) 32 (cos(1) - sin(1l)) Lommel S1(5/6, 1/2, 1)]
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1/2 1/2
Pi Pi

The second try asks Maple to give a numerical approximatitaple uses a numer-
ical integration routine with automatic error control taakyate definite integrals that it
cannot do analytically.

> eval f (int(cos(x"3),x=0..1));
0.9317044407

Thus we can be assured thgtcos@ dx = 0.9317044407 correct to 10 decimal places.

In short, with access to such computer methods, we can belsatreur time in
studying integration theory is best spent on learning tleem so that we will under-
stand what we are doing when we ask a computer to make cabngdor us.

3.11.2 Maple and infinite integrals

For numerical computations of infinite integrals one cariraian to computer algebra
packages. Here is a short Maple session that computes thigdifitegrals

/ e‘xdx/ xe‘xdx/ x2e*dx, and / x%e™Xdx
0 0 0 0
We have all the tools to do these by hand, but computer metiedsither faster.

[ 32] dogwood% mapl e

[\~ Mapl e 12 (SUN SPARC SCLARI S)
AN |/]_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008
\ MAPLE / Al rights reserved. Maple is a trademark of
< > \terloo Maple Inc.

| Type ? for help.
>int( exp(-x), x=0..infinity );

1
> int(x* exp(-x), x=0..infinity );

1
> int(x"3* exp(-x), x=0..infinity );

6
> int(x"10* exp(-x), x=0..infinity );

3628800
Exercise 448 Show that/ x'e *dx=nl. Answer O
0

3.12 More Exercises
Exercise 449If f is continuous on an intervdh, b|] and

/b f(x)g(x)dx=0

for every continuous function g da,b] show that f is identically equal to zero there.
0
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Exercise 450 ((Cauchy-Schwarz inequality))Iif f and g are continuous on an inter-
val [a,b] show that

</: f(X)g(X)dX> 2 < (/ab[f(x)]zdx> </ab[g(x)]2dx> :

Exercise 4511In elementary calculus classes it is sometimes convervetéfine the
natural logarithm by using the integration theory,

Answer O

X
logx = / dx
1
Taking this as a definition, not a computation, use the prisgeof integrals to develop
the properties of the logarithm function. Answer O

Exercise 452Let f be a continuous function o, ) such thatlimy .. f(x) = a.
Show that if the integra;” f (x) dx converges, them must beD. O

Exercise 453 Let f be a continuous function gh, ) such that the integraf;” f (x) dx
converges. Can you conclude thiaty_,., f(x) = 0? O



Chapter 4

Beyond the calculus integral

Our goal in this final chapter is to develop the modern integyaallowing more func-
tions to be integrated. We still insist on the viewpoint that

/bF’(x)dx:F(b)—F(a),

but we wish to relax our assumptions to allow this formuladtdreven when there are
infinitely many points of nondifferentiability df.

There may, at first sight, seem not to be much point in allowirgge functions to
be integrated, except perhaps when one encounters a fumdgtlmout an integral where
one seems to be needed. But the theory itself demands it. placgsses of analysis
lead from integrable functions [in the calculus sense] tefions for which a broader
theory of integration is required. The modern theory is aisipensable tool of analysis
and the theory is elegant and complete.

Remember that, for the (naive) calculus integral, an irtielgrfunctionf must have
an indefinite integraF for whichF’(x) = f(x) at every point of an intervatith finitely
many exceptions The path to generalization is to allow infinitely many exoamal
points where the derivatieé’(x) may not exist or may not agree wift{x).

Although we will allow an infinite set, we cannot allow toodara set of exceptions.
In addition, as we will find, we must impose some restrictionghe functionF if we
do allow an infinite set of exceptions. Those two ideas willelthe theory.

4.1 Countable sets

The first notion, historically, of a concept that captures smallness of an infinite set
is due to Cantor. If all of the elements of a set can be writtemlist, then the set is said
to be countable. This idea only becomes startling and istieige when one discovers
that there are sets whose elements cannot be written in a list

Definition 4.1 A set of real numbers is countable if there is a sequence of rea
numbers g, r, rs, ...that contains every element of the set.

Exercise 454 Prove that the empty set is countable. Answer O

Exercise 455 Prove that every finite set is countable. Answer O

121
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Exercise 456 Prove that every subset of a countable set is countable. Answer O

Exercise 457 Prove that the set of all integers (positive, negative ooy éer countable.
Answer O

Exercise 458 Prove that the set of all rational numbers is countable. Answer O
Exercise 459 Prove that the union of two countable sets is countable. Answer O

Exercise 460 Prove that the union of a sequence of countable sets is colgnta
Answer O

Exercise 461 Suppose that F (a,b) — R is a monotonic, nondecreasing function.
Show that such a function may have many points of discottibut that the collection
of all points where F is not continuous is countable. Answer O

Exercise 462 If a function F: (a,b) — R has a right-hand derivative and a left-hand
derivative at a point g and the derivatives on the two sides are different, then that
point is said to be a&orner Show that a function may have many corners but that the
collection of all corners is countable. Answer O

4.1.1 Cantor's theorem

Your firstimpression might be that few sets would be able tthbeange of a sequence.
But having seen in Exercigib8that even the set of rational numbers that is seemingly
so large can be listed, it might then appear that all sets easolbiisted. After all, can
you conceive of a set that is “larger” than the rationals imeavay that would stop it
being listed? The remarkable fact that there are sets thabt&e arranged to form the
elements of some sequence was proved by Georg Cantor (184%5-1

Theorem 4.2 (Cantor) No interval of real numbers is countable.
The proof is given in the next few exercises.

Exercise 463 Prove that there would exist a countable interval if and dhiye open
interval (0, 1) is itself countable. Answer O

Exercise 464 Prove that the open intervdl0,1) is not countable, using (as Cantor
himself did) properties of infinite decimal expansions tostouct a proof. Answer O

Exercise 465 Some novices, on reading the proof of Cantor’s theorem, ey’ can't
you just put the number ¢ that you found at the front of thé N&hat is your rejoinder?
Answer O

Exercise 466 Give a proof that the intervala,b) is not countable using the nested
sequence of intervals argument. Answer O
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Exercise 467 We define a real number to ladgebraicif it is a solution of some poly-
nomial equation

anx"+an X" fagxt+ag =0,
where all the coefficients are integers. Thyg is algebraic because it is a solution of
x?> —2 = 0. The numbertis not algebraic because no such polynomial equation can
ever be found (although this is hard to prove). Show that gtetalgebraic numbers
is countable. Answer O

Exercise 468 A real number that is not algebraic is said to bmnscendental For
example, it is known that e arm are transcendental. What can you say about the
existence of other transcendental numbers? Answer O

4.2 Derivatives which vanish outside of countable sets

Our first attempt to extend the indefinite and definite integréandle a broader class
of functions is to introduce a countable exceptional set the definitions. We have
used finite exceptional sets up to this point. Using couetabts will produce a much,
more general integral.

The principle is the following: i is a continuous function on an interdahnd if
F’(x) = 0 for all but countably many points inthenF must be constant. We repeat the
statement of the theorem here; the proof has already agpiaB®ctionl.9.5

Theorem 4.3 Let F: (a,b) — R be a function that is continuous at every point in
an open intervala,b) and suppose that’Fx) = 0 for all x € (a,b) with possibly
countably many exceptions. Then F is a constant function.

Exercise 469 Suppose that F-[a,b] — R and G: [a,b] — R are uniformly continuous
and that f is a function for which each of the statemeri{x)= f (x) and G(x) = f(x)
holds for all xe (a,b) with possibly countably many exceptions. Show that F and G
differ by a constant. Answer O

4.2.1 Calculus integral [countable set version]

Our original calculus integral was defined in way that wasrelyt dependent on the
simple fact that continuous functions that have a zero dgviv at all but a finite number
of points must be constant. We now know that that continuonstfons that have a zero
derivative at all but a countable number of points must atsadnstant. Thus there is
no reason not to extend the calculus integral to allow a @n@texceptional set.
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Definition 4.4 The following describes an extension of our integratiorotiie

e f is a function defined at each point of a bounded open intefadd) with
possibly countably many exceptions.

e f is the derivative of some function in this sense: theret®xdsuniformly
continuous function F (a,b) — R with the property that Kx) = f(x) for
all a < x < b with at most a countable number of exceptions.

e Then the function f is said to be integrable [in the new seasel the value
of the integral is determined by

/bf(x)dx:F(b—)—F(a+).

Zakon's Analysis text. There is currently at least one analysis textbook avaitaitie
follows exactly this program, replacing the Riemann in&kdpy the Newton integral
(with countably many exceptions):

Mathematical Analysis I, by Elias Zakon, ISBN 1-931705-02-X, pub-
lished by The Trillia Group, 2004. 355+xii pages, 554 exags| 26 fig-
ures, hypertextual cross-references, hyperlinked infleerims. Download
size: 2088 to 2298 KB, depending on format.

This can be downloaded freely from the web site
www.trillia.com/zakon-analysisl.html

Inexpensive site licenses are available for instructoshing to adopt the text.

Zakon's text offers a serious analysis course at the presuneaheory level, and
commits itself to the Newton integral. There are rigorousofs and the presentation is
carried far enough to establish that all reguldtiohctions are integrable in this sense.

Exercise 470 Show that the countable set version of the calculus intedggtrmines
a unique value for the integral, i.e., does not depend on #réqular antiderivative F
chosen. Answer O

Exercise 471In Exercise258we asked the following:

Define a function F. [0,1] — R in such a way that FO) = 0, and for
each odd integer &= 1,3,5..., F(1/n) = 1/n and each even integer-a
2,4,6...,F(1/n) =0. On the interval§1/(n+1),1/n| forn=1,2,3, the
function is linear. Show thaﬁab F’(x) dx exists as a calculus integral for all
0 < a< b <bbut thatf; F'(x) dx does not.

1) am indebted to Bradley Lucier, the founder of the Trilliao8p, for this reference. The text has been
used by him successfully for beginning graduate studerRsiaiue.

2Regulated functions are uniform limits of step functionsonequently regulated functions are
bounded and have only a countable set of points of discdttinGo our methods would establish in-
tegrability in this sense. One could easily rewrite thig texuse the Zakon integral instead of the calculus
integral. We won't.
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Show that the new version of the calculus integral would keatids easily. Answer O

Exercise 472 Show that all bounded functions with a countable numbersafatitinu-
ities must be integrable in this new sense.
Answer O

Exercise 473 Show that the new version of the integral has a property thatfinite
set version of the integral did not have: if i a sequence of functions converging
uniformly to a function f orja, b] and if each £ is integrable ora, b] then the function

f must be integrable there too. O

Exercise 474 Rewrite the text to use the countable set version of theraitegther
than the more restrictive finite set version. Answer O

Exercise 475 (limitations of the calculus integrals)Find an example of a sequence
of nonnegative, integrable functiong(g) on the intervall0, 1] such that such that

(o]

5 (/ a00ax)

is convergent, and yet= S’ ; gx is not integrable in the calculus sense for either the
finite set or countable set version.

[Note: this functionshouldbe integrable and the value of this integshlouldbe the

sum of the series. The only difficulty is that we cannot inéégrenough functions. The

Riemann integral has the same defect; the integral intexdileter on does not.
Answer O

4.3 Sets of measure zero

We shall go beyond countable sets in our search for a suitédse of small sets. A set
is countable if it is small in the sense of counting. This isdaese we have defined a set
to be countable if we can list off the elements of the set instinme way we list off all
thecountingnumbers (i.e., 1, 2, 3, 4, ...).

We introduce a larger class of sets that is small in the selnseasuring here we
mean measuring the same way that we measure the length ofeavalria, b| by the
numberb — a.

Our sets of measure zero are defined using subpartitionseagicsimple Riemann
sums. Later on in our more advanced course we will find seeghal characterizations
of this important class of sets.
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Definition 4.5 A set of real numbers N is said to haweasure zeri for everye >
0 and every poinE € N there is a(&) > 0 with the following property: whenever
a subpartition

{([ci,di],&):1=1,2,...,n}
is given with eacl§j € N and so that
O0<d—c<d&) (i=1,2,...,n)

then
n

_;(di —c)<Ee.

Recall that in order for the subset
{([ahbl]»EI) = 1727"' 7n}
to be a subpartition, we require merely that the inter{és, b;|} do not overlap and
we always require that the associated pgjritelong to the intervak;_1, %] with which
it is paired. The collection here is not necessarily a parntitOur choice of language,

calling it a subpatrtition indicates that it could be (but won't be) expanded to be a
partition.

Exercise 476 Show that every finite set has measure zero. Answer O
Exercise 477 Show that every countable set has measure zero. Answer O
Exercise 478 Show that no interval has measure zero. Answer O

Exercise 479 Show that every subset of a set of measure zero must havereeasu
Answer O

Exercise 480 Show that the union of two sets of measure zero must have reeaso.
Answer O

Exercise 481 Show that the union of a sequence of sets of measure zero augst h
measure zero. Answer O

Exercise 482 Suppose thaf(ax,bx)} is a sequence of open intervals and that

Z (bk— ak) < 0,
k=1

If E is a set and every point in E belongs to infinitely many efittiervals{(ax, bx)},
show that E must have measure zero. Answer O
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Figure 4.1: The third stage in the construction of the Catgorary set.

4.3.1 The Cantor dust

In order to appreciate exactly what we intend by a set of nteasro we shall introduce
a classically important example of such a set: the Cantoatgrset. Mathematicians
who are fond of the fractal language call this set@aator dust This suggestive phrase
captures the fact that the Cantor set is indeed truly smah ¢vough it is large in the
sense of counting; it is measure zero but uncountable.

We begin with the closed intervéd, 1]. From this interval we shall remove a dense
open se. It is easiest to understand the &etf we construct it in stages. L& =
(.2), and letk; = [0,1]\ Gy. Thus

o[

is what remains when the middle third of the interval [0,li@moved. This is the first
stage of our construction.

We repeat this construction on each of the two componentvalte of K;. Let
G, = (%, %) U (%, g) and letK, = [0, l] \ (G]_U Gg). Thus

o 80

This completes the second stage.

We continue inductively, obtaining two sequences of sgtg} and{G,}. The set
K obtained by removing fronf0,1] all of the open set&, is called theCantor set
Because of its construction, it is often called the Cantatdia third set. In an exercise
we shall present a purely arithmetic description of the Gas¢t that suggests another
common name foK, theCantor ternary setFigure 6.1 show&1, Ky, andKs.

We might mention here that variations in the constructiohk @an lead to inter-
esting situations. For example, by changing the constmdlightly, we can remove
intervals in such a way that

[ee]

k=1
with
S (b, —a) = 1/2
K=1
(instead of 1), while still keepingl’ = [0,1] \ G’ nowhere dense and perfect. The re-
sulting seK’ created problems for late nineteenth-century mathemaatdiying to de-
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velop a theory of measure. The “measure’@fshould be 1/2; the “measure” of [0,1]
should be 1. Intuition requires that the measure of the nosvtiense set’ should be
1

1-— % =3. How can this be wheK' is so “small?”

Exercise 483 We have given explicit statements fqrdhd K2,
1 2
Ki=10,= =1

-0l

What is K? Answer O

and

Exercise 484 Show that if this process is continued inductively, we obtaio se-
quences of set$K, } and{G,} with the following properties: For each natural number
n

1. G, is a union of2"1 pairwise disjoint open intervals.

2. Ky is a union of2" pairwise disjoint closed intervals.

3. Kh=1[0,1]\ (G1UGLU---UGp).

4. Each component of (a1 is the “middle third” of some component of,K

5. The length of each component fiK1/3".

Exercise 485 Establish the following observations:
1. Gis an open dense set[h1].
2. Describe the intervals complementary to the Cantor set.
3. Describe the endpoints of the complementary intervals.
4. Show that the remaining setX[0,1] \ G is closed and nowhere dense in [0,1].
5. Show that K has no isolated points and is nonempty.
6. Show that K is a nonempty, nowhere dense perfect subgefpf

Answer O

Exercise 486 Show that each component interval of the sgh@s lengthl/3". Using
this, determine that the sum of the lengths of all componaetvals of G, the set
removed from0, 1], is 1. Thus it appears that all of the length inside the interjall]
has been removed leaving “nothing” remaining. Answer O

Exercise 487 Show that the Cantor set is a set of measure zero. Answer O

Exercise 488 Let E be the set of endpoints of intervals complementaryadéntor
set K. Prove that the closure of the set E is the set K. O
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Exercise 489 Let G be a dense open subset of real numbers andédgtby)} be its set
of component intervals. Prove thatHR \ G is perfect if and only if no two of these
intervals have common endpoints. O

Exercise 490Let K be the Cantor set and I€tax, by)} be the sequence of intervals
complementary to K if0,1]. For each integer k letic= (ax + bx)/2 (the midpoint of
the interval(ax, by)) and let N be the set of pointg for integers k. Prove each of the
following:

1. Every point of N is isolated.

2. If ¢ # cj, there exists an integer k such thatis betweenjcand g (i.e., no point
in N has an immediate “neighbor” in N).
0

Exercise 491 Show that the Cantor dust K can be described arithmeticallthe set
{X=.ayy@az... (base three). & =0or 2foreachi=1,2,3,...}.

Answer O
Exercise 492 Show that the Cantor dust is an uncountable set. Answer O

Exercise 493 Find a specific irrational number in the Cantor ternary setAnswer O

Exercise 494 Show that the Cantor ternary set can be defined as

K= {xe 0,1] : 23—”forin:Oor2}.

0
Exercise 495 Let
n
D= 0,1]: f =0orl
{xe[,] X= n;g or jn=0o0r }
Show that D+ D = {x+y:x,y € D} = [0,1]. From this deduce, for the Cantor ternary
set K, that K+ K = [0, 2]. O

Exercise 496 A careless student makes the following argument. Expla&rttor.

“If G = (a,b), thenG = [a,b]. Similarly, if G=J;*,(a;,b;) is an open set,
thenG = (J;” ,[a, bi]. It follows that an open set G and its closugediffer
by at most a countable set. The closure just adds in all thp@ints”

Answer O
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4.4 The Devil's staircase

The Cantor set allows the construction of a rather bizarnetfan that is continuous
and nondecreasing on the interf@l1]. It has the property that it is constant on every
interval complementary to the Cantor set and yet managestedse fronf (0) =0 to
f(1) = 1 by doing all of its increasing on the Cantor set itself. I sametimes been
called “the devil's staircase” or simply the Cantor funatio

Thus this is an example of a continuous function on the ilalef¥ 1] which has
a zero derivative everywhere outside of the Cantor set. Ifweee to try to develop a
theory of indefinite integration that allows exceptionaissaf measure zero we would
have to impose some condition that excludes such functideswill see that condition
in Section4.5.5

4.4.1 Construction of Cantor’s function

Define the functionf in the following way. On the open intervék, %), let f = 3; on
the interval(3,3), let f = 3; on (&, 8), let f = 2. Proceed inductively. On the"2!
open intervals appearing at thih stage of our construction of the Cantor set, define
to satisfy the following conditions:

1. f is constant on each of these intervals.

2. f takes the values

on these intervals.

3. If x andy are members of differenith-stage intervals witkx <y, then f(x) <
fy).

This description definesonG = [0, 1]\ K. Extendf to all of [0, 1] by definingf (0) =0
and, for O< x < 1,
f(x) =sup{f(t):t G, t <x}.

Figure4.2illustrates the initial stages of the construction. Thection f is called
the Cantor function Observe that “does all its rising” on the sef.

The Cantor function allows a negative answer to many questioat might be asked
about functions and derivatives and, hence, has becomeutap@ounterexample. For
example, let us follow this kind of reasoning. flfis a continuous function oj®, 1] and
f/(x) = 0 for everyx € (0,1) thenf is constant. (This is proved in most calculus courses
by using the mean value theorem.) Now suppose that we knaythest f'(x) = O for
everyx € (0,1) excepting a “small” seE of points at which we know nothing. E is
finite it is still easy to show that must be constant. E is countable it is possible, but
a bit more difficult, to show that it is still true thdt must be constant. The question
then arises, just how small a $etan appear here; that is, what would we have to know
about a seE so that we could say’(x) = 0 for everyx € (0,1) \ E implies thatf is
constant?
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Figure 4.2: The third stage in the construction of the Cafutoction.

The Cantor function is an example of a function constant @myewterval comple-
mentary to the Cantor sé&t (and so with a zero derivative at those points) and yet is
not constant. The Cantor set, since it is both measure zerm@amnhere dense, might
be viewed as extremely small, but even so it is not insigmfidar this problem.

Exercise 497 In the construction of the Cantor function complete the fieaiion of
details.

1. Show that (G) is dense iff0, 1].
2. Show that f is nondecreasing {h1].
3. Infer from (a) and (b) that f is continuous @ 1.

4. Show that (K) = [0,1] and thus (again) conclude that K is uncountable.
O

Exercise 498 Show that the Cantor function has a zero derivative everysvba the
open set complementary to the Cantor set in the intei@dl. [In more colorful lan-
guage, we say that this function has a zero derivative aleastywhere.] O

Exercise 499 Each number x in the Cantor set can be written in the form

X = lesfni
i=

for some increasing sequence of integers<nn, < n3 < .... Show that the Cantor
function assumes the valueXf = 5>, 2~" at each such point. O

Exercise 500 Show that the Cantor function is a monotone, nondecreasinctibn on
[0,1] that has these properties:

1. F(0) =0,
2. F(x/3) =F(x)/2,
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3. F(1—x)=1-F(x).

[In fact the Cantor function is the only monotone, nondesiieg function orf0, 1] that
has these three properties.] Answer O

4.5 Functions with zero variation

Sets of measure zero were defined by requiring certain sonal s
n

_;(bi —a)

{([&,bi],&):i=1,2,...,n}
is controlled by a functio®(x). We are interested in other variants on this same theme,
involving sums of the form

5 () ~F(a)lor 3 F&)](b~a) or even 3 [F(n) ~F(a) ~ (6] (0 —a)]
A measurement of the sums
3 Fb)-Fla)

taken over nonoverlapping subintervals is considered topcte thevariation of the
function F. This notion appears in the early literature and was forradliby Camile
Jordan (1838-1922) in the late 19th century under the terdoty “variation of a func-
tion.”

We have already studied this concept in Sec8dhl Here we focus on a narrower
notion, that of zero variation on specified subsets.

whenever a subpartition

Zero variation We do not need the actual measurement of variation. What we do
need is the notion that a function haaro variation This is a function that has only a
small change on a set, or whose growth on the set is insuladtant

Definition 4.6 A function F: (a,b) — R is said to havezero variationon a set
E C (a,b) if for everye > 0 and every x E there is a(x) > 0

5 (o) —F(a)] <

whenever a subpartitior{ ([, bi],&i) : i =1,2,...,n} is chosen for which
S cEna,b]and h—a < d(&).

We saw a definition very similar to this when we defined a set @isuare zero. In
fact the formal nature of the definition is exactly the samthagequirement that a set
E should have measure zero. Exerdi®d makes this explicit.

As we shall discover, all of the familiar functions of the @als turn out to have
zero variation on sets of measure zero. Only rather patliabgxamples (notably the
Cantor function) do not have this property.
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Exercise 501 Show that a set E has measure zero if and only if the function £ x
has zero variation on E. Answer O

Exercise 502 Suppose that FR — R has zero variation on a set;fand that & C Ej.
Show that then F has zero variation on.E Answer O

Exercise 503 Suppose that FR — R has zero variation on the setg Bnd E. Show
that then F has zero variation on the union EE,. Answer O

Exercise 504 Suppose that FR — R has zero variation on each member of a se-
quence of setsiEE;, Es, . ... Show that then F has zero variation on the unigh ; E,.
Answer O

Exercise 505 Prove the following theorem that shows another importamsioa of
zero variation. We could also describe this as showing atfandas small Riemann
sums over sets of measure zero.

Theorem 4.7Let f be defined at every point of a measure zero set N ared-ldL
Then for every x N there is a(x) > 0 so that

3 I1(@)Ib—a) <

whenever a subpartitior{ ([a;,b;],&i) : i =1,2,...,n} is chosen for which
& eNNfa,bijand b —a < 3(&)).
Answer O

Exercise 506 Let F be defined on an open interv@, b) and let f be defined at every
point of a measure zero setd (a,b). Suppose that F has zero variation on N. Let
€ > 0. Show for every x N there is a(x) > 0 such that

n
Z!F(bi) —F(a) — f(&)(bi —a) <e
i=
whenever a subpartitior ([a;, bi],&i) :1=1,2,...,n} is chosen for which Answer O

Exercise 507 Let F be defined on an open interv@, b) and let f be defined at every
point of a set E. Suppose that(k) = f(x) for every xc E. Lete > 0. Show for every
x € E there is @(x) > 0 such that

3 ) ~F(a) — &b —a)] <&

whenever a subpartitior{ ([a,b;],&i) : i =1,2,...,n} is chosen for which
& €Enla,b]and h—a < 8()).
Answer O
Exercise 508 Show that the Cantor function has zero variation on the omrcem-

plementary to the Cantor set in the intenjal 1].
Answer O
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45.1 Zero variation lemma

The fundamental growth theorem that we need shows that onistant functions have
zero variation on an interval.

Theorem 4.8 Suppose that a function F(a,b) — R has zero variation on the
entire interval(a,b). Then F is constant on that interval.

Exercise 509 Use a Cousin covering argument to prove the theorem. Answer O

Exercise 510 Show that the Cantor function does not have zero variatiotheiCantor
set. Answer O

4.5.2 Zero derivatives imply zero variation

There is an immediate connection between the derivativeitaneariation in a set.
In the simplest case we see that a function has zero variatiamset on which it has
everywhere a zero derivative. There is a partial converentbuld be studied in a more
advanced course: if a functidh: (a,b) — R has zero variation o& thenF’(x) =0 at
almost every poink of E. For this chapter we need only the one direction.

Theorem 4.9 Suppose that a function Ha,b) — R has a zero derivative Fx)
at every point x of a set E (a,b). Then F has zero variation on E.

Exercise 511 Prove Theorerd.9 by applying Exercis&07. 0
Exercise 512 Give a direct proof of Theoresh.9. Answer O

Exercise 513 (comparison test for variations)Suppose that F, GR — R.

1. If [F'(x)| <|G'(x)| for every point x in a compact intervéd, b| except for x in a
set on which F has variation zero, show that

2. If F'(x) < |G'(x)| for every point x in a compact intervg, b] except for x in a
set on which F has variation zero, show that

F(b)—F(a) <V(G,[a,Db]).
Answer O

4.5.3 Continuity and zero variation

There is an intimate and immediate relation between coityimmnd zero variation.

Theorem 4.10 Suppose F (a,b) — R. Then F is continuous at a poing x (a,b)
if and only if F has zero variation on the singleton setHxp}.
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Corollary 4.11 Suppose E (a,b) — R. Then F is continuous at each point
€1, C, C3, ...G € (ab) if and only if F has zero variation on the finite set

E ={c1,C2,C3,... Ck}-

Corollary 4.12 Suppose F (a,b) — R. Then F is continuous at each point ¢,
cs,... from a sequence of points {a,b) if and only if F has zero variation on the
countable set E= {c3,C,C3,... }.

Exercise 514 Suppose FE (a,b) — R. Show that F is continuous at every point in a
set E if and only F has zero variation in every countable subsg . O

4.5.4 Lipschitz functions and zero variation

For us, one of the key properties of Lipschitz functions &t tiney must always have
zero variation on sets of measure zero. In the next sectioshaé describe such
functions as beingbsolutely continuous

Theorem 4.13 Suppose that F[a,b] — R is a Lipschitz function. Then F has zero
variation on every subset ¢&,b) that has measure zero.

As a consequence of this theorem we can show that Lipschitzituns behave in
a way that is useful for integration theory. We took much adizge of the fact that two
continuous functions whose derivatives agree mostly evieeye or nearly everywhere
differ by a constant. For Lipschitz functions we can use ‘@beverywhere” and have
the same conclusion.

Theorem 4.14 Suppose that F[a,b] — R is a Lipschitz function and that F has
a zero derivative at almost every point of the interfalb). Then F is a constant.

Corollary 4.15 Suppose that F, G[a,b] — R are Lipschitz functions and that
F’(x) = G/(x) at almost every point x of the interved, b). Then F and G differ by
a constant.

Exercise 515 Prove Theorem.13 |

Exercise 516 Prove Theorerd.14and its corollary. O

4.5.5 Absolute continuity [variational sense]

We have seen that the functiéi(x) = x has zero variation on a skt precisely when
that setN is a set of measure zero. We see, then, gl = x has zero variation
on all sets of measure zero. Most functions that we have enerd in the calculus
also have this property. All Lipschitz functions have thisgerty (as we have seen in
Theoren4.13).

We shall see, too, that all differentiable functions have finoperty. It plays a vital
role in the theory; such functions are said to be absolut@hgicuous in the variational
sensé.

3The idea is due essentially to Arnaud Denjoy (1884—1974) gesneralized version of the absolute
continuity as defined by Vitali. In the treati$@eory of the Integraby Stanislaw Saks this concept appears
under the terminology ACG The definition here is easier and much more accessible.
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Definition 4.16 A uniformly continuous function F[a,b[— R is said to beabso-
lutely continuousn the variational sense ofa, b] if F has zero variation on every
subset N of the intervdl, b) that has measure zero.

The exercises show that most continuous functions we emeoimthe calculus
will be absolutely continuous. In fact the only continuousidtion we have seen so
far that is not absolutely continuous is the Cantor functidve would likely drop the
phrase “in the variational sense” when it is clear that thishat we intenti

Exercise 517 Show that the function () = x is absolutely continuous on every open
interval. O

Exercise 518 Show that a linear combination of absolutely continuouscfioms is
absolutely continuous. O

Exercise 519 Show that a Lipschitz function is absolutely continuous. 0

Exercise 520 Give an example of an absolutely continuous function thabisLips-
chitz. 0

Exercise 521 Show that the Cantor function is not absolutely continuauflpl]. O

Exercise 522 Suppose that a uniformly continuous function [B,b] — R is differen-
tiable at each point of the open interv@, b). Show that F is absolutely continuous on
[a,b]. O

Exercise 523 Suppose that that a uniformly continuous function|[& b] — R is dif-
ferentiable at each point of the open interyal b) with finitely many exceptions. Show
that F is absolutely continuous da, b]. O

Exercise 524 Suppose that that a uniformly continuous function|[& b] — R is dif-
ferentiable at each point of the open internval b) with countably many exceptions.
Show that F is absolutely continuous [@nb]. O

Exercise 525 Suppose that that a uniformly continuous function& b] — R is differ-
entiable at each point of the open internal b) with the exception of a set N (a,b).
Suppose further that F has zero variation on N. Show that Fogohitely continuous
on|[a,bl. O

Exercise 526 Suppose that F[a,b] — R is absolutely continuous on the interJalb).
Then by definition F has zero variation on every subset of orea=ero. Is it possible
that F has zero variation on subsets that are not measure?zero 0

4This is, however, a bit dangerous. The concept of absolutéragty is used in the literature in two
different ways. The first, in classical real analysis, uses\itali sense of the next section. The second
uses a measure-theoretic version which is closer to thetinteant in the variational senses.
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Exercise 527 A function F: [a,b] — R is said to havdinite derived numberen a set
E C (a,b) if, for each xe E, there is a number Mand one can choos®> 0 so that
F(x+h)—F(x)
h
whenever %-h € | and |h| < 8. Suppose that that a uniformly continuous function F
[a,b] — R has finite derived numbers at every pointaf). Show that F is absolutely
continuous orja, b). [cf. Exercisel71] 0

< My

4.5.6 Absolute continuity [Vitali’'s sense]

There is a type of absolute continuity, due to Vitali, thatvesy similar to thee—0
definition of uniform continuity. This the first version of sdiute continuity in the
literature. The concept is due to Giuseppe Vitali (18752)98ho introduced it is as
the correct characterization of the property of indefinitegrals in the Lebesgue theory
of integration.

Definition 4.17 A function F: [a,b] — R is absolutely continuous in Vitali's sense
on [a,b] provided that for everg > 0 there is ad > 0 so that

_i‘F(Xi)_F(Yi)‘ <€

whenevex [x;,yi]} are nonoverlapping subintervals (&, b] for which
n

Zl()’i —X) <d.

This condition is strictly stronger than absolute contiyum the variational sense:
there are absolutely continuous functions that are notlatep continuous in Vitali’s
sense. In fact we should remember these implications:

Lipschitz = AC [Vitali sense]— AC |[variational sense].

The arrows cannot be reversed.

The full story of the connection between the two conceptsptaened by the notion
of bounded variation: a function is absolutely continucu¥itali's sense if and only
if it is absolutely continuous in the variational sense dralso has bounded variation.
This is left for a more advanced course as it is not neededuioexposition.

Exercise 528 Prove that if F is absolutely continuous in Vitali's sense[ab] then F
is uniformly continuous there. O

Exercise 529 Prove that if F is absolutely continuous in Vitali's sense[ayb] then F
is absolutely continuous in the variational senseaib. O

Exercise 530 Prove that ifF is absolutely continuous in Vitali's senselarb| then F
has bounded variation ofa, bJ. O

Exercise 531 Prove that if F is Lipschitz then F is absolutely continuonsvitali's
sense. 0
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Exercise 532 Show that an everywhere differentiable function must belately con-
tinuous in the variational sense on any interfalb] but need not be absolutely contin-
uous in Vitali's sense ofa,b. O

4.6 The integral

Our theory so far in Chapters 2 and 3 has introduced and sttigéecalculus integral,
both as an indefinite and a definite integral. The key poinhat theory was simply
this observation:

* Continuous functions whose derivatives are determined bugfinitely
many points are unique up to an additive constant.

The whole theory of the calculus integral was based on thiplsi concept. We can
consider that this simple phrase is enough to explain theextary theory of integra-
tion.

The exceptional set that we allowed was always finite. To gmie that and
provide a more comprehensive integration theory we musivalfinite sets. We have
seen that sets of measure zero offer a useful class of eanapsets. But we also saw
the Cantor function whose derivative is zero everywherespixon the measure zero
Cantor set, and yet the Cantor function is not constant. Bbuase further restriction
must be made on the functions that are allowed as our indefimiégral; continuity is
not enough.

The modern theory is essentially the same as the calculegrailf except that the
observationk above is replaced by this one:

* = Absolutely continuous functions whose derivatives arerdghed at
all but a set of measure zero are unique up to an additive emnst

Here we can use either version of absolute continuity, ettiee variational version or
the Vitali version. Moreover, since Lipschitz functioneabsolutely continuous, we
could use those.

4.6.1 The Lebesgue integral of bounded functions

Lebesgue gave a number of definitions for his integral; thstif@amnous is the construc-
tive definition using his measure theory. He also gave a iiser definition similar
to the calculus definitions that we are using in this text. Bounded functions his
definitior? is exactly as given below.

SHere is a remark on this fact frofunctional Analysisby Frigyes Riesz, Bela Szokefalvi-Nagy, and
Leo F. Boron: “Finally, we discuss a definition of the Lebesgutegral based on differentiation, just as
the classical integral was formerly defined in many textlsookanalysis. A similar definition, if only for
bounded functions, was already formulated in the first editif Lebesgue’séecons sur I'intégrationbut
without being followed up: ‘A bounded functiofi(x) is said to be summable if there exists a function
F (x) with bounded derived numbers [i.e., Lipschitz] such th&t) hasf(x) for derivative, except for a
set of values ok of measure zero. The integral (g, b) is then, by definitionF (b) — F(a).
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Definition 4.18 (Lebesgue integral of bounded functions) et f be a bounded
function that is defined at almost every point|afb]. Then, f is said to be
Lebesgue integrablen [a, b if there is a Lipschitz function F[a,b] — R such
that F/(x) = f(x) at every point of(a,b) with the exception of points in a set of
measure zero. In that case we define

b
/ f(x)dx= F (b) —F(a)
a
and this number is called thategralof f on[a,b].

This integral (the Lebesgue integral) applied to boundetttions does go quite
a bit “beyond the calculus integral.” For bounded functiotie Lebesgue integral
includes the calculus integral and integrates many impoitkasses of functions that
the calculus integral cannot manage.

Further study of the Lebesgue integral requires learniegntieasure theory. The
traditional approach is to start with the measure theoryarnde at these descriptive
descriptions of his integral only after many weeks. Theaniabundance of good texts
for this. Try to remember when you are going through such dysthat eventually,
after much detail, you will indeed arrive back at this poifiseeing the integral as an
antiderivative.

4.6.2 The Lebesgue integral in general

The use of Lipschitz functions in our definition of the defnittegral was motivated by
the fact that two Lipschitz functions whose derivativeseggalmost everywhere must
differ by a constant. This allows us to define an integralrelytisimilar to the calculus
integral of Chapter 3. This definition however can apply dolypounded functions.

For unbounded functions we need a more general definitidngthess beyond the
scope of Lipschitz functions. For this the concept of absotontinuity in the Vitali
sense will replace the requirement that we have a Lipschitetion.

