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PREFACE

There are plenty of calculus books available, many free or atleast cheap, that discuss
integrals. Why add another one?

Our purpose is to present integration theory at an honors calculus level and in an
easier manner by defining the definite integral in a very traditional way, but a way that
avoids the equally traditional Riemann sums definition.

Riemann sums enter the picture, to be sure, but the integral is defined in the way that
Newton himself would surely endorse. Thus the fundamental theorem of the calculus
starts off as the definition and the relation with Riemann sums becomes a theorem (not
the definition of the definite integral as has, most unfortunately, been the case for many
years).

As usual in mathematical presentations we all end up in the same place. It is just
that we have taken a different route to get there. It is only a pedagogical issue of which
route offers the clearest perspective. The common route of starting with the definition of
the Riemann integral, providing the then necessary detour into improper integrals, and
ultimately heading towards the Lebesgue integral is arguably not the best path although
it has at least the merit of historical fidelity.
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Note to the instructor

Since it is possible that some brave mathematicians will undertake to present integra-
tion theory to undergraduates students using the presentation in this text, it would be
appropriate for us to address some comments to them.

What should I teach the weak calculus students?

Let me dispense with this question first. Don’t teach them this material, which is aimed
much more at the level of an honor’s calculus course. I also wouldn’t teach them the
Riemann integral. I think a reasonable outline for these students would be this:

1. An informal account of the indefinite integral formula∫
F ′(x)dx= F(x)+C

just as an antiderivative notation with a justification provided by the mean-value
theorem.

2. An account of what it means for a function to be continuous on an interval[a,b].

3. The definition ∫ b

a
F ′(x)dx= F(b)−F(a)

for continuous functionsF : [a,b] → R that are differentiable at all1 points in
(a,b). The mean-value theorem again justifies the definition. You won’t need
improper integrals, e.g.,∫ 1

0

1√
x

dx=
∫ 1

0

d
dx

(

2
√

x
)

dx= 2−0.

4. Any properties of integrals that are direct translationsof derivative properties.

5. The Riemann sumsidentity∫ b

a
f (x)dx=

n

∑
i=1

f (ξ∗i )(xi −xi−1)

where the pointsξ∗i that make this precise are selected by the mean-value theo-
rem.

1. . . or all but finitely many points
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6. The Riemann sumsapproximation∫ b

a
f (x)dx≈

n

∑
i=1

f (ξi)(xi −xi−1)

where the pointsξi can be freely selected inside the interval. Continuity off
justifies this sincef (ξi) ≈ f (ξ∗i ) if the pointsxi andxi−1 are close together. [It
is assumed that any application of this approximation wouldbe restricted to con-
tinuous functions.]

That’s all! No other elements of theory would be essential and the students can then
focus largely on the standard calculus problems. Integration theory, presented in this
skeletal form, is much less mysterious than any account of the Riemann integral would
be.

On the other hand, for students that are not considered marginal, the presentation in
the text should lead to a full theory of integration on the real line provided at first that
the student is sophisticated enough to handleε, δ arguments and simple compactness
proofs (notably Bolzano-Weierstrass and Cousin lemma proofs).

Why the calculus integral?

Perhaps the correct question is “Why not the Lebesgue integral?” After all, integration
theory on the real line is not adequately described by eitherthe calculus integral or the
Riemann integral.

The answer that we all seem to have agreed upon is that Lebesgue’s theory is too
difficult for beginning students of integration theory. Thus we need a “teaching inte-
gral,” one that will present all the usual rudiments of the theory in way that prepares the
student for the later introduction of measure and integration.

Using the Riemann integral as a teaching integral requires starting with summations
and a difficult and awkward limit formulation. Eventually one reaches the fundamental
theorem of the calculus. The fastest and most efficient way ofteaching integration
theory on the real line is, instead, at the outset to interpret the calculus integral∫ b

a
F ′(x)dx= F(b)−F(a)

as a definition. The primary tool is the very familiar mean-value theorem. That theorem
leads quickly back to Riemann sums in any case.

The instructor must then drop the habit of calling this the fundamental theorem of
the calculus. Within a few lectures the main properties of integrals are available and all
of the computational exercises are accessible. This is because everything is merely an
immediate application of differentiation theorems. Thereis no need for an “improper”
theory of the integral since integration of unbounded functions requires no additional
ideas or lectures.

There is a long and distinguished historical precedent for this kind of definition. For
all of the 18th century the integral was understoodonly in this sense2 The descriptive
definition of the Lebesgue integral, which too can be taken asa starting point, is exactly

2Certainly Newton and his followers saw it in this sense. For Leibnitz and his advocates the integral
was a sum of infinitesimals, but that only explained the connection with the derivative. For a lucid account
of the thinking of the mathematicians to whom we owe all this theory see Judith V. Grabiner,Who gave
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the same: but now requiresF to be absolutely continuous andF ′ is defined only almost
everywhere. The Denjoy-Perron integral has the same descriptive definition but relaxes
the condition onF to that of generalized absolute continuity. Thus the narrative of
integration theory on the real line can told simply as an interpretation of the integral as
meaning merely ∫ b

a
F ′(x)dx= F(b)−F(a).

Why not the Riemann integral?

Or you may prefer to persist in teaching to your calculus students the Riemann integral
and its ugly step-sister, the improper Riemann integral. There are many reasons for
ceasing to use this as a teaching integral; the web page,“Top ten reasons for dumping
the Riemann integral”which you can find on our site

www.classicalrealanalysis.com

has a tongue-in-cheek account of some of these.
The Riemann integral does not do a particularly good job of introducing integration

theory to students. That is not to say that students should besheltered from the notion
of Riemann sums. It is just that a whole course confined to the Riemann integral wastes
considerable time on a topic and on methods that are not worthy of such devotion.

In this presentation the Riemann sums approximation to integrals enters into the
discussion naturally by way of the mean-value theorem of thedifferential calculus.
It does not require several lectures on approximations of areas and other motivating
stories.

The calculus integral

For all of the 18th century and a good bit of the 19th century integration theory, as we
understand it, was simply the subject of antidifferentiation. Thus what we would call
the fundamental theorem of the calculus would have been considered a tautology: that
is how an integral is defined. Both the differential and integral calculus are, then, the
study of derivatives with the integral calculus largely focused on the inverse problem.

This is often expressed by modern analysts by claiming that theNewton integralof
a function f : [a,b]→ R is defined as∫ b

a
f (x)dx= F(b)−F(a)

whereF : [a,b] → R is any continuous function whose derivativeF ′(x) is identical
with f (x) at all pointsa < x < b. While Newton would have used no such notation
or terminology, he would doubtless agree with us that this isprecisely the integral he
intended.

The technical justification for this definition of the Newtonintegral is nothing more
than the mean-value theorem of the calculus. Thus it is ideally suited for teaching

you the epsilon? Cauchy and the origins of rigorous calculus, American Mathematical Monthly 90 (3),
1983, 185–194.
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integration theory to beginning students of the calculus. Indeed, it would be a rea-
sonable bet that most students of the calculus drift eventually into a hazy world of
little-remembered lectures and eventually think that thisis exactly what an integral is
anyway. Certainly it is the only method that they have used tocompute integrals.

For these reasons we have called it thecalculus integral3. But none of us teach the
calculus integral. Instead we teach the Riemann integral. Then, when the necessity of
integrating unbounded functions arise, we teach the improper Riemann integral. When
the student is more advanced we sheepishly let them know thatthe integration theory
that they have learned is just a moldy 19th century concept that was replaced in all
serious studies a full century ago.

We do not apologize for the fact that we have misled them; indeed we likely will
not even mention the fact that the improper Riemann integraland the Lebesgue integral
are quite distinct; most students accept the mantra that theLebesgue integral is better
and they take it for granted that it includes what they learned. We also do not point
out just how awkward and misleading the Riemann theory is: wejust drop the subject
entirely.

Why is the Riemann integral the “teaching integral” of choice when the calculus
integral offers a better and easier approach to integrationtheory? The transition from
the Riemann integral to the Lebesgue integral requires abandoning Riemann sums in
favor of measure theory. The transition from the improper Riemann integral to the
Lebesgue integral is usually flubbed.

The transition from the calculus integral to the Lebesgue integral (and beyond) can
be made quite logically. Introduce, first, sets of measure zero and some simple related
concepts. Then an integral which completely includes the calculus integral and yet is
as general as one requires can be obtained by repeating Newton’s definition above: the
integral of a function f : [a,b]→ R is defined as∫ b

a
f (x)dx= F(b)−F(a)

whereF : [a,b]→R is any continuous function whose derivativeF ′(x) is identical with
f (x) at all pointsa< x< b with the exception of a set of pointsN that is of measure
zero and on whichF has zero variation.

We are employing here the usual conjurer’s trick that mathematicians often use. We
take some late characterization of a concept and reverse thepresentation by taking that
as a definition. One will see all the familiar theory gets presented along the way but
that, because the order is turned on its head, quite a different perspective emerges.

Give it a try and see if it works for your students. By the end ofthis textbook the stu-
dent will have learned the calculus integral, seen all of thefamiliar integration theorems
of the integral calculus, worked with Riemann sums, functions of bounded variation,
studied countable sets and sets of measure zero, and given a working definition of the
Lebesgue integral.

3The play on the usual term “integral calculus” is intentional.
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Chapter 1

What you should know first

This chapter begins a review of the differential calculus. We go, perhaps, deeper than
the reader has gone before because we need to justify and prove everything we shall do.
If your calculus courses so far have left the proofs of certain theorems (most notably
the existence of maxima and minima of continuous functions)to a “more advanced
course” then this will be, indeed, deeper. If your courses proved such theorems then
there is nothing here in Chapters 1–3 that is essentially harder.

The text is about the integral calculus. The entire theory ofintegration can be
presented as an attempt to solve the equation

dy
dx

= f (x)

for a suitable functiony= F(x). Certainly we cannot approach such a problem until we
have some considerable expertise in the study of derivatives. So that is where we begin.
Well-informed (or smug) students, may skip over this chapter and begin immediately
with the integration theory. The indefinite integral startsin Chapter 2. The definite
integral continues in Chapter 3. The material in Chapter 4 takes the integration theory,
which up to this point has been at an elementary level, to the next stage.

We assume the reader knows the rudiments of the calculus and can answer the
majority of the exercises in this chapter without much trouble. Later chapters will
introduce topics in a very careful order. Here we assume in advance that you know
basic facts about functions, limits, continuity, derivatives, sequences and series and
need only a careful review.

1.1 What is the calculus about?

The calculus is the study of the derivative and the integral.In fact, the integral is so
closely related to the derivative that the study of the integral is an essential part of
studying derivatives. Thus there is really one topic only: the derivative. Most univer-
sity courses are divided, however, into the separate topicsof Differential Calculus and
Integral Calculus, to use the old-fashioned names.

Your main objective in studying the calculus is to understand (thoroughly) what the
concepts of derivative and integral are and to comprehend the many relations among
the concepts.

1
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It may seem to a typical calculus student that the subject is mostly all about com-
putations and algebraic manipulations. While that may appear to be the main feature of
the courses it is, by no means, the main objective.

If you can remember yourself as a child learning arithmetic perhaps you can put
this in the right perspective. A child’s point of view on the study of arithmetic cen-
ters on remembering the numbers, memorizing addition and multiplication tables, and
performing feats of mental arithmetic. The goal is actually, though, what some peo-
ple have called numeracy: familiarity and proficiency in theworld of numbers. We all
know that the computations themselves can be trivially performed on a calculator and
that the mental arithmetic skills of the early grades are notan end in themselves.

You should think the same way about your calculus problems. In the end you
need to understand what all these ideas mean and what the structure of the subject is.
Ultimately you are seeking mathematical literacy, the ability to think in terms of the
concepts of the calculus. In your later life you will most certainly not be called upon
to differentiate a polynomial or integrate a trigonometricexpression (unless you end up
as a drudge teaching calculus to others). But, if we are successful in our teaching of
the subject, you will able to understand and use many of the concepts of economics, fi-
nance, biology, physics, statistics, etc. that are expressible in the language of derivatives
and integrals.

1.2 What is an interval?

We should really begin with a discussion of the real numbers themselves, but that would
add a level of complexity to the text that is not completely necessary. If you need a full
treatment of the real numbers see our text[TBB] 1. Make sure especially to understand
the use of suprema and infima in working with real numbers. We begin by defining
what we mean by those sets of real numbers calledintervals.