The Lebesgue integral We choose now to define our integral based on the notion
of absolute continuity in the Vitali sense. A more generaldkof integral is obtained

in Section4.6.3below when we choose to use absolute continuity in the brozae
ational sense. For both historical and technical reasoissimportant to distinguish
between the two theories.

Definition 4.19 (Definite Lebesgue integral)Let f: (a,b) — R be a function de-
fined at all points of the open intervéh, b) with the possible exception of a set
of measure zero. Then f is said to be Lebesgue integrableeocidked, bounded
interval [a, b] provided there is a function F(a,b) — R so that

1. F is absolutely continuous in the Vitali sense[ayb.

2. F/(x) = f(x) at all points x of(a,b) with the possible exception of a set of
measure zero.
b
In that case we definj[ f(x)dx=F(b)—F(a).

a
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For bounded functions, the requirement that the indefinikegralF is Lipschitz is
equivalent to the requirement that it be absolutely cowtirsuin the Vitali sense. Thus
either of the two definitions may be used.

4.6.3 The integral in general

Finally we choose now to define an integral based on the nofi@bsolute continuity
in the variational sense. This offers the most general @ersf integration theory, one
that includes the two definitions for the Lebesgue integramabove.

Definition 4.20 (Definite integral) Let f: (a,b) — R be a function defined at all
points of the open intervdla, b) with the possible exception of a set of measure
zero. Then f is said to be integrable on the closed, boundedvai [a, b] provided
there is a function E (a,b) — R so that

1. F is absolutely continuous in the variational sensda).

2. F/(x) = f(x) at all points x of(a,b) with the possible exception of a set of
measure zero.

b
In that case we definf f(x)dx=F(b)—F(a).

a
Recall that we have the following relation:
Lipschitz = AC (Vitali sense)=— AC (variational sense).
From this we deduce these two facts:
For unbounded functions: Lebesgue integrabies> integrable.
and
For bounded functions: Lebesgue integrabte=- integrable.

If a function is integrable in the sense of this definition{ bat integrable in the
sense of the two previous definitions (i.e., is not Lebesgtegrable) then we would
need some appropriate terminology. The simplest for thpqaas of our limited Chap-
ter 4 would be to use

integrable, but not Lebesgue integrable
or
nonabsolutely integrable.
This can occur if and only if is unbounded and the function
F(x) = /axf(u)du (@a<x<b)

is absolutely continuous in the variational sense, but isafisolutely continuous in
the Vitali sense. It can be shown that this would occur if anty @ F does not have
bounded variation offa,b]. Another equivalent condition would be that, whileis
integrable, the absolute vallig| is not integrable. All of these remarks would be part
of a more advanced course than this chapter allows.
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4.6.4 The integral in general (alternative definition)

Sometimes it is more convenient to state the conditions Herimtegral with direct
attention to the set of exceptional points where the deviedt’(x) = f(x) may fail.

Definition 4.21 (Definite integral) Let f: (a,b) — R be a function defined at all
points of the open intervdla, b) with the possible exception of a set of measure
zero. Then f is said to be integrable on the closed, boundedvai [a, b] provided
there is a function E (a,b) — R and there is a set N (a,b) so that

1. F is uniformly continuous ofa,b).
2. N has measure zero.

3. F/(x) = f(x) at all points x of(a, b) with the possible exception of points in
N.

4. F has zero variation on N.

b
In that case we definj[ f(x)dx=F(b—) —F(a+).

a

Exercise 533 Show that Definitiont.20and Definition4.21are equivalent. O

Exercise 534 Under what hypotheses is

/bF’(x)dx: F(b)—F(a)

a correct statement? Answer O

Exercise 535 Show that the new definition of definite integral (either Deéin 4.20
or Definition4.21) includes the notion of definite integral from Chapter 3. O

Exercise 536 Show that the new definition of definite integral (either Dgdin 4.20
or Definition4.21) includes, as integrable, functions that would not be cdesd inte-
grable in Chapter 3. O
4.6.5 Infinite integrals
Exactly the same definition for the infinite integrals

oo o b

/ f(x)dx / f(x)dx, and / f(x)dx
—o0 a —00

can be given as for the integral over a closed bounded interva
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Definition 4.22 Let f be a function defined at every point(ef,«) with the pos-
sible exception of a set of measure zero. Then f is said totegrable on(co, w)
provided there is a function F(—c, ) — R so that

1. F is absolutely continuous in the variational sense omee®sed bounded
interval.

2. F'(x) = f(x) at all points x with the possible exception of a set of measure
zero.

3. Both limits Hoo) = limy_ F(x) and F(—o) = limy_,_. F(X) exist.

00

In that case the numbt?[ f(x)dx=F () —F(—o), is called the definite integral

—00

of f on the intervalco, o) .

Here the statement thé&t is absolutely continuous in the variational sense on on
every closed bounded interval is equivalent to the simpgeréion that is continuous
and has zero variation on every set of measure zero.

Similar definitions are available for

/_b £(x)dx = F (b) — F (o)
and .
/ f(x)dx = F () — F(a).

In analogy with the terminology of an infinite serigg’_,ax we often say that the
integral ;" f (x) dx convergesvhen the integral exists. That suggests language asserting
that the integratonverges absolutelfboth integrals

/:f(x)dx and /:]f(x)\dx

exist.

4.7 Approximation by Riemann sums

We have seen that all calculus integrals can be approxiniatéRiemann sums. We
have two modes of approximation, a uniform approximatiod amointwise approxi-
mation. The same is true for the advanced integration thdoryheorend.23below
we see that the property of being an integral (which is a ptgpxpressed in the lan-
guage of derivatives, zero measure sets and zero variator)e completely described
by a property expressed by partitions and Riemann sums.

This theorem was first observed by the Irish mathematicidpHRdenstock. Since
then it has become the basis for a definition of the modermgliate The proof is ele-
mentary. Even so, it is remarkable and was not discoverdatithat1950s, in spite of
intense research into integration theory in the precedaiydentury.
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Theorem 4.23 (Henstock'’s criterion) Suppose that f is an integrable function
defined at every point of a closed, bounded intefeab|. Then for evere > 0
and every point x [a,b] there is ad(x) > 0 so that

i /: f(x) dx— f(&)(bi —aa)' <g

/abf(x)dx—_if(éi)(bi —a)

whenever a partition of the intervé, b]
{([&,bi],&) :1=1,2,...,n}

and

<€

is chosen for which
& < la,bjandh—a < ().

This theorem is stated in only one direction:fifs integrable then the integral has
a pointwise approximation using Riemann sums. The conwdirsetion is true too
and can be used to define the integral by means of Riemann €Dhtwourse, one is
then obliged to develop the full theory of zero measure zets variation and absolute
continuity in order to connect the two theories and showtihey are equivalent.

The theorem provides only for a pointwise approximation gnkann sums. It is
only under rather severe conditions that it is possible @ &iruniform approximation
by Riemann sums. ExercisS1, ??, and?? provide that information.

Exercise 537 Prove Theorem.23 Answer O

4.8 Properties of the integral

The basic properties of integrals are easily studied forntlwst part since they are
natural extensions of properties we have already investigir the calculus integral.
There are some surprises and some deep properties whicheitleee false for the
calculus integral or were hidden too deep for us to find withiba tools we have now
developed.

We know these formulas for the narrow calculus integral asdve interested now
in extending them to full generality.

4.8.1 Inequalities

Formula for inequalities:
b

/abf(x)dxg/ g(x)dx

a
if f(x) <g(x) for all pointsxin (a,b) except possibly points of a set of measure zero.
We have seen this statement before for the calculus int@giaéction?? where
we allowed only a finite number of exceptions for the inedualiHere is a precise
statement of what we intend here by this statement: If botictfans f (x) and g(x)
have an integral on the interv, b] and, if f (x) < g(x) for all pointsxin (a,b) except
possibly points of a set of measure zero. then the statedatiggmust hold.
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Exercise 538 Complete the details needed to prove the inequality formula
Answer O

4.8.2 Linear combinations

Formula for linear combinations:

/b[rf(x)+sg(x)]dx: r/b f(x)dx+s/bg(x)dx (r,seR).

We have seen this statement before for the calculus integ&sction3.3.4Here is
a precise statement of what we intend now by this formulaothiunctionsf (x) and
g(x) have an integral on the intervi, b] then any linear combinatiorf (x) + sg(x) (r,
se R) also has an integral on the intervalb] and, moreover, the identity must hold.
The proof is an exercise in derivatives, taking proper cdrth® exceptional sets of
measure zero. We know, as usual, that
% (rF (x) +sG(x)) = rF’(x) + sG(x)
at any pointx at which bothF andG are differentiable.

Exercise 539 Complete the details needed to prove the linear combindtionula.
Answer O

4.8.3 Subintervals
Formula for subintervals: & < ¢ < bthen
b c b
/ f(x)dx:/ f(x)dx+/ f(x)dx
a a C
The intention of the formula is contained in two statementdhis case:

If the function f(x) has an integral on the intervé, b] then f(x) must
also have an integral on any closed subinterval of the iatdayb] and,
moreover, the identity must hold.

and

If the function f(x) has an integral on the intervéd, c| and also on the
interval [c, b] then f (x) must also have an integral on the interfaab] and,
moreover, the identity must hold.

Exercise 540 Supply the details needed to prove the subinterval formukanswer O

4.8.4 Integration by parts

Integration by parts formula:

b b
/ F(x)G'(x) dx= F (b)G(b) — F (a)G(b) —/ F/(%)G(x) dx
a a
The intention of the formula is contained in the product folederivatives:

d

— (F(IG(¥) = F(G (¥ +F'()G(X)
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which holds at any point where both functions are differnig. One must then give
strong enough hypotheses that the functtix)G(x) is an indefinite integral for the
function

F(x)G'(x) +F'(x)G(x)
in the sense needed for our integral.

Exercise 541 Supply the details needed to state and prove an integratyguabts for-
mula for this integral.
Answer O

4.8.5 Change of variable

The change of variable formula (i.e., integration by subgtin) that we would expect
to find is this, under some hypotheses:
G(b)

b
/f(G(t))G’(t)dt:/ F(x)dx.

G(a)

The proof for the calculus integral was merely an applicatibthe chain rule for the
derivative of a composite function:
d
7 (6(X) =F'(G(x)G (x).
Since our extended integral includes the calculus integeastill have this formula for
all the old familiar cases.

It is possible to extend the formula to handle much more gersituations. As-
sume, as usual, thgtis integrable on an intervaa, b] with

G(x) = /:g(s)ds (a<x<b)

and thatf is integrable on an intervdt,d] that includes all the values @(x) for
x € [a,b]. Assume that

F(t):/at fudu (c<t<d)

Then we would like to be able to assert the change of variaitadla:

G(x) X
F(G(x))—F(G(a)):/G(a) f(u)olu:/a F(G(t)gt)dt. (a<x<b).

There is an obvious necessary condition, namely that thegosed functior o G must
be absolutely continuous in the variational sense. Moneaverder that the function
(foG)gbe not only integrable, but Lebesgue integrable, we woule hsstricter neces-
sary condition, namely that the composed funcianG must be absolutely continuous
in the Vitali sense.

Quite remarkably these necessary conditions are alsoisuffi®Ve must, however,
leave the proofs of these facts to our later, more advanceceo

Exercise 542 Supply the details needed to state and prove at least oneyehafrvari-
ables formula for this integral.
Answer O
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Exercise 543 (no longer failed change of variables)n Exercise245 we discovered
that the calculus integral did not permit the change of vakés, Hx) = |x| and Gx) =
x?sinx~1, G(0) = 0in the integral

/ F/( X)dx= F(G(1)) — F(G(0)) = |sin 1.

Is this valid now? Answer O

4.8.6 What is the derivative of the definite integral?

d X
_ ?
dx/a F(t)dts

We know that/; f(t)dt is an indefinite integral of and so, by definition,

—/ t)dt = f(x

at all points in the intervala, b) except possibly at the points of a set of measure zero.
We can still make the same observation that we did in Seé&tidrrfor the calculus

integral:
a / t)dt = f(x

at all pointsa < x < b at Whichf is continuous. But this is quite misleading here. The
function may be discontinuous everywhere, and yet therdiffigation formula always
holds for most points.

What is

4.8.7 Monotone convergence theorem
For this integral we can integrate a limit of a monotone saqady interchanging the
limit and the integral.

Theorem 4.24 (Monotone convergence theorem)et f, : [ab] - R (n =
1,2,3,...) be a nondecreasing sequence of functions, each integmbkbe in-
terval [a,b]. Suppose that, for all x ifia, b) except possibly a set of measure zero,

f(x) = rllm fa(x).

Then f is integrablen [a,b] and

b
/f 0 dx= lim [ 1) dx

n—oo

provided this limit exists.

The exciting part of this statement has been underlined.ottiriately it is more
convenient for us to leave the proof of this fact to a more aded course. Thus in the
exercise you are asked to prove only a weaker version in whielntegrability of the
function f is assumed (not proved).

Exercise 544 Prove the formula without the underlined statement, i.ssuae that f
is integrable and then prove the identity. Answer O
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Exercise 545 State and prove a version of the formula

/ (Ilm fa(x dx_ Ilm/ fn(x
n—o0

using uniform convergence as your main hypothesis. O

4.8.8 Summation of series theorem

For this integral we can sum series of honnegative termsraadrate term-by-term.

Theorem 4.25 (summation of series)Suppose thatg g, gs,. .. is a sequence of
nonnegative functions, each one integrable on a closed dexliinterval [a, b].
Suppose that, for all x i@, b) except possibly a set of measure zero,

~ 3 6
k=1

Then f is integrablen [a,b] and

/abf(x)dx: kil (/abgk(x)dx> (4.1)

provided the series converges.

The exciting part of this statement, again, has been umaekliUnfortunately it is
more convenient for us to leave the proof of this fact to a namheanced course. Thus
in the exercise you are asked to prove only a weaker version.

Exercise 546 Prove the formula without the underlined statement, i.ssuae that f
is integrable and then prove the identity. Answer O

4.8.9 Null functions

A function f : [a,b] — R is said to be a null function ofa, b] if it is defined at almost
every point offa, b|] and is zero at almost every point [af b]. Thus these functions are,
for all practical purposes, just the zero function. Theymasgicularly easy to handle in
this theory for that reason.

Exercise 547 Let f: [a,b] — R be a null function orfa,b]. Then f is integrable on

[a,b] and
/b f(x)dx=0.

Exercise 548 Suppose that f[a,b] — R is an integrable function ofa, b] and that

Answer O

d
/ f(x)dx=0 foralla<c<d<h.
Cc

Then f is a null function ofa, b. Answer O
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Exercise 549 Suppose that f[a,b] — R is a nonnegative, integrable function @b
and that

/abf(x)dx:o.

Then f is a null function ofa, b. Answer O

4.9 The Henstock-Kurweil integral

We leave our study of integration theory with two final secsiancluded for historical
perspective. The Riemann sums property expressed in Theb&3 for all integrable
functions can be turned into a definition. That definition wedi an integral. At first
sight it might appear to be yet more general than the intiegraheory that we have
already developed.

In fact this definition gives an equivalent theory. The adaga (which will require
further study) is that we have then two powerful methods &ialgishing the theory
of the integral, one as an antiderivative and another asitifgrproperty of Riemann
sums.

Definition 4.26 (Henstock-Kurzweil integral) Suppose that f is defined at every
point of a closed, bounded intervg, b]. Then f is said to be Henstock-Kurzweil
integrable on[a, b if there is a number | with the property that, for every 0 and
every point xc [a,b] there is ad(x) > 0 so that

EDROICED
whenever a partition ofa,b] {([ai,bi].&i):1=1,2,...,n} is chosen for which
& cla,b]and h —a < &(§)).

The number | is set equal tsﬁff(x)dx and the latter is called the Henstock-
Kurzweil integral of f ora, b).

L6

Defined everywhere? The definition of the Henstock-Kurzweil integral requirbatt
the function to be integrated must be defined at every poitihi@intervalla,b]. Our
descriptive definition of the equivalent integral requioay that the function is defined
at almost every point. In practice, users of the definitiost given usually agree to
replace a functiorf that is defined almost everywhere with an equivalent funcgjo
that is defined everywhere.

Perspectives Here are some remarks that you should be able to prove orcesea

1. The Henstock-Kurzweil integral not only includes, bueguivalent to the inte-
gral defined in this chapter.

2. There are bounded, Henstock-Kurzweil integrable fomstithat are not inte-
grable [naive calculus sense].

3. There are unbounded, Henstock-Kurzweil integrabletfans that are not inte-
grable [naive calculus sense].
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4. The Henstock-Kurzweil integral is a nonabsolute intggra., there are inte-
grable functionsf for which | f| is not integrable.

5. Afunction is Lebesgue integrable if and only both funetidé and| f| are Henstock-
Kurzweil integrable.

6. The Henstock-Kurzweil integral is often considered tdhmecorrect version of
integration theory on the line, but one that only specialgbuld care to learn.

There are now a number of texts that start with DefinitibA6 and develop the
theory of integration on the real line in a systematic wayo fiauch time, however,
working with the technical details of Riemann sums may notehgrely profitable
since most advanced textbooks will use measure theorysxely. Our text

[TBB] B. S. Thomson, J. B. Bruckner, A. M.Bruckn&lementary Real Analysis:
Dripped Version ClassicalRealAnalysis.com (2008).

available for free at our website contains a brief accourthefcalculus integral and
several chapters devoted to the Henstock-Kurweil intedsiér that integration theory

is developed we then can give a fairly rapid and intuitiveoaitdt of the measure theory
that most of us are expected to know by a graduate level.

4.10 The Riemann integral

The last word in our elementary text goes to the unfortunagmBnn integral, long

taught to freshman calculus students in spite of the clamainat it. We can, however,
define this integral in a natural way that fits closely into pleespective of our current
chapter. This is not the way that most students would firsbemer this integral. But,

having started our integration theory by the descriptivéhoe of antidifferentiation, it

is a natural development for us.

We ask, naively, what bounded functions are integrable bynoethods of this
chapter? This is naive because the correct answer to thatigueequires some so-
phisticated tools develop by Lebesgue in his 1901 thesienBw, we can find a limited
answer to this problem by using a tool which has helped usiderably in the earlier
chapters—continuity.

We recall that one of our fundamental tools was thisf: iffa, b] — R is a bounded
function then there is a Lipschitz functidh: [a,b] — R so thatF’(x) = f(x) at every
pointxin [a,b] at which f is continuous. Consequently we know immediately that
integrable if any one of the following is true:

1. fis uniformly continuous orfe, bJ.

2. f is bounded and is continuous mostly everywhergaib].
3. f is bounded and is continuous nearly everywhergih].
4. f is bounded and is continuous almost everywherfe,ib|.

We take the most general answer (the last one) as our ddfinfi@ Riemann
integrable function.
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Definition 4.27 (Descriptive definition) A function f: [a,b] — R is said to be
Riemann integrable if f is bounded and is continuous almestysvhere ina,b.

This definition would be used simply to specify an histoticahportant subclass of
the family of integrable functions. There is great intetestis in knowing if a function
is integrable. Occasionally we might also like to know ifttfiznction is, in addition,
also Riemann integrable.

Exercise 550 What properties can you determine are possessed by the aldRie-
mann integrable functions on an interal b]?
Answer O

4.10.1 Constructive definition

The formal constructive definition is due to Riemann sometimthe middle of the
nineteenth century. The definition just given for Riemanegnable functions dates
to Lebesgue in the early years of the twentieth century. Bintathe latter as our
definition we are reversing the history. This is a naturaleatatical technique, taking
a later characterization as a starting point for a theory.

The earlier characterization is constructive and is faanibf course, since we have
already studied the notion of uniform approximation by Raemsums in SectioB.5.3

Definition 4.28 (Constructive definition) Let f be a bounded function that is de-
fined at every point dfa,b]. Then, f is said to b&iemann integrablen [a,b] if
there is a number | so that for evegy> 0 there is ad > 0 so that

I—Zf (% —%-1)

whenever{([x,%-1],&) :1=1,2,...n} is a partition of[a, b] with each
X —%-1<d and & € [x_1,X].

The number | is set equal (&) — f;’ f(x)dx and the latter is called the Riemann
integral of f on[a,b.

The equivalence of Definitiod.27 and Definition4.28 can be established by the
reader as a research project. The identity

(R)—/abf(x)dx:/abf(x)dx

also follows. This means that one can develop the theoryeRiemann integral in
two equivalent ways:

e Start with the constructive definition of the Riemann intggand develop the
properties of such an “integral.” Relate those properiethé calculus integral
of this text. [Not recommended, but commonly done this way.]

e Start with the calculus integrala and use the descriptifnitien of Riemann
integrable function. This immediately places the Riemamegral in the correct
theoretical framework for understanding elementary irgggn theory. [Recom-
mended, but hardly ever done this way.]
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Defined everywhere? In our integration theory of this chapter we have required of
the function being integrated that it be defined at almostygweint of the intervala.b].

For the Riemann integral the function is very much requicedd defined everywhere.
This is an unfortunate feature of the theory and must be kemiimd by the user.

Perspectives The Riemann integral does not go “beyond the calculus iatégfrhe
Riemann integral will handle no unbounded functions and awetbeen successful with
the calculus integral in handling many such functions. Eeerbounded functions the
relation between the calculus integral and the Riemanwiiatés confused: there are
functions integrable in either of these senses, but notarother.

Here are some remarks that you should be able to prove orcbesea

1. There are Riemann integrable functions that are not rialég [naive calculus
sensel].

2. There are bounded, integrable functions [naive calcsdunse] that are not Rie-
mann integrable.

3. All Riemann integrable functions are integrable in thesgeof Lebesgue.

4. A bounded function is Riemann integrable if and only iitontinuous at every
point, excepting possibly at points in a set of measure zero.

5. The Riemann integral is considered to be a completelyeiqaalte theory of in-
tegration and yet is the theory that is taught to most undergate mathematics
students.

We do not believe that you need to know more about the Rienmdiegral than these
bare facts. Certainly any study that starts with Definitiad8and attempts to build and
prove a theory of integration is a waste of time; few of thehtéques generalize to
other settings.

Exercise 551 (Riemann criterion) Show that a function f would be Riemann inte-
grable if and only if, for any > 0, there is a partition of the intervgk, b]

{([&,b],&) :1=1,2,...,n}
for which
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Chapter 5

ANSWERS

5.1 Answers to problems

Exercisel, page 3

The symbols-o andeo do not stand for real numbers; they are used in various ctantex
to describe aituation For example lim e % =1 and lim_e % = o0 have mean-
ings that do not depend on there being a real number calléthus statinga < X < oo
simply means thax is a real number larger tham [It does not mean thatis a real
number smaller thaw, because there is no such number .]

Exercise2, page 4

Well, we have labeled some intervals as “bounded” and sommlasunded. But the
definition of a bounded sé& requires that we produce a real numbeso thatjx| <M
for all x € E or, equivalently that-M < x < M for all x € E Show that the labels are
correct in terms of this definition of what bounded means.

Exercise3, page 4

Well, we have labeled some intervals as “open” and some aBubtthe definition of
an open seG requires that we produce, for eaxl G at least one intervalc,d) that
containsx and is contained inside the s&t Show that the labels are correct in terms of
the definition of what open means here. (It is almost immedram the definition but
make sure that you understand the logic and can write it down.

Exercise4, page 4

Again, we have labeled some intervals as “closed” and sont@fasShow that the
labels are correct in terms of the definition of what closecdmsehere. Remember that
the definition of closed is given in terms of the complementet. A setE is closed

if the setR \ E is an open set. So, for these intervals, write down explieithat that
complementary set is.

153



154 CHAPTER 5. ANSWERS

Exerciseb, page 4

For examplela, b) is not open because the pomis in the set but we cannot find an
open interval that contairs and is also a subset ¢, b). Thus the definition fails at
one point of the set. For not closed, work with the complentéria, b), i.e., the set
(—o0,a) U [b,e) and find a point that illustrates that this set cannot be open.

A glib (and incorrect) answer would be to say tii@tb) is not open because we
have defined “open interval” to mean something differente Pbint here is that the
interval [a, b) would include only points betweemnandb as well as the poira itself. Is
that set open? No, because of the argument just given.

Exercise6, page 4

Yes, if the two open intervals have a point in common [i.ee,raot disjoint]. Otherwise
the intersection would be the empty @efor this reason some authors [not us] call the
empty set a degenerate open interval.

Exercise7, page 4

Not in general. If the two intervals have only one point in ¢oom or no points in
common the intersection is not an interval. Yes, if the twaset intervals have at least
two points in common.

If we have agreed (as in the discussion to the preceding isg¢tto call the empty
set a degenerate open interval we would be obliged also kit eatlegenerate closed
interval.

Exercise8, page 4

Not necessarily. The intersection could, of course, be thpte set which we do not
interpret as an interval, and we must consider the emptyssbbanded. Even if it is
not empty it need not be unbounded. Consigerl) N (0,0) = (0,1).

Exercise9, page 4

The only possibility would be

(ab)ju(c.d) = (st)
where the two interval$a,b) and (c,d) have a point in common. In that case-=
min{a,c} andt = max{b,d}. If (a,b) and(c,d) are disjoint ther(a,b) U (c,d) is not
an interval, but a disjoint union of two open intervals.

Exercisel0, page 4

The only possibility would bé—co, c] U [c,0) = (—00, , ).

Exercisell, page 4

Yes. Prove, in fact, that the union of a finite number of bouhskts is a bounded set.
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Exercisel2, page 4

Remember thad \ B is the set of all points that are in the gebut are not in the sd.

If 1 is open you should discover thiat C is a union of a finite number of disjoint open
intervals, and is an open set itself. For examplesf (a,b) andC = {c;,¢,...,Cn}
where these are points insi¢e b) then

(a, b) \C = (a, Cl) U (Cl,Cz) U (C2,C3) U---u (Cm, b)

Exercisel3, page 4

Remember thad \ B is the set of all points that are in the gebut are not in the sa.

The setl \ C must be a union of intervals. There are a number of pos#ésiland
so, to answer the exercise, it is best to just catalog themexample ifl = [a,b] and
C = {a,b} then[a,b] \ C is the open intervala,b). If C = {c1,Cy,...,Cn} where these
are points insidéa, b) then

[a,b]\C = [a,c1)U(C1,C2) U(C2,C3) U+ U (Cm, D).

After handling all the possibilities it should be clear thatC is a union of a finite
number of disjoint intervals. The intervals need not all peroor closed.

Exercisel4, page 6

If a sequence of real numbefs,} converges to a real numbketthen, for any choice of
€0 > 0 there is an integaX so that
L-g<si<L+¢g

for all integersn=N,N+1 N+2 N+3,....
Thus to find a numbev! larger than all the values ¢&,| we can select the maximum
of these numbers:

s1],|s2], s3], - - -5 |Sn—2], [Sn—1], |L| + €o.

Exercisel5, page 6

The simplest bounded sequence that is not convergent weslg=b(—1)". Itis clearly
bounded and obviously violates the definition of convergent

Exercisel6, page 6

If a sequence of real numbefs,} is Cauchy then, for any choice ef > 0 there is an
integerN so that
sh—sn| <€
for allintegersn=N,N+1,N+2,N+3,....
Thus to find a numbev! larger than all the values ¢&,| we can select the maximum
of these numbers:

|Sl|>|82|7|S3|7-'->|S|\|*2|7|S|\|*1|7|S'\|| + €o.
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The simplest bounded sequence that is not Cauchy wouls) be(—1)". It is
clearly bounded and obviously violates the definition of a&g sequence.

Exercisel7, page 6

The easiest of these is the formula

nm(a%+bmy:anw%)+b<nth.

n—-o00 n—oo n—oo
You should certainly review your studies of sequence lifiisdoes not immediately
occur to you how to prove this using the definition of limit.

The productsqt, and quotlenlf1 formulas are a little harder to prove and require a
bit of thinking about the mequalltles Make that when yoatetand try to prove the
quotient formula

jim 3 — 1Mo
n—oty,  liMp_etn
you include an hypothesis to exclude division by zero oregiffide of the identity.

Exercisel8, page 6

We already know by an earlier exercise that a convergenteseguwould have to be
bounded, so it is enough for us to prove that on the assumgtetrthis sequence is
bounded it must converge.

Since the sequence is bounded

L=sup{s,:n=1,2,3,...}

is a real number. It has the property (as do all suprema)sthatL for all n and, if
€ > 0, thens, > L — € for somen.
Choose any integeX such thasy > L — €. Then for all integers > N,

L-e<sy<s,<L<L+cse

By definition, then,
lims,=L.

n—00

Notice that if the sequence is unbounded then
sup{sh,:n=123...} =
and the sequence divergesip

lim s, = o.
n—o0

You should be able to give a precise proof of this that refei3dfinition1.4.

Exercisel9, page 6

We construct first a nonincreasing subsequence if posdiecall themth elements,

of the sequencés, } a turn-back point if all later elements are less than or etjuialin
symbols ifsy, > s, for all n > m. If there is an infinite subsequence of turn-back points
Smy» Smy» Sme» Smy, - - - then we have found our nonincreasing subsequence since

Smy > Smp > Smg = Sy > -
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This would not be possible if there are only finitely many tback points. Let us
suppose thasy is the last turn-back point so that any elemspfor n > M is not a
turn-back point. Since it is not there must be an elemenhéuron in the sequence
greater than it, in symbolsy, > s, for somem > n. Thus we can choosg, > Sui1
with my > M + 1, thensy, > sy, with mp > my, and thersy, > sy, with mg > mp, and
S0 on to obtain an increasing subsequence

SM+1 <Sm <Smp < Sy <Smy < -
as required.

Exercise20, page 7

The condition on the intervals immediately shows that the sequencega,} and
{bn} are bounded and monotone. The seque@e is monotone nondecreasing and
bounded above blg;; the sequencéb,} is monotone nonincreasing and bounded be-
low by a;.

By Exercisel8these sequences converge. Take eithelim, . a, orz=Ilimp_.. bp.
This point is in all of the intervals. The assumption that

r!mo(bn —an)=0

makes it clear that only one point can be in all of the integval

Exercise21, page 7

This follows immediately from Exercisels8 and19. Take any monotone subsequence.
Any one of them converges by Exerci$8 since the sequence and the subsequence
must be bounded.

Exercise22, page 7
If a sequence of real numbefs,} converges to a real numbkrthen, for everye > 0
there is an integeX so that
L-g/2<s,<L+¢g/2
for all integersn > N.
Now consider pairs of integers m > N. We compute that
Isv—Sm|=Ish—L+L—sn <[si—L[+|L—su[ <&
By definition then{s,} is a Cauchy sequence.

Exercise23, page 7

By the way, before seeing a hint you might want to ask for ame#sr the terminology.

If every Cauchy sequence is convergent and every convesgeuaence is Cauchy why
bother with two words for the same idea. The answer is thatsdane language is used
in other parts of mathematics where every convergent segusiCauchy, but not every
Cauchy sequence is convergent. Since we are on the reahlihésicourse we don't
have to worry about such unhappy possibilities. But we nettae language anyway.
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What is most important for you to remember is the logic of #isrcise so we will
sketch that and leave the details for you to write out:

1. Every Cauchy sequence is bounded.
. Every sequence has a monotone subsequence.

2

3. Every bounded, monotone sequence converges.

4. Therefore every Cauchy sequence has a convergent sebsequ
5

. When a Cauchy sequence has a subsequence converging nariuthe se-
quence itself must converge to the numbefUsing ang, N argument.]

Exercise24, page 7

If x does not belong t& then it belongs to a component inten(@alb) of R\ E that
contains no points dE. Thus there is & > 0 so thatx— d,x+ ) does not contain any
points ofE. Since all points in the sequen¢r, } belong toE this would contradict the
statement that = limp_.e Xn.

Exercise25, page 8

Just notice that
S—S= ) &

k=m-1
provided thain > m.

Exercise26, page 8

First observe, by the triangle inequality that

n

> &
k=m
Then if we can choose an integdrso that

n
> lad<e
k=m

for alln> m> N, we can deduce immediately that

n
ak
kzm

n

< ) lad-

k=m

<€

foralln>m> N.
What can we conclude? If the series of absolute values

n
> la] = laa| +[a2] + [ag| + [aa| + . ..
K=1
converges then it must follow, without further checkingattthe original series

n
Ya=atatagtat...
k=1
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is also convergent. Thus to determine whether a sgijesay is absolutely convergent
we need only check the corresponding series of absolutesalu

Exercise27, page 9

Just choose any finite number of points
a=Xp <X <X < <X_1<X =D

so that the points are closer together taiThen no matter what poin€s in [x_1, ]
we choose the partition

{([Xiflyxi]vzi) = 172737" . 7n}
of the interval[a, b| has the property that each interjgl 1, x| has length smaller than
0(&i) = 0.
Note that this construction reveals just how hard it miglgnseéo arrange for a
partition if the values 0(x) are allowed to vary.

Exercise28, page 9

For every poinkin a closed, bounded intervi, b let there be given a positive number
O(x). Let us call an intervalc,d] C [a,b] a black intervalif there exists at least one
partition
{([Xi—17xi]aai) = 172737" . ’n}
of the interval[c, d] with the property that each intervid_1,%] has length smaller than
0(&j). If an interval is not black let us say it ighite
Observe these facts about black intervals.

1. If [c,d] and[d, €] are black theric, €] is black.
2. If [c,d] contains a point for whichd — ¢ < &(2) then|c,d] is black.

The first statement follows from the fact that any partitiéms|c,d] and[d, €] can be
joined together to form a partition dt,e]. The second statement follows from the
fact that{[c,d],z)} alone makes up a partition satisfying the required contlitiothe
Cousin lemma.

Now here is the nested interval argument. We wish to provie[ahl| is black. If it
is not black then one of the two intervdl 1 (a+ b)) or [3(a-+b),b] is white. If both
were black then statement (1) maKagb] black. Choose that interval (the white one)
as[ag,bs]. Divide that interval into half again and produce anotheitevinterval of
half the length. This producds;,b;] D [az,by] D [as,bs]. .., a shrinking sequence of
white intervals with lengths decreasing to zero,

lim (by — a,) = 0.
By the nested interval argument then there is a unique pdimat belongs to each of

the intervals and there must be an intelyeso that(by — an) < 8(2). By statement (2)
above that makegy, by] black which is a contradiction.
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Exercise29, page 9

For every poink in a closed, bounded intervi, b let there be given a positive number
d(x). Let us say that a number< r < b can be reachedf there exists at least one
partition

{(6-2,%],&) 11 =1,23,...,n}
of the interval[a, r] with the property that each intervid _1, %] has length smaller than

3(&).

DefineR as the last point that can be reached, i.e.,
R=sup{r: a<r <bandr can be reachegd

This set is not empty since all points (a,a+ &(a)) can be reached. Thuis a real
number no larger thah. Check thatR itself can be reached. Indeed there must be
pointsr in the interval(R— 8(R), R] that can be reached (by the definition of sups). If
R—9(R) <r < Randr can be reached, thédalso can be reached by simply adding
the element|r,R],R) to the partition for{a, r].

IsR< b? No since if it were then we could reach a bigger point by agldisuitable
pair ([R, 5], R) to a partition for[a, R]. ConsequentR = b andb can be reached, i.e., it
is the last point that can be reached.

Exercise30, page 9

For eachxin [a,b] select a positive numbeé(x) so that the open interval
(X=8(x),x+8(x))

is inside some open interval of the famify
By Cousin’s lemma there exists at least one partition

{([Xi—]nxi]aai) : I - 172737" 'an}
of the interval[a, b] with the property that each intervid_1,%] has length smaller than
0(&;). Foreach = 1,2 3,... select fromC some open intervdk;,d;) that contains

(& — (&), &i +0(&))-
This finite list of intervals fromC
(€1,d1), (C2,C3), ,---, (Cn,0n)

contains every point ofa, b| since every intervalx_1,%] is contained in one of these
open intervals.

Exercise31, page 9

Use a proof by contradiction. For examplg#b) C G, UGy, G1 UG, = 0, then for
everyx € Gy N [a,b] there is a(x) > 0 so that

(x—9(x),x+0(x)) C G1
and for everyx € GoN [a,b] there is &(x) > 0 so that

(x—0(x),x+0(x)) C Gy.
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By Cousin’s lemma there exists at least one partition

{([Xiflyxi]vzi) = 172737" . 7n}
of the interval[a,b] with the property that each interval_1,x]| has length smaller
thand(&;). Consequently each internvial_1, %] belongs entirely either t6, or belongs
entirely either taGo.
This is impossible. For i& € Gy, then[xg,x;] C G;. But that mean$x,x;| C Gy,
and|xz,Xs] C Gy, ..., and indeed all of the intervals are subset&pf

Exercise32, page 9

Use a proof by contradiction. Suppose, for example fthdl C G1UG,, G1 UG, = 0.
Thena is in one of these two open sets, say G;. Take the last point for which
[at) C Gy, i.e.,

t=sup{r:a<r<b, [ar)cGi}.
That number cannot ble, otherwiseG, contains no point of the interval. And that
number cannot be in the open &, otherwise we failed to pick the last such number.
Thust € G,. But the situationt € G, requires there to be some interyald) containing
t and entirely contained insid8,. That gives ugc,t) C G; and(c,t) C Gp. Thisis a
contradiction to the requirement thai U G, = 0.