All of the functions of the elementary calculus are defined onintervals or on sets
that are unions of intervals. This language, while simple, should be clear.

An interval is the collection of all the points on the real line that lie between two
given points [the endpoints], or the collection of all points that lie on the right or left
side of some point. The endpoints are included for closed intervals and not included for
open intervals.

1.2.1 What do open and closed mean?

The terminology here, the words open and closed, have a technical meaning in the
calculus that the student should most likely learn. Take anyreal numbersa andb with
a< b. We say that(a,b) is an open interval and we say that[a,b] is a closed interval.
The interval(a,b) contains only points betweena andb; the interval[a,b] contains all
those points and in addition contains the two pointsa andb as well.

1Thomson, Bruckner, Bruckner,Elementary Real Analysis, 2nd Edition (2008). The relevant chapters
are available for free download atclassicalrealanalysis.com.

http://www.classicalrealanalysis.com
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Open The notion of an open set is built up by using the idea of an openinterval. A
setG is said to beopen if for every pointx∈ G it is possible to find an open interval
(c,d) that contains the pointx and is itself contained entirely inside the setG.

It is possible to give anε, δ type of definition for open set. (In this case just theδ is
required.) A setG is open if for each pointx∈ G it is possible to find a positive number
δ(x) so that

(x−δ(x),x+δ(x)) ⊂ G.

Closed A set is said to beclosedif the complement of that set is open. Specifically,
we need to think about the definition of an open set just given.According to that
definition, for every pointx that is not in a closed setF it is possible to find a positive
numberδ(x) so that the interval

(x−δ(x),x+δ(x))
contains no point inF. This means that points that are not in a closed setF are at some
positive distance away from every point that is inF. Certainly there is no point outside
of F that is any closer thanδ(x).

1.2.2 Open and closed intervals

Here is the notation and language: Take any real numbersa andb with a< b. Then the
following symbols describeintervalson the real line:

• (open bounded interval) (a,b) is the set of all real numbers between (but not
including) the pointsa andb, i.e., allx∈R for which a< x< b.

• (closed, bounded interval)[a,b] is the set of all real numbers between (and
including) the pointsa andb, i.e., allx∈R for which a≤ x≤ b.

• (half-open bounded interval) [a,b) is the set of all real numbers between (but
not includingb) the pointsa andb, i.e., allx∈R for whicha≤ x< b.

• (half-open bounded interval) (a,b] is the set of all real numbers between (but
not includinga) the pointsa andb, i.e., allx∈R for whicha< x≤ b.

• (open unbounded interval)(a,∞) is the set of all real numbers greater than (but
not including) the pointa, i.e., allx∈ R for which a< x.

• (open unbounded interval)(−∞,b) is the set of all real numbers lesser than (but
not including) the pointb, i.e., allx∈ R for which x< b.

• (closed unbounded interval)[a,∞) is the set of all real numbers greater than
(and including) the pointa, i.e., allx∈ R for which a≤ x.

• (closed unbounded interval)(−∞,b] is the set of all real numbers lesser than
(and including) the pointb, i.e., allx∈ R for which x≤ b.

• (the entire real line) (−∞,∞) is the set of all real numbers. This can be reason-
ably written as allx for which−∞ < x< ∞.
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Exercise 1 Do the symbols−∞ and∞ stand for real numbers? What are they then?
Answer

Exercise 2 (bounded sets)A general set E is said to be bounded if there is a real
number M so that|x| ≤ M for all x ∈ E. Which intervals are bounded? Answer

Exercise 3 (open sets)Show that an open interval(a,b) or (a,∞) or (−∞,b) is an
open set. Answer

Exercise 4 (closed sets)Show that a closed interval[a,b] or [a,∞) or (−∞,b] is an
closed set. Answer

Exercise 5 Show that the intervals[a,b) and(a,b] are neither closed nor open.
Answer

Exercise 6 (intersection of two open intervals)Is the intersection of two open inter-
vals an open interval?

Answer

Exercise 7 (intersection of two closed intervals)Is the intersection of two closed in-
tervals a closed interval?

Answer

Exercise 8 Is the intersection of two unbounded intervals an unboundedinterval?
Answer

Exercise 9 When is the union of two open intervals an open interval? Answer

Exercise 10 When is the union of two closed intervals an open interval?Answer

Exercise 11 Is the union of two bounded intervals a bounded set? Answer

Exercise 12 If I is an open interval and C is a finite set what kind of set might be I\E?
Answer

Exercise 13 If I is a closed interval and C is a finite set what kind of set might be I\C?
Answer

1.3 Sequences and series

We will need the method of sequences and series in our studiesof the integral. In
this section we present a brief review. By asequencewe mean an infinite list of real
numbers

s1,s2,s3,s4, . . .

and by aserieswe mean that we intend to sum the terms in some sequence

a1+a2+a3+a4+ . . . .

The notation for such a sequence would be{sn} and for such a series∑∞
k=1ak.



1.3. SEQUENCES AND SERIES 5

1.3.1 Sequences

Convergent sequence A sequence converges to a numberL if the terms of the se-
quence eventually get close to (and remain close to) the number L.

Definition 1.1 (convergent sequence)A sequence of real numbers{sn} is said to
convergeto a real number L if, for everyε > 0, there is an integer N so that

L− ε < sn < L+ ε
for all integers n≥ N. In that case we write

lim
n→∞

sn = L.

Cauchy sequence A sequence is Cauchy if the terms of the sequence eventually get
close together (and remain close together). The two notionsof convergent sequence
and Cauchy sequence are very intimately related.

Definition 1.2 (Cauchy sequence)A sequence of real numbers{sn} is said to be
a Cauchy sequenceif, for everyε > 0 there is an integer N so that

|sn−sm|< ε
for all pairs of integers n, m≥ N.

Divergent sequence When a sequence fails to be convergent it is said to be divergent.
A special case occurs if the sequence does not converge in a very special way: the terms
just get too big.

Definition 1.3 (divergent sequence)If a sequence fails to converge it is said to
diverge.

Definition 1.4 (divergent to∞) A sequence of real numbers{sn} is said todiverge
to ∞ if, for every real number M, there is an integer N so that sn >M for all integers
n≥ N. In that case we write

lim
n→∞

sn = ∞.

[We donot say the sequence “converges to∞.”]

Subsequences Given a sequence{sn} and a sequence of integers

1≤ n1 < n2 < n3 < n4 < .. .

construct the new sequence

{snk}= sn1,sn2,sn3,sn4,sn5, . . . .

The new sequence is said to be asubsequenceof the original sequence. Studying the
convergence behavior of a sequence is sometimes clarified byconsidering what is hap-
pening with subsequences.

Bounded sequence A sequence{sn} is said to beboundedif there is a numberM so
that |sn| ≤ M for all n. It is an important part of the theoretical development to check
that convergent sequences are always bounded.
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1.3.2 Exercises

In the exercises you will show that every convergent sequence is a Cauchy sequence
and, conversely, that every Cauchy sequence is a convergentsequence. We will also
need to review the behavior of monotone sequences and of subsequences. All of the ex-
ercises should be looked at as the techniques discussed hereare used freely throughout
the rest of the material of the text.

Boundedness and convergence

Exercise 14 Show that every convergent sequence is bounded. Give an example of a
bounded sequence that is not convergent. Answer

Exercise 15 Show that every convergent sequence is bounded. Give an example of a
bounded sequence that is not convergent. Answer

Exercise 16 Show that every Cauchy sequence is bounded. Give an example of a
bounded sequence that is not Cauchy. Answer

Theory of sequence limits

Exercise 17 (sequence limits)Suppose that{sn} and{tn} are convergent sequences.

1. What can you say about the sequence xn = asn+btn for real numbers a and b?

2. What can you say about the sequence yn = sntn?

3. What can you say about the sequence yn =
sn
tn

?

4. What can you say if sn ≤ tn for all n?
Answer

Monotone sequences

Exercise 18 A sequence{sn} is said to be nondecreasing [or monotone nondecreas-
ing] if

s1 ≤ s2 ≤ s3 ≤ s4 ≤ . . . .

Show that such a sequence is convergent if and only if it is bounded, and in fact that

lim
n→∞

sn = sup{sn : n= 1,2,3, . . .}.
Answer

Exercise 19 Show that every sequence{sn} has a subsequence that is monotone, i.e.,
either monotone nondecreasing

sn1 ≤ sn2 ≤ sn3 ≤ sn4 ≤ . . .

or else monotone nonincreasing

sn1 ≥ sn2 ≥ sn3 ≥ sn4 ≥ . . . .

Answer
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Nested interval argument

Exercise 20 (nested interval argument)A sequence{[an,bn]} of closed, bounded in-
tervals is said to be anested sequence of intervals shrinking to a pointif

[a1,b1]⊃ [a2,b2]⊃ [a3,b3]⊃ [a4,b4]⊃ . . .

and
lim
n→∞

(bn−an) = 0.

Show that there is a unique point in all of the intervals. Answer

Bolzano-Weierstrass property

Exercise 21 (Bolzano-Weierstrass property)Show that every bounded sequence has
a convergent subsequence. Answer

Convergent equals Cauchy

Exercise 22 Show that every convergent sequence is Cauchy. [The converse is proved
below after we have looked for convergent subsequences.] Answer

Exercise 23 Show that every Cauchy sequence is convergent. [The converse was proved
earlier.] Answer

Closed sets and convergent sequences

Exercise 24 Let E be a closed set and{xn} a convergent sequence of points in E. Show
that x= limn→∞ xn must also belong to E. Answer

1.3.3 Series

The theory of series reduces to the theory of sequence limitsby interpreting the sum of
the series to be the sequence limit

∞

∑
k=1

ak = lim
n→∞

n

∑
k=1

ak.

Convergent series The formal definition of a convergent series depends on the defi-
nition of a convergent sequence.

Definition 1.5 (convergent series)A series
∞

∑
k=1

ak = a1+a2+a3+a4+ . . . .

is said to beconvergentand to have a sum equal to L if the sequence of partial
sums

Sn =
n

∑
k=1

ak = a1+a2+a3+a4+ · · ·+an

converges to the number L. If a series fails to converge it is said todiverge.
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Absolutely convergent series A series may converge in a strong sense. We say that
a series is absolutely convergent if it is convergent, and moreover the series obtained
by replacing all terms with their absolute values is also convergent. The theory of ab-
solutely convergent series is rather more robust than the theory for series that converge,
but do not converge absolutely.

Definition 1.6 (absolutely convergent series)A series
∞

∑
k=1

ak = a1+a2+a3+a4+ . . . .

is said to beabsolutely convergentif both of the sequences of partial sums

Sn =
n

∑
k=1

ak = a1+a2+a3+a4+ · · ·+an

and

Tn =
n

∑
k=1

|ak|= |a1|+ |a2|+ |a3|+ |a4|+ · · ·+ |an|

are convergent.

Cauchy criterion

Exercise 25 Let

Sn =
n

∑
k=1

ak = a1+a2+a3+a4+ · · ·+an

be the sequence of partial sums of a series
∞

∑
k=1

ak = a1+a2+a3+a4+ . . . .

Show that Sn is Cauchy if and only if for everyε > 0 there is an integer N so that
∣

∣

∣

∣

∣

n

∑
k=m

ak

∣

∣

∣

∣

∣

< ε

for all n ≥ m≥ N. Answer

Exercise 26 Let

Sn =
n

∑
k=1

ak = a1+a2+a3+a4+ · · ·+an

and

Tn =
n

∑
k=1

|ak|= |a1|+ |a2|+ |a3|+ |a4|+ · · ·+ |an|.

Show that if{Tn} is a Cauchy sequence then so too is the sequence{Sn}. What can you
conclude from this? Answer

1.4 Partitions

When working with an interval and functions defined on intervals we shall frequently
find that we must subdivide the interval at a finite number of points. For example if
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[a,b] is a closed, bounded interval then any finite selection of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

breaks the interval into a collection of subintervals

{[xi−1,xi ] : i = 1,2,3, . . . ,n}
that are nonoverlapping and whose union is all of the original interval [a,b].

Most often when we do this we would need to focus attention on certain points
chosen from each of the intervals. Ifξi is a point in[xi−1,xi ] then the collection

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
will be called apartition of the interval[a,b].