Exercise33, page 9

Take any two points in the set< t. If there is a poins < ¢ < t that is not in the seE
thenE C (—o,c) U (c, ) exhibits, by definition, that the set is disconnected. Scéte
E contains all points between any two of its elements. CormatyuE is either(a,b)
or [a,b) or (a,b] or [a, b] where fora take infE and forb take sufk.

Exercise34, page 10

You should remember that these functions are defined foreallmumbers, with the
exception that taft 11/2) = +o0. So, since we do not consider functions to have infinite
values, the function tanis considered to be defined at all reals that are not of the form
(n+1/2)11/2 for some integen.

Exercise35, page 10

The value of arcsir is defined to be the numberrt/2 <y < 11/2 such that sig = x.
The only numbers that permit a solution to this equation are from the intefval, 1].
The value of arctaris defined to be the numberr/2 <y < 11/2 such that tag = x.
This equation can be solved for all real numbes® the assumed domain of arciae
the entire real line.

Exercise36, page 11

The exponential functio®® is defined for all values ok so its domain is the whole
real line. The logarithm function is the inverse defined byuigng logx =y to mean
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e = x. Sincee’ is always positive the logarithm function cannot be defirtetkeo or at
any negative number. In fact the domain of ag the open unbounded interv@, ).

Exercise37, page 11

Check that?> —x— 1 only at the points; = 1/2++/5/2 andc, = 1/2—1/5/2. Thus
the domain of the first function would be assumed tg-be, c;) U (C2,¢1) U (C1,00)>

Also x> —x— 1> 0 only on the intervalge, c,] and[c;, ») so the the domain of the
second function would be assumed to(lec,] U [c1,).

Finally, the third function is a composition. We cannot wrércsirt unless—1 <
t < 1, consequently we cannot write arc(s«'ﬁ— Xx—1) unless—1 < X2 —x—1<1,or
equivalently 0< x2 —x < 2.

But —1 < x2 —x— 1 on the interval§—oo, 0) and(1,), while x> —x—1 < 1 on the
interval [-1,2]. So finally arcsiiix? —x— 1) can only be written fox in the intervals
[—1,0] and[1,2]. So the the domain of the third function would be assumed to be
[—1,0]U[1,2].

Exercise38, page 12

This is trivial. Just state the definition of uniform contityuand notice that it applies
immediately to every point.

Exercise39, page 12

Find a counterexample, i.e., find a function that is contirsuon some open intervél
and that is not necessarily uniformly continuous on thatriral.

Exercise40, page 13

There are lots of choices. Our favorite might be to ggt) = x if x is rational and
f(x) = —xif xis irrational. Then just check the definition at each point.
Exercise4l, page 13

To work with the definition one must know it precisely and dtswe an intuitive grasp.
Usually we think that uniform continuity of means

...ifd —cis small enough (d) — f(c) should be small.
For the functionf (x) = x this becomes
...ifd —c is small enough & c¢ should be small.

That alone is enough to indicate that the exercise must WaltriJust write out the
definition usingd = €.
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Exercise42, page 13

Obtain a contradiction by assuming [falsely] tHgk) = x? is uniformly continuous on
the interval(—co, ).
Usually we think that uniform continuity of means

...ifd—cis small enoughf (d) — f(c) should be small.
That means that the failure of uniform continuity should theuight of this way:
...even thougtl — cis small f (d) — f(c) might not be small.
For the functionf (x) = x? this becomes
...even though - ¢ is small & — ¢ might not be small.
A similar way of thinking is
...even though t is smafk +t)? — x> might not be small.

That should be enough to indicate a method of answering threiee.
Thus, take any particula> 0 and suppose [wrongly] that

|d?—c?)| <¢

wheneverc, d are points for whichd — ¢| < 8. Take any large integét so that YN < d.
Then

(N+1/N)2—1/N?)| =N2+2 <.

This cannot be true for all large integeMsso we have a contradiction.
By the way, this method of finding two sequencgs= N andyy = N+ 1/N to
show that uniform continuity fails is turned into a generathod in Exercis®1.

Exercise43, page 13

The key is to factor
X2 —y? = (X+Y)(x—-Y).
Then, we think that uniform continuity df means
...ifx—yis small enough () — f(y) should be small.
For the functionf (x) = x? this becomes
...if x—yis small enouglix+ y](x—y) should be small.

In any bounded interval we can control the sizéxcf y].
Here is a formal proof using this thinking. Lebe a bounded interval and suppose
that|x] <M for all xe |. Lete > 0 and choosé = €/(2M). Then, if|d —c| < &

|f(d) — f(¢)| = |d*— ? = |[d+c|(d — )| < [|d|+[c]]|[d —c| < [2M]|d —¢| < 2MB =E&.
By definition, f is uniformly continuous or.

Exercise44, page 13

We have already proved that this function is uniformly coatius on any bounded
interval. Use that fact on the intervady — 1,0+ 1).



164 CHAPTER 5. ANSWERS

Exercise45, page 13

Suppose [falsely] that (x) = )—1( is uniformly continuous on the intervéD, «); then it
must also be uniformly continuous on the bounded intef®al). Usinge = 1 choose
0 > 0 so that

1 1
-——|<1
Xy
if [x—y| < &. In particular take a point & yp < & and notice that
1 1
- <1+ —
X Yo
forall0<x<d. Foro<x<1
1l 1
< =
x|~ o
We know that this functiorf (x) = )—1( is unbounded and yet we seem to have produced

an upper bound on the intervéd,1). This is a contradiction and hence the function
cannot be uniformly continuous.

In fact we can make this particular observation into a methwitien a function is
uniformly continuous on a bounded interval we will provetttiee function is bounded.
Hence unbounded functions cannot be uniformly continueua bounded interval.

We now show thaff (x) = )—1( is continuous at every real numbey# 0. Take any
point Xy > 0 and lete > 0. We must choose &> 0 so that

|1/x—1/x0| < €

whenevelx is a point in(0, ) for which |[x — X| < 8. This an exercise in inequalities.
Write

1/x~1/%| =

X—Xo
XX0 ‘ '
Note that ifx > Xo/2 thenxxy/2 > X3 so that ¥[xx] < 1/[2x3]. These inequalities
reveal the correct choice &fand reveal where we should place the argument. We need
not work in the entire interval0, ) but can restrict the argument to the subinterval
(X0/2,3%0/2).

Letxo be a pointin the intervdl0, «0). Work entirely inside the intervaky/2,3%y/2).
Lete > 0. Choosed = ex3 and suppose thdx — Xo| < & = €x3 and thatx is a point in
the interval(xo/2,3xo/2). Then since/2 < X,
2

109 (x0)| = XX‘XOXO‘ <go<e

By definition f (x) = % is continuous at the poing.

Note this device used here: since pointwise continuitypas a local property at a
point we can restrict the argumentaayopen interval that containg. If, by doing so,
you can make the inequality work easier then, certainly,alo s
Note: We have gone into some great detail in the exercise sincéstatsan early stage
in our theory and it is an opportunity for instruction. Youwsifd be able to write up
this proof in a shorter, more compelling presentation.
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Exercise46, page 13

It is easy to check that botfr (x) andsG(x) must be continuous at the poixg. Thus
it is enough to prove the result for=s=1, i.e., to prove thaF (x) + G(x) must be
continuous at the poing.
The inequality
[F (%) +G(x) - [F () + G(%0)| < [F(X) — F (%) +[G(X) — G(xo)|
suggests an easy proof.

Using the same method you should be successful in provindotlmsving state-
ment:

Let F and G be functions that are uniformly continuous on darial I.
Then any linear combination gt) = rF (x) +sG(x) must also be uniformly
continuous on .

Exercise47, page 13

The key is to use the simple inequality
IF(X)G(X) = F (%0)G(x0)| = [F (X)G(X) = F (%) G(X) + F (x0) G(%0) — F (%) G(x0) |
< FXIG(X) —F (x0)G(X)| + |F (x0) G(X) —F (x0) G(x0)|
=G| [F(X)—F (x0)| + |F (x0)[ - |G(X) —G(x0)|
SinceG is continuous at the poing there must be at least one interyald) C |
containing the poinkg so thatG is bounded orfc,d). In fact we can use the definition
of continuity to find an > 0 so that
|G(X) — G(x0)| < L forallxin (xo—n,%+n)

and so, also

IG(X)| < |G(x0)|+ 1 forallxin (xo—n,X0+n).

Thus we can select such an interyeld) and a positive numbev that is larger than
|G(X)| 4 |F (Xo)| for all xin the interval(c,d).

Lete > 0. The assumptions imply the existence of the positive nustheandd,,
such that

€
F(x)—F =
FO)—F00)| < 57

if |Xx—Xo| < &1 and
€
GX) —G0)| < 537

if |X—Xo| < &2.
Then, using any smaller than botl®; andd,, and arguing inside the interved, d)
we observe that

IF(X)G(X) — F (%0)G(%0)| < M|F(x) — F (x0)| +M[G(X) — G(x0)| < 2Me/(2M) = .
if [Xx—Xo| < d. This is immediate from the inequalities above. This proves the
productH (x) = F (x)G(x) must be continuous at the poixt.

Does the same statement apply to uniform continuity? In ié&xercise46 you
might be tempted to prove the following false theorem:



166 CHAPTER 5. ANSWERS

FALSE: Let F and G be functions that are uniformly continuouasan
interval 1. Then the product k) = F(x)G(x) must also be uniformly
continuous on |.

But note thaf (x) = G(x) = x are both uniformly continuous gn-co, ) while FG(x) =
F(X)G(x) = x? is not. The key is contained in your proof of this exerciseu Yieeded
boundedness to make the inequalities work.

Here is a true version that you can prove using the methodsmbaised for the
pointwise case:

TRUE: Let F and G be functions that are uniformly continuousam
interval 1. Suppose that G is bounded on the interval I. Thengroduct
H (x) = F(x)G(x) must also be uniformly continuous on I.

Later on we will find that, when working on bounded intervall,uniformly con-
tinuous functions must be bounded. If you use this fact nadvrapeat your arguments
you can prove the following version:

Let F and G be functions that are uniformly continuous on arfoma
interval 1. Then the product k) = F(x)G(x) must also be uniformly
continuous on .

Exercise48, page 13

Yes, if G(Xg) # 0. The identity
‘ F(x) _F(o) ‘ _ |F(¥G(x0) = F(XG(X) + F(X)G(X) — F(x0)G(X)
G(x)  G(x) G(x)G(x0 '

should help. You can also prove the following version forfaim continuity.

Let F and G be functions that are uniformly continuous on aariral |.
Then the quotient kk) = F(x)/G(x) must also be uniformly continuous
on | provided that the functions F arld G are also defined and bounded
onl.

Exercise49, page 13

Lete > 0 and determing > 0 so that
1G(2) - G(2)| <&
wheneverzis a point inJ for which |z— 7| < n. Now use the continuity of at the
point Xy to determine & > 0 so that
[F(X) —F(x0)| <n
whenevex is a point inl for which [x—xg| < 8.

Note that ifx is a point inl for which |[x—Xp| < &, thenz= F(x) is a point inJ for
which |z— 7| < n. Thus

IG(F(x)) —G(F(x0))| = |G(2) — G(20)| < &.
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Exercise52, page 14

Too simple for a hint.

Exercise53, page 14

Another way to think about this is that a function that is a frrharacteristic functions

M
109 = 3 axa

is a step function if all thé\ are intervals or singleton sets. [Hege(x), for a setE, is
equal to 1 for pointx in E and equal to O otherwise.]
Let f : [a,b] — R be a step function. Show first that there is a partition

A=X <X <X <+ <Xp_1<Xn=Db

so thatf is constant on each intervak_1,%), i =1, 2, ...,n. This will display all
possible discontinuities.

Exercise54, page 14

This is not so hard and the title gives it away. Show first Rad) = 1 if x is rational
and is otherwise 0.

Exercise55, page 14

We can interpret this statement, that the distance fundsicontinuous, geometrically
this way: if two pointsx; andx, are close together, then they are at roughly the same
distance from the closed set

Exercise56, page 15

This just requires connecting two definitions: the defimitad continuity at a point and
the definition of sequential limit at a point.

Lete > 0 and choos® > 0 so that|f (x) — f(Xo)| < € if [X—Xo| < 8. Now choose
N so that|x, — Xg| < & for n > N. Combining the two we get thaf (x,) — f(xo)| < € if
n > N. By definition that means that lim.. f(x,) = f(Xo).

That proves one direction. To prove the other direction weltse a contrapositive
argument: assume that continuity fails and then deducelibatequence property also
fails. Suppose that is not continuous aty. Then, for some value & there cannot
be ad for which |f(x) — f(xp)| < € if [x—Xg| < &. Consequently, for every integer
n there must be at least one poigt in the interval so thatxg — x,| < 1/n and yet
F(x) — f(x0)| > .

In other words we have produced a sequefgg — Xo for which lim,_. f (X)) =
f(xo) fails.
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Exercise57, page 15

Suppose first thaf is continuous. LeV be open, leky € f~1(V) and choose < (3
so that(a,B) C V and so thak € f~1((a,B)). Thena < f(xg) < B. We will find a
neighborhoodJ of xg such thatr < f(x) < B forallxeU. Let
e=min(B— f(Xp), f(x0) — ).
Sincef is continuous axp, there exists & > 0 such that if
X € (X0 —0,%X + 9),
then
[f(x) — f(x0)| <&
Thus
f(x) — f(x0) <B— f(x0),
and sof (x) < B. Similarly,
FO) = f(x0) > a—f(x0),
and sof (x) > a. Thus the neighborhodd = (xo — 8,%p + 8) is a subset of ~1((a, B))
and hence also a subsetfof'(V). We have shown that each memberfof (V) has a
neighborhood irf ~1(V). That is,f (V) is open.

To prove the converse, suppobesatisfies the condition that for each open interval
(a,B) with a < B, the setf ~1((a,B)) is open. Take a poin. We must show that is
continuous ako. Lete > 0,3 = f(xg) + ¢, a = f(xp) — €. Our hypothesis implies that
f~1((a,B)) is open.

Thus there is at least open interv@d,d) say, that is contained in this open set and
contains the poirkg. Let

0 =min(xg—¢,d — Xo).
For [x—Xo| < & we find
a< f(x) <B.
Becausd3 = f(Xp) + € anda = f(xp) — € we must have
[T — f(x0)| <.
This shows thaf is continuous axg.

Exercise59, page 15

In preparation ...

Exercise60, page 15
Because of Exercisg9 we already know that if > O then there i® > 0 so that
wf(lc,d]) <€
wheneveic, d] is a subinterval of for which |d — c| < &. If the points of the subdivision
aA=X <X <X <Xg< - <Kn_1<Xn=D
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are chosen with gaps smaller thathen, certainly, each of

wf ([Xo,x1]), wf ([X1,%2]),..., and wf([X,—1,%n])

is smaller tharg.

Conversely suppose that there is such a subdivisiond betone-half of the mini-
mum of the lengths of the interval®y, x1], [X1,X2], ..., [Xn—1,%n]. Note that if we take
any interval[c, d] with length less thal that interval can meet no more than two of the
intervals above. For example|id,d] meets bothxg, x;] and[x;, xz|, then

wf([c,d]) < wf ([X1,x2]) + wf ([x1,X2]) < 2¢.
In fact then any intervdlc, d] with length less tha® must have
wf([c,d]) < 2e.

It follows that f is uniformly continuous offe, bJ.

Is there a similar statement for uniform continuity on opeteivals? Yes. Just
check thatf is a uniformly continuous function on an open, bounded Vatefa, b) if
and only if, for everye > 0, there are points

A=X <X <X <X3< < X1 <X =Db
so that each of

wf((Xo,X1]), wf ([X1,%2]),..., and wf([Xn_1,%n))
is smaller tharz.

Exercise61, page 16

If fis continuous at a poing ande > 0 there is &(Xg) > 0 so that
[f(¥) - f(x0)[ <&/2

for all |[x—Xo| < d(Xp). Take any two pointa andv in the intervalXo — 8(Xo), X0 + 0(X0)]
and check that

[f(v) = f(u)] <[f(v)— f(x0)|+|f(V) — f(x0)| <€/2+€/2=E.
It follows that
wf (%0 — 3(x0), %0 +3(x0)]) < €.
The other direction is easier since

(%) — F(x0)| < wf ([x0 — 3(x0), %0 + 8(%0)])
for all [x—Xo| < 8(Xo).

Exercise62, page 16

This is just a rephrasing of the previous exercise.

Exercise63, page 16

We use the fact that one-sided limits and sequential linnéseguivalent in this sense:

A necessary and sufficient condition in order that
L= lim F(x)

X—a+
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should exist is that for all decreasing sequence of pdir{$ convergent
to a, the sequencéf(x,)} converges td.

Let us prove the easy direction first. Suppose th@+) = limy_,a. F(X) exists
and lete > 0. Choose&(a) > 0 so that
[F(at+) —F(x)| <&/3
foralla< x < a+9d(a). Then, for allc, d € (a,a+ d(a),
[F(d)—F(¢)| < |F(at+) —F(d)[+[F(at) —F(c)| < 2¢/3.
It follows that
wF ((a,a+08(a)) <2¢/3 <.

In the other direction consider a decreasing sequence ofg{i,} convergent to
a. Lete > 0 and choosé(a) so that

wF ((a,a+6(a)) < €.
Then there is an integd¥ so that|x, —a| < &(a) for all n > N. Thus
IF (%) —F(Xm)| < wF ((a,a+9)) <t

for all m, n > N. It follows from the Cauchy criterion for sequences thatrgwsich
sequencgF (x,)} converges. The limitis evidentlf(a+).

Exercise64, page 16

We use the fact that infinite limits and sequential limits @geivalent in this sense:

A necessary and sufficient condition in order that
L= Ilim F(x)

X—00
should exist is that for all sequence of poikis } divergent toeo, the se-
quence{F (x,)} converges td..

Let us prove the easy direction first. Suppose h@b) = limy_,. F(X) exists and
lete > 0. Choosel > 0 so that
[F () —F(x)| <¢/3
forall T <x. Then, for allc,d € (T, ),
[F(d) = F(c)| < |F(e0) = F(d)[+|F () - F(c)| < 2¢/3.
It follows that

Wk ((T,0)) <2¢/3 <.

In the other direction consider a sequence of pofitg divergent towo. Lete > 0
and choosé so that

WF ((T,)) < €.
Then there is an integét so thatx, > T for all n > N. Thus
[F(%a) — F (Xm)| < 0F ((T,0)) <€

for all m, n > N. It follows from the Cauchy criterion for sequences thatrg\&ich
sequencdF (x,)} converges. The limitis evidently ().
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Exercise65, page 18

This is a direct consequence of Exeroise Lete > 0 and choosé > 0 so that
wF((c,d)) <e¢

for all subintervalgc, d] of (a,b) for whichd —c < &.
Then, certainly,

wF((a,a+9)) <& and wF((b,b—19)) <e.
From this, Exercis@3 supplies the existence of the two one-sided limits
F(at) = XILrQ+ F(x) and F(b—)= xll[Tb]— F(x).

Exercise66, page 18

Lete > 0 and, using Exercise3, choose positive numbeda) andd(a) so that
wF ((a,a+98(a))) < € and wF ((b—3(b),b)) < &/2.
Now choose, for any poir§ € (a,b), a positive number and(&) so that

WF (£ —8(8),8+0(8)]) <&

This just uses the continuity of the functidrat the point in the oscillation version of
that property that we studied in Sectibrb.5
By the Cousin partitioning argument there must exist points

A=X <X <X < <X_1<X=Db
and a partition
{(x—1.%],&i) 11 =1,2,3,....n}
of the whole intervala, b] such that
& € [xi—1,%] and x —xi—1 < 3(&).
Just observe that this means that each of the followinglagoihs is smaller than

(A)F((a,Xl]), (*)F([lexz])> (*)F([X2>X3])> e WF ([Xn*lv b))
It follows from Exercise50that f is uniformly continuous orfa, b).

Exercise67, page 18

In one direction this is trivial. IF is defined or{a, b) but can be extended to a uniformly
continuous function ofa, b thenF is already uniformly continuous ofa, b).

The other direction is supplied by the theorem, in fact inghaof of the theorem.
That proof supplied points

a=Xg <X <X <+ <X_1<X =D
so that each of the following oscillations is smaller tlgan
(*)F((avxl]))> (*)F([X]-»XZ])v (*)F([X27X3])7 ceey (*)F([Xn*lvb))
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Now defineG = F on(a,b) andG(a) = F(a+), G(b) = F(b—). Then
wF ((a,x1])) = wG([a,x1]))
and
WF ([Xn-1,b)) = WG([Xa-1,b]).
With this rather subtle change we have now produced points
A=X <X <X <+ <Xp_1<Xn=Dh
so that each of the following oscillations is smaller tlgan
wG([a,x1))), WG([¥1.%e])), WG([Xe,Xa])), ., WG([%-1.b]).
It follows from Exercise50 thatG is uniformly continuous off, bJ.

Exercise68, page 18

If F is continuous orfa, b) and|c,d] C (a,b) note that is continuous oric,d] and that
F(c) = F(c+) andF(d) = F(d—). Applying the theorem we see thitis uniformly
continuous oric,d].

Exercise69, page 18

If F is continuous on(a,b) and monotone nondecreasing then we know that either
F(at+) = limy_a+ F(X) exists as a finite real number or elBga+) = —. Simi-
larly know that either (b—) = limy_,,_ F(X) exists as a finite real number or else
F(b—) = +c. Thus, by Theoreni.12the function is uniformly continuous ofa,b)
provided only that the function is bounded. Conversely,riteo for the functiorF to

be uniformly continuous oifa, b), it must be bounded since all uniformly continuous
functions are bounded on bounded intervals.

Exercise70, page 18

This proof invokes a Bolzano-Weierstrass compactnessvagts We use an indirect
proof. If F is not uniformly continuous, then there are sequedegs and{y,} so that
Xn — Yn — 0 but

IF(%) —F(yn)| >c

for some positivec. (The verification of this step is left out, but you should glyp
it. This can be obtained merely by negating the formal stateérthatf is uniformly
continuous ora, b).)

Now apply the Bolzano-Weierstrass property to obtain a eayent subsequence
{Xn }. Write zas the limit of this new sequende,, }. Observe that,, —y, — 0 since
Xn —Yn — 0. Thus{x,, } and the corresponding subsequefize} of the sequencéy,}
both converge to the same linzitwhich must be a point in the intervg, b].

If a < z< bthen we get a contradiction from the continuity of F (x, ) — F(2)
andF (yn, ) — F(2). Since|F(xn) —F(yn)| > c for all n, this means from our study of
sequence limits that

|[F(z)—F(2|>c>0

and this is impossible.
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Now suppose that= a. Since
F(at) = lim F(x)

X—a+
exists it also follows thaF (x, ) — F(a+) andF (yn, ) — F(a+). Again this is impos-
sible. The remaining case= b is similarly handled.

Exercise71, page 18

Choose open intervalg, a+(a)), (b— d(b),b) so that

wF ((a,a+08(a))) <€/2 and wF ((b—d(b),b)) < &/2
At the endpointsa and b this is possible because the one-sided limits exist (i.,
Exerciset3).

For each poink € (a,b) we may choose interval — d(x),x+ &(x) in such a way

that

WF (X—0(X)x+d(x)) < €/2.
At the pointsx € (a,b) this is possible because of our assumption Ehé continuous
at all such points.

Pick pointss andt with a < s< a+d(a) andb—d(b) <t < b. Now apply the
Heine-Borel property to this covering of the closed intéfgg]. There are now a finite
number of open intervalsg — 8(x;), % + 8(x ) withi =1,2,3,... k covering|s,t].

Let 6 be half the minimum length of all the intervals

(aa+98(a)),(b—3(b),b),(x —8(x),% +3(x) (i=123,....k).
Use this to show thabF ([c,d]) < €if [c,d] C (a,b) andd —c < .

Exercise72, page 18

There are functions that are continuous at every poirit-0é,) and yet are not uni-
formly continuous. Find one.

Exercise73, page 18

There are functions that are continuous at every poi(®@df) and yet are not uniformly
continuous. Find one.

Exercise74, page 18

Slight of hand. Choos&. Wait a minute. Our choice @ depended org so, to make
the trick more transparent, calld(xy). Then ifd is some other point you will need a
different value o®.

Exercise75, page 19

If G is continuous aeverypoint of an intervalc,d] then the theorem (Theorein12)
applies to show thas is uniformly continuous on that interval.
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Exercise76, page 19

Just read this from the theorem.

Exercise77, page 19

Just read this from the theorem.

Exercise78, page 19

In preparation ...

Exercise79, page 20

Let f be a uniformly continuous function on a closed, boundedatéa, b]. Take any
value ofgg > 0. Then Exercis€0 supplies points
a=X <X <X<X< - <Xp1<X=Db
so that each of
wf (), wf((x1,%2]),...,0f (X1—1,%n])

is smaller thargg. In particular,f is bounded on each of these intervals. Consequently
f is bounded on all ofa, b.

The same proof could be used if we had started with a unifogaftinuous func-
tion on an open bounded interv@, b). Note that if the interval is unbounded then such
a finite collection of subintervals would not exist.

Exercise80, page 20

The condition of pointwise continuity at a poixg gives us an inequality
() — f(xo)| <¢
that must hold for some intervaky — 8,% + ). This immediately provides the in-
equality
[FO)=1(x) — f(x0) + F(x0)| < [f(X) — f(x0)| + | f(%0)| <&+ [f(X0)]|
which provides an upper bound forin the interval(xp — 8, %o+ d).

Exercise81, page 20

No. It doesn't follow. For a counterexample, the functibfx) = sin(1/x) is a contin-
uous, bounded function on the bounded open intei®dl). This cannot be uniformly
continuous because
wf((0,t)) =2
for everyt > 0. This function appears again in Exercis&/ The graph of is shown
in Figure5.1and helps to illustrate that the continuity cannot be unifan (0,1).
Later on we will see that if a functiof is uniformly continuous on a bounded open

interval (a,b) then the one-sided limits at the endpoiat&indb must exist. For the
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examplef (x) = sin(1/x) on the bounded open intervd, 1) we can check that(0+)
does not exist, which it must if were to be uniformly continuous d®,1).

Exercise82, page 20

We assume here that you have studied sequences and comegjesequences. |ff

is not bounded then there must be a pointn the interval for which|f (xq)| > 1. If

not then|f(x)| < 1 and we have found an upper bound for the values of the functio
Similarly there must be a poing in the interval for which|f(x2)| > 2, and a point

X3 in the interval for which f(x3)| > 3. Continue choosing points and then check that

[ (%n)[ = co.

Exercise85, page 20

The functionf (x) = xis uniformly continuous on the unbounded interf«l ) and yet
it is not bounded. On the other hand the functidm) = sinx is uniformly continuous
on the unbounded intervédo, o) and it is bounded, sindesinx| < 1.

Exercise86, page 20

Yes and yes. Iff(x)| <M and|g(x)| < N for all xin an intervall then
[0 +9)] < [f(X)]+]9(x)[ <M+N
and
[(X)g(x)| < MN.

Exercise87, page 20

No. On the interval0,1) the functionsf (x) = x andg(x) = x? are bounded functions
that do not assume the value zero. The quotient fungtidris bounded but the quotient
function f /g is unbounded.

Exercise88, page 20

If the values off(t) are bounded then the values ©fg(x)) are bounded since they
include only the same values. Thus there is no need for thra bypothesis thag is
bounded.

Exercise89, page 21

Use the mean-value theorem to assist in this.<4fd then
sind — sinc = (d — ¢) cosg

for some poin€ betweerc andd.
Don't remember the mean-value theorem? Well use these faa$scinstead:

sind — sinc = sin[(d — ¢) /2] cog(d +¢)/2]
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and
|sinx| < |X].
Stop reading and try the problem now ...

If you followed either of these hints then you have arrivecdmtinequality of the
form

|sind — sinc| < M|d —|.

Functions that satisfy this so-called Lipschitz conditeme easily shown to be uni-
formly continuous. Fod you will find thatd = €/M works.

Exercise90, page 21
For 6 you will find thatd = €/M works.

Exercise91, page 21

If fis uniformly continuous then, by definition, for eveay- 0 there is & > 0 so that
|f(d)—f(c)| <e

whenever, d are points inl for which |d —c| < &. If there did exist two sequences of
points {X,} and{x,} from that interval for whichx, — y, — 0 then there would be an
integerN so that|x, — yn| < 6 for n > N. Consequently

[f(%) — f(yn)| <&

for n> N. By that means, by the usual sequence definitions tttwaf) — f(y,) does
indeed converge to zero.

Conversely iff is not uniformly continuous on the intervhithen for some value
€0 > 0 and every integen the statement that

the inequality
|f(d)—f(c)| <eo
holds whenever c, d are points in | for whifth—c| < 1/n.

must fail. Thus it is possible to select poirfts,} and{x,} from that interval for which
[Xn — Yn| < 1/n but

£ (%) = f(yn)[ = 0.
Consequently we have exhibited two sequences of pditsand {x,} from that in-
terval for whichx, — y, — 0 but f(x,) — f(yn) does not converge to zero.

Exercise92, page 21

By Theoreml.18 F is bounded and so we may suppose as the least upper bound
for the values of, i.e.,
M = sup{f(x) :a<x<b}.
If there exists¢ such that (xg) = M, thenF achieves a maximum valld. Sup-
pose, then, the (x) < M for all x € [a,b]. We show this is impossible.
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Letg(x) = 1/(M —F(x)). For eachx € [a,b], F(X) # M; as a consequenceg,is
uniformly continuous and(x) > 0 for all x € [a,b]. From the definition oM we see
that

inf{iM — f(x) : x € [a,b]} =0,
SO

SUp{M—;f(x) IX€E [a,b]} = oo,

This means thag is not bounded offg, b]. This is impossible because uniformly con-
tinuous are bounded on bounded intervals. A similar proafldigshow that- has an
absolute minimum.

Exercise93, page 21

We can also prove Theorein21using a Bolzano-Weierstrass argument. Let
M =sup{F (x) :a<x<b}.

That means that for any integethe smaller numbevl — 1/n cannot be an upper bound
for the values of the functioR on this interval.
Consequently we can choose a sequence of péiyisfrom [a, b] so that

F(x) >M-1/n.

Now apply the Bolzano-Weierstrass theorem to find a subsege, } that con-
verges to some poirg in [a,b]. Use the continuity oF to deduce that

lim F (%) = F(2)-
k—0c0
Since
M>F(X,)>M—1/ng
it must follow thatF (zg) = M. Thus the functior attains its maximum value .

Exercise94, page 21

How about sin 2ix? This example is particularly easy to think about since themum
value could only occur at an endpoint and we have excluddddmlpoints by working
only on the interval0,1). In fact we should notice that this feature is generalf i§

a uniformly continuous function on the intervdl, 1) then there is an extension 6fto

a uniformly continuous function on the interv@l 1] and the maximum and minimum
values are attained d, 1| [but not necessarily o(D, 1)].

Exercise95, page 21

How about 1- sin 2rx?

Exercise96, page 21

Simplest isf (x) = x.
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Exercise97, page 21

Simplest isf (x) = x.

Exercise98, page 21

Try f(x) = arctarx.

Exercise99, page 22

If there is a pointf (Xo) = ¢ > 0, then there is an interv@-N,N] so thatxg € [N, N]
and|f(x)| < c/2 for all x > N andx < —N. Now sincef is uniformly continuous on
[—N, N] we may select a maximum point. That maximum will be the maxmalso on
(—00,00).

If there is no such point then f assumes only values negative or zero. Apply the
same argument but to the functienf. For a suitable example of a function that has an
absolute maximum but not an absolute minimum you may fakg= (1+ x?)~1,

Exercise100, page 22

All values of f(x) are assumed in the intervid, p] and f is uniformly continuous on
[0, p]. It would not be correct to argue thétis uniformly continuous ofi—co, ) [it is]
and “hence” thaf must have a maximum and minimum [it would not follow].

Exercise101, page 22

This is a deeper theorem than you might imagine and will regaiuse of one of our
more sophisticated arguments. Try using the Cousin cayerigument.

Let f be continuous at poinsandb and at all points in between, and et R. If
for everyx € [a,b], f(x) # c, then eitherf(x) > c for all x € [a,b] or f(x) < c for all
X € [a,b].

Let C denote the collection of closed intervalsuch thatf (x) < c for all x€ J or
f(x) > cfor all x € J. We verify thatC forms a Cousin cover dh, b.

If x € [a,b], then|f(x) —c| =& > 0, so there exist8 > 0 such thatf (t) — f(x)| <&
whenever|t — x| < & > andt € [a,b]. Thus, if f(x) < c, thenf(t) <cforallte
[x—98/2,x+8/2], while if f(x) > c, thenf(t) >cforallte[x—5/2,x+98/2]. By
Cousin’s lemma there exists a partition[afb], a=xp < X3 < --- < X, = b such that
fori=1,...,n,[X_1,%] € C.

Suppose now that(a) < c. The argument is similar if (a) > c. Since[a,x1] =
[Xo,X1] € C, f(X) < cforall x € [xo,X1]. Analogously, sincéx;,xo] € C, andf(x1) <,
f(x) < cfor x € [x1,X]. Proceeding in this way, we see thdk) < c for all x € [a, b].

Exercisel102, page 22

We can prove Theoreth23using the Bolzano-Weierstrass property of sequencesrathe
than Cousin’s lemma. Suppose that the theorem is false gidiexthen, why there
should exist sequencés,} and{y,} from [a,b| so thatf (x,) > ¢, f(yn) < cand|x, —

Yn| < 1/n.
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Exercisel103, page 22

We can prove Theorerh.23using the Heine-Borel property. Suppose that the theorem
is false and explain, then, why there should exist at eaatt gai [a, b|] an open interval

Ix centered ak so that eitherf(t) > c for all t € IxN[a,b] or elsef(t) < c for all
telxnfab.

Exercisel104, page 22

We can prove Theorer.23 using the following “last point” argument: suppose that
f(a) < c< f(b) and letz be the last point ifia, b] where f(z) stays belowc, that is, let

z=sup{xe[ab]: f(t) <cforalla<t <x}.

Show thatf (z) = c.

You may takec = 0. Show that iff (z) > 0O, then there is an intervgt— 8,2z on
which f is positive. Show that if (z) < 0, then there is an intervi, z+ 8] on which f
is negative. Explain why each of these two cases is impassibl

Exercise105, page 22

For any such functiorf the Darboux property implies that the image set is connected

In an earlier exercise we determined that all connectedsetse real line are intervals.
For the examples we will need three functidRsG, H : (0,1) — R so that the

image undef is not open, the image undéris not closed, and the image undeiis

not bounded. You can check thHafx) = G(x) = x(1— x) maps(0,1) onto(0,1/4], and

thatH (x) = 1/x maps(0,1) onto (0, ).

Exercise106, page 22

As in the preceding exercise we know that the image set is aexbed set [by the
Darboux property] and hence that it is an interval. Thisrivdae must be bounded
since a uniformly continuous function on a closed, bounderval[a,b] is bounded.
This interval must be then eith¢A, B) or [A,b) or (A,B] or [A,B]. The possibilities
(A,B) and(A, B] are impossible, for then the function would not have a mimm@rhe
possibilities(A,B) and [A,B) are impossible, for then the function would not have a
maximum.

Exercisel07, page 23

The graph of, shown in Figures.1, will help in thinking about this function.

Let us check thaF is continuous everywhere, except>xat= 0. If we are at a
point Xo # 0 then this function is the composition of two functio@$x) = sinx and
H(x) = 1/x, both suitably continuous. So on any interygl] that does not contain
Xo = 0 the function is continuous and continuous functions fsetiee Darboux property.

Lett > 0. On the intervalO,t], F(0) = 0 andF assumes every value between 1
and —1 infinitely often. On the interval-t,0], F(0) = 0 andF assumes every value
between 1 and-1 infinitely often.
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Figure 5.1: Graph of the functidf(x) = sinx—* on [-T11/8,11/§].

Exercise108, page 23

Consider the functiog(x) = f(x) — x which must also be uniformly continuous. Now
g(a) = f(a) —a> 0 andg(b) = f(b) —b < 0. By the Darboux property there must be
a point whereg(c) = 0. At that pointf(c) —c=0.

Exercise109, page 23

If z, — cthenz, = f(z,_1) — f(c). Consequentlg = f(c).

Exercise110, page 23

This is a puzzle. Use the fact that such functions will havgima and minima in any
interval[c,d] C | and that continuous functions have the Darboux property.

Exercisell1l, page 23

This is again a puzzle. Use the fact that such functions weehmaxima and minima
in any interval[c,d] C | and that continuous functions have the Darboux property. Yo
shouldn’t have too much trouble finding an exampleig a closed, bounded interval.
What about ifl is open?

Exercisel12, page 23

For such functions the one-sided limif$xo+) f(xo—) exist at every pointy and
f(xo—) < f(xo+). The function is discontinuous & if and only if f(xo—) < f(Xo+).
Show that the Darboux property would not alldix,—) < f(xo+) at any point.

Exercisel13, page 24

In its usual definition

or, equivalently,
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But limits are defined exactly by, 5(x) methods. So that, in fact, this statement about
the limit is equivalent to the statement that, for every 0 there is &(x) > 0 so that

F(y) —F(x)
y—X
whenever (< |y— x| < &. [Note the exclusion of = x here.] The statement that

—-F(x)|<e

0<|y—x <d(x)
is equivalent to the statement that
0<y—x<08(x) or 0<x—y<9(X).
This, in turn, is identical to the statement that
[F(y) —F(X)—F'()y—x)| <ely—x|
whenever (< |y—x| < 8. The caseg/ = x which is formally excluded from such state-
ments about limits can be accommodated here because thessiqor is zero foy = x.
Consequently, a very small [hardly noticeable] cosmetignge shows that the limit

derivative statement is exactly equivalent to the statétinen, for everye > 0, there is
ad(x) > 0 so that

[F(Y) —F)—FQy—x)| <ely—x
whenevely is a points inl for which |y — x| < &(x).

Exercise114, page 24

As we just proved, if'(Xg) exists and- is defined on an intervalcontaining that point
then, there is &(xp) > O so that
[F(y) = F(x0) = F'(x0)(y = )| < [y — ol
whenevely is a point in the interval for which |y —xg| < 8(Xo).
That translates quickly to the statement that
IF(y) = F(X0)| < (IF'(x0)[ + 1)ly — Xo|
whenevely is a point in the interval for which |y —xo| < 8(Xo).

This gives the clue needed to write up this proog if 0 then we choos@; < d(Xo)
so that

81 < &/(|F'(x0)| +1).
Then
IF(y) —F(X0)| < (IF'(x0)| +1)ly—Xo| <€
whenevery is a point in the interval for which |y —xg| < &;. This is exactly the
requirement for continuity at the poirg.

Exercisel15, page 25

Note that

IF(@—F(y)-F'(®0(z-y|=[[F@ - FX] - [FX) - Fy)]-F'®(z-Xx ~[y—x)|
<|F(@—F(X) —F'(})(@-x|+[F(y) = F(X) —F'(x)(y—x)|.
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Thus the usual version of this statement quickly leads tcsthedled version. Note
that the straddled version includes the usual one.

The word “straddled” refers to the fact that, instead ofreating[F (y) — F ()] /[y—
x| to obtainF’(x) we can straddle the point by takizg< x <y and estimatingF (y) —
F(2)]/ly — 27, still obtaining F’'(x). If we neglect to straddle the point [it would be
unstraddled ify and z were on the same side g&f then we would be talking about a
much stronger notion of derivative.

Exercisel16, page 25

In preparation ...

Exercisell7, page 25

If F'(x0) > 0 then, using = F’(x)/2, there must be &> 0 so that
IF(2) = F(%) — F'(x0)(z—%0)| <€z—x|
wheneverzis a point inl for which |z— x| < d.
Supposeg < zZ < X+ 0; then it follows from this inequality that
F(2) — F(x0) — F'(%0)(z—%0) > —£(z—X0)
and so
F(2) = F(%0) +&(z—%0)/2> F(xo).
The argument is similar on the left &.
It is easy to use the definition of locally strictly increagiat a point to show that
the derivative is nonnegative. Must it be positive? For antetexample simply note

that f(x) = x3 is locally strictly increasing at every point but that theidative is not
positive everywhere but has a zerogt= 0.

Exercise118, page 25

Take anyc,d] C (a,b). We will show thatF(d) > F(c) and this will complete the proof
thatF is strictly increasing orfa, b).

For eachxg in c,d] there is &(Xg) > 0 so that

|F(2) = F (%) — F'(x0)(z— %0)| < €|lz—Xo|

wheneverzis a point inl for which |z— Xg| < 8(Xp).

We apply the Cousin partitioning argument. There must extiltast one partition

{([Xi—]nxi]aai) : I - 172737" . 7n}

of the interval(c, d] with the property that each intervid_1,%] has length smaller than
0(&i). Thus

n

F(d) -F(c) = Zl[F (% —F(x-1)] >0

since each of these terms must satisfy
[F(x —F(x-1)] = [F(x — F(&)] + [F (&) — F(xi-1)] > 0.
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Figure 5.2: Rolle’s theorem [note th&ta) = f(b)].

Exercise119, page 26

The strategy, quite simply, is to argue that there is a paiside the interval where a
maximum or minimum occurs. Accordingly the derivative isazat that point.

First, if f is constant on the interval, thefri(x) = O for all x € (a,b), so& can be
taken to be any point of the interval. Suppose then thetnot constant. Becaude
is uniformly continuous on the closed, bounded intefaah| , f achieves a maximum
valueM and a minimum valuenon [a, b].

Becausef is not constant, one of the valukor mis different fromf(a) andf (b),
sayM > f(a). Choosef(§) =M. SinceM > f(a) = f(b), c € (a,b). Check that
f’(c) = 0. If f/(c) > 0 then, by Exercisd 17, the functionf must be locally strictly
increasing ako. But this is impossible ik is at a maximum forf. If f/(c) < 0 then,
again by Exercisé 17, the function—f must be locally strictly increasing a. But
this is impossible if is at a maximum forf. It follows that f'(c) = 0.

Exercise120, page 26

Rolle’s theorem asserts that, under our hypotheses, tharpaint at which the tangent
to the graph of the function is horizontal, and thereforethassame slope as the chord
determined by the points, f(a)) and(b, f(b)). (See Figuré.2.)

Exercisel21, page 26

There may, of course, be many such points; Rolle’s theoranguarantees the exis-
tence of at least one such point. You should be able to canigtunction, under these
hypotheses, with an entire subinterval where the dergatanishes.

Exercisel22, page 26

First check continuity at every point. This function is ndffetentiable at zero, but
Rolle’s theorem requires differentiability only insidestmterval, not at the endpoints.
Continuity at the point zero is easily checked by using tlegimlity| f (x)| = [xsinx 1| <
|x|. Continuity elsewhere follows from the fact that functiéris differentiable (by the
usual rules) and so continuous. Finally, in order to applyldotheorem, just check
that 0= f(0) = f(1/m).
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There are an infinite number of points between 0 afm Where the derivative is
zero. Rolle’s theorem guarantees that there is at least one.
Exercise123, page 26
Yes. Notice thatf fails to be differentiable at the endpoints of the interait Rolle’s
theorem does not demand differentiability at either enalpoi
Exercisel24, page 26

No. Notice thatf fails to be differentiable only at the midpoint of this intel, but
Rolle’s theorem demands differentiability alt interior points, permitting nondifferen-
tiability only at either endpoint. In this case, even though-1) = (1), there is no
point inside the interval where the derivative vanishes.

Exercise125, page 26

In preparation ...

Exercise126, page 27

Use Rolle’s theorem to show thatXf andx; are distinct solutions op(x) = 0, then
between them is a solution @f(x) = 0.

Exercise127, page 27

In preparation ...

Exercise128, page 27

Use Rolle’s theorem twice. See Exercisg) for another variant on the same theme.

Exercise129, page 27

Since f is continuous we already know (look it up) thiimaps[a, b] to some closed,
bounded intervalc,d]. Use Rolle’s theorem to show that there cannot be two vatues i
[a,b] mapping to the same point.

Exercise130, page 27
cf. Exercisel28.

Exercise131, page 27

We prove this theorem by subtracting frana function whose graph is the straight line
determined by the chord in question and then applying Rotlegorem. Let

L(x) = f(a)+wu—a).



5.1. ANSWERS TO PROBLEMS 185

We see that (a) = f(a) andL(b) = f(b). Now let
g(x) = f(X) — L(x). (5.1)
Thengis continuous on [a,b], differentiable on (a,b) , and sassthe conditiomy(a) =
g(b) =0.
By Rolle’s theorem, there exists= (a,b) such thatg'(c) = 0. Differentiating 6.1),
we see thaf’(c) = L'(c). But
f(b)—f(a)

L(e) =~

I

SO

)
f'(c) = 73)

)

—f
—a
~ f(b)—f(a)
—a
as was to be proved.

Exercise132, page 28
The first statement is just the mean-value theorem applieddry subinterval. For the
second statement, note that an increasing fundtimould allow only positive numbers
in S. But increasing functions may have zero derivatives (), = x°).
Exercisel33, page 28
If t, measured in hours, starts at tilme 0 and advances to time= 2 then
2)—s(1
(1) = LZS() — 100/2

at some point in time between starting and finishing.

Exercisel134, page 28

The mean-value theorem includes Rolle’s theorem as a $ppasa. So our previous
examplef (x) = /|x| which fails to have a derivative at the poigt= 0 does not satisfy
the hypotheses of the mean-value theorem and the conclasiove noted earlier, fails.

Exercise135, page 28
Take any example where the mean-value theorem can be appiliethen just change
the values of the function at the endpoints.

Exercise136, page 28

Apply the mean-value theorem tb on the interval[x,x + a] to obtain a point§ in
[X, X+ a] with
f(x+a)—f(x) =af'(¢).
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Exercisel37, page 28

Use the mean-value theorem to compute
. ) —f(a
jim f®—f@

X—a+ X—a

Exercise138, page 28

This is just a variant on Exercige37. Show that under these assumptidhss contin-
uous atxo.

Exercise139, page 29

Use the mean-value theorem to relate

00

Z(f(i+1)—f(i))

gf’(i).

Note thatf is increasing and treat the former series as a telescopiigsse

to

Exercise140, page 29

The proof of the mean-value theorem was obtained by appRwite’s theorem to the
function
000 = 100 f(a) - 01D g
For this mean-value theorem apply Rolle’s theorem twiceftmation of the form
h(x) = f(x) — f(a) — f'(a)(x—a) — a(x— a)?

for an appropriate number.

Exercisel41l, page 29

In preparation ...

Exercise142, page 29

Write
f(x+h)+ f(x—h)—2f(x) =

[f(x+h)—f(X)]+ [f(x—h) = f(x)]
and apply the mean-value theorem to each term.
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Exercisel43, page 29

Let
@(x) = [f(b) — f(a)]g(x) — [9(b) — g(a@)] f (x).

Then@is continuous on [a,b] and differentiable on (a,b) . Funthene,

®a) = f(b)g(a) — f(a)g(b) = @(b).
By Rolle’s theorem, there exisEsc (a,b) for which@(§) = 0. Itis clear that this point
¢ satisfies

[f(b) — f(a)]g'(§) = [a(b) — g()] (&)

Exercise144, page 29

We can interpret the mean-value theorem as applied to cygjives parametrically.
Supposef andg are uniformly continuous ofa, b] and differentiable orja,b). Con-
sider the curve given parametrically by

X:g(t)7 y:f(t) (te[a,b]).

Ast varies over the interval [a,b], the poift y) traces out a curv€ joining the points
(g(a), f(a)) and(g(b), f(b)). If g(a) # g(b), the slope of the chord determined by these
points is

f(b)—f(a)

g(b) —g(a)
Cauchy’s form of the mean-value theorem asserts that tiseaepoint(x,y) on C at
which the tangent is parallel to the chord in question.

Exercise145, page 29
In its simplest form, I'Hi£jpital’s rule states that for fctions f andg, if
lim f(x) = lim g(x) = 0
and
lim f'(x)/d ()

X—C

exists, then
f'(X)

You can use Cauchy’s mean-value theorem to prove this singsgon. Make sure
to state your assumptions to match up to the situation in thereent of Cauchy’s
mean-value theorem.

Exercise146, page 30

Just expand the determinant.
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Exercisel47, page 30

Let ¢(x) be

f(a) g(a) h(a)
f(b) g(b) h(b)
fF(x) g(x) h(x)
and imitate the proof of Theoref¥3

Exercise148, page 30

By the mean-value theorem
flc)—f(b) / f(b)—f(a)
A St/ > -~ 7
b f'(€1) > F(&2) b a
for some pointa < &; < b < &, < c. The rest is just elementary algebra.
Note that we should be able to conclude even more if the disévis strictly in-
creasing since then
FO) —F) _ gy o e — B 1@
cop &> &)=

Exercise149, page 30

From Lipman BersClassroom Notes: On Avoiding the Mean Value Thegr&mer.
Math. Monthly 74 (1967), no. 5, 583.

It is hard to agree with this eminent mathematician thatestisl should avoid the
mean-value theorem, but (perhaps) for some elementarsesldisis is reasonable. Here
is his proof:

“This is intuitively obvious and easy to prove. Indeed, assuhat there is
ap,a< p<b, suchthatthe s&of all x, a< x < p, with f(x) > f(p) is not
empty. Sefj = supS; sincef’(p) > 0we havea< g < p. If f(q) > f(p),
then sincef’(q) > 0, there are points @to the right ofq. If f(q) < f(p),
thengis not inSand, by continuity, there are no points®fear and to the
left of g. Contradiction.

... The “full* mean value theorem, for differentiable but montinuously
differentiable functions is a curiosity. It may be discubsegether with
another curiosity, Darboux’ theorem that every derivatbeys the inter-
mediate value theorem.”

Exercise150, page 30

From Howard Levi,Classroom Notes: Integration, Anti-Differentiation an@€anverse
to the Mean Value TheoremAmer. Math. Monthly 74 (1967), no. 5, 585-586.
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Exercisel51, page 30

If there are no exceptional points then the usual mean-vk®rem does the job. If,
say, there is only one poimtinside wheref’(c) does not exist then apply the mean-
value theorem on both of the intervdls c|] and [c,b] to get two pointst; and&;, so

that
fo—f@ _
c—a

(1)

e f(b)— 1(c)
—f(c
— 7 = {/(&)).
b c (€2)
Then
[f(b)— f(a)] < (c—a)|f'(&1)| + (b—c)|'(&2)| <M(b—a)

where forM we just choose whichever is largéf, (§1)| or |f/(§1)|. A similar proof
will handle more exceptional points.

For a method of proof that does not invoke the mean-valuerd¢nesee Israel
Halperin, Classroom Notes: A Fundamental Theorem of the Calculuser. Math.
Monthly 61 (1954), no. 2, 122-123.

Exercisel52, page 30

This simple theorem first appears in T. Fleitmean value theorenMath. Gazette
(1958), 42, 38-39.

We can assume thdt(a) = f’(b) = 0 [otherwise work withf (x) — f'(a)x]. Con-
sider the functiorg(x) defined to bdf(x) — f(a)]/[x—a] for x £ aand f'(a) atx = a.
We compute that

/ foo—f@ , &9 9 | f(x)
g0 =- (x—a))? TaT Tx—atx—a

Evidently to prove the theorem is to prove tigahas a zero irfa,b). Check that such
a zero will solve the problem.

To get the zero off first consider whetheg(a) = g(b). If so then Rolle’s theorem
does the job. If, insteady(b) > g(a) then

/ 9(b)
g(b) = “b_a =~ 0.

Thusg is locally decreasing di. There would then have to be at least one pgjrfor
which g(x1) > g(b) > g(a). The Darboux property of the continuous functignill
supply a pointxy at whichg(xp) = g(b). Apply Rolle’s theorem to find thay’ has a
zero in(xp,b). Finally, if g(b) < g(a), then an identical argument should produce the
same result.

Exercisel53, page 31

Repeat the arguments for Rolle’s theorem with these newthgges. Then just take
anyy betweerF’(a) andF’(b) and writeG(x) = F(x) — yx. If F’(a) < y< F’(b), then
G(a) =F'(a) —y< 0 andG'(b) = F’(b) —y > 0. This shows then that there is a point
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& € (a,b) such thatG'(§) = 0. For thisg we have

F') =G +y=YV,
completing the proof for the cad€(a) < F'(b). The proof wherF’(a) > F’(b) is
similar.

Exercise154, page 31

If F"is continuous, then it is easy to check tRatis closed. In the opposite direction
suppose that evelfy, is closed andr’ is not continuous. Then show that there must be
a numberB and a sequence of poin{g,} converging to a pointz and yetf’(x,) > 3
and f'(z) < B. Apply the Darboux property of the derivative to show thas ttannot
happen ifEg is closed. Deduce th&’ is continuous.

Exercisel55, page 31

Polynomials have continuous derivatives and only finiteBngpoints where the value

is zero. Letp(x) be a polynomial. Thep/(x) is also a polynomial. Collect all the points
C1, G, ...,Cp Wherep/(x) = 0. In between these points, the value of the derivative is
either always positive or always negative otherwise thebBax property ofp’ would

be violated. On those intervals the function is decreasirigareasing.

Exercisel56, page 31

Take any poinea < x < b and, applying the mean-value theorem on the intefaad,
we obtain that

IF(X) —F(a)] = F'(§)(x—a) = 0(x—a) =0.
ConsequentlyF (x) = F(a) for all a < x < b. ThusF is constant.

Exercise157, page 32

In Exercisel49we established (without the mean-value theorem) that aifumevith
a positive derivative is increasing.

Now we assume theE’(x) = 0 everywhere in the intervdla,b). Consequently,
for any integem, the functionsG(x) = F(x) +x/n andH (x) = x/n— F (x) both have a
positive derivative and are therefore increasing. In paldr, if x <y, then

H(x) <H(y) and G(x) < G(y)
so that
—(y=x)/n<F(y)=F(x) <(y—x)/n

would be true foralh=1,2,3,.... This is only possible i (y) = F(X).

Exercise158, page 32

We wish to prove that, iF : | — R is defined at each point of an open intervand
F’(x) =0 for everyx € |, thenF is a constant function on On every closed subinterval
[a,b] C | the theorem can be applied. Thtigs a constant on the whole interval If
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not then we could find at least two different poimgsandx; with f(x;) # f(xz). But
then we already know thdtis constant on the interv@ly, x,| (or, rather on the interval
[X2,X1] if X2 < X1).

Exercise159, page 32

Take any pointg < d from the interval[a, b in such a way thatc,d) contains no one

of these exceptional points. Consider the closed, bounatedval [c,d] C [a,b]. An

application of the mean-value theorem to this smaller viaieshows that
F(d)—F(c)=F'(§)(d—c)=0

for some point < § < d. ThusF(c) = F(d).

Now take any two pointa < x; < X < band find all the exceptional points between
them: sayx; < €1 < Cp < --- < €y < X2. On each intervalxy, ¢, [C1,C2], - ., [Cn, X2]
we have (by what we just proved) that

F(x1) =F(c1], F(c1) =F(c2), ...,F(cn) =F(x2).
ThusF(x1) = F(x2). This is true for any pair of points from the intenjal b] and so
the function is constant.

Exercisel61, page 32

Take any points andx inside the interval and consider the intenvial] or [c,X]. Apply
the theorem to determine thBtmust be constant on any such interval. Consequently
F(x) =F(c) foralla<x<b.

Exercisel62, page 32

This looks obvious but be a little bit careful with the exdepél set of point where
F'(x) # G/(x).

If F'(x) = f(x) for everya < x < b except for points in the finite s€ andG'(x) =
f(x) for everya < x < b except for points in the finite s€b, then the functiorH (x) =
F (x) — G(x) is uniformly continuous offa.b] andH’(x) = 0 for everya < x < b with the
possible exception of points in the finite §atJC,. By the theorenH is a constant.

Exercisel63, page 32

According to the theorem such a function would have to beodisicuous. Any step
function will do here.

Exercisel64, page 32

Lete > 0. At every pointx in the interval(a, b) at whichF’(xp) = 0 we can choose a
d(Xo) > 0 so that

IF(y) -F(2)| <ely—7
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for xo — d(Xg) <2< X0 <y < X+ 0(Xp). At the remaining points, b, ¢, ¢, C3, ... we
choosed(+) so that:

w(F,[a,a+d(a)]) <

Al NIl m

OO(F, [b - 6(b)7 b]) <
and c
w(F, [¢j —8(c)), ¢ —3(cy)]) < 537
for j =1,2,3,.... This merely uses the continuity défat each of these points.
Take any subintervalc,d] C [a,b]. By the Cousin covering argument there is a
partition
{([Xiflyxi]vzi) = 172737" . 7n}
of the whole intervalc, d] such that
& € [x—1,%] and x —xi_1 < 3(&).
For this partition

|F(d ]<Zl\F F(x-1)| <e(d— C+ZZJ g(d—c+1).

This is possible only ifF (d) — F(c)| = 0. Since this applies to any such interi@d] C
[a,b] the function must be constant.

Exercisel65, page 32

According to Theoreni.33this will be proved if it is possible to write the rational
numbers (wher&’(x) is not known) as a sequence. This is well-known. To try it on
your own. Start off

1/1,-1/1,1/2,-1/2,2/1,-2/1,3/1,-3/1,1/3,-1/3,...
and describe a listing process that will ultimately incladlerational numbersn/n.

Exercisel66, page 33

Apply Exercisel65to the functionF (x) = G(x) —x?/2. SinceF is constantG(x) =
x2/2+C for some constar€.

Exercisel67, page 33

This looks like an immediate consequence of Theotedd but we need to be slightly
careful about the exceptional sequence of points.

If F/(x) = f(x) for everya < x < b except for points in the a sequeniag, c,,cs, ... }
andG'(x) = f(x) for everya < x < b except for points in the sequene, ,d,,ds, ... },
then the functiorH (x) = F(x) — G(x) is uniformly continuous ora.b] andH’(x) =0
for everya < x < b with the possible exception of points in the combined segeen
{C1,d1,Cp,dp,C3,03, ... }. By Theoreml.33 the functionH is a constant.
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Exercisel69, page 33

First show directly from the definition that the Lipschitzition will imply a bounded
derivative. Then use the mean-value theorem to get the csmvéhat is, apply the
mean-value theorem tbon the intervalx,y| foranya<x <y <h.

Exercisel70, page 33

The derivative off (x) = /X = x%/2 is the functionf’(x) = x1/2/2 which exists but is
not bounded or0, 1).

Exercisel71, page 33

One direction is easy. F is Lipschitz then, for some numbbf,
[F(x) = f(y)] < M|x—y]|
for all x, y in the interval. In particular
F(x+h)—F(x) M|(x+h) — x|
h h

The other direction will take a more sophisticated argumefit each pointxg
choose &(xp) > 0 so that

<

=M.

<M

F(x0+h) —F(x)
h
whenever, +h € | and|h| < 8(xp). Note that, then,
F(y) ~F(2
y—z
for Xo — 8(Xo) <2< X <Yy < X+ 0(X). Take any subintervgk,d] C [a,b]. By the
Cousin partitioning argument there is a partition
{([Xiflyxi]vzi) = 172737" . 7n}
of the whole intervalc, d] such that
&i € [xi—1,%] and X —Xi—1 < 8(&)).

<M

For this partition
n

|H®—F@»s§yﬁmr$wqnh;iMM—m1m=Mm—w

ThusF is Lipschitz.

Exercisel72, page 33

In preparation ...

Exercisel73, page 34

In preparation ...
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Exercisel74, page 34

Yes on any intervala, «) if a > 0 but not on(0, e).

Exercisel75, page 34

Yes. This is a simple example of a nondifferentiable Liptchinction, but note that
there is only one point of nondifferentiability.

Exercisel78, page 34

From the inequality

'F(y)—F(x)
y—X

<Mly—x|

deduce thaF’(x) = 0 everywhere.

Exercise180, page 34

Find an example illustrating that the first condition candheithout the second condi-
tion holding for any value oK < 1.

Exercise181, page 34

Yes if all the functiond, F, F3, ... have the same Lipschitz constant. But, in general,
not otherwise.

This is just a simple consequence of the theory of sequendts land how they
behave with inequalities. If we suppose tkat y and that

~M(y—x) <Fa(y) —Fa(X) < M(y—x)
foralln=1,23,..., then
—M(y—x) < lim [Fa(y) — Fa(X)] < M(y—X)
must be true.

Exercisel182, page 36

By the definition, it is indeed an indefinite integral fBf except that we require all
indefinite integrals to be continuous. But then we recall éhfunction is continuous at
all points where the derivative exists. So, finally, yes.

Exercise183, page 36

No. There may be finitely many points wheféx) is not defined, and even ff(x) has
been assigned a value there may still be finitely many poihereF’(x) = f(x) fails.



5.1. ANSWERS TO PROBLEMS 195

Exercise184, page 36

Exercisel62is almost identical except that it is stated for two unifoyrobntinuous
functionsF and G on closed, bounded intervala,b|. Here(a,b) is open and need
not be bounded. But you can apply Exerclé2to any closed, bounded subinterval of
(a,b).

Exercise185, page 38

The two functionsF (x) = x and G(x) = 1/x are continuous orf0,1) but G is not
uniformly continuous. [It is unbounded and any uniformlyntinuous function on
(0,1) would have to be bounded.] Thus the two functidiig) = F’(x) = 1 andg(x) =
G'(x) = —1/x? both possess indefinite integrals on the intef@al) so that, of the two
indefinite integralg- is uniformly continuous and the oth&ris not.

Exercise186, page 38

The mean-value theorem supplies this on any subintéeydl on whichF is differen-
tiable; the proof thus requires handling the finite exceyaticet. LetM be larger than
the values of f (x)| at points wherd~’(x) = f(x). Fix x < yin the interval and split the
interval at all the points where the derivati#é might not exist:

a<X<C << - <Ch<y<h
The mean-value theorem supplies that
[F(t) —F(s)| <Mls—t]

on any intervals,t] for which (s,t) misses all the points of the subdivision. But adding
these together we find that

[F(t) —F(s)| < M[s—t|
on any intervals,t] C [x,y|. Butx andy are completely arbitrary so that
[F(t) —F(s)| < M[s—t|

on any intervals,t] C (a,b).
We already know that if a function is Lipschitz @a,b) then it is uniformly con-
tinuous on(a,b).

Exercise187, page 38

It is true that the derivative of/3+ 1 is indeedx? at every poinix. So, provided you
also specify the interval in question [hefe o, ) will do] then the functionF (x) =
x3/34 1 is one possible indefinite integral 6fx) = x2. But there are others and the
symbol [ x?dxis intended to represent all of them.

Exercise188, page 39

As we know
(x+1)2 = x4+ 2x+ 1.
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The two functiongx+ 1)? andx? + 2x+ 1 differ by a constant (in this case the constant
1). In situations like this it is far better to write

/(2x+ 1)dx= (x+1)2+C;
and
/(2x+ 1)dx= (x*+2x) +Cp

whereC; andC, represent arbitrary constants. Then one won't be usingaime detter
to represent two different objects.

Exercise189, page 39

Show thafF is an indefinite integral of (x) =x2 on (0,1) in this stupid sense if and only
if there are three number§, C,, andCs with 0 < C; < 1 such thafF (x) = x3/3+C,
on (0,C;) andF (x) = x3/3+Cz on (Cy,1).

Exercise190, page 39

By a direct computation
/)—];dx: log|x|+C

on any open interval for which 0¢ I. The functionF (x) = log|x| is a continuous
indefinite integral on such an interviallt cannot be extended to a continuous function
on [0,1] [say] because it is not uniformly continuous. (This is easysé¢e because
uniformly continuous functions are bounded.

The fact thatf (0) = 1/0 is undefined is entirely irrelevant. In order for a functton
have an indefinite integral [in the calculus sense of thiptdndit is permitted to have
finitely many points where it is undefined. See the next ezeraiheref (x) = 1/1/|x|
which is also undefined at= 0 but does have an indefinite integral.

Exercise191, page 39

By a direct computation the functidh(x) = 2,/x for x > 0 has a derivative

= = -1
F(x)_\/),( NG

Thus on the interval0, ) it is true that
/\/—1’_‘dx: 2N +C.
X
On the other han@(x) = —2,/|x| for x < 0 has a derivative
1

1
SV U

Thus on the interval—o, 0) it is true that

1
/WdX: —2y/N+C.

G
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While this might look mysterious, the mystery disappearseatihe correct interval
is specified. The two integrals are not in conflict since onstrba stated on the interval
(0,0) and the other on the intervg+,0).

Exercise192, page 39

By a direct computation the functiof(x) = 2,/X for x > 0 andF (x) = —2,/—x for
x < 0 hasF’(x) = f(x) at every point with the single exception f= 0. Check that
this function is continuous everywhere. This is immedidtpants wherd- is differ-
entiable, so itis only at = 0 that one needs to check continuity.

Once again, the fact thd{0) is undefined plays no role in the discussion since this
function is defined everywhere else.

Exercise193, page 39

None of them are correct because no interval is specified.cdirect versions would
be
/)—1(dx: logx+C on(0,)
or
/%dx:log(—x)JrC on (—c,0)
or
/%dx:log|x|+C on (0,0) or on (0, ).

You may use subintervals, but we know by now that there aramet intervals possi-
ble.

Exercise194, page 40

The maximum value off in each of the interval$0, 3], [3,3], [3.3], and [3,1] is
1/8, 1/4, 9/16, and 1 respectively. Thus defiketo be x/8 in the first interval,
1/32+1/4(x—1/1/4) in the second interval,/B2+1/16+9/16(x— 1/2) in the third
interval, and to be 132+ 1/16+ 9/64+ (x— 3/4) in the final interval. This should be
(if the arithmetic was correct) a continuous, piecewisedinfunction whose slope in
each segment exceeds the value of the function

Exercise195, page 41

Start at 0 and first of all work to the right. On the intery@l1) the functionf has
the constant value 1. So defifg€x) = x on [0,1]. Then on the the intervdll, 2) the
function f has the constant value 2. So deffhgx) = 1+ 2(x—1) on [1,2]. Continue
until you see how to descrilde in general. This is the same construction we used for
upper functions.
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Exercise196, page 42

Let Fp denote the function of®, 1] that has~(0) = 0 and has constant slope equal to
Cor=sup{f(t):0<t < 1}.

Subdivide[0,1] into [0, 3] and[3, 1] and letF; denote the continuous, piecewise linear
function on[0, 1] that has~(0) = 0 and has constant slope equal to

cii=sup{f(t):0<t< 3}
on [0, 3] and constant slope equal to
cro=sup{f(t): 3 <t<1}
on [0,%]. This construction is continued. For example, at the neagest Subdivide
[0,1] further into[0, 3], [7, 3], [3, 3], and[2, 1]. LetF, denote the continuous, piecewise
linear function on0, 1] that has(0) = 0 and has constant slope equal to
cu=sup{f(t):0<t<Z}
on [0, 7], constant slope equal to

cro=sup{f(t): <t< 3}
on[%,1], constant slope equal to
cis=sup{f(t): 3 <t<3}

on[3,32], and constant slope equal to
cla=sup{f(t): 3 <t<1}
on[3,1].
In this way we construct a sequence of such functitis. Note that eachr, is
continuous and nondecreasing. Moreover a look at the gepmesieals that

Fn(x) > Fn+l(x)
foral0<x<1landalln=0, 1, 2,.... In particula{F,(x)} is a nonincreasing
sequence of nonnegative numbers and consequently

F(x) = rI]im Fn(X)
—>00
exists for all 0< x < 1. We prove thaF’(x) = f(x) at all pointsx in (0,1) at which the
function f is continuous.

Fix a pointxin (0,1) at which f is assumed to be continuous anddet 0. Choose
5> 0 so that the oscillatidn

f ([x—23,x+ 29])

of f on the intervalx— 28,x+ 28| does not exceeel Leth be fixed so that & h < 8.
Choose an integeM sufficiently large that

|IFn(X) —F(X)| < eh and |Fy(x+h) —F(x+h)| < €h.
From the geometry of our construction notice that the inbtyua
|Fn (X4 h) — Fn(x) — f(x)h| < hof ([x—2h,x+ 2h]),
must hold for large enougN. (Simply observe that the graph Bf will be composed

1See Exercisé?2.
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of line segments, each of whose slopes differ frbfr) by no more than the number
wf([x—2h,x+2h]).)
Putting these inequalities together we find that
|F(x+h)—F(x)— f(x)h| <
|FN (X4 h) — Fa(X) — F(X)h| 4+ |Fn(X) — F(X)| 4+ |Fn(X+ h) — F(x+h)| < 3eh.
This shows that the right-hand derivative ofat x must be exactlyf(x). A similar
argument will handle the left-hand derivative and we hav#ied the statement in the
theorem about the derivative.
The reader should now check that the functtodefined here is Lipschitz 00, 1].
Let M be an upper bound for the functidn Check, first, that
0 < Fa(y) —Fa(}) <M(y—X)
for all x < yin [0,1]. Deduce thaF is in fact Lipschitz on0, 1].

Exercise197, page 42

If H(t) = G(a+t(b—a)) then, by the chain rule,
H'(t) =G'(a+t(b—a)) x (b—a) = f(a+t(b—a)) x (b—a).
Substitutex = a+t(b—a) for each 0<t < 1.

Exercise198, page 42
If G'(t) = g(t) then& (G(t) +Kt) = g(t) + K = f(t).

Exercise199, page 42

The assumption that is continuous on an intervdh,b) means thatf must be uni-
formly continuous on any closed subinterj@ld] C (a,b). Such functions are bounded.
Applying the theorem gives a continuous function witlix) = f(x) everywhere on that
interval. This will construct our indefinite integral ¢a,b). Note that~ will be Lips-
chitz on every subintervat,d] C (a,b) but need not be Lipschitz o, b), because we
have not assumed thétis bounded oria, b).

Exercise200, page 43

You need merely to show thét is continuous on the interval and that(x) =rf (x) +
sg(x) at all but finitely many points in the interval. But bokhandG are continuous
on that interval and so we need to recall that the sum of coatis functions is again
continuous.

Finally we know thatF’(x) = f(x) for all x in | except for a finite se€;, and we
know thatG'(x) = g(x) for all xin | except for a finite set,. It follows, by properties
of derivatives, that

H'(X) = rF’(x) + sG(x) = rf (x) +sgx)
at all pointsx in | that are not in the finite s€; UC,.
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Exercise201, page 43

If F andG both have a derivative at a pointhen we know, from the product rule for
derivatives, that
d
ax FGX)] = F'(x)G(X) +F(x)G'(x)
Thus, let us suppose that(x)G(x) has an indefinite integrdd (x) on some interval.
ThenH is continuous on andH’(x) = F’(x)G(x) at all but finitely many points of.
Notice then that
K(X) = F()G(x) —H(x)

satisfies (at points where derivatives exist)

K'(x) = F'(X)G(X) + F (X)G'(x) — F'(X)G(X) = F(X)G'(x).
Thus

/F(X)G’(x)dx: K(X) +C = F(X)G(x) — H(x) +C = F (X)G(X) —/F’(X)G(x)dx

Exercise202, page 43

One memorizes (as a calculus student) the formula

/udv: uv—/vdu

and makes appropriate substitutions. For example to deterfrxcosxdx useu = x,
v = cosxdx determinedu= dx and determine = sinx [or v = sinx+ 1 for example].
Then substitute in the memorized formula to obtain

/xcosxdx:/udv: uv—/vdu:xsinx—/sinxdx: XSinx-+ cosx+C.
or [if you had used/ = sinx+ 1 instead]

/xcosxdx: X(sinx+1) — /(sinx+ 1) dx= xsinx+ cosx+C.

Exercise203, page 44

If you need more [you are a masochist] then you can find thenmenveb where we
found these. The only reason to spend much further time igufgre shortly to face a
calculus exam where some such computation will be requifgehu are an advanced
student it is enough to remember that “integration by passherely the product rule
for derivatives applied to indefinite or definite integratio

There is one thing to keep in mind as a calculus student prepgor questions that
exploit integration by parts. An integral can be often spfitinto many different ways
using the substitutions of integration by parts= f(x), dv= g (x)dx, v= g(x) and
du= f/(x)dx. You can do any such problem by trial-and-error and just dbarany
unpromising direction. If you care to think in advance aldmaw best to choose the sub-
stitution, choosei = f(x) only for functionsf(x) that you would care to differentiate
and chooselv = g (x)dx only for functions you would care to integrate.
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Exercise204, page 44

In most calculus courses the rule would be applied only unasibns where both func-
tions F and G are everywhere differentiable. For our calculus integralhave been
encouraged to permit finitely many exceptional points andist then that our indef-
inite integrals are continuous.

That does not work here: I€(x) = x| andG(x) = x?sinx1, G(0) = 0. ThenG
is differentiable everywhere arkdis continuous with only one point of nondifferentia-
bility. But F(G(x) = |[¥?*sinx~!| is not differentiable at any point = +1/1, +1/2T,
+1/3m, ... Thusk(G(x) is not an indefinite integral in the calculus senseFqIG(x))
on any open interval that contains zero and inde€e(x)) would have infinitely many
points where it is undefined. This function is integrable oy @pen interval that avoids
zero.

This should be considered a limitation of the calculus irgkgThis is basically
an 18th century integral that we are using for teaching mepo If we allow infinite
exceptional sets [as we do in the later integration chaptiees the change of variable
rule will hold in great generality.

Exercise205, page 44

To be precise we should specify an open interfrake, o) will do. To verify the answer
itself, just compute

%{{%sin(xzqL 1)} = cogx’+1).