In sequel we shall see many occasions when splitting up an interval this way is
useful. In fact our integration theory for a functionf defined on the interval[a,b] can
often be expressed by considering the sum

n

∑
k=1

f (ξk)(xk−xk−1)

over a partition. This is known as aRiemann sumfor f .

1.4.1 Cousin’s partitioning argument

The simple lemma we need for many proofs was first formulated by Pierre Cousin.

Lemma 1.7 (Cousin) For every point x in a closed, bounded interval[a,b] let
there be given a positive numberδ(x). Then there must exist at least one parti-
tion

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[a,b] with the property that each interval[xi−1,xi ] has length smaller
thanδ(ξi).

Exercise 27 Show that this lemma is particularly easy ifδ(x) = δ is constant for all x
in [a,b]. Answer

Exercise 28 Prove Cousin’s lemma using a nested interval argument. Answer

Exercise 29 Prove Cousin’s lemma using a “last point” argument. Answer

Exercise 30 Use Cousin’s lemma to prove this version of the Heine-Borel theorem:
LetC be a collection of open intervals covering a closed, boundedinterval [a,b]. Then
there is a finite subcollection{(ci ,di) : i = 1,2,3, . . . ,n} fromC that also covers[a,b].

Answer

Exercise 31 (connected sets)A set of real numbers E isdisconnectedif it is possible
to find two disjoint open sets G1 and G2 so that both sets contain at least one point of E
and together they include all of E. Otherwise a set isconnected. Show that the interval
[a,b] is connected using a Cousin partitioning argument. Answer
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Exercise 32 (connected sets)Show that the interval[a,b] is connected using a last
point argument. Answer

Exercise 33 Show that a set E that contains at least two points is connected if and only
if it is an interval. Answer

1.5 Continuous functions

The integral calculus depends on two fundamentally important concepts, that of a con-
tinuous function and that of the derivative of a continuous function. We need some
expertise in both of these ideas. Most novice calculus students learn much about deriva-
tives, but remain a bit shaky on the subject of continuity.

1.5.1 What is a function?

For most calculus students a function is a formula. We use thesymbol

f : E → R

to indicate a function (whose name is “f ”) that must be defined at every pointx in
the setE (E must be, for this course, a subset ofR) and to which some real number
value f (x) is assigned. The way in whichf (x) is assigned need not, of course, be some
algebraic formula. Any method of assignment is possible as long as it is clear what is
the domainof the function [i.e., the setE] and what is the value [i.e.,f (x)] that this
function assumes at each pointx in E.

More important is the concept itself. When we see

“Let f : [0,1] → R be the function defined byf (x) = x2 for all x in the
interval [0,1] . . . ”

or just simply

“Let g : [0,1]→ R . . . ”

we should be equally comfortable. In the former case we know and can compute every
value of the functionf and we can sketch its graph. In the latter case we are just asked
to consider that some functiong is under consideration: we know that it has a value
g(x) at every point in its domain (i.e., the interval[0,1]) and we know that it has a graph
and we can discuss that functiong as freely as we can the functionf .

Even so calculus students will spend, unfortunately for their future understanding,
undue time with formulas. For this remember one rule: if a function is specified by a
formula it is also essential to know what is the domain of the function. The convention
is usually to specify exactly what the domain intended should be, or else to take the
largest possible domain that the formula given would permit. Thus f (x) =

√
x does

not specify a function until we reveal what the domain of the function should be; since
f (x) =

√
x (0 ≤ x < ∞) is the best we could do, we would normally claim that the

domain is[0,∞).
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Exercise 34 In a calculus course what are the assumed domains of the trigonometric
functionssinx, cosx, andtanx? Answer

Exercise 35 In a calculus course what are the assumed domains of the inverse trigono-
metric functionsarcsinx andarctanx?

Answer

Exercise 36 In a calculus course what are the assumed domains of the exponential and
natural logarithm functions ex and logx? Answer

Exercise 37 In a calculus course what might be the assumed domains of the functions
given by the formulas

f (x) =
1

(x2−x−1)2 , g(x) =
√

x2−x−1, and h(x) = arcsin(x2−x−1)?

Answer

1.5.2 Uniformly continuous functions

Most of the functions that one encounters in the calculus arecontinuous. Continuity
refers to the idea that a functionf should have small incrementsf (d)− f (c) on small
intervals[c,d]. That is, however, a horribly imprecise statement of it; what we wish is
that the incrementf (d)− f (c) should be as small as we please provided that the interval
[c,d] is sufficiently small.

The interpretation of

. . . as small as . . . provided . . . is sufficiently small . . .

is invariably expressed in the language ofε, δ, definitions that you will encounter in all
of your mathematical studies and which it is essential to master. Nearly everything in
this course is expressed inε, δ language.

Continuity is expressed by two closely related notions. We need to make a dis-
tinction between the concepts, even though both of them use the same fundamentally
simple idea that a function should have small increments on small intervals.

Uniformly continuous functions The notion of uniform continuity below is a global
condition: it is a condition which holds throughout the whole of some interval. Often
we will encounter a more local variant where the continuity condition holds only close
to some particular point in the interval where the function is defined. We fix a particular
point x0 in the interval and then repeat the definition of uniform continuity but with the
extra requirement that it need hold only near the pointx0.

Definition 1.8 (uniform continuity) Let f : I → R be a function defined on an
interval I. We say that f is uniformly continuous if for everyε > 0 there is aδ > 0
so that

| f (d)− f (c)|< ε
whenever c, d are points in I for which|d−c|< δ.

The definition can be used with reference to any kind of interval—closed, open,
bounded, or unbounded.
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1.5.3 Pointwise continuous functions

The local version of continuity uses the same idea but with the required measure of
smallness (the deltaδ) adjustable at each point.

Definition 1.9 (pointwise continuity) Let f : I → R be a function defined on an
open interval I and let x0 be a point in that interval. We say that f is[pointwise]
continuous atx0 if for everyε > 0 there is aδ(x0)> 0 so that

| f (x)− f (x0)|< ε
whenever x is a point in I for which|x−x0|< δ(x0). We say f iscontinuous on the
open intervalI provided f is continuous at each point of I.

Note that continuity at a point requires that the function isdefined on both sides
of the point as well as at the point. Thus we would be very cautious about asserting
continuity of the functionf (x) =

√
x at 0. Uniform continuity on an interval[a,b]

does not require that the function is defined on the right ofa or the left ofb. We are
comfortable asserting thatf (x) =

√
x is uniformly continuous on[0,1]. (It is.)

A comment on the language:For most textbooks the language is simply

“continuous on a set” vs. “uniformly continuous on a set”

and the word “pointwise” is dropped. For teaching purposes it is important to grasp the
distinction between these two definitions; we use here the pointwise/uniform language
to emphasize this very important distinction. We will see this same idea and similar
language in other places. A sequence of functions can convergepointwiseor uniformly.
A Riemann sum approximation to an integral can bepointwiseor uniform.

1.5.4 Exercises

The most important elements of the theory of continuity are these, all verified in the
exercises.

1. If f : (a,b)→R is uniformly continuous on(a,b) then f is pointwise continuous
at each point of(a,b).

2. If f : (a,b) → R is pointwise continuous at each point of(a,b) then f may or
may not be uniformly continuous on(a,b).

3. If two functions f , g : (a,b)→ R are pointwise continuous at a pointx0 of (a,b)
then most combinations of these functions [e.g., sum, linear combination, prod-
uct, and quotient] are also pointwise continuous at the point x0.

4. If two functions f , g : (a,b) → R are uniformly continuous on an intervalI then
most combinations of these functions [e.g., sum, linear combination, product,
quotient] are also uniformly continuous on the intervalI .

Exercise 38 Show that uniform continuity is stronger than pointwise continuity, i.e.,
show that a function f(x) that is uniformly continuous on an open interval I is neces-
sarily continuous on that interval.

Answer
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Exercise 39 Show that uniform continuity is strictly stronger than pointwise continuity,
i.e., show that a function f(x) that is continuous on an open interval I is not necessarily
uniformly continuous on that interval. Answer

Exercise 40 Construct a function that is defined on the interval(−1,1) and is contin-
uous only at the point x0 = 0.

Answer

Exercise 41 Show that the function f(x) = x is uniformly continuous on the interval
(−∞,∞). Answer

Exercise 42 Show that the function f(x) = x2 is not uniformly continuous on the inter-
val (−∞,∞).

Answer

Exercise 43 Show that the function f(x) = x2 is uniformly continuous on any bounded
interval. Answer

Exercise 44 Show that the function f(x) = x2 is not uniformly continuous on the inter-
val (−∞,∞) but is continuous at every real number x0.

Answer

Exercise 45 Show that the function f(x) = 1
x is not uniformly continuous on the inter-

val (0,∞) or on the interval(−∞,0) but is continuous at every real number x0 6= 0.
Answer

Exercise 46 (linear combinations)Suppose that F and G are functions on an open
interval I and that both of them are continuous at a point x0 in that interval. Show that
any linear combination H(x) = rF (x)+sG(x) must also be continuous at the point x0.
Does the same statement apply to uniform continuity? Answer

Exercise 47 (products)Suppose that F and G are functions on an open interval I and
that both of them are continuous at a point x0 in that interval. Show that the product
H(x) = F(x)G(x) must also be continuous at the point x0. Does the same statement
apply to uniform continuity? Answer

Exercise 48 (quotients)Suppose that F and G are functions on an open interval I
and that both of them are continuous at a point x0 in that interval. Must the quotient
H(x) = F(x)/G(x) must also be pointwise continuous at the point x0. Is there a version
for uniform continuity? Answer

Exercise 49 (compositions)Suppose that F is a function on an open interval I and
that F is continuous at a point x0 in that interval. Suppose that every value of F is
contained in an interval J. Now suppose that G is a function onthe interval J that is
continuous at the point z0 = f (x0). Show that the composition function H(x)=G(F(x))
must also be continuous at the point x0. Answer
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Figure 1.1: Graph of a step function.

Exercise 50 Show that the absolute value function f(x) = |x| is uniformly continuous
on every interval.

Exercise 51 Show that the function

D(x) =

{

1 if x is irrational,
1
n if x = m

n in lowest terms,

where m, n are integers expressing the rational number x= m
n , is continuous at every

irrational number but discontinuous at every rational number.

Exercise 52 (Heaviside’s function)Step functions play an important role in integra-
tion theory. They offer a crude way of approximating functions. The function

H(x) =

{

0 if x < 0
1 if x ≥ 0

is a simple step function that assumes just two values,0 and1, where0 is assumed on
the interval(−∞,0) and1 is assumed on[0,∞). Find all points of continuity of H.

Answer

Exercise 53 (step Functions)A function f defined on a bounded interval is astep
function if it assumes finitely many values, say b1, b2, . . . , bN and for each1≤ i ≤ N
the set

f−1(bi) = {x : f (x) = bi},
which represents the set of points at which f assumes the value bi , is a finite union of
intervals and singleton point sets. (See Figure1.1 for an illustration.) Find all points
of continuity of a step function. Answer

Exercise 54 (characteristic function of the rationals)Show that function defined by
the formula

R(x) = lim
m→∞

lim
n→∞

|cos(m!πx)|n

is discontinuous at every point. Answer

Exercise 55 (distance of a closed set to a point)Let C be a closed set and define a
function by writing

d(x,C) = inf{|x−y| : y∈C}.
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This function gives a meaning to the distance between a set C and a point x. If x0 ∈C,
then d(x0,C) = 0, and if x0 6∈C, then d(x0,C)> 0. Show that function is continuous at
every point. How might you interpret the fact that the distance function is continuous?

Answer

Exercise 56 (sequence definition of continuity)Prove that a function f defined on an
open interval is continuous at a point x0 if and only if limn→∞ f (xn) = f (x0) for every
sequence{xn} → x0. Answer

Exercise 57 (mapping definition of continuity) Let f : (a,b) → R be defined on an
open interval. Then f is continuous on(a,b) if and only if for every open set V⊂ R,
the set

f−1(V) = {x∈ A : f (x) ∈V}
is open. Answer

1.5.5 Oscillation of a function

Continuity of a function f asserts that the increment off on an interval(c,d), i.e.,
the value f (d)− f (c), must be small if the interval[c,d] is small. This can often be
expressed more conveniently by the oscillation of the function on the interval[c,d].

Definition 1.10 Let f be a function defined on an interval I. We write

ω f (I) = sup{| f (x)− f (y)| : x,y∈ I}
and call this theoscillationof the function f on the interval I.

Exercise 58 Establish these properties of the oscillation:

1. ω f ([c,d]) ≤ ω f ([a,b]) if [c,d] ⊂ [a,b].

2. ω f ([a,c]) ≤ ω f ([a,b])+ω f ([b,c]) if a < b< c.

Exercise 59 (uniform continuity and oscillations) Let f : I →R be a function defined
on an interval I. Show that f is uniformly continuous on I if and only if, for everyε > 0,
there is aδ > 0 so that

ω f ([c,d]) < ε
whenever[c,d] is a subinterval of I for which|d−c|< δ.
[Thus uniformly continuous functions have small increments f(d)− f (c) or equiva-
lently small oscillationsω f ([c,d]) on sufficiently small intervals.]

Answer

Exercise 60 (uniform continuity and oscillations) Show that f is a uniformly contin-
uous function on a closed, bounded interval[a,b] if and only if, for everyε > 0, there
are points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b
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so that each of

ω f ([x0,x1]), ω f ([x1,x2]), . . . , and ω f ([xn−1,xn])

is smaller thanε. (Is there a similar statement for uniform continuity on open inter-
vals?)

Answer

Exercise 61 (continuity and oscillations)Show that f is continuous at a point x0 in
an open interval I if and only if for everyε > 0 there is aδ(x0)> 0 so that

ω f ([x0−δ(x0),x0+δ(x0)])≤ ε.
Answer

Exercise 62 (continuity and oscillations)Let f : I → R be a function defined on an
open interval I. Show that f is continuous at a point x0 in I if and only if for everyε > 0
there is aδ > 0 so that

ω f ([c,d]) < ε
whenever[c,d] is a subinterval of I that contains the point x0 and for which|d−c|< δ.

Answer

Exercise 63 (limits and oscillations)Suppose that f is defined on a bounded open in-
terval (a,b). Show that a necessary and sufficient condition in order thatF(a+) =

limx→a+ F(x) should exist is that for allε > 0 there should exist a positive numberδ(a)
so that

ω f ((a,a+δ(a)) < ε.
Answer

Exercise 64 (infinite limits and oscillations) Suppose that F is defined on(∞,∞). Show
that a necessary and sufficient condition in order that F(∞) = limx→∞ F(x) should exist
is that for all ε > 0 there should exist a positive number T so that

ω f ((T,∞)) < ε.
Show that the same statement is true for F(−∞) = limx→−∞ F(x) with the requirement
that

ω f ((−∞,−T))< ε.
Answer

1.5.6 Endpoint limits

We are interested in computing, if possible the one-sided limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

for a function defined on a bounded, open interval(a,b).
The definition is a usualε, δ definition and so far familiar to us since continuity is

defined the same way. That means there is a close connection between these limits and
continuity.
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Definition 1.11 Let F : (a,b)→ R. Then the one-sided limits

F(a+) = lim
x→a+

F(x)

exists if, for everyε > 0 there is aδ > 0 so that

|F(a+)−F(x)|< ε
whenever0< x−a< δ.

The other one-sided limitF(b−) is defined similarly. Two-sided limits are defined
by requiring that both one-sided limits exist. Thus, iff is defined on both sides at a
point x0 we write

L = lim
x→x0

F(x)

if
L = F(x0+) = F(x0−)

both exist and are equal.

Fundamental theorem for uniformly continuous functions This is an important
fundamental theorem for the elementary calculus. How can webe assured that a func-
tion defined on a bounded open interval(a,b) is uniformly continuous? Check merely
that it is pointwise continuous on(a,b) and that the one-sided limits at the endpoints
exist.

Similarly, how can we be assured that a function defined on a bounded closed in-
terval [a,b] is uniformly continuous? Check merely that it is pointwise continuous on
(a,b) and that the one-sided limits at the endpoints exist and agree with the valuesf (a)
and f (b).

Theorem 1.12 (endpoint limits) Let F : (a,b) → R be a function that is continu-
ous on the bounded, open interval(a,b). Then the two limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

exist if and only if F is uniformly continuous on(a,b).

This theorem should be attributed to Cauchy but cannot be, for he failed to no-
tice the difference between the two concepts of pointwise and uniform continuity and
simply took it for granted that they were equivalent.

Corollary 1.13 (extension property) Let F : (a,b)→R be a function that is con-
tinuous on the bounded, open interval(a,b). Then F can be extended to a uni-
formly continuous function on all of the closed, bounded interval [a,b] if and only
if F is uniformly continuous on(a,b). That extension is obtained by defining

F(a) = F(a+) = lim
x→a+

F(x) and F(b) = F(b−) = lim
x→b−

F(x)

both of which limits exist if F is uniformly continuous on(a,b).

Corollary 1.14 (subinterval property) Let F : (a,b) → R be a function that is
continuous on the bounded, open interval(a,b). Then F is uniformly continuous on
every closed, bounded subinterval[c,d]⊂ (a,b), but may or may not be a uniformly
continuous function on all of(a,b).
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Corollary 1.15 (monotone property) Let F : (a,b)→R be a function that is con-
tinuous on the bounded, open interval(a,b) and is either monotone nondecreasing
or monotone nonincreasing. Then F is uniformly continuous on (a,b) if and only
if F is bounded on(a,b).

Exercise 65 Prove one direction of the endpoint limit theorem [Theorem1.12]: Show
that if F is uniformly continuous on(a,b) then the two limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

exist. Answer

Exercise 66 Prove the other direction of the endpoint limit theorem [Theorem 1.12]
using Exercise63 and a Cousin partitioning argument: Suppose that F: (a,b) → R is
continuous on the bounded, open interval(a,b) and that the two limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

exist. Show that F is uniformly continuous on(a,b). Answer

Exercise 67 Prove the extension property [Corollary1.13]. Answer

Exercise 68 Prove the subinterval property [Corollary1.14]. Answer

Exercise 69 Prove the monotone property [Corollary1.15]. Answer

Exercise 70 Prove the other direction of the endpoint limit theorem using a Bolzano-
Weierstrass compactness argument: Suppose that F: (a,b) → R is continuous on the
bounded, open interval(a,b) and that the two limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

exist. Show that F is uniformly continuous on(a,b). Answer

Exercise 71 Prove the other direction of the endpoint limit theorem using a Heine-
Borel argument: Suppose that F: (a,b)→R is continuous on the bounded, open inter-
val (a,b) and that the two limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

exist. Show that F is uniformly continuous on(a,b). Answer

Exercise 72 Show that the theorem fails if we drop the requirement that the interval is
bounded. Answer

Exercise 73 Show that the theorem fails if we drop the requirement that the interval is
closed. Answer

Exercise 74 Criticize this proof of the false theorem that if f is continuous on an inter-
val (a,b) then f must be uniformly continuous on(a,b).
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Suppose iff is continuous on(a,b). Let ε > 0 and for anyx0 in (a,b)
choose aδ > 0 so that| f (x)− f (x0)| < ε if |x− x0| < δ. Then if c and
d are any points that satisfy|c− d| < δ just setc = x andd = x0 to get
| f (d)− f (c)| < ε. Thus f must be uniformly continuous on(a,b).

Answer

Exercise 75 Suppose that G: (a,b)→R is continuous at every point of an open inter-
val (a,b). Then show that G is uniformly continuous on every closed, bounded subin-
terval [c,d]⊂ (a,b).

Answer

Exercise 76 Show that, if F: (a,b)→R is a function that is continuous on the bounded,
open interval(a,b) but not uniformly continuous, then one of the two limits

F(a+) = lim
x→a+

F(x) or F(b−) = lim
x→b−

F(x)

must fail to exist. Answer

Exercise 77 Show that, if F: (a,b)→R is a function that is continuous on the bounded,
open interval(a,b) and both of the two limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x)

exist then F is in fact uniformly continuous on(a,b). Answer

Exercise 78 Suppose that F: (a,b)→R is a function defined on an open interval(a,b)
and that c is a point in that interval. Show that F is continuous at c if and only if both
of the two one-sided limits

F(c+) = lim
x→c+

F(x) and F(c−) = lim
x→c−

F(x)

exist and F(c) = F(c+) = F(c−). Answer

1.5.7 Boundedness properties

Continuity has boundedness implications. Pointwise continuity supplies local bound-
edness; uniform continuity supplies global boundedness, but only on bounded intervals.

Definition 1.16 (bounded function) Let f : I → R be a function defined on an
interval I. We say that f isboundedon I if there is a number M so that

| f (x)| ≤ M

for all x in the interval I.

Definition 1.17 (locally bounded function) A function f defined on an interval I
is said to belocally boundedat a point x0 if there is aδ(x0)> 0 so that f is bounded
on the set

(x0−δ(x0),x0+δ(x0))∩ I .

Theorem 1.18 Let f : I → R be a function defined on a bounded interval I and
suppose that f is uniformly continuous on I. Then f is a bounded function on I.
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Theorem 1.19 Let f : I → R be a function defined on an open interval I and sup-
pose that f is continuous at a point x0 in I. Then f is locally bounded at x0.

Remember that, iff is continuous on an open interval(a,b), then f is uniformly
continuous on each closed subinterval[c,d] ⊂ (a,b). Thus, in order forf to be un-
bounded on(a,b) the large values are occurring only at the endpoints. Let us say that f
is locally bounded on the right ata if there is at least one interval(a,a+δa) on which
f is bounded. Similarly we can define locally bounded on the left at b. This corollary
is then immediate.

Corollary 1.20 Let f : (a,b)→R be a function defined on an open interval(a,b).
Suppose that

1. f is continuous at every point in(a,b).

2. f is locally bounded on the right at a.

3. f is locally bounded on the left at b.

Then f is bounded on the interval(a,b).

Exercise 79 Use Exercise60 to prove Theorem1.18. Answer

Exercise 80 Prove Theorem1.19by proving that all continuous functions are locally
bounded. Answer

Exercise 81 It follows from Theorem1.18 that a continuous,unboundedfunction on
a bounded open interval(a,b) cannot be uniformly continuous. Can you prove that
a continuous,boundedfunction on a bounded open interval(a,b) must be uniformly
continuous? Answer

Exercise 82 Show that f is not bounded on an interval I if and only if there must exist
a sequence of points{xn} for which f|(xn)| → ∞. Answer

Exercise 83 Using Exercise82 and the Bolzano-Weierstrass argument, show that if a
function f is locally bounded at each point of a closed, bounded interval[a,b] then f
must be bounded on[a,b].

Exercise 84 Using Cousin’s lemma, show that if a function f is locally bounded at
each point of a closed, bounded interval[a,b] then f must be bounded on[a,b].

Exercise 85 If a function is uniformly continuous on an unbounded interval must the
function be unbounded? Could it be bounded? Answer

Exercise 86 Suppose f , g: I → R are two bounded functions on I. Is the sum function
f + g necessarily bounded on I? Is the product function f g necessarily bounded on
I? Answer
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Exercise 87 Suppose f , g: I → R are two bounded functions on I and suppose that
the function g does not assume the value zero. Is the quotientfunction f/g necessarily
bounded on I? Answer

Exercise 88 Suppose f , g: R→ R are two bounded functions. Is the composite func-
tion h(x) = f (g(x)) necessarily bounded?

Answer

Exercise 89 Show that the function f(x) = sinx is uniformly continuous on the interval
(−∞,∞). Answer

Exercise 90 A function defined on an interval I is said to satisfy aLipschitz condition
there if there is a number M with the property that

|F(x)−F(y)| ≤ M|x−y|
for all x, y∈ I. Show that a function that satisfies a Lipschitz condition on an interval
is uniformly continuous on that interval. Answer

Exercise 91 Show that f is not uniformly continuous on an interval I if andonly if
there must exist two sequences of points{xn} and {xn} from that interval for which
xn−yn → 0 but f(xn)− f (yn) does not converge to zero. Answer

1.6 Existence of maximum and minimum

Uniformly continuous function are bounded on bounded intervals. Must they have a
maximum and a minimum value? We know that continuous functions need not be
bounded so our focus will be on uniformly continuous functions on closed, bounded
intervals.

Theorem 1.21 Let F : [a,b] → R be a function defined on a closed, bounded in-
terval [a,b] and suppose that F is uniformly continuous on[a,b]. Then F attains
both a maximum value and a minimum value in that interval.