To verify the steps of the procedure just notice that the tiukisn u= x>+ 1, du=
2xdxis legitimate on this interval.

Exercise206, page 45

It would be expected that you have had sufficient experieolsng similar problems to
realize that integration by parts or other methods will it that a change of variable
will succeed. The only choices likely in such a simple in&grould beu = X2 or
perhaps/ = e’. The former leads to

/xe?‘zdx: %/e“du: %e“+C:eXZ+C [u=x]

since ifu = x2 thendu = 2xdx the latter leads to
/xe‘zdx: Z/V\/Iogvdv: ?2 =€

since ifv = & thenx? = logv, x = /logv anddv = 2xe” dx = 2v,/IogV.

Note that a wrong choice of substitution may lead to an dgpto@rrect result which
does not accord with the instructors “expectation.” Usuallculus instructors will
select examples that are sufficiently transparent thatdhect choice of substitution
is immediate. Better yet, they might provide the subsbtutihat they require and ask
you to carry it out.

Finally all these computations are valid everywhere so wailshstate our final
result on the interval—o, «). Most calculus instructors, however, would not mark you



202 CHAPTER 5. ANSWERS

incorrect if you failed to notice this.

Exercise207, page 45

Assuming thatr # 0 (in which case we are integrating a constant function), thee
substitutionu = rx+ s, du= rdx to obtain

/frx+sdx_ /f uydu=F(u)+C=F(rs+x)+C.

This is a linear change of variables and is the most commongghaf variable in
numerous situations.

This can be justified in more detail this way. Suppose fhitt)dx=F(t) +C on
an open interval, meaning thafF is continuous andF’(t) = f(t) on| with possibly
finitely many exceptions. Then find an open interdao thatrx4+s e | for all x € J.
It follows that F(rx +s) is continuous orJ and that%F(rX-i-S) = f(rx+s) again
with possibly finitely many exceptions. QrthenF (rx + s) is an indefinite integral for
f(rx+s).

Exercise208, page 45

This is an exercise in derivatives. Suppose thata,b) — R has an indefinite integral
F on the interval(a,b). Let & be a point of continuity off. We can suppose thét
in contained in a subintervdk,d) C (a,b) inside whichF’(x) = f(x) for all points,
except possibly at the poigtin question.

Lete > 0. Then, since is continuous ak, there is an intervalk, — &(§), & + 8(&)]
so that

f)—e< f(x) < f(§)+e

on that interval. For any < & < vin this smaller interval

(f(§) —&)(€—u) <F(&) —F(u)
and

(f&)+&)(v—¢&) = F(v) —F(&).
This is because the functidn is continuous orju,&] and [&,v] and has a derivative
larger than(f(&) —€) on (u,&) and a derivative smaller tharf (&) +¢€) on (§,v). To-
gether these inequalities prove that, for any & <v, u# von the interval§ —(§),& +
0(&)) the inequality

FV-FU E( )—f(E) <e

vV—
must be valid. But this says th&t(&) = f(§).

Exercise209, page 47

In fact this is particularly sloppy. The function I6g— 8) is defined only fox > 8 while
log(x+ 5) is defined only fox > —5. Thus an appropriate interval for the expression
given here would bé8, ). But it is also true that

[ a2 dx=[11/13log((x - 8) + [2/13 log((x-+ 5)) +
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on any open interval that does not contain either of the poiat 8 or x = —5. For
example, on the intervdl-5, 8), the following is valid:

[ 2o dx=[1/13)0g(8~x) + [2/13)g(x+ 5) + C.

You might even prefer to write

X+3 _i ST 2
/x2—3x—40dx_ 130918 =X (x+5)7} +C.

Exercise210, page 51

Find the necessary statements from Chapter 1 from whicleéim$e concluded.

Exercise211, page 52

Yes. Just check the two cases.

Exercise212, page 53

We know this fora < b < c. Make sure to state the assumptions and formulate the thing
you want to prove correctly. For examplepik a= c does it work?

Exercise215, page 53

For a functionx(t) = t?> compute the integrafolx(f)d f. That is perfectly legitimate
but will make most mathematicians nauseous.
How about usingl as a dummy variable: compufé d?dd? Or use the Greek letter
Tas a dummy variable: what j%lsinndn’?
Most calculus students are mildly amused by this computatio
cabin=2

2 d[cabin _
/1 [cabin {logcabin} zpin-1 = log2

Exercise216, page 54
That is correct but he is being a jerk. More informative is
/ 2 dx— & /24-C,

which is valid on any interval. More serious, though, is ttie student didn’t find
an indefinite integral so would be obliged to give some argunadout the function
f(x) = X to convince us that it is indeed integrable. An appeal toinaity would be
enough.

Exercise217, page 54

That is correct but she is not being a jerk. There is no singi@dla for any indefinite
integral ofe® other than defining it as an integral as she did here (or per&ajnfinite
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series). Once again the student would be obliged to give samgement about the
function f(x) = e’ to convince us that it is indeed integrable. An appeal toinaity
would be enough.

Exercise218, page 54

One can use any indefinite integral in the computation, sb bbthose methods are
correct.

Exercise219, page 54

Probably, but the student using the notation should remeihia¢ the computation at
thec end here is really a limit:

Exercise220, page 55

Step functions are bounded in every interf@lb] and have only a finite number of
steps, so only a finite number of discontinuities.

Exercise221, page 55

Differentiable functions are continuous at every point aodsequently uniformly con-
tinuous on any closed, bounded interval.

Exercise222, page 55

If f:(ab)— Risbounded we already know thhis integrable and that the statements
here must all be valid. If is an unbounded function that is continuous at all points of
(a,b) then there is a continuous functiéhon (a,b) for which F’(x) = f(x) for all
points there. In particulaF is uniformly continuous on any intervéd,d] C (a,b) and
so serves as an indefinite integral proving thad integrable on these subintervals.

In order to claim thaff is actually integrable ofa, b] we need to be assured that
can be extended to a uniformly continuous function on aladf|. But that is precisely

what the conditions
c 1
lim [ f(x)dx and Iim/ f(x)dx
t—b— C

t—a+ Ji
allow, since they verify that the limits

t'ﬂ& F(t) and JLTJ )

must both exist. We know that this is both necessary and miffién order that-
should be extendable to a uniformly continuous function lbofga, b).
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Exercise223, page 56

We suppose that has an indefinite integr& on (a,b). We know thatf is integrable
on any subintervac,d] C (a,b) but we cannot claim that is integrable on all ofa, b]
until we check uniform continuity of.

We assume thatis integrable ona, b] and construct a proof thdtis also integrable
on[a,b]. Let G be an indefinite integral fay on the open intervala, b). We know that
G is uniformly continuous becauggs integrable.

We check, foma < s<t < bthat

t t
/ £(x)dx g/ 19(x)| dx= G(t) — G(S).
S S
from which we get that
IF(t)—F(s)| <G(t)—G(s) foralla<s<t<ec

It follows from an easyg, d argument that the uniform continuity Bffollows from the
uniform continuity ofG. Consequentlyf is integrable orja, b].

For the infinite integral,f;” f (x) dx the same argument give us the uniform conti-
nuity but does not offer the existencefofw). For that we can use Exerciéé. Since
G(e0) must exist in order for the integrdf” g(x) dx to exist, that Exercisé4 shows us,
that for alle > 0O there should exist a positive numbeso that

WG((T,»)) < €.

But we already know that
WF ((T,0)) <WG((T,e)) <.
A further application of that same exercise shows usHtat) does exist.

Exercise224, page 56

If f is continuous at all points ofa,b) with the exception of pointa < ¢; < ¢; <
.-+ < Cm < b then we can argue on each interyaJci|, [c1,C2], ..., [Cm,b]. If T is
integrable on each of these subintervalgaob| then, by the additive property, must
be integrable orfia, b] itself.

We know thatf has an indefinite integral of&, c¢;) because is continuous at each
point of that interval. By TheorerB.7 it follows that f is integrable ora,c;]. The
same argument supplies thais integrable on on each interviah, cy], . . ., [Cm, D].

Exercise225, page 56

The method used in the preceding exercise will worlf. i§ continuous at all points of
(a,o0) with the exception of pointa < ¢; < ¢ < - < ¢y, then we can argue on each
interval [a,c1], [C1,C2], ..., [Cm,). If f is integrable on each of these subintervals of
[a,) then, by the additive property, must be integrable ofa, ») itself.

We know thatf has an indefinite integral of&, c¢; ) because is continuous at each
point of that interval. By Theorer®.7it follows that f is integrable orja, c;]. The same
argument supplies thdt is integrable on on each intervigh,cy], ..., [Cm-1,Cm|. FOr
the final intervalcy, «) note thatf is continuous at every point and so has an indefinite
integral on(cm, ). Now invoke Theoren3.9to conclude integrability ofty, ).
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Exercise226, page 56
Note, first, that all of the integrands are continuous on titerval (0,71/2). Using the
simple inequality
x/2<sinx<x (0<x<T11/2)

we can check that, on the interv@l, 1;/2),

1 - sinx

V2~ X
so that the first integral exists because the integrand isnemus and bounded.
For the next two integrals we observe that

<1

1 sinx 1

T <y e
va Vo =

1 - sinx<1
\/ix_\/ x3 T x

Thus, by the comparison test, one integral exists and ther dibes not. It is only the

integral
/2 i
/ 1/ %dx
0 X

that fails to exist by comparison with the integral

1 (w21
1y,
Vv2Jo X

and

Exercise227, page 56

The comparison test will handle only the third of these irdégproving that it is in-
tegrable. We know that the integrands are continuougOo®) and so there is an
indefinite integral in all cases. The inequalisinx| < 1 shows that

sinx 1
X2 X2

* 1
— dx
/1 X2
converges. That proves, by the comparison test that
* sinx
/ ——dx
1 X
converges.

To handle the other two cases we would have to compute lirhitsta determine
convergence. The comparison test does not help.

and we know that the integral

Exercise228, page 56

If a nonnegative functiori : (a,b) — R is has a bounded indefinite integFabn (a, b),
then that functiorF is evidently nondecreasing. We can claim tlias integrable if
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and only if we can claim that the limitS(a+) andF (b—) exist. For a nondecreasing
functionF this is equivalent merely to the observation tRas bounded.

Exercise229, page 57

In view of the previous exercise we should search for a coexéenple that is not non-
negative. Find a bounded functién: (0,1) that is differentiable but is not uniformly
continuous. TryF (x) = sinx~* and takef = F',

Exercise230, page 57

The focus of your discussion would have to be on points wheeedenominatog(x)
has a zero. Ifa, b] contains no points at whialis zero then the integrand is continuous
everywhere (even differentiable) at all pointgafb] so the function is integrable there.
You will need this distinction. A poinkg is azeroof q(x) if q(xg) = 0. A pointXg
is a zero ofg(x) of order k(k=1,2,3,...) if
A(x) = (x—0)*h(x)
for some polynomiah(x) that does not have a zeroxgt
Work on an intervalxo, c] that contains only the one zexg. For example, i is
a zero of the first order fog, p(Xp) # 0 and the interval contains no other zeros for
andq then there are positive numbearsandM for which
m_ _ p(X) - M
X=X — q(X) ~ X—Xo
on the intervalxo, c|. The comparison test supplies the nonintegrability of threfion
on this interval.
Do the same at higher order zeros (where you will find the dpgasnclusion).

Exercise231, page 57

Compare with Exercisg30. First consider only the case whédeew| contains no zeros
of eitherp(x) or q(x). Then the integral

/x M dx

a q(x)

exists and it is only the limiting behavior & — o that needs to be investigated. The

key idea is that if

p(X)
X~ q(x)

for somem > 0 and alla < x < « then the integral must diverge. Similarly if
M [P0
X2~ 1q(x)

for someM > 0 and alla < x < o then the integral must converge.

For a further hint, if you need one, consider the followinguament used on the

integral

m
— <

o 1+ X% «
1 14+X+x24+x3
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Since
lim |x° x S o S
X—00 14+ X+ X243
it follows that, for all sufficiently large values of
IV o S
1+ X+x24x3
or
1+x 2
‘m @

Exercise232, page 57
In Exercise261we established the identity

Amf(x)dx:ni/n:f(x)dx

valid if the function f is integrable ori0,«). Becausef is a nonnegative, decreasing
function on[1, ) we can see that

f(n-1) > /nlf(x)dxz f(n).

From that we can deduce that the sef§és, f(n) converges.
Conversely suppose the series converges. Let

F(x):/le(t)dt

which is an indefinite integral fof on (0,). The functionF is nondecreasing. As
before,

n
f(n—1)>F(n) —F(n—1) :/ F(x)dx> f(n).
n-1
We can deduce from this that if the serig&_; f(n) converges then the limit
F(e0) = lim F (x)

exists. It follows that the integral exists.

Exercise233, page 57

In Exercise3.11we saw that this would not be possible if the functibis also nonde-
creasing. That should be the clue as to where to look for atecexample.
Exercise234, page 57

In Exercise3.11we saw that this would not be possible if the functibis also nonde-
creasing. Again that is a clue for finding a counterexample.

Exercise235, page 57

Uniformly continuous functions are integrable. Hdigis also uniformly continuous.
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Exercise236, page 57

Bounded, continuous functions are integrable. Hayes also bounded continuous and
has discontinuities only at the points where ond @i g is continuous.

Exercise237, page 57

Take f(x) = g(x) = . Thenf(x)g(x) = § WhICh we know is not integrable d@,1].
It is the unboundedn ess of the functlons that causes theutiffi Clearly some un-
bounded functions are integrable, but “really big” unboeshdunctions may not be.

Exercise238, page 58

If both f andg are continuous functions df, «) then they must be integrable on every
bounded interval. So it is just a delicate matter to arramgelfem to be integrable
without the product being integrable; this requires aitento the large values.

In every intervaln,n+1] (n=1,2,3,...) choosef to be a continuous, nonnegative
function arranged so that

n+1
/ f(x)dx< 1/n?
but n+1
/ (f(x))2dx>1/n.

This is just an arithmetic problem in each interval. Thereobs that, foN <X <N+1,

:/1Xf(t)o|tg§li12
G(x) = / dt>Nlel

The functionsF andG are continuous, nondecreasing functions for which, evigen
F (o) exists butG(w) does not.

and

Exercise239, page 58

By the product rule for derivatives

(FG) =F'G+FG
at all but finitely many points. Thus, sin€€G is uniformly continuous, the function
FG + F'Gis integrable.

Exercise240, page 59

The proof is an easy exercise in derivatives. BsendG for the indefinite integrals of
f andg. Let Ng be the set of pointg in (a,b) where f(x) < g(x) might fail. Suppose
thatF’(x) = f(x) except on a finite sét;. Suppose thab'(x) = g(x) except on a finite
setNp.
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ThenH = G—F hasH’(x) = g(x) — f(x) > 0 except on the finite sé&do UN; UN.
This set is also finite and, sinéeandG are uniformly continuous on the interval, so
too isH. We now know that iH is uniformly continuous orfa, b] and
d
&H(x) >0
for all but finitely many points in (a,b); thenH(x) must be nondecreasing ¢e b].
Finally thenH (a) < H(b) shows thaf (a) — F(b) < G(b) — G(a) and hence that

/abf(x)dxg /bg(x)dx

a

Exercise244, page 60

If the formula

d !/ /
ax (GX)) =F(GX))G (x)

holds everywhere then

b
/a F'(G(x))G'(x)dx=F(G(b)) — F(G(a)).

But we also know that

Exercise245, page 60

That does not work here. F(x) = |x| andG(x) = x*sinx~%, G(0) = 0, thenG is differ-
entiable everywhere aridis continuous with only one point of nondifferentiabilitgut
F(G(x) = |x?sinx~!| is not differentiable at any point= +1/m, +1/2m, +1/3m, ....
ThusF (G(x) is not an indefinite integral in the calculus senseFtiG(x)) on |0, 1] and
indeedF’(G(x)) would have infinitely many points where it is undefined. Thisdtion
is, however, integrable on any interval that avoids zeroesthere would then be only
finitely many points at which the continuous functiBiG(x)) is not differentiable.

This is a feature of the calculus integral. Other integratizeories can handle this
function.

Exercise248, page 60

If F"is integrable [calculus sense] @mb] thenF is continuous there and differentiable
at all but finitely many points of the interval. Hence the foiten

SF(G(9) = F/(600)6 ()
holds everywhere with at most finitely many exceptions. @gogntlyF’(G(x))G'(x)

must be integrable and

/bF’(G(x))G’(x)dx: F(G(b)) —F(G(a)) :/ F/(x)dx
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Exercise249, page 61

The integrand is continuous at each point@fr?) so the inequality

COSy/X - 1
VX T X
and the comparison test can be used to show that the integstd.e
With F(u) = sinu, F’(u) = cosu, u= /X, and u= dx//x, a change of variables
shows that

™® i
Cos\ﬁ(dx:Z/ cosudu= 2sintt— 2sinQ
0 VX 0

Integrability also follows from the change of variable fara itself. TakeF (u) = sinu
andG(x) = /x. ThenG'(x) = 1/2,/x. The functionF (G(x)) is continuous or0, T¢]
and is differentiable at every point of the open interi@#®) with a derivative

q ) COSy/X
ax (B00) = cos(G() x G'(x) = =2

It follows that the integral must exist and that

™
/o ngy/i dx= F(G(?)) ~ F(G(0)).

Exercise250, page 61

Let us just do the infinite integral. If*, f(x) dxexists then there is an indefinite integral
F on (—, ) and bothF (o) andF () exist. By definition

[ f0dx=F (=) ~F(@),

and

/_b f(x)dx = F (b) — F (—o0)
b

/ f(x)dx= F (b) — F(a)

must all exist.

Exercise251, page 61

Let us do the additivity formula for the infinite integral. fif, f(x) dx exists then there
is an indefinite integraF on (—oo, ) and bothF () andF () exist. By definition

[ A0 dx= F (o) — F(—o9) = [F (e0) — F(0)] + [F(6) — F(2)] + [F ) — F (—o0) =

/_if(x)dx+/abf(x)dx+/bmf(x)dx

Any other additivity formula can be proved the same way.



212 CHAPTER 5. ANSWERS

The theorem requires proving another observation. If wenkti@at the integral
exists on two abutting intervals then we must check thatigtexon the union. Here is
the method. If

/_Zf(x)dx and /:f(x)dx

both exist then select indefinite integr&on (—,a] andG on [a,«). DefineH (x) =
F(x) for x <aandH(x) = G(x) — G(a) + F (a) for x> a. ThenH is continuous and
must therefore be an indefinite integral fbron (—c, ). We need to know that the
limiting valuesH (—o) andH () both exist. BuH (—o) = F (—c) andH () = G().
Thus the integral

/ f(x)dx

must exist.

Exercise252, page 61

We suppose that the two functiofsg are both integrable on a closed, bounded interval
[a,b] and thatf (x) < g(x) for all x € [a,b]. We can IfF is an indefinite integral fof

on [a,b] andG is an indefinite integral fog on [a, b] then seH (x) = G(x) — F(x) and
notice that

JH = 2600~ F(9) > g0 — 19 20

except possibly at the finitely many points where the dexigadoes not have to agree
with the function. But we know that continuous functionshwilonnegative derivatives
are nondecreasing; the finite number of exceptions does attenior this statement.
ThusH (b) —H(a) > 0 and sdG(b) — G(a)] — [F (b) — F(a)] > 0. Consequently
b b
| 109 ax= [F(b) ~F(@)] < [G(b) ~G(a)] = | "g(xdx

The details are similar for infinite integrals.

Exercise253, page 61
We know that
/xzdx: x3/3+C

on any interval. So that, in fact, using [for example] thediion F (x) = x3/3+ 1 as an
indefinite integral,

/_zlxzdx: F(2)— F(~1) = [2%/3+ 1)~ [(-1)3/3+1] =3,

Exercise254, page 61

We know that
dx
/7 =log|x|+C

on (0,) and on(—,0).
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In particular we do have a continuous indefinite integral othlof the open inter-
vals (—1,0) and (0,1). But this indefinite integral is not uniformly continuoush&
easiest clue to this is that the function |ggis unbounded on both intervals-1,0)
and(0,1).

As for integrability on, say the interval-1,1]. This is even clearer: there is no
antiderivative at all, so the function cannot be integrdiylelefinition.

As to the fact thatf (0) is undefined: an integrable function may be undefined at
any finite number of points. So this was not an issue and ditieed to be discussed.

Finally is this function integrable on the unbounded intéifeo, —1] or on the un-
bounded intervall,«)? No. Simply check that neither limit

lim logx or lim log(—x)
X—r00 X——00

exists.

Exercise255, page 61

We know that the functioifr (x) = 2,/X is uniformly continuous o010, 2] and that

d 1
ALY

for all x > 0. Thus this function is integrable ¢, 2] and
21
— dx=F(2) - F(0) =2V2.
J A= F@ RO

The fact thatf is undefined at an endpoint [or any one point for that mat&emad
concern to us.

Some calculus course instructors may object here, ingigtiat the ritual known as
“improper integration” needs to be invoked. It does not! Vdegddefined the integral in
such a way that this procedure is simply part of the definitieor courses that start with
the Riemann integral this procedure would not be allowedesimbounded functions
are not Riemann integrable. The functibfx) = x~/2 is unbounded o010, 2) but this
causes us no concern since the definition is only about aivtidiges.

Finally, is this function integrable o0, «)? No. The endpoint 0 is no problem but
limy_;0 2/X dO€s not exist.

Exercise256, page 62
The simplest method to handle this is to split the problem #t &< 0 < b then

/bl/\/mdx:/Ol/mdx+/ob1/mdx:/01/\/—_xdx+/ob1/ﬁ<dx

if these two integrals exist. For an indefinite integralfodn (0,) useF(x) = 2,/X
and for an indefinite integral df on (—c,0) useF (x) = —2,/—x.
Thus

[ 1V ox=F(0) - Fa) =2/a
and

/obl/\/de: F(b)— F(0) = 2vb.
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Exercise257, page 62

In defining an integral ofg, b as

/bf(x)dx:F(b)—F(a)

we have allowed~’(x) = f(X) (a < x < b) to fail at a finite number of points, say at
C1 < Cp < --- < Cp provided we know thaF is continuous at each of these points. We
could merely take the separate integrals

/aclf(X)dK /Cflf(x)dx.-.,/:f(x)dx

and add them together whenever we need to. Thus the integril be defined with
no exceptional set and, for applications, ...well add uppibees that you need.

The calculus integral is only a teaching integral. The modbeory requires a
much more general integral and that integral can be obtdigeallowing an infinite
exceptional set. Thus the training that you are getting Ingliag the finite exceptional
set is really preparing you for the infinite exceptional #esides we do get a much
better integration theory with our definition, a theory tganheralizes quite well to the
modern theory.

Another thing to keep in mind: when we pass to an infinite eoapl set we
maybe unable to “split the interval in pieces.” Indeed, wé auentually allow all of
the rational numbers as exceptional points where the devanay not exist.

Exercise258, page 62

The derivative ofF exists at all points in0,1) except at these cornergri, n =
2,3,4,5,.... If a> 0 then the intervala, 1] contains only finitely many corners. But the
interval (0,1) contains infinitely many corners! Thi#s undefined at infinitely many
points of[0, 1] andF(x) is not differentiable at these points.

Itis clear thatF is continuous at all points inside, since it is piecewisedin At the
endpoint 0 we havé (0) and we have to check thé (x) — F(0)| is small ifx is close
to zero. This is easy. S is uniformly continuous 010, 1] and the identity

/bF’(x)dx: F(b)—F(a)

is true for the calculus integral & > 0. It fails for a= 1 only because there are too
many points where the derivative fails.
What should we do?

1. Accept thaF' is not integrable and not worry about such functions?

2. Wait for a slightly more advanced course where an infingiea$ exceptional
points is allowed?

3. Immediately demand that the calculus integral accommeodaequence of ex-
ceptional points, not merely a finite set?
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We have the resources to do the third of these suggestionsiodled have to prove
this fact though:

If F, G: [a,b] are uniformly continuous functions, K'(x) = f(x) for all
points in(a,b) except points in some sequenfg } and if G'(x) = f(x)
for all points in(a,b) except points in some sequenfgh }, thenF andG
must differ by a constant.

If we prove that then, immediately, the definition of the céls integral can be ex-
tended to handle this troublesome example. This fact isawhéard to prove, but it is
nonetheless much harder than the finite case. Remembetttrauses only the mean-
value theorem to find a proof. Accepting sequences of exaagitpoints will make our
simple calculus course just a little bit tougher.

So we stay with the finite case for this chapter and then intedhe infinite case
in the next. After all, the calculus integral is just a warmiategral and is not intended
to be the final say in integration theory on the real line.

Exercise259, page 62

(1). There is no functiofr’(x) = 1 for all x irrational andF’(x) = 0 if x is rational, on
any interval[c,d]. To be an indefinite integral in the calculus sense on anvialté, b
there must subintervals whekeis differentiable. Why is there not? Well derivatives
have the Darboux property.

(2) There are two many points whefeis not defined. Every interval contains
infinitely many rationals.

(3) The only possible indefinite integralkx) = x+ k for some constant. But then
F’(x) = f(x) has too many exceptions: at all the poirts=1/n, 1=F'(x,) # f (X)) =
Cn unless we had insisted thaf = 1 for all but finitely many of the(c, }.
Note: The first two are Lebesgue integrable, but not Riemann iatdg. The third
is Lebesgue integrable and might be Riemann integrablesrdidpg on whether the
sequencdcy} is bounded or not. Thus the calculus integral is quite disfiom these
other theories.

Exercise260, page 62

The functionF (x) = xP*1/(p+ 1) is an antiderivative oK0,) if p# 1. If p= 1 then
F(x) = logxis an antiderivative of0, ). Thus for your answer you will need to check
F(0+), F(1), andF () in all possible cases.

Exercise261, page 62

Yes. Take an indefinite integrél for f and write

[ 10dx=F(e0) — F(—e0) = F () — F () + F (b) — F a) + F (a)  F (<9

:Laf(x)dx+/abf(x)dx+/bwf(x)dx
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For the second formula write
| H00dx=F ()~ F(0) =
F(e0) =F(N)+[F(N) =F(N=1)]+...[F(2) - F(1)]+[F(1) - F(0)]

N n
N)+nzl/nlf(x)dx

Then, since liM_«[F () — F(N)] = 0, it follows that

) N n fad n
/0 f(x)dx:l\lllinmn;A_lf(x)dx: Zl/n_lf(x)dx

n=
The third formula is similar.

Exercise262, page 63

Let F(x) = 0 for x < 0 and letF(x) = x for x > 0. ThenF is continuous everywhere
and is differentiable everywhere excepiat 0. Consider

/iFK@dx:Fﬂ)—FQJ):l
and try to find a poin whereF’(§)(1— (—1)) = 1.

Exercise263, page 63

Let mandM be the minimum and maximum values of the functi®nlt follows that

m/ m</ m<M/

by monotonicity of the integral. Dividing through tﬁ’cb dt (which we can assume
is not zero), we have that

_ [2GMmomdt _
T JRemad T

SinceG(t) is continuous, the Darboux property of continuous fundigre., the inter-
mediate value theorem) implies that there ex¢sts|a, b] such that

b
G(x) = 2GRt
fa ¢(t)dt

which completes the proof.

Exercise266, page 64

In Exercise227 we avoided looking closely at this important integral butds do so
now.
We need to consider the indefinite integral

%@:AEEd

which is known as thein integral function and plays a role in many investigations.
Since the functions—* and sirx are both continuous ofD, «) there is an indefinite
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integral on(0,). There is no trouble at the left-hand endpoint because tegrand
is bounded. Hence the functi®i(x) is defined for all 0< x < co.
Our job is simply to show that the limfBi(c) exists. It is possible using more
advanced methods to evaluate the integral and obtain
. sinx 11
Si(oo) = /0 k= .
To obtain that the limiSSi(o) exists let us apply the mean-value theorem given as
Exercise265. On any intervala, b] C (0, »)

/bx‘lsinxdx— cosa— cost N cOSE — cosb
a N a b
for some¢. Consequently
b 2
|Si(b) — Si(a ]_‘/ smx _+t_)

From this we deduce that the oscillationSifon intervals[T,) is small if T is large,
i.e., that

WSI([T, ]) < $ 50

asT — oo. It follows thatSi(e0) must exist. This proves that the integral is convergent.
Finally let us show that the function
sint

F(x):/ox—

is unbounded. Then we can conclude that the integral digeagd that the Dirichelet
integral is convergent but not absolutely convergent.

To see this take any intervint, (2n+ 1)17 on which sinx is nonnegative. Let us
apply the mean-value theorem given as Exergigé This will show that

dt

(2n+1)1t| gint 1
/ — | dt> —.
2nmt t 2nTt
It follows that forx greater thamZN +1)m
sint (2n+2)m sint N1
dt > t>y —.
/ z /2 - nzl 2nm
Consequently- is unbounded.
Exercise267, page 66
The choice of midpoint
Xi+X-1 3
2 — NI

for the Riemann sum gives a sum
1h 1
- 5210»-2—&-2-1) =5 (b7 =X 45 =X o+ —&] = (b*—a%) /2
1=

To explain why this works you might take the indefinite in&ld¥ (x) = x?/2 and check
that
F(d)-F(c) c+d
d-c 2
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so that the mean-value always picks out the midpoint of tterval [c, d] for this very
simple function.

Exercise273, page 67

Just take, first, the poin&s at which we have the exact identity
[ fodx- f(&(x - x-0) =0

Then for any other poing;,

[ foax— f(E) 06—

The final comparison with

= |F(&) = FE)I06 —%i-1) < @F (P4, %-1]) (% —Xi-1).

PXCERIEES

follows from this.
To get a good approximation of the integral by Riemann sunseéims that we
might need

5 0 ()5 50

to be small. Observe that the pieces in the sum here can besmedléf (a) the function

is continuous so that the oscillations are small, or (b) {soivhere the function is not
continuous occur in intervals;, x| that are small. Loosely then we can make these
sums small if the function is mostly continuous, i.e., whitis not continuous can be
covered by some small intervals that don’t add up to much. mbdern statement of
this is “the function needs to be continuous almost everyahe

Exercise274, page 69

This is the simplest case to prove since we do not have to fue a&ndpoints or at
exceptional points wheréis discontinuous.
Lete > 0 and choos@® > 0 so that

wf([e,d)) < ﬁ

wheneveilc,d] is a subinterval ofa, b] for whichd — ¢ < . Note then that if

{(%,%-1],&) :1=1,2,...n}
is a partition offa, b] with intervals shorter thad then

5 0 (a5 —0) < e/ (0 ] 4 —xr) =
Consequently_, by Exercis&’3, :

[ 1ax- 21 &) 06— % 1)
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n

"2
i=

Exercise275, page 69

/: F(x)dx— (&) (% —%1)| <E.

You can still use the error estimate in Exercd§&, but will have to handle the endpoints
differently than you did in Exercisg74.

Exercise276, page 69

Add one pointc of discontinuity off in (a,b) and prove that case. [Do farwhat you
did for the endpoints andb in Exercise275]

Exercise277, page 69

Once we have selected

{(%,%-1],&) :1=1,2,...n},
a partition of[a, b] with intervals shorter thad we would be free to move the points
& anywhere within the interval. Thus write the inequality dmald everything fixed
except, for one value df letx_1 < & < X vary. That can be used to obtain an upper
bound for|f(§)| for x_1 < & < X;.

Exercise278, page 69

Of course we can more easily use the definition of the integrdicompute thajﬁ)lxzdx:
1/3—0. This exercise shows that, under certain simple conditinasmerely can we
approximate the value of the integral by Riemann sums, weppaaiuce a sequence of
numbers which converges to the value of the integral. Sirdpligle the interval at the
points O, ¥n, 2/n, ...,n—1)/n, and 1. Take& = i/n [the right hand endpoint of the
interval]. Then the Riemann sum for this partition is

> <i>21_ P4+ 24+ P42 4+5° 464+
2

As n — oo this must converge to the value of the integral by TheoBehd. The student
is advised to find the needed formula for

1P+ 224+ 3+ 4 +5° 4+ 6%+ +N°
and determine whether the limit is indeed the correct vajtg 1

n

n n3

Exercise279, page 69
Determine the value of the integral

1
/ X2 dx
0

in the following way. Let O<r < 1 be fixed. Subdivide the intervéd, 1] by defining
the pointsg = 0,x1 =" 1, %o =12, ... %1 =r"("U =r andx,=r"" =1,
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Choose the point&; € [x_1,%] as the right-hand endpoint of the interval. Then

iﬁz(xq —X_1)= i (rn—i)2 (rn—i . rn—i+1).

Note that for every value af this is a Riemann sum over subintervals whose length is
smaller than %r.

Asr — 1— this must converge to the value of the integral by TheoBeb®. The
student is advised to carry out the evaluation of this limidétermine whether the limit
is indeed the correct value’3.

Exercise281, page 71

Let f(x) =1/nif x=1/nforintegersn=1,2,3,... and letf (x) = O for all other values
of x. Show that f is Riemann integrable on the interiall] and that

R)/abf(x)dx:o

but thatf is not integrable in the calculus sense[0rl].

Exercise282, page 72

Suppose first that is uniformly continuous orfia,b]. Thenf is integrable orja,b] in
the calculus sense. We prove (using a different method tenchosen by Robbins)
that f satisfies also this strong integrability condition. ket 0 andC > 0 be given.
Taked sufficiently small thatf (x) — f(y)| < €/Cif xandy are points ofa, b] for which
IXx—y| <o.

Write F(x) = [ f(t)dt. Suppose thaa < x <& <y<band that O<y—x < d.
Then, by the mean-value theorem, there is a poirdetweernx andy for which

F(y)—FX) = f(E&)(y—x).
Thus we also have
IF(y)—FX) = f@Ey—x)[=[[f(€) - f)Iy—X| < = (y X).

Then, for any choice of pointg,Xy,...,X, and&1,&o,...,&n from [a,b] with the
properties in the statement of the definition,

- _if(aom x| =

Zlf (% —%i—1)

3, [FO0)—F (sct) — (&) 06—

<Zl\F F (% 1)—f(Ei)(Xi—Xi—l)’<é_i’Xi—xi—l‘Ss-

That completes the proof in this one direction.
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Exercise283, page 72

This is similar to proving that a sequence cannot have twerdifit limits. If you review
how that proof is done you will find that the same method wokkeh

Exercise284, page 72

This is a standard “Cauchy” version of the integrability dition. Such a statement is
equivalent to the other version. It is an essential elemkgeperal integration theory
to prove the equivalence of such statements.

This is similar to proving that a sequence is convergentdfamly if it is a Cauchy
sequence. If you review how that proof is done you will findt timauch of that method
works here.

Exercise285, page 72
Use Exercise97.

Exercise287, page 73

Because of Exerciseé®85and297we know that such a functiohwith these properties
would have to have the same properties on each subintervatedver Exercis@86
shows that there must be a functibn [a,b] — R with I (x,y) = F(y) — F(x) for each
as<x<y<h.

Suppose, contrary to what we want to prove, that there isrd paoif discontinuity
of f in the interval. We will assume that< z < b and derive a contradiction. (The
casesz = a andz = b are similarly handled.) Then there must be a positive number
n > 0 so that, if we choose any points < z < 2z, the interval(z,z] must contain
pointscy andc, for which|f(cy) — f(c2)| > n.

Now we apply the strong integrability hypothesis using

| =F(b)—F(a),e=n/4, andC=b—a+4
to obtain a choice 0d with 0 < & < 1 that meets the conditions of the definition on
[a,b]. Choose pointg; < z< 7z so thatz, — z < 6 and then select pointg andc; in
the interval[z;, 2] for which f(c1) — f(c2) > n.
Construct a sequence
a=X <X <--<Xp=21
along with associated poin{g;} so that O< x —X_1 < d and so that

Zif (% —%i-1)

This just uses the integrability hypotheses of the funcfian the intervala, z;].
Choose the least integeso that

)| <n/4

rNz—2z)>1
Note that
I<rz—z)=r-1)(z—za)+(2-—z)<1l+(n—7)<1+d< 2.
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Usingr continue the sequende; } by defining points
Xp=Xpt2 =Xpra = = = Xpror = 21

and

Xp+1 = Xp43 = Xp45 ="+ = Xpjor—1 = 2.
Write §p2j = Crandéppj_1=cifor j=21,2,...r

Finally complete the sequengg } by selecting points

Z1 = Xpror <Xpp2r41 <-- <Xn-1 <Xn =D

along with associated poin{g;} so that

n

F(b)—F(z) — F(E) (% — X
(b) —F(2) ifp;r+1 (&)(% —xi-1)

This just uses the integrability hypotheses fawn [z, b].
Consider now the sum
Zlf (X —Xi-1)

taken over the entire sequence thus constructed. Obsetve th
p+2r n

n p
lexi —X-1| = Z(X& —X-1)+ Y XX+ Z (% —Xi-1)
i= i= i=p+1 i=p+2r+1

—(z—a)+2r(z2—2z)+(b-2z)=
(b—a)+2r(zz~2z) < (b-a)+4=C.