Exercise 92 Prove Theorem1.21using a least upper bound argument. Answer

Exercise 93 Prove Theorem1.21using a Bolzano-Weierstrass argument.Answer

Exercise 94 Give an example of a uniformly continuous function on the interval (0,1)
that attains a maximum but does not attain a minimum. Answer

Exercise 95 Give an example of a uniformly continuous function on the interval (0,1)
that attains a minimum but does not attain a maximum. Answer

Exercise 96 Give an example of a uniformly continuous function on the interval (0,1)
that attains neither a minimum nor a maximum. Answer
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Exercise 97 Give an example of a uniformly continuous function on the interval(−∞,∞)

that attains neither a minimum nor a maximum. Answer

Exercise 98 Give an example of a uniformly continuous, bounded functionon the in-
terval (−∞,∞) that attains neither a minimum nor a maximum.

Answer

Exercise 99 Let f : R → R be an everywhere continuous function with the property
that

lim
x→∞

f (x) = lim
x→−∞

f (x) = 0.

Show that f has either an absolute maximum or an absolute minimum but not neces-
sarily both.

Answer

Exercise 100Let f : R→ R be an everywhere continuous function that is periodic in
the sense that for some number p, f(x+ p) = f (x) for all x ∈ R. Show that f has an
absolute maximum and an absolute minimum. Answer

1.6.1 The Darboux property of continuous functions

We define the Darboux property of a function and show that all continuous functions
have this property.

Definition 1.22 (Darboux Property) Let f be defined on an interval I. Suppose
that for each a,b ∈ I with f (a) 6= f (b), and for each d between f(a) and f(b),
there exists c between a and b for which f(c) = d. We then say that f has the
Darboux property[intermediate value property] on I.

Functions with this property are calledDarboux functions after Jean Gaston Dar-
boux (1842–1917), who showed in 1875 that for every differentiable functionF on an
interval I , the derivativeF ′ has the intermediate value property onI .

Theorem 1.23 (Darboux property of continuous functions)Let f : (a,b) → R

be a continuous function on an open interval(a,b). Then f has the Darboux
property on that interval.

Exercise 101Prove Theorem1.23using a Cousin covering argument. Answer

Exercise 102Prove Theorem1.23using a Bolzano-Weierstrass argument.
Answer

Exercise 103Prove Theorem1.23using the Heine-Borel property. Answer

Exercise 104Prove Theorem1.23using the least upper bound property.Answer
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Exercise 105Suppose that f: (a,b)→R is a continuous function on an open interval
(a,b). Show that f maps(a,b) onto an interval. Show that this interval need not be
open, need not be closed, and need not be bounded. Answer

Exercise 106Suppose that f: [a,b] → R is a uniformly continuous function on a
closed, bounded interval[a,b]. Show that f maps[a,b] onto an interval. Show that
this interval must be closed and bounded. Answer

Exercise 107Define the function

F(x) =

{

sinx−1 if x 6= 0
0 if x = 0.

Show that F has the Darboux property on every interval but that F is not continuous on
every interval. Show, too, that F assumes every value in the interval [−1,1] infinitely
often. Answer

Exercise 108 (fixed points)A function f : [a,b] → [a,b] is said to have afixed point
c∈ [a,b] if f (c) = c. Show that every uniformly continuous function f mapping[a,b]
into itself has at least one fixed point. Answer

Exercise 109 (fixed points)Let f : [a,b] → [a,b] be continuous. Define a sequence
recursively by z1 = x1, z2 = f (z1), . . . , zn = f (zn−1) where x1 ∈ [a,b]. Show that if the
sequence{zn} is convergent, then it must converge to a fixed point of f .Answer

Exercise 110 Is there a continuous function f: I → R defined on an interval I such
that for every real y there are precisely either zero or two solutions to the equation
f (x) = y? Answer

Exercise 111 Is there a continuous function f: R→ R such that for every real y there
are precisely either zero or three solutions to the equationf (x) = y? Answer

Exercise 112Suppose that the function f: R→R is monotone nondecreasing and has
the Darboux property. Show that f must be continuous at everypoint. Answer

1.7 Derivatives

A derivative2 of a function is another function “derived” from the first function by a
procedure (which we do not have to review here):

F ′(x0) = lim
x→x0

F(x)−F(x0)

x−x0
.

Thus, for example, we remember that, if

F(x) = x2+x+1

then the derived function is
F ′(x) = 2x+1.

2The word derivative in mathematics almost always refers to this concept. In finance, you might have
noticed,derivativesare financial instrument whose values are “derived” from some underlying security.
Observe that the use of the word “derived” is the same.
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The values of the derived function, 2x+ 1, represent (geometrically) the slope of the
tangent line at the points(x,x2+x+1) that are on the graph of the functionF. There are
numerous other interpretations (other than the geometric)for the values of the derivative
function.

Recall the usual notations for derivatives:
d
dx

sinx= cosx.

F(x) = sinx, F ′(x) = cosx.

y= sinx,
dy
dx

= cosx.

The connection between a function and its derivative is straightforward: the values
of the functionF(x) are used, along with a limiting process, to determine the values
of the derivative functionF ′(x). That’s the definition. We need to know the definition
to understand what the derivative signifies, but we do not revert to the definition for
computations except very rarely.

The following facts should be familiar:

• A function may or may not have a derivative at a point.

• In order for a functionf to have a derivative at a pointx0 the function must be
defined at least in some open interval that contains that point.

• A function that has a derivative at a pointx0 is said to bedifferentiableatx0. If it
fails to have a derivative there then it is said to benondifferentiableat that point.

• There are many calculus tables that can be consulted for derivatives of functions
for which familiar formulas are given.

• There are many rules for computation of derivatives for functions that do not
appear in the tables explicitly, but for which the tables arenonetheless useful
after some further manipulation.

• Information about the derivative function offers deep insight into the nature of the
function itself. For example a zero derivative means the function is constant; a
nonnegative derivative means the function is increasing. Achange in the deriva-
tive from positive to negative indicates that a local maximum point in the function
was reached.

Exercise 113 (ε, δ(x) version of derivative) Suppose that F is a differentiable func-
tion on an open interval I. Show that for every x∈ I and everyε > 0 there is aδ(x)> 0
so that

∣

∣F(y)−F(x)−F ′(x)(y−x)
∣

∣ ≤ ε|y−x|
whenever y and x are points in I for which|y−x|< δ(x). Answer

Exercise 114 (differentiable implies continuous)Prove that a function that has a deriva-
tive at a point x0 must also be continuous at that point.

Answer
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Exercise 115 (ε, δ(x) straddled version of derivative) Suppose that F is a differen-
tiable function on an interval I. Show that for every x∈ I and everyε > 0 there is a
δ(x)> 0 so that

∣

∣F(z)−F(y)−F ′(x)(z−y)
∣

∣ ≤ ε|z−y|
whenever y and z are points in I for which|y−z|< δ(x) and either y≤ x≤ z or z≤ x≤ y.

Answer

Exercise 116 (ε, δ(x) unstraddled version of derivative) Suppose that F is a differ-
entiable function on an open interval I. Suppose that for every x∈ I and everyε > 0
there is aδ(x)> 0 so that

∣

∣F(z)−F(y)−F ′(x)(z−y)
∣

∣ ≤ ε|z−y|
whenever y and z are points in I for which|y−z|< δ(x) [and we do not require either
y ≤ x ≤ z or z≤ x ≤ y]. Show that not all differentiable functions would have this
property but that if F′ is continuous then this property does hold. Answer

Exercise 117 (locally strictly increasing functions)Suppose that F is a function on
an open interval I. Then F is said to belocally strictly increasingat a point x0 in the
interval if there is aδ > 0 so that

F(y)< F(x0)< F(z)

for all
x0−δ < y< x0 < z< x0+δ.

Show that, if F′(x0)> 0, then F must be locally strictly increasing at x0. Show that the
converse does not quite hold: if F is differentiable at a point x0 in the interval and is
also locally strictly increasing at x0, then necessarily F′(x0)≥ 0 but that F′(x0) = 0 is
possible. Answer

Exercise 118Suppose that a function F is locally strictly increasing at every point of
an open interval(a,b). Use the Cousin partitioning argument to show that F is strictly
increasing on(a,b).
[In particular, notice that this means that a function with apositive derivative is in-
creasing. This is usually proved using the mean-value theorem that is stated in Sec-
tion 1.9below.]

Answer

1.8 Differentiation rules

We remind the reader of the usual calculus formulas by presenting the following slo-
gans. Of course each should be given a precise statement and the proper assumptions
clearly made.

Constant rule: If f (x) is constant, thenf ′ = 0.
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Linear combination rule: (r f + sg)′ = r f ′ + sg′ for functions f and g and all real
numbersr ands.

Product rule: ( f g)′ = f ′g+ f g′ for functions f andg.

Quotient rule:
(

f
g

)′
=

f ′g− f g′

g2

for functions f andg at points whereg does not vanish.

Chain rule: If f (x) = h(g(x)), then

f ′(x) = h′(g(x)) ·g′(x).

1.9 Mean-value theorem

There is a close connection between the values of a function and the values of its deriva-
tive. In one direction this is trivial since the derivative is defined in terms of the values
of the function. The other direction is more subtle. How doesinformation about the
derivative provide us with information about the function?One of the keys to providing
that information is the mean-value theorem.

The usual proof presented in calculus texts requires proving a weak version of the
mean-value theorem first (Rolle’s theorem) and then using that to prove the full version.

1.9.1 Rolle’s theorem

Theorem 1.24 (Rolle’s Theorem)Let f be uniformly continuous on[a,b] and dif-
ferentiable on(a,b). If f (a) = f (b) then there must exist at least one pointξ in
(a,b) such that f′(ξ) = 0.

Exercise 119Prove the theorem. Answer

Exercise 120 Interpret the theorem geometrically. Answer

Exercise 121Can we claim that the pointξ whose existence is claimed by the theorem,
is unique?. How many points might there be? Answer

Exercise 122Define a function f(x) = xsinx−1, f(0) = 0, on the whole real line. Can
Rolle’s theorem be applied on the interval[0,1/π]? Answer

Exercise 123 Is it possible to apply Rolle’s theorem to the function f(x) =
√

1−x2 on
[−1,1]. Answer

Exercise 124 Is it possible to apply Rolle’s theorem to the function f(x) =
√

|x| on
[−1,1]. Answer
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Exercise 125Use Rolle’s theorem to explain why the cubic equation

x3+αx2+β = 0

cannot have more than one solution wheneverα > 0. Answer

Exercise 126 If the nth-degree equation

p(x) = a0+a1x+a2x2+ · · ·+anxn = 0

has n distinct real roots, then how many distinct real roots does the(n− 1)st degree
equation p′(x) = 0 have? Answer

Exercise 127Suppose that f′(x)> c> 0 for all x∈ [0,∞). Show thatlimx→∞ f (x) =∞.
Answer

Exercise 128Suppose that f: R→ R and both f′ and f′′ exist everywhere. Show that
if f has three zeros, then there must be some pointξ so that f′′(ξ) = 0. Answer

Exercise 129Let f be continuous on an interval[a,b] and differentiable on(a,b) with
a derivative that never is zero. Show that f maps[a,b] one-to-one onto some other
interval. Answer

Exercise 130Let f be continuous on an interval[a,b] and twice differentiable on(a,b)
with a second derivative that never is zero. Show that f maps[a,b] two-one onto some
other interval; that is, there are at most two points in[a,b] mapping into any one value
in the range of f . Answer

1.9.2 Mean-Value theorem

If we drop the requirement in Rolle’s theorem thatf (a) = f (b), we now obtain the
result that there is a pointc∈ (a,b) such that

f ′(c) =
f (b)− f (a)

b−a
.

Geometrically, this states that there exists a pointc ∈ (a,b) for which the tangent to
the graph of the function at(c, f (c)) is parallel to the chord determined by the points
(a, f (a)) and(b, f (b)). (See Figure1.2.)

This is the mean-value theorem, also known as the law of the mean or the first
mean-value theorem (because there are other mean-value theorems).

Theorem 1.25 (Mean-Value Theorem)Suppose that f is a continuous function
on the closed interval [a,b] and differentiable on (a,b) . Then there exists a point
ξ ∈ (a,b) such that

f ′(ξ) =
f (b)− f (a)

b−a
.

Exercise 131Prove the theorem. Answer
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a
 b
c


Figure 1.2: Mean value theorem [f ′(c) is slope of the chord].

Exercise 132Suppose f satisfies the hypotheses of the mean-value theoremon [a,b].
Let S be the set of all slopes of chords determined by pairs of points on the graph of f
and let

D = { f ′(x) : x∈ (a,b)}.

1. Prove that S⊂ D.

2. Give an example to show that D can contain numbers not in S.
Answer

Exercise 133 Interpreting the slope of a chord as an average rate of changeand the
derivative as an instantaneous rate of change, what does themean-value theorem say?
If a car travels 100 miles in 2 hours, and the position s(t) of the car at time t, measured
in hours satisfies the hypotheses of the mean-value theorem,can we be sure that there
is at least one instant at which the velocity is 50 mph? Answer

Exercise 134Give an example to show that the conclusion of the mean-valuetheorem
can fail if we drop the requirement that f be differentiable at every point in (a,b) .

Answer

Exercise 135Give an example to show that the conclusion of the mean-valuetheorem
can fail if we drop the requirement of continuity at the endpoints of the interval.

Answer

Exercise 136Suppose that f is differentiable on[0,∞) and that

lim
x→∞

f ′(x) =C.

Determine
lim
x→∞

[ f (x+a)− f (x)].

Answer

Exercise 137Suppose that f is continuous on[a,b] and differentiable on(a,b). If

lim
x→a+

f ′(x) =C

what can you conclude about the right-hand derivative of f ata? Answer
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Exercise 138Suppose that f is continuous and that

lim
x→x0

f ′(x)

exists. What can you conclude about the differentiability of f ? What can you conclude
about the continuity of f′? Answer

Exercise 139Let f : [0,∞) → R so that f′ is decreasing and positive. Show that the
series

∞

∑
i=1

f ′(i)

is convergent if and only if f is bounded. Answer

Exercise 140Prove this second-order version of the mean-value theorem.

Theorem 1.26 (Second order mean-value theorem)Let f be continuous on [a,b]
and twice differentiable on (a,b) . Then there exists c∈ (a,b) such that

f (b) = f (a)+ (b−a) f ′(a)+ (b−a)2 f ′′(c)
2!

.

Answer

Exercise 141Determine all functions f: R→ R that have the property that

f ′
(

x+y
2

)

=
f (x)− f (y)

x−y

for every x6= y. Answer

Exercise 142A function is said to besmoothat a point x if

lim
h→0

f (x+h)+ f (x−h)−2 f (x)
h2 = 0.

Show that a smooth function need not be continuous. Show thatif f ′′ is continuous at
x, then f is smooth at x. Answer

Exercise 143Prove this version of the mean-value theorem due to Cauchy.

Theorem 1.27 (Cauchy mean-value theorem)Let f and g be uniformly continu-
ous on[a,b] and differentiable on(a,b). Then there existsξ ∈ (a,b) such that

[ f (b)− f (a)]g′(ξ) = [g(b)−g(a)] f ′(ξ). (1.1)

Answer

Exercise 144 Interpret the Cauchy mean-value theorem geometrically.Answer
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Exercise 145Use Cauchy’s mean-value theorem to prove any simple versionof L’Hôpital’s
rule that you can remember from calculus. Answer

Exercise 146Show that the conclusion of Cauchy’s mean-value can be put into deter-
minant form as

∣

∣

∣

∣

∣

∣

f (a) g(a) 1
f (b) g(b) 1
f ′(c) g′(c) 0

∣

∣

∣

∣

∣

∣

= 0.

Answer

Exercise 147Formulate and prove a generalized version of Cauchy’s mean-value whose
conclusion is the existence of a point c such that

∣

∣

∣

∣

∣

∣

f (a) g(a) h(a)
f (b) g(b) h(b)
f ′(c) g′(c) h′(c)

∣

∣

∣

∣

∣

∣

= 0.

Answer

Exercise 148Suppose that f: [a,c] → R is uniformly continuous and that it has a
derivative f′(x) that is monotone increasing on the interval(a,c). Show that

(b−a) f (c)+ (c−b) f (a) ≥ (c−a) f (b)

for any a< b< c. Answer

Exercise 149 (avoiding the mean-value theorem)The primary use [but not the only
use] of the mean-value theorem in a calculus class is to establish that a function with
a positive derivative on an open interval(a,b) would have to be increasing. Prove this
directly without the easy mean-value proof. Answer

Exercise 150Prove the “converse” to the mean-value theorem:

Let F, f : [a,b]→ R and suppose that f is continuous there. Suppose that
for every pair of points a< x< y< b there is a point x< ξ < y so that

F(y)−F(x)
y−x

= f (ξ).

Then F is differentiable on(a,b) and f is its derivative.
Answer

Exercise 151Let f : [a,b]→R be a uniformly continuous function that is differentiable
at all points of the interval(a,b) with possibly finitely many exceptions. Show that there
is a point a< ξ < b so that

∣

∣

∣

∣

f (b)− f (a)
b−a

∣

∣

∣

∣

≤ | f ′(ξ)|.

Answer
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Exercise 152 (Flett’s theorem)Given a function differentiable at every point of an
interval [a,b] and with f′(a) = f ′(b), show that there is a pointξ in the interval for
which

f (ξ)− f (a)
ξ−a

= f (ξ).

Answer

1.9.3 The Darboux property of the derivative

We have proved that all continuous functions have the Darboux property. We now prove
that all derivatives have the Darboux property. This was proved by Darboux in 1875;
one of the conclusions he intended was that there must be an abundance of functions
that have the Darboux property and are yet not continuous, since all derivatives have
this property and not all derivatives are continuous.

Theorem 1.28 (Darboux property of the derivative) Let F be differentiable on
an open interval I. Suppose a,b ∈ I, a < b, and F′(a) 6= F ′(b). Let γ be any
number between F′(a) and F′(b). Then there must exist a pointξ ∈ (a,b) such that
F ′(ξ) = γ.

Exercise 153Compare Rolle’s theorem to Darboux’s theorem. Suppose G is every-
where differentiable, that a< b and G(a) = G(b). Then Rolle’s theorem asserts the
existence of a pointξ in the open interval(a,b) for which G′(ξ) = 0. Give a proof
of the same thing if the hypothesis G(a) = G(b) is replaced by G′(a) < 0 < G′(b) or
G′(b)< 0< G′(a). Use that to prove Theorem1.28. Answer

Exercise 154Let F : R→R be a differentiable function. Show that F′ is continuous if
and only if the set

Eα = {x : F ′(x) = α}
is closed for each real numberα. Answer

Exercise 155A function defined on an interval ispiecewise monotoneif the interval
can be subdivided into a finite number of subintervals on eachof which the function is
nondecreasing or nonincreasing. Show that every polynomial is piecewise monotone.

Answer

1.9.4 Vanishing derivatives and constant functions

When the derivative is zero we sometimes use colorful language by saying that the
derivativevanishes! When the derivative of a function vanishes we expect the function
to be constant. But how is that really proved?

Theorem 1.29 (vanishing derivatives)Let F : [a,b]→R be uniformly continuous
on the closed, bounded interval[a,b] and suppose that F′(x) = 0 for every a< x<
b. Then F is a constant function on[a,b].
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Corollary 1.30 Let F : (a,b)→R and suppose that F′(x) = 0 for every a< x< b.
Then F is a constant function on(a,b).

Exercise 156Prove the theorem using the mean-value theorem. Answer

Exercise 157Prove the theorem without using the mean-value theorem.Answer

Exercise 158Deduce the corollary from the theorem. Answer

1.9.5 Vanishing derivatives with exceptional sets

When a function has a vanishing derivative then that function must be constant. What
if there is a small set of points at which we are unable to determine that the derivative
is zero?

Theorem 1.31 (vanishing derivatives with a few exceptions)Let F : [a,b] → R

be uniformly continuous on the closed, bounded interval[a,b] and suppose that
F ′(x) = 0 for every a< x< b with finitely many possible exceptions. Then F is a
constant function on[a,b].

Corollary 1.32 Let F : (a,b) → R be continuous on the open interval(a,b) and
suppose that F′(x) = 0 for every a< x< b with finitely many possible exceptions.
Then F is a constant function on(a,b).

Exercise 159Prove the theorem by subdividing the interval at the exceptional points.
Answer

Exercise 160Prove the theorem by applying Exercise151.

Exercise 161Prove the corollary. Answer

Exercise 162Let F, G: [a,b] → R be uniformly continuous functions on the closed,
bounded interval[a,b] and suppose that F′(x) = f (x) for every a< x< b with finitely
many possible exceptions, and that G′(x) = f (x) for every a< x< b with finitely many
possible exceptions. Show that F and G differ by a constant[a,b]. Answer

Exercise 163Construct a non-constant function which has a zero derivative at all but
finitely many points. Answer

Exercise 164Prove the following major improvement of Theorem1.31. Here, by many
exceptions, we include the possibility of infinitely many exceptions provided, only, that
it is possible to arrange the exceptional points into a sequence.

Theorem 1.33 (vanishing derivatives with many exceptions)Let F : [a,b]→R be
uniformly continuous on the closed, bounded interval[a,b] and suppose that
F ′(x) = 0 for every a< x < b with the possible exception of the points c1, c2,
c3, . . . forming an infinite sequence. Show that F is a constant function on[a,b].



1.10. LIPSCHITZ FUNCTIONS 33

[The argument that was successful for Theorem1.31will not work for infinitely many
exceptional points. A Cousin partitioning argument does work.] Answer

Exercise 165Suppose that F is a function continuous at every point of the real line
and such that F′(x) = 0 for every x that is irrational. Show that F is constant.

Answer

Exercise 166Suppose that G is a function continuous at every point of the real line
and such that G′(x) = x for every x that is irrational. What functions G have such a
property? Answer

Exercise 167Let F, G: [a,b] → R be uniformly continuous functions on the closed,
bounded interval[a,b] and suppose that F′(x) = f (x) for every a< x < b with the
possible exception of points in a sequence{c1,c2,c3, . . .}, and that G′(x) = f (x) for
every a< x < b with the possible exception of points in a sequence{d1,d2,d3, . . .}.
Show that F and G differ by a constant[a,b]. Answer

1.10 Lipschitz functions

A function satisfies a Lipschitz condition if there is some limitation on the possible
slopes of secant lines, lines joining points(x, f (x)) and(y, f (x). Since the slope of such
a line would be

f (y)− f (x)
y−x

any bounds put on this fraction is called a Lipschitz condition.

Definition 1.34 A function f is said to satisfy aLipschitz conditionon an interval
I if

| f (x)− f (y)| ≤ M|x−y|
for all x, y in the interval.

Functions that satisfy such a condition are calledLipschitz functionsand play a key
role in many parts of analysis.

Exercise 168Show that a function that satisfies a Lipschitz condition on an interval
must be uniformly continuous on that interval.

Exercise 169Show that if f is assumed to be continuous on[a,b] and differentiable
on (a,b) then f is a Lipschitz function if and only if the derivative f′ is bounded on
(a,b). Answer

Exercise 170Show that the function f(x) =
√

x is uniformly continuous on the interval
[0,∞) but that it does not satisfy a Lipschitz condition on that interval. Answer

Exercise 171A function F on an interval I is said to havebounded derived numbersif
there is a number M so that, for each x∈ I one can chooseδ > 0 so that

∣

∣

∣

∣

F(x+h)−F(x)
h

∣

∣

∣

∣

≤ M
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whenever x+h∈ I and |h| < δ. Using a Cousin partitioning argument, show that F is
Lipschitz if and only if F has bounded derived numbers. Answer

Exercise 172 Is a linear combination of Lipschitz functions also Lipschitz?
Answer

Exercise 173 Is a product of Lipschitz functions also Lipschitz? Answer

Exercise 174 Is f(x) = logx a Lipschitz function? Answer

Exercise 175 Is f(x) = |x| a Lipschitz function? Answer

Exercise 176 If F : [a,b] → R is a Lipschitz function show that the function G(x) =
F(x)+ kx is increasing for some value k and decreasing for some other value of k. Is
the converse true?

Exercise 177Show that every polynomial is a Lipschitz function on any bounded in-
terval. What about unbounded intervals?

Exercise 178 In an idle moment a careless student proposed to study a kind of super
Lipschitz condition: he supposed that

| f (x)− f (y)| ≤ M|x−y|2

for all x, y in an interval. What functions would have this property? Answer

Exercise 179A function f is said to be bi-Lipschitz on an interval I if there is an M> 0
so that

1
M
|x−y| ≤ | f (x)− f (y)| ≤ M|x−y|

for all x, y in the interval. What can you say about such functions? Can you give
examples of such functions?