Thus the points chosen satisfy the conditions of the dedimitbr thed selected and we
must have

<n/a.

n

F(b)-F(a) - Zlf(Ei)(Xi —%i-1)

<e<n/a.

On the other hand

[F(Zl) —F(@)+F(b)—F(z) - if(zi)(xi _Xi—l)]

~|Feo-ro-Freoe -y

F(b)—F f _
(b) —F(z1) - i:p;m (&) (% —x 1)]

p+2r
——[z uaxm—n4{

i=p+1

_|_

From this we deduce that
p+2r

S FE)0 % 1)

i=p+1

<3n/4
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But a direct computation of this sum shows that
p-+2r

> &) —x-1) =[f(cr) — f(c2)lr(z2—z1) > nr(zz—z) >n.
i=p+1

This contradiction completes the proof.

Exercise288, page 73

The same methods will work for this theorem with a little effo Obtain, first, an
inequality of the form

[F(&)a&) — f(&)a& )|
<M (o(f,[X,%i-1]) + (g, [, %-1])) -
To obtain this use the simple identity
ajap —biby = (a3 —by)az + (ag — b)) by

and use foM an upper bound of the sum functiofi + |g| which is evidently bounded,
since bothf andg are bounded.

Exercise289, page 74
Obtain, first, an inequality of the form
f(E) (&) fa(&) . Tp(&) — (&) 267 (&) ... fp(EP)
< MJw(f1, 6, %i-a]) +0(f2, X, Xi-1]) + 0(f3, %, Xi-1]) + -+ +(fp, [xi,%i-1])] -

To obtain this use the simple identity

apaaz...ap —bibobs... by
= (ag—by)agag...ap+ (ap—bp)baz...ap+ (a3 —bz)bibpas...ap+ ...

+(ap —bp)bibobs. .. bp_1

and use an appropriahd.

Exercise290, page 74

First note that the functiohl ( f(x),g(x)) is defined and bounded. To see this just write

IH((x),9())| <M([f(x)[+]g(x)])
and remember that bothandg are bounded. It is also true that this function is contin-
uous at every point ofa, b) with at most finitely many exceptions. To see this, use the
inequality
IH(f(X),9(x)) —H(f(X0),9(x0))| < M(|f(x) = f(x0)| + |9(X) — 9(*0)|)
and the definition of continuity.

Thus the integrayef’F(f(x),g(x))dx exists as a calculus integral and can be ap-
proximated by Riemann sums

._iH (F(&),9(&)) (X —%-1).
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To complete the proof just make sure that these sums do riet difuch from these
other similar sums:

5 HF(&).0(6) (4~
That will follow from the inequality
IH(f(&).9(&)) —H(f(&).9(&))|
<Mlg(&) —9(&) | <Mox(g, [Xi-1,%]).

Exercise291, page 75

Notice, first, that
b n Xi
f(X)dx= / f(x)dx
/1o AR
Thus
n

zl{/: () dx— (&) (x —m}'

IRCESS LT

N X
< i; /M (%) dx— f(&)(% —Xi_1)

merely by the triangle inequality.

Exercise292, page 75

This is the simplest case to prove since we do not have to tue &ndpoints or at
exceptional points wherfe’ may fail to exist. Simply leg > 0 and choose at each point
x a numbed(x) > 0 sufficiently small so that

e(z—y)

F@—-Fy) - )=yl <5

when 0< z—y < d(x) andy < x < z. This is merely the statemeRt(x) = f(x) trans-
lated intog, o language.
Now suppose that we have a partition

{(%,%-1],&):1=1,2,...n}
of the interval[a, b] with each
X —%-1<98(&) and & € [X-1,X].
Then, using our estimate on each of the interyals;, x;_1],

IREESI LT

= > I[F() —F(6-1)] = &) (X —xi-1)| <

[ foax— 1(&) 06—

&
b—ast

=}
=}

(X —X%_-1) =€.



5.1. ANSWERS TO PROBLEMS 225

Exercise293, page 76

This is still a simpler case to prove since we do not have te &ighe endpoints and
there is only one exceptional point to worry about, not adisit of such points.

Lete > 0 and, at each point# c, choose a numbe¥(x) > 0 sufficiently small so
that ( )

g(z—y
IF(2) —F(y)— f(x)(z—y)|| < 2(b—a)

when 0< z—y < d(x) andy < x < z. This is merely the statemeRt(x) = f(x) trans-
lated intog, o language.

At x = c select a positive numbe(c) > 0 so that

IF(@-FWI+[f)lz-y) <¢/2
when 0< z—y < 8(x) andy < x < z This is possible becauseis continuous at so
that|F (z) — F(y)| is small ifzandy are sufficiently close te; the second part is small
since| f(c)| is simply a nonnegative number.
Now suppose that we have a partition

{(%,%-1],&) :1=1,2,...n}
of the interval[a, b] with each

X —X-1<0(&) and & € [x_1,X].
Then, using our estimate on each of the interyals, x;_1],

/ ") dx— FE) (% —x1)

- _il[F(Xi)—F(Xil)] —f(&)(x —x-1)| <&/2+ bTEa._i'(X‘ X 1)t =€

Note that we have had to add th& in case it happens that one of §he= c. Otherwise
we do not need it.

Exercise294, page 76

Exercise274 and Exercis€@75illustrate the method. Just add more points, including
the endpoint& andb into the argument.

Letcy, ¢, ..., Cy be a finite list containing the endpoirasandb and each of the
points in the interval wher&’(x) = f(x) fails. Lete > 0 and, at each point # ¢,
choose a numbe¥(x) > 0 sufficiently small so that

CE) - X (z—y)|| < EETY)
F@=FO) - T0E=YIl < 3575
when 0< z—y < 8(x) andy < x < z. This is merely the statemeht(x) = f(x) trans-
lated intog, 6 language.

Atx=cj (j=1,23,...,M) select a positive numbeéc;) > 0 so that
w(F, [a,b]N[c; —3(cj), ¢j +3(cj)]) +6(c)) | f(c)| < &/2M



226 CHAPTER 5. ANSWERS

when 0< z—y < §(x) andy < x < z. Thus just uses the continuity Bf.
Now suppose that we have a partition

{(6,%-1],&i) 11 =1,2,...n}
of the interval[a, b] with each
X —X-1<90(&) and & € [xi_1,X].
Note, first, that if§; = c; for somei and j (which might occur at mos¥l times), then
[[F (%) = F(xi-1)] — (&) (% —%i-1)]
< w(F, [a,b]N[cj —3(cj),cj +3(cj)]) +6(c)) | f(c)| < &/2M.
At any other poing; # c;

F@)—F(y) — f(z—y)|| < 22~V

2(b—a)’

Consequently
n

iZl

- ._il[ﬂm —F(4-0)] — (&) 06 —x-0)| < /24 b%a__im —xo)t|=e

/ " F () dx— ()06 — 1)

i—1

Exercise295, page 77

Note that the calculus integral

b
/ F'(x)dx= F(b) - F(a)
a
exists For each poir in [c,d] taked(&) sufficiently small that

Fiy)—F(¥) €
U= e <
wheneverx andy are points injc,d] for whichx < & <y and 0<y—x< 8(§). This

gives us
F)—F—F'@(—X]| < Zy—x).

Then, for any choice of pointgy,X,...,X, and&z1,&2,...,&n from [c,d] with the
four properties of the statement of the theorem,

[P 5 @

n

21 [F(x) —F(xi-1) = F'(&) (% —%1)]

< i‘F(Xi)—F(Xi—l)—F’(Ei)(Xi —Xi-1)| < é_i\xi —X_1| <e.
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Exercise297, page 77

This is a standard “Cauchy” version of the integrability dibion. Such a statement is
equivalent to the other version. It is an essential elemegeneral integration theory
to prove the equivalence of such statements.

Exercise298, page 78

Use Exercis@?.

Exercise300, page 78

The easy direction is already contained in Theof&@&7. Theorem3.27 shows that
every derivative does have this strong version of the ialgitity property.

The proof is structured so as to be similar in many detailhéogroof of Theo-
rem??. Let us then suppose thatis a function possessing this property on an interval
[a,b]. Under the hypotheses here, we need to establish two faots fasrly standard
methods of integration theory.

Our methods are similar to those used in Secldn& Because of Exercisex08
and ?? we know that such a functiof with these properties would have to have the
same properties on each subinterval. Moreover ExeB898eshows that there must be
a functionF : [a,b] — R with I (x,y) = F(y) — F(x) for eacha<x <y <b.

We claim now that='(x) = f(x) at every pointx in the interval[a,b]. Suppose
that there is a poing in the interval at which it is not true tha&'(z) = f(z). One
possibility is that this is because the upper right-hanchi)Dderivative atz exceeds
f(z) by some positive valug > 0. Another is that the valué(z) exceeds the upper
right-hand (Dini) derivative az by some positive valug > 0. There are six other
possibilities, corresponding to the other three Dini detiixes under whiclF’(z) = f(2)
might fail. It is sufficient for a proof that we show that thisstipossibility cannot occur.
From this we will obtain a contradiction to the statementia theorem.

Thus we will assume that there must be a positive numperO so that we can
choose an arbitrarily small positive numlteso that the intervalz, z+t] has this prop-
erty:

F(z+t2 F(2) > H(2)4n

and hence so that
F(z+t)—F(z) > f(z2)t +nt.
We give the details assuming this and that z < b. Now we apply the theorem
usinge < n/4, andC = b— a+ 6 to obtain a choice of positive functidrthat meets the

conditions of the theorem. Choose a number0< 1 for whicht < §(z) andz+t < b
and with the property that

F(z+t)—F(z) > f(z2)t +nt.
Let sbe the least integer so thsit> 2. Note that, consequently,
2<st=(s—-t+t<2+t<3.
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We first select a sequence of points
Z=UWp< U <U < - <U_1=2+t
and point; from [x_1, %] so that O< u; — u;_1 < d(v;) and

This is possible simply becausfepossesses the strong integrability property on the
interval [z, z+t]. Now we add in the point = zandvy = z
We compute that

)| <nt/2

k—1

Zlf U—u_1)=—f(2t+ Zlf(ui)(ui—ui_l)

> —[F(z+t) - —nt] +Zlf Ui —Ui_1) > nt/2.

while at the same time
K
zlbq —Xi—1| =2t
i=

Z=Up< U@ < <U_1>U=2Z

Repeat this sequence

exactlystimes so as to produce a sequence
Z=Ug,Us,...U_1,U =2Z
with the property that

r

zl f(ui)(u —ui_1) >nst/2>n

while at the same time
r

Z'ui —Ui_1| = 2st< 6.
i=

Now construct a sequence
a=2<z7<---<Zp=12
along with associated poings so that 0< z —z_1 < 8(¢;) and so that

[ 1ax- 3 1)@ -0

We also need a sequence

<n/a.

Z=Wo<Wy <..Wg=Db
along with associated points so that O< w; —w;_1 < &(w;) and so that

b q
/Zf(x)dx—i;f(cq)(wi—wi_l)

Both of these just use the strong integrability property oh the subintervalg, z] and
(2]

<n/a.
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Now we put these three sequences together in this way
a=2<zn<--<Z=Z=UyU,....,Us =Z=Wo<W; <...Wg=Db
to form a new sequen@= xp, X, . .., Xy = b for which |x — x;_1| < 8(&;) and for which

N
Z]xi —Xi_1|=(z—a)+2st+(b—2z)=b—a+2st<b—a+6=C.

We useg; in each case as the appropriate intermediate point useere#itls associated
with an interval[z_1,z]| we had used;; associated with an interval;_1,w;| we had
usedw; while associated with a pafu;_1, u;) we usev;.
Consider the sum
Zif (% —Xi—1)

taken over the entire sequence thus constructed. Becaugwitits satisfy the condi-
tions of the theorem for thé function selected we must have

b N
JRCESPRIICEEEY
On the other hand

[ [ 1o [ bf(x)dx—i_if(zi)m —m]
[ g
o[ 1o 3 )

3 fO)u- ui_1>] .

Zf —U| 1 <3n/4

<e<n/4

_l’_

From this we deduce that

and yet we recall that
Zlf Ui —Ui_1) >nst/2>n.

This contradiction completes the proof.

Exercise301, page 79

The inequalities
— () < F0) < [F(¥)]
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hold at every poink at which f is defined. Since these functions are assumed to be
integrable on the intervah, bj,

_/b\f(x)ydxg/bf(x)dxg/b\f(X)!dX

which is exactly what the inequality in the exercise asserts

Exercise302, page 79
Observe that

n

ZlIF F(xi- 1)|—IZ1

for all choices of points

/ dx<zi/ X)| dx = /|f )| dx

A=Xg<Xg <X < < Xn_1 < Xn=h.

Exercise303, page 80

Define the functiorf= (x) = xcos(%), F(0) = 0 and compute

F'(x) = co1/X) + (T/X) Sin(T/x), x# 0.
ThusF is differentiable everywhere exceptxat 0 andF is continuous ak = 0. To
see the latter note that|x| < F(x) < |x].

ThusF’ has a calculus integral on every interval. Note th&ix) is continuous
everywhere except at= 0 and that it is unbounded d, 1).

We show thatF’| is not integrable off0, 1]. It is, however, integrable on any subin-
terval [c,d] for which 0< ¢ < d < 1 sinceF’ and henceF’| are continuous at every
point in such an interval.

Take any integek and consider the point = 2/(2k+ 1), by = 1/k and check that
F (ax) = 0 while F (bx) = (—1)/k. Observe that

O<ag<be<aygi1<b1<---<1

bx bx
[ IF0lax> | [TFxdx = [F(b) ~ F (@] = .
& &

If |F’| were, in fact, mtegrable 0l®, 1] then, summing of these pieces, we would have

z/ |dx</ IF'(x)|dx

This is impossible smcgkz1 g = .

Note: In the language introduced later, you may wish to obseratRlis not a function
of bounded variation of0,1]. There is a close connection between this concept and
absolute integrability.

and that




5.1. ANSWERS TO PROBLEMS 231

Exercise304, page 80

You can use the same argument but with different arithmefiais is the traditional

example that illustrates that the calculus integral, whitkgrates all derivatives, is
not contained in the Lebesgue integral. Indefinite Lebegsgegrals, since Lebesgue’s
integral is an absolute integration method, must be of bedwdriation on any interval.

In contrast, the function
(1
F(x) = x?sin (F)
is everywhere differentiable but fails to have boundedatam on|0, 1].

Exercise305, page 80

Sincef is continuous orja, b) with at most finitely many exceptions and is bounded it
is integrable. But the same is true fidi, since it too has the same properties. Hence
both f and|f| are integrable.

Exercise306, page 81

Subdivide at any one pointinside (a,b),
A=Xg <X =X<X =Dh.
Then
IF(X) —F(a)|+[F(x) = F(b)| <V(F,[a b]).
Consequently
IF(X)| < [F(@)|+|F(b)|+V(F[ab])
offers an upper bound fd¥ on [a, b].

Exercise307, page 81

If F:[a,b] — R is nondecreasing theh(x) = F(x) — F(a). This is because
n

3, IFO)—F o)l = 5 IF0) ~F -] = F0O —F (@

i=
for all choices of points

a=Xp <X <X <o <X < Xn =X
If F : [a,b] — R is nonincreasing thef(x) = F (a) — F (x). Putting these together yields

thatT (x) = |[F(x) — F(a)| in both cases.
Exercise308, page 81

Work on the separate subintervals|efit, 11 on which sirnx is monotonic. For example,
it is nondecreasing op-11/2,11/2).
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Exercise309, page 81

You should be able to show that

5 FF ()~ Fls-a)

is either O (if none of the points chosen was 0) and is 2 (if drtb@points chosen was
0). It follows thatV (F,[—1,1]) = 2.
Note that this example illustrates that the computatiornefdum

3 FF )~ Fls-a)

doesn’t depend merely on making the points close togethemmiay depend also on
which points get chosen. Later on in Exerc3E3 we will see that for continuous

functions the sum ]
IF (%) —F(Xi-1)|
2,

will be very close to the variation valué(F, [a, b]) if we can choose points very close
together. For discontinuous functions, as we see here, diedtéer consider all points
and not miss even one.

Exercise310, page 81
Simplest to state would bé(x) = 0 if x is an irrational number anél(x) = 1 if xis a
rational number. Explain how to choose points
A=X <X <X < < Xp1<Xr=Dhb
so that the sum

Z|F F(x_1)| >n.

Exercise311, page 81
Suppose thdt : [a b] — R is Lipschitz with a Lipschitz constamt. Then

Zl“: F(Xi-1 |<Zleu Xi-1) =K(b—a)

for all choices of points
A=Xg<Xg <X < - < Xn_1 < Xn=h.

ThusV (F,[a,b]) < K(b—a).

The converse is not true and it is easy to invent a countengbearivery monotonic
function is of bounded variation, and monotonic functioegeh not be Lipschitz, nor
even continuous.
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Exercise312, page 82
To estimateV (F + G, [a,b]) consider

5 F0)+ G0))— (F(x-2)+ Glx-)

for all choices of points
A=X <X <X < < Xp_1 < Xn=Dh.
By the triangle inequality,

_i\[F(m) +G(%)] = [F(x-1) +G(x_1)]|

< 3 F06) ~Fix)l+ 5 16(x) ~ Glx-1)| <V(F [ab) +V (G ab),

Exercise313, page 82
UseF = —G and therF + G is a constant and 98(F + G, [a,b]) = 0. Thus it is easy
to supply an example for which

V(F+G,[ab]) <V(F [ab])+V(G,[ab]).

For exact conditions on when equality might be possible s&& Eater\When total
variation is additive Proceedings of the American Mathematical Society, Vol@#he
No. 4, April 1982.

Exercise314, page 82

This is a substantial theorem and it is worthwhile makingegormaster the methods
of proof. Mostly it is just a matter of using the definition amdrking carefully with
inequalities.
(2). T is monotonic, nondecreasing {@b.

Takea < x <y < band consider computing(F,[a,x]). Take any points

A=Xg < XL <X <o < HKneg < Xp =X
Observe that the sum

Zl!F F(i-1)[+|F(y) —FJ[ <V(F [ay).

This this would be true for any such choice of points, it falfothat
V(F,[ax)+|F(y) —F(X)| <V(F[ay]).
ThusT(x) =V (F,[aX) <V(F[ay]) =T(y).
(1). foralla<c<d<b,
[F(d)—F(0)[ <V(F,[c,d]) =T(d)-T(c).

The first inequality,
[F(d) =F(¢)] <V(F,[c,d])
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follows immediately from the definition of what(F,[c,d]) means. The second in-
equality says this:
V(F,[a,d]) =V(F,a,c])+V(F [cd]) (5.2)
and it is this that we must prove.
To prove 6.2) we show first that

V(F,[a,d]) >V(F,[ac])+V(F,cd]) (5.3)
Lete > 0 and choose points
A=X <X <X < < K1 <Xy =C
so that

Z'F F(x-1)| >V (F [ac])—e.

Then choose points
C=Xp <Xni1 < Xni2 < - <Xp1<Xn=d
so that

m
S IF(x)—F(-1)| > V(F [c.d]) -
i=n+1
Observe that

Zl“: X| 1)|<V( >[a7d])'

Putting this together now you can conclude that
V(F> [av d]) > V(F> [av C]) +V(F7 [Cv d]) —2e.

Sinceg is arbitrary the inequalityS.3) follows.
Now we prove that

V(F,[a,d]) <V(F,[ac])+V(F,[cd]) (5.4)
Choose points

A=X <X < X< <X_1<X=d
so that

21“: F(x-1)] >V(F[ad]) -

We can insist that among the points selected is the poitself [since that does not
make the sum any smaller] So let us claim that c. Then

ZIF F(x-1)| <V(F[ac])
and

[F(x) = F(xi-1)| < V(F[c.d]).
=k+1
Putting this together now you can conclude that
V(Fv [a>d]) —&< V(Fv [a,c]) +V(F7 [Cvd])

Sincee is arbitrary the inequalityH.4) follows. Finally, then, the inequalitie$ Q)
and 6.4) verify (5.2).
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(3). If F is continuous at a point then sotoo is T.

We argue just on the right at the pomto claim that ifF is continuous a& then
T(a+) =T(a) = 0. The same argument can be repeated at any point and onssitaer
The valueT (a+) exists sinceT is monotonic, but it might be positive. Let> 0 and
choos&d; so that

ITX)—T(at)| <¢
if a< x < a+ 0. Choosa,, using the continuity oF ata, so that

IF(x)—F(a)| <€
if a < X< a+ &. Now take anya < x < min{d,,8,}. Choose points
A=X <X <X < - <Xp 1< X=X

so that
Zi“: F(Xi—1)| > T(x) —
Observe that
[F(x1) —F (%) = [F(x1) —F(a)| <t
and that
Z\F FOi-)[ STX) —Txa) <T(X) —T(at)—[T(x) —T(at+)] < 2.

Putting these together we can conclude that
T(X) <3¢
for all a < x < min{&1,8;}. ThusT (a+) = 0.

(4). If F is uniformly continuous ofa, b] then sotoo is T.
This follows from (3).

(5). If F is continuously differentiable at a point then s@ts T and, moreover
T'(%0) = [F'(x0)].

This statement is not true without the continuity assunmpsio your proof will have
to make use of that assumption. We will assume Eha continuously differentiable
ata and conclude that the derivative Bfon the right ai exists and is equal té'(a)|.
This means thdk is differentiable in some interval containimgand that this derivative
is continuous a4.

Lete > 0 and choos@ so that

IF'(a)—F'(x)| <€
if a< x < a+d. Now choose points
a=Xp <X <X < <Xp1<Xnp=X
so that

>21|F F(x_1)] > T(x) —&(x—a).

Apply the mean-value theorem on each of the intervals toilmbta

_iIF( F (%1 I—leF (% —x-1) = [F'(a)|(x— &) £ e(x—a).
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We can interpret this to yield that

T(x)—T(a)— |F'(a)l(x—a)| < 2&(x—a)
for all a < x < a+ 0. This says precisely that the right-hand derivativeToat a is
IF(a).
(6). If F is uniformly continuous offa,b| and continuously differentiable at all but
finitely many points ifa, b) then F is absolutely integrable and

F(x) —F /F t)dt and T(x /|F )| dt.

ForF’ to be absolutely integrable boBi and|F’| must be integrable. Certainfy/
is integrable. The reason thi@’| is integrable is that is continuous at all but finitely
many points in(a,b) and has for an indefinite integral the uniformly continuousdck
tion T. This uses (5).

Exercise315, page 82

The natural way to do this is to write
F(x) = <V(F, [a,x]) + @) - (V(E [a,x)) — ?)

in which case this expression is called floedan decompositiorit is then just a matter
of checking that the two parts do in fact exprdsas the difference of two monotonic,
nondecreasing functions. Theorén33contains all the necessary information.

Exercise316, page 82

The methods in Exercis&é03 can be repeated here. First establish continuity. The only
troublesome point is at= 0 and, for that, just notice that|x| < F(x) < |x| which can
be used to show thé&t is continuous ax = 0.
Then to compute the total variation of take any integemnd consider the points
ag = 2/(2k+ 1), by = 1/k and check thaf (a,) = 0 while F (bx) = (—1)k/k. Observe
that
O<ak<bi<ai<beri<---<1

Consequently
n
S a)| <V(F,[0,1]).

But

HM:

= 3, P —Fl@)
(F.[0.1)) = .

andyp 4 k = oo, [t follows thatV

Exercise317, page 82

See Gerald A. Heuefll he derivative of the total variation functipAmerican Mathe-
matical Monthly, Vol. 78, No. 10 (1971), pp. 1110-1112. Hwe statement about the
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variation it is enough to work of®, 1] since the values op-1, 0] are symmetrical. For

the statement about the derivatives, it is enough to workherright-hand side at 0,

sinceF (—x) = —F(x). Here is the argument far= 2 from Heuer’s article. Note that,

on each interval2/(2n+ 1)1, 2/(2n— 1)11, the functionF vanishes at the endpoints
and has a single extreme poxtwhere

1/nm<x,<2/(2n—1)1C
Thus the variation on this interval i$F2(x,)|, and
(1/nm)? = |F(1/nm)| < |F ()| <@ < {2/[(2n— 1)7i}2.
By the integral test for series (pagé)

0

1/n= /n wdx/xz < ki /K < (/)T (2/[(2n-1)m) < § [2/(2k-1)]?

k=n
< /(zng‘)/zdx/x2 =2/(2n—3).
Then, for Z[(2n— 1)1 < x < 2/[(2n— 3)11] (with n > 3) we have
1/n < (T?/2)T(x) < 2/(2n—5),
and hence
(2n—3)/n< (1/x)T (x) < (4n—2)/[(2n—5)17

It follows that the derivative oT on the right at zero is /A2t By symmetry the same is
true on the left s@’(0) = 2/

Exercise318, page 82

Exercise318shows that continuity would be needed for this result, ef/drere is only
one point of discontinuity.
Choosee > 0 so thatv+ € < V(F, [a,b]). Select points

a=Yo<Y1<Y2<-<Yn-1<Yk=Db

so that
k
> IF(yj) —F(yj-1)| > v+e. (5.5)
j=1
SinceF is uniformly continuous offi, b] there is a) > 0 so that
€

wheneverx— x| <n.

We are now ready to specify odr we choose this smaller thapand also smaller
than all the lengthy; —y;_1 for j =1,2,3,... k. Now suppose that we have made a
choice of points

A=X <X <K< < Xp1<Xr=Dhb
such that eack — x;_; < 8. We shall show that

v 3 IF66) ~Fxy)| <V(Ffab 56

and this will prove the statement in the exercise.
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We can split this sum up into two parts: if an interyal 1,X) contains any one of
the points from the collection

a=Yo<y1<Y2<--<Yn_1<Yk=Db
that we started with, then we will call that interval a blackerval. Note that, by

our choice ofd, a black interval can contain only one of tlge points. In fact, if
yj € (Xi—1,%) we can make use of the fact that
[F(x) —F(xi—1)| < [F (%) = F(yj)+ [F(yj) = F(%-1)| < ﬁ (5.7)
If (xi—1,%) contains none of these points we will call it a white intervdlhe sum
in (5.6) is handled by thinking separately about the white inteneadd the black inter-
vals.
Let combine all theg’s and all they;’s:

A=< << - <Zhr1<Zp=h
Note that

g |F(zp) — F(zp-1)| > V+e. (5.8)
p=1

This is because the addition of further points always eeltge sum or leaves it the
same.

The inequality $.6) now follows by comparing it to5.8). There are extra white
intervals perhaps where a new point has been added, but Ethese has been enlarged
by adding a single point and the total extra contribution asnmore thane because

of (5.7).

Exercise320, page 83

If F is locally of bounded variation at every poit R then the collection
B = {([U>V]>W) SWe [U,V], V(Fv [U,V]) < Oo}
is a full cover of the real line. Take any intenjal b] and choose a partitiort of the
interval [a,b] so thatrtC B. Then
V(F.[ab)< 5  V(F[uV) <e.
([uv],w)eTt

The converse is immediate.

Exercise321, page 83

Recall that “mostly everywhere” indicates a finite excepdiloset is possible while
“nearly everywhere” allows a sequence of exceptional goivitere the derivative in-
equality may not hold.

This comparison test is presented in the expository paper

J. J. Koliha,Mean, Meaner and the Meanest Mean-Value TheprEne
American Mathematical Monthly, 116, No. 4, (2009) 356-361.

as a preferred tool in elementary analysis to the mean-valeerem. It allows of
numerous extended versions (more than the three in that)gapk indeed, the student
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would be better prepared for numerous problems thinkingnogjgplication of this
principle before trying to fit the mean-value problem to th&igon.

As a starting point to constructing a proof of the first stataimin the exercise,
consider a poina < Xp < b at which|F’(xg)| < |G'(xo)|. Lete > 0 and chooség > 0

so that - -
‘ (X))(:XO(XO)_F/(XO)‘<£
e G(x) — G
X) — G(Xg ,
W—G(Xo)‘<€

if 0 < [x—Xo| < 8. Note that for suclx,
IF(X) —F(x0)| < [G(X) — G(x0)| 4 2¢[x—Xo|
becauseF’(xo)| < |G'(Xo)].

For a pointxg that is equal t@ or b or for which the inequalityF’(xo)| < |G (X0)]
fails just use the continuity d¥ to selectdy > 0 so that

[F(X)—F(x)| <¢
if |Xx—Xo| < .
Our standard Cousin partitioning argument can now be ugsdSectiori.9.5for
a number of worked-out examples. The paper of Koliha can bésconsulted for

similar details if this hint doesn’t get you started. (Ndtatthis paper assumes tliat
is nondecreasing so he does not have to work with the vam&jio

Exercise322, page 83

It is easy to check that a Lipschitz function would have thisperty. Notice that
the property stated is similar to the statement of Robbith&srem and, accordingly,
similar methods will help here.

Suppose that the functidh : [a,b] — R has the stated property. L&t= 3(b— a)
and choosé/ so that

m
IF(x)—F(-1)] <M
2
for all choices of points

a= X07X17X27' . 7X|'T\—17Xm = b
for which

m
IXi —Xi—1| <C=3(b—a).
o3

We claim thatF is Lipschitz, in fact that
F(y) —F(x) - 2M
y—X “b-a
for alla < x <y <b. Suppose not. We obtain a contradiction by supposing that
2M(y—x)
b—a
for some particular choice @< x <y < b. [We can suppose that< x <y < b as the

IF(y)—F()[>



240 CHAPTER 5. ANSWERS

other cases are similarly handled.]
Let n be the largest integer for which
ny—x) <2(b—a).

Choose pointgy=a, X1 =X, X2 =Y, X3 =X, X4 =V, .. .Xon:1 = X, Xony 2 = b. Note that

2n+2
Zl X —Xi_1| =b—a+n(y—x) <3(b—a)=C.
=

Consequently, by our choice df,
2n+1

ZL‘F F(X-1)| <M.

We can estimate this sum as
2n+1 ZMny X
3. 0 = Fix)l > IF 00~ Fi@)]+ (o)~ F o) + 2

Thus
2Mn(y —x) <M
b—a —

n(y—x) < (b—a)/2
This contradicts our choice of the integesince that would mean that
N+1y—x) =n(y—x +(y—x) < (b—a)/2+(b—a) <2(b—a).
This contradiction completes the proof.

or

Exercise323, page 84
We suppose that is absolutely integrable ofa,b]. Thus|f| is integrable here. Ob-

serve, then, that
dX < E / dX / f dX
/Xk 1 | | |

Aa=X <X <X << Xn_1 < Xn=h.

V(F,[a,b])g/b|f(x)|dx

Consequently= must be a function of bounded variation and we have estaulisim
inequality in one direction for the identity

b
(F.la.b]) = [ 1700lax

Let us prove the opposite direction. Sintand| f| are integrable we may apply the
Henstock property (Theore®26) to each of them. Writé& for an indefinite integral
of | f| and recall thaF is an indefinite integral of .

n

leF F (% 1)|—Zl

for all choices of points

It follows that
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For everye > 0 and for each pointin [a,b] there is &(x) > 0 so that

Zl\F F(xi-1) — f(&)(x —x-1)| <&

_ZlIGK)—G(Xu 1) —[FE)I —xi-1)| <e

whenever{([x,x-1],&) :i=1,2,...n} is a partition offa, b] with each
X —Xi-1<93(&) and & € [Xi-1,X].
There must exist one such partition and for that partition

ZlG G(xi_1 <€+Zl“ |(% —%i—1)

<2 Zl\in) —F(xi-1) <V(F,[ab] + 2¢.
i=
It follows, sincee can be any positive number, that

/b|f(x)|dx: G(b) — G(a) < V(F,[a,b)]).

This completes the proof.

Exercise324, page 84

This is a limited theorem but useful to state and fairly eaggrove given what we now
know.

We know thatF’ is integrable orja,b]; indeed, it is integrable by definition even
without the assumption about the continuityFdf We also know that, iF’ is absolutely
integrable, therr would have to be of bounded variation @b]. So one direction is
clear.

To prove the other direction we suppose tRahas bounded variation. L&t be
the total variation function of on [a,b]. Then, by Theoren8.33 T is uniformly
continuous orja,b] and T is differentiable at every point at whidh is continuously
differentiable, with moreoveF’(x) = |F’(x)| at such points. WherevéY is continuous
so too is|F’|.

Consequently we have this situatioh: [a,b] — R is a uniformly continuous func-
tion that is continuously differentiable at every point ib@nded, open intervéh, b)
with possibly finitely many exceptions. Th@i$ = |F’| is integrable.

Exercise325, page 85
The limit function isf (x) = 1/x which is continuous of0, «) but certainly not bounded
there.

Exercise326, page 85

Each of the functions is continuous. Notice that for eaeh(—1,1), limp e fn(X) =0
and yet, forx > 1, limy_,. fo(x) = 1. This is easy to see, but it is instructive to check
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the details since we can use them later to see what is goinggwnothis example. At
the right-hand side on the internvidl, «) it is clear that lim . fn(X) = 1.

At the other side, on the interval-1,1) the limit is zero. For if—1 < X < 1 and
£ > 0, letN > loge/log|xo|. Then|x|N <€, so forn > N

[ f(x0) — 0] = xo|" < oM < &.
Thus
f(x) = lim fh(x) =

n—o0

1 ifx>1.

The pointwise limitf of the sequence of continuous functiof } is discontinuous at
x=1. (Figure3.1shows the graphs of several of the functions in the sequaisten
the interval0, 1].)

{O if —l<x<1

Exercise328, page 85

The sequence of functionfs(x) converges to zero of+-1,1) and tox— 1 on[1,) .
Now f/(x) =x"1on(—1,1), so by the previous exercise (Exercizs),

)0 if-1<x<1
n"ﬂlof“(x)_{ 1 ifx>1,

while the derivative of the limit function, fails to exist tite pointx = 1.. Thus

im L (1,00 = & (Iim fn(x))

n—e dX dx \n—e
atx=1.

Exercise330, page 86

The concept of uniform convergence would allow this argumBat interchanging two
limiting operations cannot be justified with pointwise cergence. Just because this
argument looks plausible does not mean that we are underligatidn to usee, o type
of arguments to try to justify it.

Apparently, though, to verify the continuity dfatxg we do need to use two limit
operations and be assured that the order of passing to the ilnmmaterial.

Exercise331, page 87

If all the functionsf, had the same upper bound this argument would be valid. Bht eac
may have a different upper bound so that the first statemenidinave been

If each f,, is bounded on an intervalthen there must be, by definition, a
numberM,, so that| f,(x)| < M, for all xin 1.

Exercise332, page 87

In this exercise we illustrate that an interchange of linpe@tions may not give a
correct result.
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For each rowm, we have lim_,» Shn= 0. Do the same thing holding fixed and
letting m — oo,

Exercise335, page 87

We have discussed, briefly, the possibility that there iscuaece that contains every
rational numbers. This topic appears in greater detail iapBdr4.

If f did have a calculus integral there would be a funcosuch that=’ = f at
all but finitely many points. There would be at least one wvdaewheref is an exact
derivative and yet does not have the Darboux property since it assumes onhathes
0 and 1 (and no values in between).

Exercise337, page 88

The statements that are defined by inequalities (e.qg., maljrdnvex) or by equalities
(e.g., constant, linear) will not lead to an interchangewaf timit operations, and you
should expect that they are likely true.

Exercise338, page 88

As the footnote to the exercise explains, this was Luzinferunate attempt as a young
student to understand limits. The professor began by sdWitat you say is non-
sense.” He gave him the example of the double sequewi¢e-+ n) where the limits as
m — oo andn — oo cannot be interchanged and continued by insisting thatfipéng
two passages to the limitust not be doneHe concluded with “Give it some thought;
you won't get it immediately.”

As yet another illustration that some properties are nagaresd in the limit, com-
pute the length of the curves in Exerci3@8 (Fig. 3.3) and compare with the length of
the limiting curve [i.e., the straight ling= X].

Exercise339, page 89

The purpose of the exercise is to lead to the notion of unifoonvergence as a stronger
alternative to pointwise convergence.

Fix € but let the pointxg vary. Observe that, whexy is relatively small in com-
parison withe, the number logg is large in absolute value compared with g0
relatively small values ofi suffice for the inequalityxo|" < €. On the other hand, when
Xo is near 1, logo is small in absolute value, so leglogxo will be large. In fact,

jim 1298 _ o, (5.9)
x—1-10gXg
The following table illustrates how largemust be beforéxj| < € for € = .1. Note that

for e = .1, there is no single value &f such thatxg|" < € for every value ok € (0,1)
andn > N. (Figure5.3illustrates this.)
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Figure 5.3: The sequence"} converges infinitely slowly or0,1]. The functions
y = X" are shown witm = 2, 4, 22, and 100, witlkg = .1, .5, .9, and.99, and with
e=.1.

X0 n
A 2
5 4
9 22
.99 230
.999 2,302
.9999 | 23,025

Some nineteenth-century mathematicians would have @estcthe varying rates
of convergence in the example by saying that “the sequérticonvergesnfinitely
slowlyon (0,1).” Today we would say that this sequence, which does conyeoge-
wise, doesiot converge uniformly. The formulation of the notion of unifoiconver-
gence in the next section is designed precisely to avoigtsibility of infinitely slow
convergence.

Exercise340, page 89

We observed that the sequenici} converges pointwise, but not uniformly, 68, 1).
We realized that the difficulty arises from the fact that tbewvergence near 1 is very
“slow.” But for any fixedn with 0 < n < 1, the convergencis uniform on[0,n].

To see this, observe that forOxg < n, 0< (x)" <n". Lete > 0. Since lim_,N" =
0, there existsN such that ifn> N, then 0< n" < €. Thus, ifn > N, we have

0<xg<n"<Eg,
so the samél that works forx = n, also works for alk € [0,n). (See Figuré.4.)

Exercise341, page 89

Use the Cauchy criterion for convergence of sequences bhreabers to obtain a
candidate for the limit functiori. Note that if{ f,} is uniformly Cauchy on the interval
[, then for eaclx € |, the sequence of real numbdr,(x) } is a Cauchy sequence and
hence convergent.



5.1. ANSWERS TO PROBLEMS 245

Figure 5.4: Uniform convergence on the whole interval.

Exercise342, page 89

Fix n > mand compute
sup |X"—x" <n™ (5.10)
x€[0,n]
Let £ > 0 and choose an integhl so thatnN < &. Equivalently we require thatl >
loge/logn. Then it follows from £.10) for all n > m> N and allx € [0,n] that

X"—x" <n"<e.

We conclude, by the Cauchy criterion, that the sequérice = X" converges uniformly

on any interval0,n], for 0 < n < 1. Here there was no computational advantage over
the argument in Exampl@4Q. Frequently, though, we do not know the limit function
andmustuse the Cauchy criterion rather than the definition.

Exercise343, page 90

This follows immediately from Theorer.38 Just check that the translation from
series language to sequence language works out in all oetladsd

Exercise344, page 90

Our computations could be based on the fact that the sums$dhies is known to us;
itis (1—x)~1. We could prove the uniform convergence directly from théniéon.
Instead let us use the Cauchy criterion.

Fix n > mand compute

n xM r]m
sup X< sup |—| < ——. (5.11)
xelon] |jSm xefon) [1=X] 7 1=n
Lete > 0. Since
n"(1-n)"*—=0
asm — co we may choose an integhrso that
nN1-n)t<e.
Then it follows from 6.11) for all n>m> N and allx € [0,n] that
nm

XXX < <
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It follows now, by the Cauchy criterion, that the series @mges uniformly on any
interval [0,n], for 0 < n < 1. Observe, however, that the series does not converge
uniformly on (0, 1), though it does converge pointwise there. (See Exe&589

Exercise345, page 90

It is not always easy to determine whether a sequence ofidunscts uniformly con-
vergent. In the settings aferiesof functions, this simple test is often useful. This
will certainly become one of the most frequently used tonlgour study of uniform
convergence.

Let Si(x) = Yo fk(X). We show thafS,} is uniformly Cauchy orl. Lete > 0.
Form < nwe have

$iX) = Sn(¥) = s (X) + -+ fa(X),
SO
1Sh(X) = Sn(X)| < Mmy1+---+Mn.
Since the series of constarjt§_, M converges by hypothesis, there exists an inte-
gerN such thatifn > m> N,

Mmi1+--+Mp<Ee.
This implies that fon > m> N,
1Si(X) — Sn(X)| <&

for all x € D. Thus the sequendes,} is uniformly convergent o; that is, the series
S k-1 fk is uniformly convergent oh.

Exercise346, page 90

Then|xX| < & for everyk = 0,1,2... andx € [-a,a]. Sinceyy_,a* converges, by the
M-test the seriegfzoxk converges uniformly ofi-a, a.

Exercise347, page 90

The crudest estimate on the size of the terms in this seri@stésned just by using the
fact that the sine function never exceeds 1 in absolute vdloes

sink@ 1

W 5@ forall 8 € R.

Since the serie§,’; 1/kP converges foip > 1, we obtain immediately by thkl-test
that our series converges uniformly (and absolutely) onirterval (—, ) [or any
interval in fact]. for all reab providedp > 1.

For 0< p < 1 the seriesy,’; 1/kP diverges and the M-test supplies us with no
information in these cases.

We seem to have been particularly successful here, but erdlmsk also reveals a
limitation in the method. The series is also pointwise cogeet for 0< p <1 (use the
Dirichlet test) for all values 06, but it converges nonabsolutely. Thietest cannot be
of any help in this situation since it can address only alisbiiwconvergent series. Thus
we have obtained only a partial answer because of the ligigbf the test.
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Because of this observation, it is perhaps best to conclwtien using theM-
test, that the series tested “converges absolutely andramif” on the set given. This
serves, too, to remind us to use a different method for chgclniform convergence
of nonabsolutely convergent series. See the next exefEigrcise349).

Exercise348, page 90

We will use the Cauchy criterion applied to the series to iobtaiform convergence.
We may assume that tH®(x) are nonnegative and decrease to zero. eLet0. We
need to estimate the sum

(5.12)

3 a(bi(¥
k=m

for largen andm and allx € I. Since the sequence of functiofisc} converges uni-
formly to zero onl, we can find an integeM so that for allk > N and allx € |

€
< < —.
O_ bk(X) =5

The key to estimating the surf.(2), now, is the summation by parts formula. This
is just the elementary identity

n

n
> abe= % (Sc—S1)bx
k=m k=m

= Sm(bm — bme1) + Sme1(Bmez — Bmg2) -+ + Si—1(Bn—1 — bn) + Sabon.
This provides us with

S a(bi(¥
k=m

foralln>m2> N and allx € | which is exactly the Cauchy criterion for the series and
proves the theorem.
Commentary: TheM-test is a highly useful tool for checking the uniform coryece
of a series. By its nature, though, it clearly applies onlgltsolutely convergent series.
Abel’s test clearly shines in this regard.

It is worth pointing out that in many applications of this ¢tinem the sequendcidy}
can be taken as a sequence of numbers, in which case theestatmd the conditions
that need to be checked are simpler. For reference we cartsigas a corollary.

<2M (sup]bm(x)\> <e€

xeE

Corollary 5.1 Let{ax} be a sequence of functions on a setCR. Suppose that
there is a number M so that

' % a(X)| <M
K=1

for all x € E and every integer N. Suppose that the sequence of real msigtipe
converges monotonically to zero. Then the series

> bk
&

converges uniformly on E.
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Figure 5.5: Graph of;_, (sink8)/k on [0, 217 for, clockwise from upper lefta =1, 4,
7, and 10.

Exercise349, page 91

It is possible to prove that this series converges fofalQuestions about the uniform
convergence of this series are intriguing. In Figbréwe have given a graph of some
of the partial sums of the series.

The behavior nea® = 0 is most curious. Apparently, if we can avoid that point
(more precisely if we can stay a small distance away from ploatt) we should be
able to obtain uniform convergence. Theor8m1 will provide a proof. We apply
that theorem wittb(6) = 1/k anday(8) = sinkB. All that is required is to obtain an

estimate for the sums
n

z sinkB
K=1

for all nand all@ in an appropriate set. Let9n < 11/2 and consider making this esti-
mate on the intervdh, 2t— n]. From familiar trigonometric identities we can produce
the formula

sSinB+sin+sin3P+sind8 -+ --- +sinnb = cosd/2—cos(2n+1)8/2

2sinB/2
and using this we can see that
n
1
sSinkf| < ———.
25" = sz
Now Theorem3.41limmediately shows that

> sinkd

2K

converges uniformly o, 2rt—n].

Figure 5.5 illustrates graphically why the convergence cannot be erpgeto be
uniform near to 0. A computation here is instructive. To ¢hie Cauchy criterion on
[0,7] we need to show that the sums

N sink@
sup >
o[0T kzm k
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are small for largen, n. But in fact

sup %‘” sinkB | _ zi“ sink/2m) _ 20 sin1/2 - sin1/2
oclori |G K | i k & 2m 2 7

obtained by checking the value at poifts= 1/2m. Since this is not arbitrarily small,
the series cannot converge uniformly [@nr.

Exercise358, page 91

Use the Cauchy criterion for convergence of sequences bfrgabers to obtain a
candidate for the limit functiorf. Note that if{ f,} is uniformly Cauchy on a séb,
then for eachx € D, the sequence of real number§,(x)} is a Cauchy sequence and
hence convergent.

Exercise376, page 95

Let Gk(x) = folgk(x)dx be the indefinite integrals of thg.. Observe that, fok =
2,3,4,..., the functionGy is continuous on0, 1], piecewise linear and that it is differ-
entiable everywhere except at the point %; it has a right-hand derivativ® there but
a left-hand derivative . That means that the partial sum

St

is also continuous ofD, 1], piecewise linear and that it is differentiable everywhere
except at all the points 4 ¢ fork=2,3,4,....
Both

f(x) =Y agk(x) and F(x Z Gk(x

( X) at every point with the exception of all

=2
converge uniformly or0, 1] andF’
% . That is too many points foF to be an

the points in the sequenc 3,
indefinite integral.

Note that the functions in the sequentg f,, fs, ...are continuous with only
finitely many exceptions. But the number of exceptions iaseewithn. That is the
clue that we are heading to a function that may not be intégriabthe very severe
sense of the calculus integral.

Exercise377, page 95

Lete > 0 and choos#l so that| f,(x) — f(x)| <€/(b—a) foralln> N and allx € [a,b].
Then, sincef and each functiorf;, is integrable,

/f X) dx— /fn x)dx| < /|f X) — fn(x |dx</—dx_s

for all n > N. This proves that

/abf(x)dx:rlli_r]’lo/abfn(x)dx

Note that we had to assume tHatvas integrable in order to make this argument work.
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Exercise378, page 96

Let g(x) = lim,F}(x). Since each of the functiorfg; is assumed continuous and the
convergence is uniform, the functigns also continuous on the intervi, b).
From Theoren8.42we infer that

/xg(t) dt = lim /X Fi(t)dt = lim [F(x) — Fn(@)] = F () — F(a) for all x< [a.b].
: : (5.13)
Thus we obtain

/Xg(t)dt:F(x)—F(a)

a
or .
F(x) :/ g(t)dt+F (a).
a
It follows from the continuity ofg thatF is differentiable and that’(x) = g(x) for all
X € (a,b).
Exercise379, page 96

To justify

1 i _
o= 2

(o]

we observe first that the series

Xk

k=0
(3.4) converges pointwise oft-1,1). Next we note (Exercisg60) that the series

3 kT

k=1
converges pointwise oft-1,1) and uniformly on any closed intervéd, b] C (—1,1).
Thus, ifxe (—1,1) and—1 < a< x < b < 1, then this series converges uniformly on
[a,b]. Now apply Corollary3.46

Indeed there was a bit of trouble on the interfaall, 1), but trouble that was easily

handled by working on a closed, bounded subintejadd] inside.

Exercise380, page 96

Indeed there is a small bit of trouble on the interizabo, «), but trouble that was easily
handled by working on a closed, bounded subintefvlt] inside. The Weierstrass
M-test can be used to verify uniform convergence since

tk
< —
—k

K
k!

forall -t < x<t.

Exercise384, page 97

The hypotheses of TheoreBd5are somewhat more restrictive than necessary for the
conclusion to hold and we have relaxed them here by droppiagantinuity assump-
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tion. That means, though, that we have to work somewhat harde

We also need not assume thdg } converges on all df, b]; convergence at a single
point suffices. (We cannot, however, replace uniform cayemce of the sequence
{f.} with pointwise convergence, as Examp@8 shows.) TheorenB.47applies in a
number of cases in which Theorégm5does not.

For the purposes of the proof we can assume that the set giteo@sC is empty.
For simply work on subinterval&c,d) C (a,b) that miss the sef. After obtaining the
proof on each subintervdkt,d) the full statement of the theorem follows by piecing
these intervals together.

Lete > 0. Since the sequence of derivatives converges uniformljads), there is
an integemlN; so that

£ — Tm(¥)] <€
for all n, m> N; and allx € (a,b). Also, since the sequence of numbéifs(xo)}
converges, there is an integer> N; so that

[fn(X0) — fm(X0)[ <&
for alln, m> N. Let us, for any € [a,b], X # X, apply the mean value theorem to the
function f, — f, on the intervalxg, x| (or on the intervalx, Xo] if X < Xp). This gives us
the existence of some poiftstrictly betweerx andxg so that

fa(X) = fm(X) — [fn(X0) — fm(¥0)] = (X—X0)[ (&) — fm(&)]- (5.14)
From this we deduce that

[Tn(X) = fm(X)| < [ fn(X0) — fm(X0)| + | (X—%0) (fA(€) — Tn(&)]

<€g(1+(b—a))
for anyn, m > N. Since thisN depends only or this assertion is true for ak
[a,b] and we have verified that the sequence of continuous furcfify} is uniformly
Cauchy on[a,b] and hence converges uniformly to a continuous functioon the
closed, bounded intervéa, b].
We now know that the one poing where we assumed convergence is any point.

Suppose thaa < Xp < b. We show thatf’(xo) is the limit of the derivativest/(xo).
Again, for anye > 0, equation %.14) implies that

[fn(X) = fm(X) = [fn(X0) = fm(X0)][ < [X—Xole (5.15)

for all n,m > N and anyx # Xo in the interval(a, b). In this inequality letm — c and,
remembering thaf,(x) — f(x) and f(xo) — f(Xo), we obtain
[fa(X) = fn(x0) — [f(X) — F(x0)]| < [x—Xole (5.16)
if N> N. LetC be the limit of the sequence of numbdr§,(x9)}. Thus there exists
M > N such that
|fi1(%0) —C| < &. (5.17)
Since the functiorfy is differentiable ako, there exist® > 0 such that if 0< [x—Xp| <
0, then
fm (X)

— fu(Xo)
X—Xo

— fy(x0)| <& (5.18)
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From Equation§.16) and the fact thail > N, we have
fu () - fmu(xo)  F(X) - f(x0)
X—Xo X —Xo
This, together with the inequalities.(.7) and 6.18), shows that
f(¥) — f(x0)
X—Xo
for 0 < |[x—Xo| < d. This proves that’(xp) exists and is the numb&; which we recall

is limp_;e f)(Xo).
The final statement of the theorem,
b b
H I o /
im | fn(x)dx_/a £(x)dx,
now follows too. We know thaf’ is the exact derivative ofia,b) of a uniformly

continuous functiorf on [a,b] and so the calculus integral

f(b)—f(a) = bf’(x)dx

a

< E.

—C| < 3¢

But we also know that A

fo(b) — fa(@) = [ f/(x)dx

and

Exercise385, page 97

Let { fx} be a sequence of differentiable functions on an intefad]. Suppose that
the seriesyy_, fx converges uniformly offa, b]. Suppose also that there existse
[a,b] such that the serie§,_, fk(Xo) converges. Then the serigg_, f(X) converges
uniformly on[a, b| to a functionF, F is differentiable, and

F09 = 3§
k=0

foralla<x<h.

Exercise386, page 97

It is not true. We have already seen a counterexample in Bes3¢c6.

Here is an analysis of the situation: L@%(x) = /2 gn(t) dt. TheorenB.47demands
a single finite se€ of exceptional points wher&/,(x) = g,(x) might fail. In general,
however, this set should depend on Thus, for each select a finite se€, so that
Gh(X) = gn(x) is true for allx € [a,b] \ Cp.

If C =U,_1Cnis finite then we could conclude that the limit functigrs integrable.
But C might be infinite.
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Exercise387, page 97

A simple counterexample, showing that we cannot concludg{th} converges om,
is fn(X) = nfor all n. To see there must exist a functidrsuch thatf’ = g = limp_ f,
onl: Fixxp €1, let Fy = fn — fa(Xo) and apply Theoren3.47to the sequencéF,}

. Thus, the uniform limit of a sequence of derivatie } is a derivative even if the
sequence of primitive§f,} does not converge.

Exercise388, page 98

If there is a finite set of points where one of the inequalitals redefine all the func-
tions to have value zero there. That cannot change the val@y of the integrals but
it makes the inequality valid.

Exercise389, page 99

Lemma3.48is certainly the easier of the two lemmas. For that just edtiat, for any
integerN, if the inequality

N
(0> Y %X,

holds for allxin (a,b) then, sinces k. ; gk(x) is integrable,

/abf(X)dXZ /ab <k§19k(X)> dx= ki (/abgk(x)dx> .

But if this inequality in turn is true for alN then

/abf(x)dxz él (/abgk(x)dx>

is also true.

Exercise390, page 99

This lemma requires a bit of bookkeeping and to make thissparent we will use
some language and notation. Because the proof is a bit twekwill also expand the
steps rather more than we usually do.

1. Instead of writing a partition or subpartition out in deiathe form

{([ai,bi],&) :i=1,2,...,n}
we will use the Greek lettértto denote a partition, so

n={([a,h].&):i=12...,n}
saves a lot of writing.

2. For the Riemann sum over a partitionin place of writing the cumbersome

éf(ao(bi—a)

21tis the letter in the Greek alphabet corresponding to “p” s #xplains the choice. It shouldn't
interfere with your usual use of this symbol.
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we write merely

Z f(w)(v—u) or Zf(w)(v—u)

(Juv],w)em n

3. Instead of saying that a partition satisfies the usualitiond
n={([&,b],&):i=1,2,...,n}
with
&€ [a,bi] andb; — & < 8(&)).
we just sayrtis d-fine.

This notation will make the arguments transparent and isigdiy convenient.
Remember that our first step in the proof of Lemf4d9is to assume that the
inequality

19 < 3 6.

is valid at every point of the intervag, b|. Lete > 0. Sincef itself is assumed to be in-
tegrable the intervdh, b, the integral can be approximated (pointwise, not unifgjmi
by Riemann sums. Thus we can choose, for eaeha, b], ady(x) > 0 so that

b
S f(w)(v—u) > / F(x)dx— ¢

wheneverrtis a partition of the intervdk, b| that isdp-fine. This applies Theore® 26
Sincegq; is integrable and, again, the integral can be approximayeRiemann
sums we can choose, for each [a,b], adp(x) > d1(x) > 0 so that

b
> a(W)(v—u) < /a gr(x)dx+e27?

whenevertis a partition of the intervala, b] that isd;-fine. Sinceg, is integrable and
(yet again) the integral can be approximated by Riemann sugtan choose, for each
X € [a,b], adi(x) > dz(x) > 0 so that

b
> (W) (v—u) < /a 02 (X) dx+ €272

wheneverrtis a partition of the intervala, b] that isd,-fine. Continuing in this way we
find, for each integek = 1,2,3,... adx_1(X) > &(x) > 0 so that

> G(W)(v—u) < /abgk(X)dX+ g2k

wheneverrtis a partition of the intervala, b] that isdy-fine.
Lett < 1 and choose for eache [a,b] the first integeiN(x) so that
N(X)
tf) < 5 ().
n=1
Let
En={x€[ab] :N(x) =n}.
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We use these sets to carve up 8eand create a new(x). Simply setd(x) = d(x)
wheneverx belongs to the corresponding &&t

Take any partitiorrtof the interval[a, b] that isd-fine (i.e., it must be a fine partition
relative to this newly constructel) The existence of such a partition is guaranteed by
the Cousin covering argument. Note that this partitionss &-fine sinced(x) < d(x)
for all x. We work carefully with this partition to get our estimates.

Let N be the largest value df(w) for the finite collection of pairg[u,v],w) € Tt
We need to carve the partitiaminto a finite number of disjoint subsets by writing, for
i=123,...,N,

M = {([u,v],w) e Tt: w € Ej}
and
O =TUTj1U---UTlN.
forintegersj = 1,2,3,...,N. Note thato; is itself a subpartition that i§;-fine. Putting
these together we have
M=TUTpU: - - UT.

By the way we choség and since the new is smaller than that we know, for this

partition Tt that

/bf(x)dx—e < Z f(w)(v—u)

SO

b
t/ f(x)dx—te < th(w)(v—u).

We also will remember that for € E;,
tf(x) <g1(X) +g2(X) +--- +ai(X).

Now we are ready for the crucial computations, each step dfhwis justified by
our observations above:
t / X)dx—te <

f(w f -
St i;;t (w)(v—u)

N
le G1(W) +Ga(W) + -+ +gi(W)) (v—u)

J%l </abgj (X) dx+ 82_j> < 21 </abgj (x)dx) +¢

Sinceg is arbitrary, this shows that

t/abf(x)dxg kil </:gk(x)dx> .

As this is true for alt < 1 the inequality of the lemma must follow too.
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Exercise392, page 99

This follows from these lemmas and the identity
X) = f1(Xx +Z (fa(X) — fn_1(X)) .

Since f,, is a nondecreasing sequence of functions, the sequenceaaifofios f,(x) —
fn—1(X) is nonnegative. As usual, ignore the finite set of exceptipoants or assume
that all functions are set equal to zero at those points.

Exercise393, page 99

We use the same technique and the same language as used atutia of Exer-
cise390

Letg, = f — f, and letG,, denote the indefinite integral of the functigh The se-
quence of functiongg, } is nonnegative and monotone decreasing with limgn (X) =
0 at eaclx.

Lete > 0. Choose a sequence of functiof®} so that

Y IGk(V) — Gu(u) — (W) (v—u)| < e27
([uv],w)em

wheneverrtis a partition of the intervala, b] that isdy-fine. Choose, for eache [a, b,
the first integeN(x) so that

ok(x) < € for all k > N(x).
Let
En={x€[ab] :N(x) =n}.
We use these sets to carve up feand create a new(x). Simply setd(x) = &(x)
whenevelx belongs to the corresponding &t
Take any partitiorrtof the intervalfa, b] that isé-fine (i.e., it must be a fine partition
relative to this newly constructall) The existence of such a partition is guaranteed by
the Cousin covering argument.
Let N be the largest value df(w) for the finite collection of pairg[u,v],w) € Tt
We need to carve the partitianinto a finite number of disjoint subsets by writing
M = {([u,v],w) e T: w € Ej}
for integersj = 1,2,3,...,N. Note that
M=TpuUTHU---UTy

and that these collections are pairwise disjoint.
Now letmbe any integer greater th&h We compute

b
0< | "gn(x) dx= Gr(b) —~ G(a) = oD G = Gl =

N

N
z( S <Gm<v>—em<u>>>s ( S <G,-<v>—Gj<u>>>§
=1 1=1 \([uv,w)em

(luvfwery
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giw)(v—u)+e27| <

<g(b—a+1).

This shows that X
0< / gm(X)dx < (b—a+1)
a
for all m> N. The identity

b b b
/ f(x)dx— lim fa(x)dx=lim [ gn(X)dx=0.
a a

n—o fq n—oo
follows.

Exercise395, page 101

Just apply the theorems. We need, first, to determine thattineval of convergence of
the integrated series

F(x) = iox””/(nJrl) =X+X2/2+X/3+X} 4+ .. . +.

is [—1,1). Consequently, of the two integrals here, only one existgelthat
F(O)—F(-1)=—-F(-1)=1-1/24+1/3—-1/4—1/5+1/6— ...
is a convergent alternating series and provides the valtleedhtegral

/ ol (ixﬂ) dx

Note that the interval of convergence of the original sesés-1,1) but that is not
what we need to know. We needed very much to know what thevadtef convergence
of theintegrated seriesvas.

Exercise396, page 102

The formula

1
1+x+x2+x3+x4+---+:m (—1<x<1)

is just the elementary formula for the sum of a geometriceseri hus we do not need
to use series methods to solve the problem; we just needegrate the function
1
f(X) = ——.
) =7
We happen to know that
1
——dx=—log(1—x)+C
/1—x 9 )+

on (—,1) so this integral is easy to work with without resorting toisgmethods.
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The integral
0 1
/ ——dx=—log(1-0)— (—log(1—(—1)) =log2.
—11—x
For the first exercise you should have found a series that weknow adds up to log 2.

Exercise397, page 102

No, you are wrong. And don’t call me ‘Shirley.’
The condition we need concerns the integrated series, aairtginal series. The
integrated series is
F(X) =Xx+X2/24+3/3+X /4 + ...+
and, while this diverges at= 1, it converges at = —1 since
1-1/2+1/3-1/4—-1/5+1/6—...
is an alternating harmonic series, known to be convergettidgonvergent alternating
series test. TheoreM53then guarantees that the integral existg-eh 0] and predicts
that it might not exist or0, 1].

The mistake here can also be explained by the nature of theleslintegral. Re-
member that in order for a function to be integrable on anralea, b] it does not
have to be defined at the endpoints or even bounded near thentareless student is
fussing too much about the function being integrated andgaging close enough at-
tention to the integrated series. We know théx) is an antiderivative fof on (—1,1)
so the only extra fact that we need for the integﬁ:}l f(x)dxis thatF is continuous on
[—1,0]. Itis.

Exercise398, page 102

Yes. Inside the intervgl-R, R) this formula must be valid.

Exercise399, page 102

Yes. If we are sure that the closed, bounded intefadh| is inside the interval of
convergence (i.e., eithérR R) or (—R R] or [-R R) or [-R R]) then this formula
must be valid.

Exercise400, page 102

Both the series
f(X) =14+ 2X+ 3+ 4+ ...
and the formally integrated series
F(X) =X+X+X+...
have a radius of convergence 1 and an interval of convergexaetly equal td—1,1).

Theorem3.53assures us, only, th&tis an indefinite integral fof on (—1,1).
But
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If we define

) = f(x) on(—1,1). Consequently
/o f(x)dx = G(0) — G(~1) = 1/2.
We were not able to writ(;1
/Olf(x)dx: FO)—F(-1)=-1+1-1+1-1+1...

becausé-(—1) is not defined (the series fér diverges ak = —1.
SinceG(x) is unbounded near= 1 there is no hope of finding an integral fbion
[0,1].
Exercise401, page 102
HereR = 0. Show that

lim K<rk =0
k— o0

for everyr > 0. Conclude that the series must diverge for eves/0.

Exercise402, page 103

DoR=0,R=®, andR= 1. Then for any O< s < o take your power series f& = 1
and make a suitable change, replacigy sx

Exercise406, page 103

This follows immediately from Exercis€05without any further computation.

Exercise407, page 103

This follows immediately from the inequalities

Bt <liminf \/|ak| < limsupy/|ak| < limsup
ak k—00 k—so0 k—00

which can be established by comparing ratios and rootsttiegith Exerciset04.

Ak+1

)

liminf
k—o0

Exercise408, page 104

Exercise409, page 104

Exercise410, page 104

Exercise411, page 104
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Exercise412, page 104
Exercise413, page 104

Exercise418, page 105

If the series converges absolutely at an endp#@iRtof the interval of convergence then
a0 + @ R+ [ag| R+ [ag|R® + ..
converges. For eachin the interval|—R R},
| (x)x| < [aRE.

By the Weierstrass M-test the series converges uniformly-é)R].
The conclusion is now that

f(X) = ag+ arx+ ax® + agC + . ..
is a uniformly convergent power series on the inteffvaR, R] and sof is continuous.
We know that
f/(X) = aq + 28X+ 3agx® + 4aC+ ...
is convergent at least dr-R, R) and that this is indeed the derivative othere. It fol-
lows thatf’ is integrable o—R, R] and thatf is an indefinite integral on that interval.

Exercise419, page 105

For the proof we can assume that the series

f(X) = ap+ arx+axx® + apxC + . ..
has a radius of convergence 1 and that the series convergedsuutely at= 1.
We can assume that the interval of convergencé-i,1]. Any other case can be
transformed into this case.

Set

Sr=atapt+atag+---+an1
and note that, by our hypothesis that the power series ageseatx = 1, this is a
convergent series. The sequelbgéx) = X< is nonnegative and decreasing on the inter-

val [0,1]. one of the versions of Abel's theorem (Exerctd) applies in exactly this
situation and so we can claim that the series

converges uniformly of0, 1]. This is what we wanted.
The conclusion is now that
f(X) = ag+ arx+ ax® + agxC + . ..
is a uniformly convergent power series on the intef@al| and sof is continuous. We
know that
f/(X) = ag + 28X+ 3agx® + 4aC+ ...
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is convergent at least of+-1,1) and that this is indeed the derivative bfthere. It
follows that f’ is integrable on0,1]. We already know that’ is integrable on any
interval[a, 0] for —1 < a< 0. Thusf’ is integrable on any intervé, 1] for —1 < a< 0,
and thus integrable on any intenjalb]  (—1,1].
To finish let us remark on the transformations needed tafyuste first paragraph.

If

f(X) = ag+ arx+ axx® + agx° + . ..
converges at = 1 then

g(x) = ag— ax+a —azx+ ...
converges at = —1 and

h(x) = ag+ R taix+ R 2ap® + R 3aax® + . ..

converges at=R.

Exercise421, page 105

Write out the Cauchy criterion for uniform convergence(eim,r) and deduce that the
Cauchy criterion for uniform convergence psr, r] must then also hold.

Exercise424, page 106

The best that can be concluded is tiidghere is any series representatiéor f valid at
least in some interval-r,r) for r > 0, then
e f0(0) 4

f(x) = k;TX

must be that series. But it is possible that there simply igoweer series representation
of a function, even assuming that itfigs infinitely often differentiable at = 0.

Exercise425, page 108

Each of these steps, carried out, will lead to the conclugiahthe area is expressible
as an integral. The first step is the assumption that areadiiveed The second step
assumes that area can be estimated above and below in thigkealast two steps then
follow mathematically from the first two.

The loosest version of this argument requires taking theaginfor granted and
simply assuming that an accumulation argument will workifoiThus A(x) accumu-
lates all of the area of the region betweseandx. Now add on a small bit more to get
A(x-+ h). The bit more that we have added on is closd 8) x h for some [or any]
choice of¢ inside (x,x+ h).

We “conclude” immediately thaf f (t),dt expresses completely the measurement
A(X) that we require. You should be aware here of where you aréngainadditive
assumption and where you are making an assumpticorfnuity.

Exercise428, page 109

Well in fact you merely memorized that the area of a circleagliusR is TIR?. Then the
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area of a half-circle (assuming that it has an area) wouldalfeolithat (assuming that
areas add up). Notice that by basing area on integratiomthe®are on firmer ground
for all such statements.

Exercise429, page 109

The top half of the circle is the curye= v/r2 — x2 and the bottom half ig = v/r2 — x2
both on the interval-r < x <r. Just apply Definitior8.55(and hope that you have the
skills to determine exactly what the integral is).

Exercise430, page 109

“The difficulty that occurs with this test of integrands isrswhat subtle.

If a quantityQ is equal to the integral of a functioin then every upper sum
of f is larger thamQ and every lower sum of is smaller tharQ. On the
other hand, even with some applications occurring at the glementary
level, it is not possible to know priori that upper and lower sums bound
Q. One knows this only after showing in some other way that hegiral

of f equalsQ. Consider, for example, the area between the graphs of the
functionsg(x) = 14 x? andh(x) = 2x? on [0, 1]. While for a smallAx > 0,

the maximum ofy(x) — h(x) on [0,Ax] occurs at 0, no rectangle of height 1
and widthAx contains the region between the graphs g0giAx|, so it is
not clear a priori that 1Ax is larger than the area of that region. Of course
there are several methods to justify the integral needesl her but even
for this simple example the ‘universal’ method of upper andr sums
fails, and Bliss’s theorem also fails, as a test for the irstad.”

...from Peter A. LoebA lost theorem of the calculu3he Mathematical
Intelligencer, Volume 24, Number 2 (June, 2002).

One can just ignore the difficulty and accept Definiti®®5 as a correct interpreta-
tion of area. Or, we could use Definitigh54 and insist that areas can be added and
subtracted. In that way

1 1 1
/0 9(x) — h(x)] dx = /0 g(x) dx— /0 h(x) dx

gets around the problem, since both of these areas anddlgetjiow an interpretation
using the method of exhaustion.

Yet again, we could consider, instead, adjusted Riemanis sum
n

Zi[g(éi) —h(&)] (% —xi-1)

that also approximate the same integﬁéﬂg(x) —h(x)]dx. Then, judicious choices of
& and¢ can be made to return to an argument that follows the priesipf the method
of exhaustion.

Exercise431, page 109

The geometric series certainly sums to the value 1. Now @sédfinition of the integral
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J1° X 2dxto compute its value.

Exercise434, page 113

First note that
max{|pl,|al} </ p?+? < |p|+]q|

for all real numbergp andg. Consequently, if we make any choice of points
a=th<ti<tbh< ---<thii1<thy=bh,
the sum

21\/ (t) — F(ti_1))2+[G(t) — G(ti_1))?
has, as an upper bound,
Z'F ti) — F(ti1)| +|G(t) — G(ti-1)| < V(F,[a,b]) +V(G,[a b]).

Consequently, for the lengthof the curve,
L <V(F,[ab])+V(G,[ab]).
In the other direction

__i“:(ti) F(ti-)] < Zi\/ (t) —F(ti-1)]>+ [G(t) — G(ti-1)]? < L.

ThusV (F,[a,b]) < L. The inequalityV (G, [a,b]) < L is similarly proved.

Exercise435, page 113
We know that='(t) and|F’(t)| are integrable ofa, b]. We also know that

b
(F.[ab]) < / I ()] dt.

ConsequentlyF has bounded variation da,b|. Similarly G has bounded variation on
[a,b]. It follows from Exerciset34that the curve is rectifiable.
Lete > 0 and choose points

a=ti<thi<thi<---<tho1<th=Db
so that

L_e< Zl\/ F(ti_1)]2+[G(t) — G(t_1)2 < L.

The sum increases if we add points, so we will add all pointstath the derivatives
F’(t) or G'(t) do not exist.
In between the points in the subdivision we can use the mehmevtheorem to
select
i <Ti<t andti_1<T <f
so that
[F(t) — F(ti-1)] = F'(t) and [G(t) — G(ti-1)] = G/(t{).
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Consequently

L-e< i \/[F’(Ti)]2+ [G'(17)]? < L.

But the sums

PXUGGUR T

are approximating sums for the integral

IR GO

Here we are applying Theoret25since we have selected two pointsandt; from
each interval, rather than one point as the simplest verdi@pproximating Riemann
sums would demand. We easily check that the function

H(p,a) = v P+ < |p|+]q|

satisfies the hypotheses of that theorem.

Exercise436, page 113

Use the Darboux property of continuous functions.

Exercise439, page 113

Translating from the language of curves to the languageraftions and their graphs:
The length of the graph would be the least numbeb that

n

Zl[(Xa —x )P+ [f(x)— f(x_1))2 <L

for all choices of points
A=Xg<Xg <X < - < Xn_1 < Xn=h.

This would be finite if and only iff has bounded variation ofa, b] and would be
smaller thanb—a) +V(F,[a,b]).

A formula for this length, in the case whéris continuously differentiable ofa, b)
with a bounded derivative, would be

L:/b,/1+[f/(x)]2dx

Exercise440, page 113

The function is continuously differentiable, Lipschitzdeso certainly of bounded vari-
ation. Hence the curve

is rectifiable.
The formula




5.1. ANSWERS TO PROBLEMS 265

is immediate. Calculus students would be expected to hawvendcessary algebraic
skills to continue. “Completing the square” will lead to aeagral that can be done by
hand.

Exercise441, page 116

On the intervala, b] with no additional points inserted this is exactly the trzpdal
rule. The general formula just uses the same idea on eaahtsniail.

Exercise442, page 116

We can assume thdtis twice continuously differentiable da, b] and then apply inte-
gration by parts [twice] to the integral

/b(x— a)(b—x)f"(x)dx

One integration by parts will give

b (b
/(x—a)(b—x)f”(x)dx: (x—a)(b—x)f'(x)]._ /[a+b—2x]f’(x)dx

x=a

and a second integration by parts on this integral will give

[2x_(a+b)])f(x)];:g_z/abf(x)dx: (b—a)(f(a) + f(b))_z/abf(x)dx

Exercise443, page 116

Again we can assume thdtis twice continuously differentiable ofa,b]. Then the
preceding exercise supplies

/b f(x)dx— M(b—a) = —% b(x—a)(b—x)f”(x)dx

b _a\3
=€) [ (x-a)b-xdx=1"6) "2,

making sure to apply the appropriate mean-value theorertiéointegral above.

Exercise444, page 116

Again we can assume thdtis twice continuously differentiable ofa,b]. Then the
preceding exercises supply

b b
/f(x)dx—w(b—a):—% (x—a)(b—x) £ (x) dx
a a
Now just use the fact that
(b—a)?
—alb=x) =
max(x—a)(b-X) = —,

to estimate

[ x-ab- 0 )ax
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Exercise445, page 117

The preceding exercises should help.