Exercise 180 Is there a difference between the following two statements:

| f (x)− f (y)| < |x−y| for all x, y in an interval

and
| f (x)− f (y)| ≤ K|x−y| for all x, y in an interval, for some K< 1?

Answer

Exercise 181 If Fn : [a,b] → R is a Lipschitz function for each n= 1,2,3, . . . and
F(x) = limn→∞ Fn(x) for each a≤ x ≤ b, does it follow that F must also be a Lips-
chitz function.

Answer



Chapter 2

The Indefinite Integral

You will, no doubt, remember the formula∫
x2 dx=

x3

3
+C

from your first calculus classes. This assertion includes the following observations.

• d
dx

[

x3

3
+C

]

= x2.

• Any other functionF for which the identityF ′(x) = x2 holds is of the form
F(x) = x3/3+C for some constantC.

• C is called theconstant of integrationand is intended as a completely arbitrary
constant.

• The expression
∫

x2 dx is intended to be ambiguous and is to include any and all
functions whose derivative isx2.

In this chapter we will make this rather more precise and we will generalize by
allowing a finite exceptional set where the derivative need not exist. Since the indefinite
integral is defined directly in terms of the derivative, there are no new elements of theory
required to be developed. We take advantage of the theory of continuous functions and
their derivatives as outlined in Chapter 1.

2.1 An indefinite integral on an interval

We shall assume that indefinite integrals are continuous andwe require them to be
differentiable everywhere except possibly at a finite set. The definition is stated for
open intervals only.

Definition 2.1 (The indefinite integral) Let (a,b) be an open interval (bounded
or unbounded) and let f be a function defined on that interval except possibly
at finitely many points. Then any continuous function F: (a,b) → R for which
F ′(x) = f (x) for all a < x< b except possibly at finitely many points is said to be
an indefinite integralfor f on (a,b).

35
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Warning An indefinite integral is always defined relative to some openinterval. Con-
fusions can easily arise if this is forgotten.

Notation The familiar notation∫
F ′(x)dx= F(x)+C

will frequently be used along (one hopes) with some allusionto the interval under
considerabtion, This notation is justified by the fact that,all indefinite integrals for
the functionF ′ can be written in this form for some choice of constantC. Use of the
notation, however, requires the user to be alert to the underlying interval(a,b) on which
the statement depends.

Continuous functions differentiable mostly everywhere Our indefinite integration
theory is essentially the study of continuous functionsF : (a,b)→R defined on an open
interval, for which there is only a finite number of points of nondifferentiability. Note
that, if there are no exceptional points, then we do not have to check that the function
is continuous: every differentiable function is continuous.

The indefinite integration theory is, consequently, all about derivatives of continu-
ous functions. We shall see, in the next chapter, that thedefiniteintegration theory is all
about derivatives of uniformly continuous functions.

Exercise 182Suppose that F: (a,b) → R is differentiable at every point of the open
interval (a,b). Is F an indefinite integral for F′? Answer

Exercise 183 If F is an indefinite integral for a function f on an open interval (a,b)
and a< x< b, is it necessarily true that F′(x) = f (x). Answer

Exercise 184Let F, G: (a,b)→R be two continuous functions for which F′(x) = f (x)
for all a < x< b except possibly at finitely many points and G′(x) = f (x) for all a <

x< b except possibly at finitely many points. Then F and G must differ by a constant.
In particular, on the interval(a,b) the statements∫

f (x)dx= F(x)+C1

and ∫
f (x)dx= G(x)+C2

are both valid (where C1 and C2 represent arbitrary constants of integration).
Answer

2.1.1 Role of the finite exceptional set

The simplest kind of antiderivative is expressed in the situation F ′(x) = f (x) for all
a< x< b [no exceptions]. Our theory is slightly more general in thatwe allow a finite
set of failures and compensate for this by insisting that thefunctionF is continuous at
those points.

There is a language that is often adopted to allow exceptionsin mathematical state-
ments. We do not use this language in Chapter 2 or Chapter 3 but, for classroom
presentation, it might be useful. We will use this language in Chapter 4.
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mostly everywhere A statement holdsmostly everywhereif it holds everywhere with
the exception of a finite set of pointsc1, c2, c3, . . . ,cn.

nearly everywhere A statement holdsnearly everywhereif it holds everywhere with
the exception of a sequence of pointsc1, c2, c3, . . . .

almost everywhere A statement holdsalmost everywhereif it holds everywhere with
the exception of a set of measure zero1.

The mostly everywhere version Thus our indefinite integral is the study of contin-
uous functions that are differentiable mostly everywhere.It is only a little bit more
ambitious to allow a sequence of points of nondifferentiability. But for Chapters 2
and 3 we do only this version.

The nearly everywhere version The point of view taken in the elementary analysis
text by Elias Zakon2 is that the “nearly everywhere” version of integration theory is the
one best taught to undergraduate students. Thus, in his text, all integrals concern con-
tinuous functions that are differentiable except possiblyat the points of some sequence
of exceptional points.

The mostly everywhere case is the easiest since it needs an appeal only to the mean-
value theorem for justification. The nearly everywhere caseis rather harder, but if
you have worked through the proof of Theorem1.33you have seen all the difficulties
handled fairly easily.

The almost everywhere version The more advanced integration theory sketched in
Chapter 4 allows sets of measure zero for exceptional sets; the theory is more difficult
since one must then, at the same time, strengthen the hypothesis of continuity.

Thus the final step in the program of improving integration theory is to allow sets
of measure zero and study certain kinds of functions that aredifferentiable almost ev-
erywhere. This presents new technical challenges and we shall not attempt it until
Chapter 4. Our goal is to get there using Chapters 2 and 3 as elementary warmups.

2.1.2 Features of the indefinite integral

We shall often in the sequel distinguish among the followingfour cases for an indefinite
integral.

1This notion of a set of measure zero will be defined in Chapter 4. For now understand that a set of
measure zero is small in a certain sense of measurement.

2E. Zakon,Mathematical Analysis I, ISBN 1-931705-02-X, published by The Trillia Group, 2004.
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Theorem 2.2 Let F be an indefinite integral for a function f on an open interval
(a,b).

1. F is continuous on(a,b) but may or not be uniformly continuous there.

2. If f is bounded then F is Lipschitz on(a,b) and hence uniformly continuous
there.

3. If f unbounded then F is not Lipschitz on(a,b) and may or not be uniformly
continuous there.

4. If f is nonnegative and unbounded then F is uniformly continuous on(a,b)
if and only if F is bounded.

It will be important for our theory of the definite integral inChapter 3 that we know
which of the situations holds. It would be good practice and disciple in this chapter,
then, to spot in any particular example whether the functionF is Lipschitz, or uniformly
continuous, or simply continuous but not uniformly continuous on the interval given.

Exercise 185Give an example of two functions f and g possessing indefiniteintegrals
on the interval(0,1) so that, of the two indefinite integrals F and G, one is uniformly
continuous and the other is not. Answer

Exercise 186Prove this part of Theorem2.2: If a function f is bounded and possesses
an indefinite integral F on(a,b) then F is Lipschitz on(a,b). Deduce that F is uni-
formly continuous on(a,b).

Answer

2.1.3 The notation
∫

f (x)dx

Since we cannot avoid its use in elementary calculus classes, we define the symbol∫
f (x)dx

to mean the collection ofall possible functions that are indefinite integrals off on an
appropriately specified interval. Because of Exercise184we know that we can always
write this as ∫

f (x)dx= F(x)+C

whereF is any one choice of indefinite integral forf andC is an arbitrary constant
called the constant of integration. In more advanced mathematical discussions this
notation seldom appears, although there are frequent discussions of indefinite integrals
(meaning a function whose derivative is the function being integrated).

Exercise 187Why exactly is this statement incorrect:∫
x2 dx= x3/3+1?

Answer
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Exercise 188Check the identities
d
dx

(x+1)2 = 2(x+1)

and
d
dx

(x2+2x) = 2x+2= 2(x+1).

Thus, on(−∞,∞), ∫
(2x+2)dx= (x+1)2+C

and ∫
(2x+2)dx= (x2+2x)+C.

Does it follow that(x+1)2 = (x2+2x)? Answer

Exercise 189Suppose that we drop continuity from the requirement of an indefinite
integral and allow only one point at which the derivative mayfail (instead of a finite
set of points). Illustrate the situation by finding all possible indefinite integrals [in this
new sense] of f(x) = x2 on (0,1). Answer

Exercise 190Show that the function f(x) = 1/x has an indefinite integral on any open
interval that does not include zero and does not have an indefinite integral on any open
interval containing zero. Is the difficulty here because f(0) is undefined?

Answer

Exercise 191Show that ∫
1
√

|x|
dx= 2

√

|x|+C

and ∫
1
√

|x|
dx=−2

√

|x|+C

are both true in a certain sense. How is this possible? Answer

Exercise 192Show that the function

f (x) =
1
√

|x|
has an indefinite integral on any open interval, even if that interval does include zero.
Is there any difficulty that arises here because f(0) is undefined? Answer

Exercise 193Which is correct∫
1
x

dx= logx+C or
∫

1
x

dx= log(−x)+C or
∫

1
x

dx= log|x|+C?

Answer

2.2 Existence of indefinite integrals

We cannot be sure in advance that any particular functionf has an indefinite integral
on a given interval, unless we happen to find one. Thus every calculus students knows
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the existence of the indefinite integral∫
sinxdx

on (−∞,∞) merely because of the fact that

d
dx

[−cosx] = sinx

is true at every value ofx. If we did not happen to remember that fact, then what
properties might we spot in the function sinx that would guarantee that an indefinite
integral exists, even given that we couldn’t explicitly findone?

We turn now to the problem of finding sufficient conditions under which we can be
assured that one exists. This is a rather subtle point. Many beginning students might
feel that we are seeking to ensure ourselves that an indefinite integralcan be found. We
are, instead, seeking for assurances that an indefinite integral does indeed exist. We
might still remain completely unable to write down some formula for that indefinite
integral because there is no “formula” possible.

We shall show now that, with appropriate continuity assumptions on f , we can be
assured that an indefinite integral exists without any requirement that we should find
it. Our methods will show that we can also describe a procedure that would, in theory,
produce the indefinite integral as the limit of a sequence of simpler functions. This
procedure would work only for functions that are mostly continuous. We will still
have a theory for indefinite integrals of discontinuous functions but we will have to be
content with the fact that much of the theory is formal, and describes objects which are
not necessarily constructible3.

2.2.1 Upper functions

We will illustrate our method by introducing the notion of anupper function. This is a
piecewise linear function whose slopes dominate the function.

Let f be defined at all but finitely many points of an open interval(a,b) and
bounded on(a,b) and let us choose points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b.

Suppose thatF is a uniformly continuous function on[a,b] that is linear on each interval
[xi−1,xi ] and such that

F(xi)−F(xi−1)

xi −xi−1
≥ f (ξ)

for all pointsξ at which f is defined and for whichxi−1 ≤ ξ ≤ xi (i = 1,2, . . . ,n). Then
we can callF anupper functionfor f on [a,b].

The method of upper functions is to approximate the indefinite integral that we
require by suitable upper functions. Upper functions are piecewise linear functions
with the break points (where the corners are) atx1, x2, . . . , xn−1. The slopes of these
line segments exceed the values of the functionf in the corresponding intervals. See
Figure2.1for an illustration of such a function.

3Note to the instructor: Just how unconstructible are indefinite integrals in general? See Chris Freil-
ing, How to compute antiderivatives,Bull. Symbolic Logic 1 (1995), no. 3, 279–316. This is by no means
an elementary question.
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Figure 2.1: A piecewise linear function on[−3,3].

Exercise 194Let f(x) = x2 be defined on the interval[0,1]. Define an upper function
for f using the points0, 1

4,
1
2,

3
4,1. Sketch the graph of that upper function.Answer

Exercise 195 (step functions)Let a function f be defined by requiring that, for any
integer n (positive, negative, or zero), f(x) = n if n− 1 < x < n. (Values at the inte-
gers are omitted.) This is a simple example of a step function. Find a formula for an
indefinite integral and show that this is an upper function for f . Answer

2.2.2 The main existence theorem for bounded functions

For bounded, continuous functions we can always determine the existence of an indef-
inite integral by a limiting process using appropriate upper functions. The lemma is a
technical computation that justifies this statement.