Exercise446, page 117

This is from Edward Rozem&stimating the error in the trapezoidal ryl&he Ameri-
can Mathematical Monthly, Vol. 87 (2), (1980), pages 1248:12
The observation just uses the fact that the usual error idlgxequal to

- (b_ a)3 f// .
kzl 1213 (EI)
where here we are required to take appropriate p@jritseach interval
(i=hb-2a) O3] i_123. .n
n n
If we rewrite this sum in a more suggestive way the theoremaissparent. Just
check that this is exactly the same sum:

b 8.2 n
(12nz Zf// X| X|1

X-1,%] = |a+

We recognize the sum as a Riemann sum for the mtdé’raf dx and that integral
can be evaluated a3(b) — f’(a). [For large enougim the sum is close to the integral;
this is all that is intended here.]

Rozema goes on to note that, since we have an explicit (ifoxppate) error, we
may as well use it. Thus an improved trapezoidal rule is

b _a\2
[ f0dx=T- (bmaz) [£/(b) — '(a)]

and the error estimate when using the improvement can berstwle

f””(E)(b— a)5
720n%
which is rather better than the error for the original tragéal rule.

Exercise447, page 117

We can see (since the correct value of the integral is prdyitteatn=1 orn= 2 is
nowhere large enough. A simple trial-and-error approaajhimivork. Look for a large
value ofn, compute the trapezoidal rule approximation and see if welkase enough.
Apart from being tedious, this isn't much of a “method.” Fareothing we do not
expect normally to be asked such a question when the vallre&lg guaranteed. More
importantly, even if we could determine that= 50,000 is large enough, how would
we know that larger values of are equally accurate. The trapezoidal rule eventually
converges to the correct value, but it does not (in generafkwut that the values get
closer and closer to the correct value.
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In the case here the situation is really quite simpler. Sthedunctionf (x) = e’ is
convex [sometimes called concave up] on the intej@gl] the trapezoidal rule always
overestimates the integral. Each successive applicatioiafgern will get closer as it
will be smaller. So you could solve the problem using triadteerror in this way.

If you know how to program then this is reasonable. On the wabgan also find
Java Applets that will do the job for you. For example, at iheetof writing, a nice
one is here

www.math.ucla.edu/ ... ronmiech/Java Applets/Riemauaek.html

that allows you to input

{f(x)= exp(x"2)}

and select the number of subdivisions. It is perhaps moteuitts/e to do some ex-
perimental play with such applets than to spend an equaluiithepublished calculus
problems.

A more sensible method, which will be useful in more situagiois to use the
published error estimate for the trapezoidal rule to find leorgeen must be so that the
error is small enough to guarantee nine decimal place aogura

The second derivative df(x) = e’ is

£7(x) = 26 + 4x2e<.
A simple estimate on the intervf, 1] shows that 2 f”(§) < 6e = 16.30969097 for
alo<&<1.

We know that the use of the trapezoidal rule atribiestage produces an error

1
error= ——— f’
5 t"(®).
where€ is some number between 0 and 1.
Consequently if we want an error less tharm 92 [guaranteeing a nine decimal
accuracy] we could require
1 1
——f" ——5(16.30969097 < 10 °/2.
e (&)= T 7<107/
So

1
n’ > 15(16:30969097(2 x 10°)

or n > 52138 will do the trick. Evidently a trial-and-error appcbamight have been
somewhat lengthy. Notice that this method, using the crade estimate for the trape-
zoidal rule, guarantees that for alt> 52138 the answer provided by that rule will be
correct to a nine decimal accuracy. It does not at all sayweanustusen this large.
Smallern will doubtless suffice too, but we would have to use a differmethod to
find them.

What we could do is use a lower estimate on the error. We have

1 ., 2
error= _Wf €) > 1z
whereg is some number between 0 and 1. Thus we could look for value$omfwhich
2

~ o > 107
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which occurs fom? < %109, orn < 129099. Thus, before the stap= 12,909 there
must be an error in the trapezoidal rule which affects at ldesninth decimal place.
Exercise448, page 119
To show thatfy x"e *dx = n! first find a recursion formula for
Iy :/ Xe*dx (N=0,1,2,3,...)
0

by integration by parts. A direct computation shows tlyat 1 and an integration by

parts shows thdt, = nl,_1. It follows, by induction, that,, = nl.
In fact Maple is entirely capable of finding the answer to this. Input the same
command:

> int(x*n* exp(-x), x=0..infinity );
menory used=3.8MB, alloc=3.1MB, tine=0.38
GAMVA(n + 1)

The Gamma function is defined B$n+ 1) = n! at integers, but is defined at non-
integers too.

Exercise450, page 120

This is called theCauchy-Schwarz inequalignd is the analog for integrals of that same
inequality in elementary courses. It can be proved the saayeand does not involve
any deep properties of integrals.

Exercise451, page 120

For example, prove the following:
1. log1=0.
logx < logyif 0 < x <.
limy_,logx = 0 and lim_,q. logx = 0.
the domain and range are b@thw).
logxy = logx+logyif 0 < x,y.
logx/y = logx—logy if 0 < Xx,y.
log =rlogxforx>0andr=1,23,....

loge= 1 wheree = lim,_,»(1+1/n)".

© © N o 0 & w0 DN

4 logx = 1/x for all x > 0.

=
o

. log2=0.69... .
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Exercise454, page 121

Take any sequence. It must contain every element of the esgy since there is
nothing to check.

Exercise455, page 121

If the finite set is{c;, ¢y, C3,...,Cn} then the sequence
C17 C27 C37 s 7Cm7 Cm7 Cm7 Cm7 s
contains every element of the set.

Exercise456, page 121

If the sequence

C1,C2,C3,...,Cm, ...
contains every element of some set it must certainly comtegny element of any subset
of that set.

Exercise457, page 122

The set of natural numbers is already arranged into a liss indtural order. The set of
integers (including 0 and the negative integers) is not liyspeesented in the form of
a list but can easily be so presented, as the following sclseigpgests:

0,1,-1,2,—2,3,—3,4,—4,5,-5,6,—6,7,—7,....

Exercise458, page 122

The rational numbers can also be listed but this is quite realsde, for (at first sight)
no reasonable way of ordering them into a sequence seemgsttikbe possible. The
usual order of the rationals in the reals is of little help.

To find such a scheme define the “rank” of a rational nunthbén in its lowest
terms (withn > 1) to be|m|+n. Now begin making a finite list of all the rational
numbers at each rank; list these from smallest to largest.efample, at rank 1 we
would have only the rational numbeyD At rank 2 we would have only the rational
numbers—1/1, 1/1. Atrank 3 we would have only the rational numberg/1, —1/2,
1/2, 2/1. Carry on in this fashion through all the ranks. Now cordtthe final list by
concatenating these shorter lists in order of the ranks:

0/1,-1/1,1/1,-2/1,-1/2,1/2,2/1,....
This sequence will include every rational number.

Exercise459, page 122

If the sequence
C1,C2,C3,...,Cm, .-
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contains every element of a etand the sequence
dp,dp,ds,...,dm,...
contains every element of a d&tthen the combined sequence
C1,0d1,Cp,dp,C3,d3...,Cm,0m, . ..

contains every element of the uniém B.
By induction, then the union of any finite number of countadd¢s is countable.
That is not so remarkable in view of the next exercise (Eserts0).

Exercise460, page 122

We show that the following property holds for countable sHts

S S, S, -

is a sequence of countable sets of real numbers, then thi&fsgnhed by taking all
elements that belong to at least one of the Seis also a countable set.
We can consider that the elements of each of theSet@n be listed, say,

S = {X11,X12, %13, X14, - .. }
S = {Xo1,X22, %23, X24, ... }
S = {Xa1,X32,X33, X34, . .. }

S = {Xa1,%42,%43, %44, - . . }

and so on. Now try to think of a way of listing all of these itertisat is, making one
big list that contains them all.
Describe in a systematic way a sequence that starts like this

X11,X12, X21, X13, X22, X23, X14, X23, X32, X41, - - .

Exercise461, page 122

It is easy enough to construct such a function that has finiteiny discontinuities.
With some persistence you can find such a function that iodtgwous, say, at every
rational number. You cannot find such a function that is difooous at every irra-
tional because the collection of all points where such atfand- is not continuous is
countable.

First of all establish that for such a function and at everinpa < x < b, the
one-sided limitF (x—) = limy_,x_ F(x) exists and that, at every poiat< x < b, the
one-sided limitF (x+) = limy_x; F(X) exists. Note that, again because the function is
monotonic, nondecreasing,

F(x—) <F(x) <F(x+)
at alla < x < b. Consequently is continuous at a pointif and only if the one-sided
limits at that point have the same valueF).
For each integen let C, be the set of pointg such thatF (x+) — F(x—) > 1/n.

Becausd- is nondecreasing, and becalg) — F (a) is finite there can only be finitely
many points in any sék,. To see this take, if possible, any poiatsc ¢; < ¢, < -+ <
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Ccp < b from the seC, and select points
A=X <C <X <C< - <Xp1<Cp<Xp=h
Then
F(x-1) <F(a-) <F(a+) < F(x)
and so

p p
p/n< _;[F(CH')_F(Ci—)] < _;[F(Xi)_F(Xi))] =F(b)-F(a).

Thus the number of points i@, cannot be larger tham(F (b) — F(a).
The total set of points of discontinuity includes all the tiinsetsC,, together with
(possibly) the pointa andb. This set must be countable.

Exercise462, page 122

This observation is originally due to Beppo Levi (1874—-1Pp6lhe English mathemati-
cian Grace Chisholm Young (1868-1944) clarified this by gighe Dini derivatives.
This was in one of a series of papers in which she and her hdgWdiiam Henry
Young (1863-1942)] studied properties that distinguistwben right and left as re-
gards limits and derivatives.

Exercise463, page 122

If (a,b) is countable then find a functioi: (a,b) — (0, 1) one-to-one onto and consider
the sequencé(s,), where{s,} is a sequence that is claimed to have al{ab) as its
range.

The simplest such function is, perhagst) = (t —a)/(b— a). The same function
shows thata, b] is countable if and only if0, 1] is countable. But if0, 1] is countable
sois its subsef0, 1). Indeed, if there exists a countable interval, then alrirks, open
or closed, bounded or unbounded must be countable too.

Exercise464, page 122
Recall that

1. Every number has a decimal expansion.

2. The decimal expansion is unique except in the case of siggathat terminate
in a string of zeros or nines [e.g./2= 0.5000000-- = .49999999. .], thus if
a andb are numbers such that in timeéh decimal place one has a 5 (or a 6) and
the other does not then eith&t b, or perhaps one ends in a string of zeros and
the other in a string of nines.

3. Every string of 5’s and 6’s defines a real number with thatrdal expansion.

We suppose that the theorem is false and that there is a seExfsh so that every
number in the interval0, 1) appears at least once in the sequence. We may assume that
all of the numbers of the sequence are in the intef®al) [otherwise remove them].
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We obtain a contradiction by showing that this cannot be s@ shall use the
sequencg s, } to find a numbec in the interval(0, 1) so thats, # c for all n.

Each of the points;, S, S3 ... in our sequence is a number between 0 and 1 and so
can be written as a decimal fraction. If we write this seqeenat in decimal notation
it might look like

Sp = 0.X11X12X13X14X15X16 - - -
S = 0.X21X22X03X24X05X06 . . -
S3 = 0.X31X32X33X34X35X36.- - -
etc. Now it is easy to find a number that is not in the list. Crartdt
¢ =0.c1CC3C4CsC5. . .

by choosingg; to be either 5 or 6 whichever is different fraxg. This number cannot be
equal to any of the listed numbess s, Sz . .. sincec ands differ in theith position of
their decimal expansions. This gives us our contradictimhso proves the theorem.

Exercise465, page 122

Well, you could .... But you are missing the point of a proofdmntradiction. To
prove the theorem, we suppose that it fails and then obtamn&azdiction from that
assumption. Here we are supposing that we have succeededliimfia listing of all
the numbers from the intervé0, 1). We construct a number that is not in the list and
conclude that our assumption [that we have succeeded imdjradiisting] is simply not
valid.

Exercise466, page 122

We suppose that the theorem is false and that there is a seg{®n so that every
number in the intervala, b) appears at least once in the sequence.

We obtain a contradiction by showing that this cannot be s@ sWhall use the
sequencg s, } to find a numbec in the interval(a,b) so thats, # c for all n.

Choose a subintervéd;, di] C (a,b) that does not contain the first elemenbf the
sequence. Then choose a subintefeald,] C [c1,d1]) that does not contain the second
elements, of the sequence. Continue inductively in this manner to pceda nested
sequence of closed bounded intervals. There is at least@mnicghat belongs to each
of these intervals and yet that point cannot appear in theeseg{s, }.

Exercise467, page 122

Find a way of ranking the algebraic numbers in the same waythkaational numbers
were ranked in Exercisé58.
Try this for a rank: take the smallest number

N+ [an| + |an-1] + -+ |aa] + [ao|
as the rank of an algebraic number if it satisfies the equation
anX"+an_1 X"+ +ax+ag = 0.
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Now verify that there are only finitely many algebraic nungbat any rank. The union
of the set of algebraic numbers at all the different rankstriinen be countable.

Exercise468, page 123

Every interval must contain infinitely many transcendemiamnbers otherwise that in-
terval must be countable. The interval would then be colmigdelf, since it must then
be contained in the union of the set of algebraic numbersdwis countable] and the
set of transcendental numbers [which we imagine is cougltall fact, then, the set of
transcendental numbers in any interval must be uncountable

Exercise469, page 123

Let N; be the set of points at whichF’(x) = f(x) fails and letN, be the set of points
at whichG'(x) = f(x) fails. Apply Theorenm%.3using the functiorH = F — G and the
countable selN = Ny U N,.

Exercise470, page 124

Exercise469can be used.

Exercise471, page 124

The derivative ofF exists at all points in0,1) except at these cornersri, n =
2,3,4,5,.... If a> 0 then the intervala, 1] contains only finitely many corners. But
the interval(0,1) contains countably many corners! Thus the calculus intégtaoth
the finite set version and in the countable set version waVale

/bF’(x)dx: F(b)—F(a)

forall0 < a< b < 1. The claim that

/ObF’(x)dx: F(b) — F(0)

for all 0 < b < 1 can be made only for the new extended integral.

Exercise472, page 124

The same proof that worked for the calculus integral will kvbere. We know that, for
any bounded functiori on an interval(a,b), there is a uniformly continuous function
on [a, b] whose derivative i (x) at every point of continuity of.

Exercise474, page 125

Just kidding. But if some instructor has a need for such avwextould rewrite Chap-
ters 2 and 3 without great difficulty to accommodate the maneegal integral. The
discussion of countable sets in Chapter 4 moves to Chapt@ih#.definition of the

indefinite integral in Chapter 2 and the definite integral ima@ter 3 change to allow
countable exceptional sets.
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Most things can stay unchanged but one would have to try ftielbeersions of
many statements. Since this new integral is also merelychiteg integral we would
need to strike some balance between finding the best versssilgle and simply pre-
senting a workable theory that the students can eventuafiiace later on with the
correct integration theory on the real line.

Exercise475, page 125

We will leave the reader to search for an example of such aesegu The exercise
should leave you with the impression that the countable setian of the calculus

integral is sufficiently general to integrate just about amgmple you could imagine
creating. Itis not hard to find a function that is not intedeaiy any reasonable method.
But if it is possible (as this exercise demands) to write

00 = 3 0¥
k=1

é;([buwdﬁ

converges then, certainly, should be integrable. Any method that fails to hanflie
inadequate.
With some work and luck you might consider the series

A

kzl VIx=ril
wherey ¢, a converges andry} is an enumeration of the rationals [ 1]. This is

routinely handled by modern methods of integration but tlegrfann integral and these
two weak versions of the calculus integral collapse witthsaic example.

and if

00

Exercise476, page 126

Start with a selN that contains a single elemenaind show that that set has measure
zero according to the definition. Let> 0 and choosé(c) = ¢/2. Then if a subpartition

{([ci,di],c) :1=1,2}
is given so that
0<di—c<9d(c) (i=12)

then
2

Zl(di —C)<g/2+¢g/2=E.

Note that we have used only two elements in the subpartifiecesve cannot have
more intervals in a subpartition with one associated point

Now consider a séfl = {c;,Cy, C3, . .., Cq } that contains a finite number of elements.
We show that that set has measure zero according to the mefiriete > 0 and choose
o(ci) = €/(2n) for eachi = 1,2,3,...,n. Use the same argument but now with a few
more items to keep track of.
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Exercise477, page 126

Now consider a countable skt= {c;,cp,cs,...,} that contains an finite number of
elements. We show that that set has measure zero accordhmgdefinition. Le€ > 0
and choosé(cy) = g2 %1 for eachi = 1,2,3,...,n. Use the same argument as in the
preceding exercise but now with a quite a few more items tp keek of.

Suppose that we now have a subpartition

{([Ci,di],ai) = 1,2,...,[’]}
with each¢; = ¢ € N for somek, and so that
0<d—c<d) (i=1,2,...,n).

Then to estimate the sum
n

_;(di —Gi)

just check the possibilities wheféc;, d], &) = ([ci,di],c) for somek. Each of these
adds no more thare2-~* to the value of the sum. But

(o]
g2 K—¢.
&

Exercise478, page 126

Prove this by contradiction. If an intervéd, b|] does indeed have measure zero then,
for anye > 0, and every poin < [a,b] we should be able to find &) > 0 with the
following property: whenever a subpartition
{([ci,di],&):1=1,2,...,n}
is given with eacl§; € [a,b] and so that
O<d—c<d&) (i=12,...,n)

then
n

-Zi(di —G)<E.

By the Cousin covering argument there is indeed such aipartit
{([ci,di],&):1=1,2,...,n}
with this property that is itself a full partition of the imial [a, b]. For that partition

n

Zl(di —Ci) =b-a

This is impossible.

Exercise479, page 126

Too easy for a hint.
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Exercise480, page 126

We know that subsets of sets of measure zero have themsebasure zero. Thus if
N; andN, are the two sets of measure zero, write
N1 UN> =Ny U [Nz\Nl].

The sets on the right are disjoint sets of measure zero. Seitaugh if we prove the
statement, assuming always that the two sets are disjaihh@ave measure zero.

Lete > 0. To every poin€ € N; or § € Ny, there is &(§) > 0 with the following
property: whenever a subpartition

{([Ci,di],ai) = 1,2,...,[’]}
is given with eaclE; € N; or else with; € N, and so that
O<d—g <5(Ei) (i :1,2,...,n)

then
n

i;(dl C)<g/2
Together that means that whenever a subpartition
{([ci,di],&):1=1,2,...,n}
is given with eacl§; € N1 UN, and so that
O<d—c <o) (i=12,...,n)

then
n

Zl(di —G)<g/2+¢g/2=c¢,

since we can easily split the last sum into two parts depgnalinvhether the associated
pointsé&; belong toN; or belong toN,.

Exercise481, page 126

We repeat our argument for the two set case but taking adittie care. We know that
subsets of sets of measure zero have themselves measur@lnesaf Ny, No, N3, ... IS
a sequence of sets of measure zero, write

NiUNsUNg--- = N]_U[NQ\N]_]U(N3\[N1UN2])U....

The sets on the right are disjoint sets of measure zero. S@itdugh if we prove the
statement, assuming always that the sets in the sequendssjaiet and have measure
zero.

Lete > 0. To every poin€ € Ni there is a() > 0 with the following property:
whenever a subpartition

{([ci,di],Ei):i:1,2,...,n}
is given with eaclt; € Nk and so that
O<d—c<d&) (i=12,...,n)

then
n

Zi(di - Ci) < g2 k.
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Together that means that whenever a subpartition
{([ei,di], &) :1=12,2,...,n}
is given with eactE; € N UN>,UNzU... and so that
O0<d—c <o) (i=1,2,...,n)

then
n

p
Zl(di —c)< Yy e2f<e,
= =]

since we can easily split the last sum into finitely many pdeggsending on whether the
associated pointg belong toNg, or N2, or N3, ..., orNp for some (possibly largep.

Exercise482, page 126

Lete > 0. Since the serie§,_,(bkx — ax) converges there must be an intefesuch
that

00

z (bk — ak) < E.

K=N
Note that every point oE is contained in one of the intervalay, by) for k=N, N+ 1,
N+2, .... For each € E select the first one of these intervéég, by) that contains.

Choos&d(x) < (bx —ak)/2. This define(x) for all xin E.
Whenever a subpatrtition
{([ci,d],&):1=1,2,...,n}
is given with eacl§; € E and so that
O<d—c <o) (i=12,...,n)

then note that the intervéd;, d;] belongs to one at least of the intervédg, by). Hence

the sum
n

Sa-o

can be split into a finite number of subsums each adding up toore that(by — ax)
forsomek=N,N+1,N+2,..... It follows that

n

-Zl(di —G)<E.

Exercise483, page 128

From each of the four closed intervals that make up th&se¢move the middle third
open interval. This will lead to

1 2 3

There should be eight intervals in all at this stage.
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Exercise485, page 128

First note thaG is an open dense set[@ 1]. Write G = Jg_ (&, bk). (The component
intervals (ax, bx) of G can be called the intervattomplementaryo K in (0,1). Each
is a middle third of a component interval of soridg.) Observe that no two of these
component intervals can have a common endpoint. If, for @@, = a,, then this
point would be an isolated point &f, andK has no isolated points.

Next observe that for each integethe pointsax andby are points oK. But there
are other points oK as well. In fact, we shall see presently tlkatis uncountable.
These other points are all limit points of the endpoints ef¢bmplementary intervals.
The set of endpoints is countable, but the closure of thigsagticountable as we shall
see. Thus, in the sense of cardinality, “most” points of th@&tOr set ar@ot endpoints
of intervals complementary tid.

Show that the remaining s&t = [0,1] \ G is closed and nowhere dense in [0,1].
Show thatK has no isolated points and is nonempty. Show ®é&ds a nonempty,
nowhere dense perfect subset of [0,1].

Now let

G = U Gn
n=1
and let

K=[0,1\G= [ Kn.
n=1
ThenG is open and the s&t (our Cantor set) is closed.

To see thakK is nowhere dense, it is enough, sin€ds closed, to show that
contains no open intervals. Létbe an open interval if0,1] and letA be its length.
Choose a natural numbarsuch that 13" < A. By property 5, each component kf
has length 13" < A, and by property 2 the components K are pairwise disjoint.
ThusK,, cannot contaird, so neither calK = N7 K,. We have shown that the closed
setK contains no intervals and is therefore nowhere dense.

It remains to show thak has no isolated points. L&t € K. We show thakg is a
limit point of K. To do this we show that for evegy> 0 there existsx; € K such that
0 < |1 —Xo| < €. Choosen such that 13" < €. There is a componert of K, that
containsxg. This component is a closed interval of lengtf81 < €. The set, ;1 NL
has two componentsy andL1, each of which contains points &f. The pointxg is in
one of the components, say. Letx; be any point oK NL;. Then 0< |xg —X3| < €.
This verifies thakg is a limit point of K. ThusK has no isolated points.

Exercise486, page 128

Each component interval of the 98} has length 13"; thus the sum of the lengths of
these component intervals is
21 1 /2\"
3 2 (é) '
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It follows that the lengths of all component intervals®forms a geometric series with

sum .
o 1/2
Z 2 <_> B 1'
&2 \3

(This also gives us a clue as to wKycannot contain an interval: After removing from
the unit interval a sequence of pairwise disjoint interveith length-sum one, no room
exists for any intervals in the sktthat remains.)

Exercise487, page 128

Here is a hint that you can use to make into a proof.E.ee the set of all points in the

Cantor set that are not endpoints of a complementary irteifgen the Cantor set is

the union ofE and a countable set. B has measure zero, so too has the Cantor set.
Lete > 0 and choos&l so large that

No12\"

n=1

co 1 <2>ﬂ
-l35) <e
n:%JrlZ 3
Here is how to define &(&) for every point in the seE. Just make sure th&(§) is
small enough that the open intervd — 8(¢),&,+0(¢)) does not contain any of the
open intervals complementary to the Cantor set that aretedun the sum
N1 /2\"
== 1—c¢.
nle <3> ~ ¢
Now check the definition to see thatsatisfies the required condition to check that

it is a set of measure zero. Using tRiguarantees that the intervals you will sum do
not meet these open intervals that we have decided make upoim6sl] (i.e., all but

€).

i.e., so that

Exercise491, page 129

This exercise shows that there is a purely arithmetical tcoctson for the Cantor set.
You will need some familiarity with ternary (base 3) arithmenere.
Eachx € [0,1] can be expressed in base 3 as

X=.aqyapaz...,
wherea; =0,10r2,i=1223,... . Certain points have two representations, one ending
with a string of zeros, the other in a string of twos. For exeEn@d000--- =.0222...

both represent the number 1/3 (base ten). Now,df(1/3,2/3), a; = 1, thus each
x € G; must have ‘1’ in the first position of its ternary expansiomiarly, if

xeGy— (L 2)y(r8
2= \9'9 9'9)"

it must have a 1 in the second position of its ternary expan@ie.,a, = 1). In general,
each point inG, must haves,, = 1. It follows that every point 06 = |J7 G, must have
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a 1 someplace in its ternary expansion.

Now endpoints of intervals complementaryKohave two representations, one of
which involves no 1's. The remaining points iéfnever fall in the middle third of a
component of one of the self, and so have ternary expansions of the form

X=.yaz... a=0o0r2
We can therefore descritbearithmetically as the set
{x=.a1@az... t (base three) a = Othereexistor 2 for each € N}.

Exercise492, page 129

In fact, K can be put into 1-1 correspondence with [0,1]: For each
X=.qaaz... (base 3)g =0,2,
in the setK, let there correspond the number
y=.bihobs... (base 2)b = & /2.
This provides a 1-1 correspondence betwle(minus endpoints of complementary
intervals) and0, 1] (minus the countable set of numbers with two base 2 represent

tions). By allowing these two countable sets to corresponelach other, we obtain a
1-1 correspondence betwekrand|0,1].

Exercise493, page 129

“When | was a freshman, a graduate student showed me therGantand
remarked that although there were supposed to be point®isethother
than the endpoints, he had never been able to find any. | regsety that
it was several years before | found any for myself.”

Ralph P. Boas, Jr, frorhion Hunting & Other Mathematical Pursuits
(1995).

It is clear that there must be many irrational numbers in that@ ternary set, since
that set is uncountable and the rationals are countable. j¥bus to find just one.

Exercise496, page 129

This is certainly true for some open sets, but not for all opets. ConsideG =
(0,1) \ C whereC is the Cantor ternary set. The closure®fs all of the intervall0, 1]
so thatG and its closure do not differ by a countable set and contaimymaore points
than the endpoints as the student falsely claims.

Exercise500, page 131

See Donald R. Chalice, "A Characterization of the Cantorckan." Amer. Math.
Monthly 98, 255-258, 1991 for a proof of the more difficultedition here, namely
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£
The Devil's Staircase X

Figure 5.6: The Cantor function.

that the only monotone, nondecreasing functiori®d] that has these three properties
is the Cantor function. Figur.6 should be of assistance is seeing that each of the
three properties holds. To verify them use the charactaizaf the function in the
preceding exercise.

Exercise501, page 132

There is nothing to prove. Write the two definitions and obséhat they are identical.

Exercise502, page 133
There is immediate. If the definition holds for the largertBen it holds without change
for the smaller set.
Exercise503, page 133
Lete > 0. Then for every € E; there is &1 (x) > 0
n
[F(bi) —F(a)| <&/2
2
whenever a subpartitiod ([a,b;],&;) : 1 =1,2,...,n} is chosen for which

& € Exnfa,bi] andb —a < (§)).
Similarly for everyx € E; there is &,(x) >0

n
[F (b)) —F(a)| <e
570
whenever a subpartitiod ([a;, bi],&i) : 1 =1,2,...,n} is chosen for which

Ei =18 [a,bi] andbi —g < 5(Ei).

Taked(x) in such a way, that if a pointhappens to belong to both sets t€R) is
the minimum ofd;(x) andd,(X). For points that are not in both takéx) eitherd; (x)
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or dz(X).
Whenever a subpatrtition
{([ai,bi],&) :i=21,2,...,n}
is chosen for which
& € (E1UEz) N[, bi] andb — &g < (&)

i_iwbi)—

splits into two parts, depending on whether &are in the first sefE; or the second set
E,. It follows that

the sum

Zi\F (b)) —F(a)| <g/2+¢/2.

We have given all the details here since the next exercis@resgthe same logic
but rather more detail.

Exercise504, page 133

We can simplify the argument by supposing, without loss oiegality, that the sets are
disjoint. This can be arranged by using subsets ofhso that the unioft = U‘J?°:1 Ej
is the same.

Lete >0 and letj =1,2,3,.... Then for every € E; there is &;(x) > 0

21“: (b)) — F(a)| < €27

whenever a subpartitiod ([a;,bi],&;) : 1 =1,2,...,n} is chosen for which
& e Ej N [ai,bi] andb; — g < 6](Ei)-
Simply defined(x) = &;(x) if x € Ej. Whenever a subpartition
{([ai,bi],&) :i=1,2,...,n}
is chosen for which
& € Enfa,b] andb — g < 8(&;)

5 Fib)-

splits into finitely many parts, depending on whetherghare in the first seE;, or the
second sef,, or the third seEs, etc. It follows that

the sum

[ee]

_i|F(bi)—F(ai)| < Zsz-i =¢.
1= =
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Exercise505, page 133

If fis bounded o then this is simple. Just use an upper bound,|$&y)| < M for
x € N and note that

n n
[FE)|(bi —a) <MY (b —a).
2@y =2 (o
If fis notbounded o write, for every integelj = 1,2,3,...
Nj={xeN:j—-1<[f(x)] < |}

and argue on each of these sets. Notice that we have zertoaea each sel; since
f is bounded on each set. The extension to the union of thgNe}ds just a repetition
of the details used in the proof of Exercis@4; just replace the sums

5 (o) (@)

by
_Zi\f(a)!(bi—a)-

Exercise506, page 133

This is particularly easy since

5 F(b) ()~ 186 -a)| < 3 [F(b)~Fla)|+ 3 [1E@)Ib -2

Exercise507, page 133

Select, for everx € E, ad(x) > 0 so that
e(v—u)
b—a
for all 0 < v—u < 9(x) for whichu < x <v. Then just check the inequality works since,
if

[F(V) = F(u) - f)(v-u)l <

& € ENn(a,by] andb —a < 3(§)),
then
e(b; —a;).

[F (b))~ F(a) = f(&) (b —a)| < =g —

Exercise508, page 133

The Cantor function is, in fact, constant on each componéttieoopen set comple-
mentary to the Cantor set in the intery@l1]. From that observation it is clear than
the Cantor function has zero variation on each componeatvalt of G. Then use
Exercise504.
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Exercise509, page 134
Lete > 0. For everyx € (a,b) there is &(x) > 0 such that

Zl|F (b)—F(a)| <€

whenever a subpartitiod ([a,b;],&;) : 1=1,2,...,n} is chosen for which
& € (ab)N[a,b] andb —a < ().
Consider any intervalc,d] C (a,b). By the Cousin covering lemma there is a
partition of the whole intervdlc,d], {([a,bi],&i):i=1,2,...,n}, for which

&€ [a,b] andby —a < 8(&;).
Consequently

|F(d \_]ZlFb, ]<Zl]Fb, a)l <e.

This is true for any such interval and all positiseThis is only possible iF is constant
on (a,b).

Exercise510, page 134

We have already checked that the Cantor function has zerbeoset complementary
to the Cantor set if0, 1]. This is because the Cantor function is constant on all of the
component intervals. If the Cantor function also had zematian on the Cantor set
then we could conclude that it has zero variation on the eimierval[0, 1]. It would
have to be constant.

Exercise512, page 134

Just mimic (and simplify) the proof for Exerci&@7.

Exercise513, page 134

This exercise is a generalization of Exercd®d. Essentially the same method will work
here, although you should find that it is easier to prove timegdization.

Exercise534, page 141

If F is differentiable at all points df, b] this is certainly a true statement. If we allow
exceptional points then the hypotheses have to be adjusted.

AssumeF is uniformly continuous oifg, b| and differentiable at all but a countable
set of points. Then this statement is true.

AssumeF is Lipschitz onfa, b] and differentiable at all but a set of points of measure
zero. Then this statement is true. Remarkably enough thigasvithout assuming any
differentiability. Lipschitz functions are always diffamtiable at all but a set of points
of measure zero. But that observation belongs in a more addacourse than this.
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There are more conditions that you can assume to guarardee th

/bF’(x)dx:F(b)—F(a).

Exercise537, page 143

Exercise05, 506, and507 contain all the pieces required for a very easy proof. Make
sure to write

/bif(x)dx:F(bi)—F(a;)
a

using the indefinite integréd and to observe that only the first inequality of the theorem
need be proved, since the second one follows immediataty the first.

Exercise538, page 144

The proof is an exercise in derivatives taking care to hatitesets of measure zero.
UseF andG for the indefinite integrals of andg. Let Ng be the set of points in
(a,b) wheref(x) < g(x) might fail. Suppose tha’(x) = f(x) except on a setl; with
N; measure zero and such tl/ahas zero variation oN;. Suppose tha®'(x) = g(x)
except on a se¥l, with N, measure zero and such thahas zero variation oNb.
ThenH = G—F hasH’(x) = g(x) — f(x) > except on the setly UN; UN,. This
set is measure zero and, sirffeandG are absolutely continuous inside the interval, so
too isH.
The proof then rests on the following fact which you shoulover
If H is uniformly continuous orja,b|, absolutely continuous inside the
interval, and if g
dx H(x) >0

for all pointsxin (a,b) except possibly points of a set of measure zero then
H (X) must be nondecreasing ¢mb.

Finally thenH (a) < H(b) shows thaf (a) — F (b) < G(b) — G(a) and hence that
b

/abf(x)dxg/ g(x) dx.

a
Exercise539, page 144
Study the proof for Exercise38and just use those techniques here.

Exercise540, page 144

In preparation ...
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Exercise541, page 145

Here is a version that is not particularly ambitious and syda prove. It is also suffi-
ciently useful for most calculus classes. SupposeRtatdG are uniformly continuous
on [a,b] and that each function is differentiable except at a couatabmber of points.
Then the functiorF (x)G'(x) + F'(X)G(X) is integrable orja, b] and

/ab (F(X)G'(x) +F'(x)G(x)) dx= F(b)G(b) — F(a)G(b).

In particularF (x)G'(x) is integrable orja,b] if and only if F'(x)G(x) is integrable on
[a,b]. In the event that either is integrable then the formula

/bF(x)G’(x)dx: F (b)G(b) — F (a)G(b) — /bF’(x)G(x)dx

a
must hold.

To prove it, just check thatl (x) = F (x)G(x) is uniformly continuous offia, b] and
has a derivative at all but a countable number of points equbk functionF (x)G' (x) +
F’(x)G(x). But you can do better.

Exercise542, page 145

Here are a number of versions that you might prove. Sup@aseniformly continuous

on [a,b], and thatF is uniformly continuous on an intervét,d] that includes every
value of G(x) for a < x < b. Suppose that each function is differentiable except at a
countable number of points. Suppose that, for eashx < b the set

G HG(x) = {t € [a,b] : G(t) = G(x)}
is at most countable. Then the functiBf(G(x))G'(x) is integrable orja, b| and

b
| (F(6(0)6'() dx=F(G(b) - F(G(@)).

To prove it, just check that (x) = F((G(x)) is uniformly continuous ora,bj
and has a derivative at all but a countable number of pointgletp the function
F'(G(x))G'(x). Again you can do better. Try working with and G as Lipschitz
functions. Or takd- everywhere differentiable ard as Lipschitz.

Exercise543, page 146

There were an infinite number of points in the inter{@ll] at which we could not
claim that

d !/ /
I (GX)) =F(GX))G (x).

But that set is countable and countable sets are no troubkeriow. So this function is
integrable and the formula is valid.

Exercise544, page 146

The proofs in Sectio.8.1can be repeated with hardly any alterations. This is because
both the calculus integral and the integral of this chapter be given a pointwise
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approximation by Riemann sums. Just read through the prodbfodserve that the
same arguments apply in this setting.
Exercise546, page 147

The proofs in Sectio.8.1can be repeated with hardly any alterations. This is because
both the calculus integral and the integral of this chapter be given a pointwise
approximation by Riemann sums.

Exercise547, page 147

Any constant functiorir (x) = C will be, by definition, an indefinite integral faf.

Exercise548, page 147

Any functionF (x) that is an indefinite integral fof will satisfy F(d) — F (c) = 0 for all
a<c<d<h. ThusF is constant and & F’(x) = f(x) for all xin the interval except
possibly at points of a measure zero set.

Exercise549, page 147

Any functionF (x) that is an indefinite integral fof will be monotonic, nondecreasing
and satisfyF (b) — F(a) = 0. ThusF is constant and & F’(x) = f(x) for all x in the
interval except possibly at points of a measure zero set.

Exercise550, page 150
You should be able to prove each of these statements:
e A linear combination of Riemann integrable functions isrRé&mn integrable.
e A product of finitely many Riemann integrable functions i€ Rann integrable.

e A uniform limit of a sequence of Riemann integrable functies Riemann inte-
grable.
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