Lemma 2.3 Suppose that f: (a,b)→R is a bounded function on an open interval
(a,b) [bounded or unbounded]. Then there exists a Lipschitz function F : (a,b)→
R so that F′(x) = f (x) for every point a< x< b at which f is continuous.

Existence of indefinite integral of continuous functions If we apply this theorem
to a bounded, continuous function we immediately obtain an indefinite integral. The
indefinite integral is necessarily Lipschitz. Thus this corollary will answer our question
as to what conditions guarantee the existence of an indefinite integral. We shall use it
repeatedly.

Theorem 2.4 Suppose that f: (a,b) → R is a bounded function on an open in-
terval (a,b) [bounded or unbounded] and that there are only a finite numberof
discontinuity points of f in(a,b). Then f has an indefinite integral on(a,b),
which must be Lipschitz on(a,b).
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2.2.3 The main existence theorem for unbounded functions

Our theorem applies only to bounded functions, but we remember that if f is continuous
on(a,b) then it is uniformly continuous, and hence bounded, on any subinterval[c,d]⊂
(a,b). This allows the following version of our existence theorem. Note that we will
not get an indefinite integral that is Lipschitz on all of(a,b) unlessf is bounded.

Theorem 2.5 Suppose that f: (a,b) → R is a function on an open interval(a,b)
[bounded or unbounded] and that there are no discontinuity points of f in(a,b).
Then f has an indefinite integral on(a,b).

The exercises establish the lemma and the theorem. This is animportant technical
tool in the theory and it is essential that the reader understands how it works.

Exercise 196Use the method of upper functions to prove Lemma2.3. It will be enough
to assume that f: (0,1) → R and that f is nonnegative and bounded. (Exercises197
and198ask for the justifications for this assumption.) Answer

Exercise 197Suppose that f: (a,b)→R and set g(t) = f (a+ t(b−a)) for all 0≤ t ≤
1. If G is an indefinite integral for g on(0,1) show how to find an indefinite integral for
f on (a,b). Answer

Exercise 198Suppose that f: (a,b)→ R is a bounded function and that

K = inf{ f (x) : a< x< b}.
Set g(t) = f (t)−K for all a< t < b. Show that g is nonnegative and bounded. Suppose
that G is an indefinite integral for g on(a,b); show how to find an indefinite integral
for f on (a,b). Answer

Exercise 199Show how to deduce Theorem2.5 from the lemma. Answer

2.3 Basic properties of indefinite integrals

We conclude our chapter on the indefinite integral by discussing some typical calculus
topics. We have developed a precise theory of indefinite integrals and we are beginning
to understand the nature of the concept.

There are a number of techniques that have traditionally been taught in calculus
courses for the purpose of evaluating or manipulating integrals. Many courses you will
take (e.g., physics, applied mathematics, differential equations) will assume that you
have mastered these techniques and have little difficulty inapplying them.

The reason that you are asked to study these techniques is that they are required
for working with integrals or developing theory, not merelyfor computations. If a
course in calculus seems to be overly devoted to evaluating indefinite integrals it is
only that you are being drilled in the methods. The skill in finding an exact expression
for an indefinite integral is of little use: it won’t help in all cases anyway. Besides, any
integral that can be handled by these methods can be handled in seconds in by computer
software packages such as Maple or Mathematica (see Section2.3.5).
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2.3.1 Linear combinations

There is a familiar formula for the derivative of a linear combination:
d
dx

{rF (x)+sG(x)} = rF ′(x)+sG′(x).

This immediately provides a corresponding formula for the indefinite integral of a linear
combination: ∫

(r f (x)+sg(x))dx= r
∫

f (x)dx+s
∫

g(x)dx

As usual with statements about indefinite integrals this is only accurate if some
mention of an open interval is made. To interpret this formula correctly, let us make it
very precise. We assume that bothf andg have indefinite integralsF andG on the same
interval I . Then the formula claims, merely, that the functionH(x) = rF (x)+sG(x) is
an indefinite integral of the functionh(x) = r f (x)+sg(x) on that intervalI .

Exercise 200 (linear combinations)Prove this formula by showing that

H(x) = rF (x)+sG(x)

is an indefinite integral of the function

h(x) = r f (x)+sg(x)

on any interval I, assuming that both f and g have indefinite integrals F and G on the
interval I. Answer

2.3.2 Integration by parts

There is a familiar formula for the derivative of a product:
d
dx

{F(x)G(x)} = F ′(x)G(x)+F(x)G′(x).

This immediately provides a corresponding formula for the indefinite integral of a prod-
uct: ∫

F(x)G′(x)dx= F(x)G(x)−
∫

F ′(x)G(x)dx.

Again we remember that statements about indefinite integrals are only accurate if
some mention of an open interval is made. To interpret this formula correctly, let us
make it very precise. We assume thatF ′G has an indefinite integralH on an open
interval I . Then the formula claims, merely, that the functionK(x) = F(x)G(x)−H(x)
is an indefinite integral of the functionF(x)G′(x) on that intervalI .

Exercise 201 (integration by parts) Explain and verify the formula. Answer

Exercise 202 (calculus student notation)If u = f (x), v= g(x), and we denote du=
f ′(x)dx and dv= g′(x)dx then in its simplest form the product rule is often described
as ∫

udv= uv−
∫

vdu.

Explain how this version is used. Answer
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Exercise 203 (extra practice)If you need extra practice on integration by parts as a
calculus technique here is a standard collection of examples all cooked in advance so
that an integration by parts technique will successfully determine an exact formula for
the integral. This is not the case except for very selected examples.

[The interval on which the integration is performed is not specified but it should be
obvious which points, if any, to avoid.]∫

xex dx ,
∫

xsinxdx ,
∫

xlnxdx ,
∫

xcos3xdx ,
∫

lnx
x5 dx ,

∫
arcsin3xdx ,∫

lnxdx ,
∫

2xarctanxdx ,
∫

x2e3x dx ,
∫

x3 ln5xdx ,
∫

(lnx)2 dx ,
∫

x
√

x+3dx ,∫
xsinxcosxdx ,

∫
( lnx

x

)2
dx ,

∫
x5ex3

dx ,
∫

x3 cos(x2)dx ,
∫

x7
√

5+3x4 dx ,
∫

x3

(x2+5)2 dx ,
∫

e6x sin(e3x)dx ,
∫

x3ex2

(x2+1)2 dx ,
∫

excosxdx and
∫

sin3xcos5xdx.

Answer

2.3.3 Change of variable

The chain rule for the derivative of a composition of functions is the formula:
d
dx

F(G(x)) = F ′(G(x))G′(x).

This immediately provides a corresponding formula for the indefinite integral of a prod-
uct: ∫

F ′(G(x))G′(x)dx=
∫

F ′(u)du= F(u)+C = F(G(x))+C [u= G(x)]

where we have used the familiar deviceu= G(x), du= G′(x)dx to make the formula
more transparent.

This is called thechange of variable rule, although it is usually calledintegration
by substitutionis most calculus presentations.

Again we remember that statements about indefinite integrals are only accurate if
some mention of an open interval is made. To interpret this formula correctly, let us
make it very precise. We assume thatF is a differentiable function on an open interval
I . We assume too thatG′ has an indefinite integralG on an intervalJ and assumes
all of its values in the intervalI . Then the formula claims, merely, that the function
F(G(x)) is an indefinite integral of the functionF ′(G(x))G′(x) on that intervalJ [not
on the intervalI please].

Note that we have not addressed the question of allowing exceptional points in this
formula. If G is continuous and differentiable mostly everywhere in(a,b) and F is
continuous and differentiable mostly everywhere in an appropriate interval, then what
can be said?

Exercise 204 In the argument for the change of variable rule we did not address the
possibility that F might have finitely many points of nondifferentiability. Discuss.

Answer

Exercise 205Verify that this argument is correct:∫
xcos(x2+1)dx=

1
2

∫
2xcos(x2+1)dx=

1
2

∫
cosudu=

1
2

sinu+C=
1
2

sin(x2+1)+C.
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Answer

Exercise 206Here is a completely typical calculus exercise (or exam question). You
are asked to determine an explicit formula for

∫
xex2

dx. What is expected and how do
you proceed? Answer

Exercise 207Given that
∫

f (t)dt = F(t) +C determine
∫

f (rx + s)dx for any real
numbers r and s. Answer

2.3.4 What is the derivative of the indefinite integral?

What is
d
dx

∫
f (x)dx?

By definition this indefinite integral is the family of all functions whose derivative
is f (x) [on some pre-specified open interval] but with a possibly finite set of exceptions.
So the answer trivially is that

d
dx

∫
f (x)dx= f (x)

at most points inside the interval of integration. (But not necessarily at all points.)
The following theorem will do in many situations, but it doesnot fully answer our

question. There are exact derivatives that have very large sets of points at which they
are discontinuous.

Theorem 2.6 Suppose that f: (a,b) → R has an indefinite integral F on the in-
terval (a,b). Then F′(x) = f (x) at every point in(a,b) at which f is continuous.

Exercise 208Prove the theorem. Answer

2.3.5 Partial fractions

Many calculus texts will teach, as an integration tool, the method of partial fractions. It
is, actually, an important algebraic technique with applicability in numerous situations,
not merely in certain integration problems. It is best to learn this in detail outside of
a calculus presentation since it invariably consumes a great deal of student time as the
algebraic techniques are tedious at best and, often, reveala weakness in the background
preparation of many of the students.

It will suffice for us to recount the method that will permit the explicit integration
of ∫

x+3
x2−3x−40

dx.

The following passage is a direct quotation from the Wikipedia site entry for partial
fractions.

“Suppose it is desired to decompose the rational function

x+3
x2−3x−40
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into partial fractions. The denominator factors as

(x−8)(x+5)

and so we seek scalarsA andB such that

x+3
x2−3x−40

=
x+3

(x−8)(x+5)
=

A
x−8

+
B

x+5
.

One way of findingA andB begins by "clearing fractions", i.e., multiplying both
sides by the common denominator(x−8)(x+5). This yields

x+3= A(x+5)+B(x−8).

Collecting like terms gives

x+3= (A+B)x+(5A−8B).

Equating coefficients of like terms then yields:

A + B = 1
5A − 8B = 3

The solution isA= 11/13,B= 2/13. Thus we have the partial fraction decom-
position

x+3
x2−3x−40

=
11/13
x−8

+
2/13
x+5

=
11

13(x−8)
+

2
13(x+5)

.

Alternatively, take the original equation

x+3
(x−8)(x+5)

=
A

x−8
+

B
x+5

.

multiply by (x−8) to get

x+3
x+5

= A+
B(x−8)

x+5
.

Evaluate atx= 8 to solve forA as

11
13

= A.

Multiply the original equation by(x+5) to get

x+3
x−8

=
A(x+5)

x−8
+B.

Evaluate atx=−5 to solve forB as

−2
−13

=
2
13

= B.

As a result of this algebraic identity we can quickly determine that∫
x+3

x2−3x−40
dx= [11/13] log(x−8)+ [2/13] log(x+5)+C.
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This example is typical and entirely representative of the easier examples that would be
expected in a calculus course. The method is, however, much more extensive than this
simple computation would suggest. But it is not part of integration theory even if your
instructor chooses to drill on it.

Partial fraction method in Maple

Computer algebra packages can easily perform indefinite integration using the partial
fraction method without a need for the student to master all the details. Here is a short
Maple session illustrating that all the partial fraction details given above are handled
easily without resorting to hand calculation. That is not tosay that the student should
entirely avoid the method itself since it has many theoretical applications beyond its use
here.

[32]dogwood% maple
|\^/| Maple 12 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

> int( (x+3) / ( x^2-3*x-40), x);
11

2/13 ln(x + 5) + -- ln(x - 8)
13

# No constant of integration appears in the result for indefinite integrals.

Exercise 209 In determining that∫
x+3

x2−3x−40
dx= [11/13] log(x−8)+ [2/13] log(x+5)+C

we did not mention an open interval in which this would be valid. Discuss. Answer

2.3.6 Tables of integrals

Prior to the availability of computer software packages like Maple4, serious users of the
calculus often required access to tables of integrals. If anindefinite integral did have an
expression in terms of some formula then it could be found in the tables [if they were
extensive enough] or else some transformations using our techniques above (integration
by parts, change of variable, etc.) could be applied to find anequivalent integral that
did appear in the tables.

Most calculus books (not this one) still have small tables ofintegrals. Much more
efficient, nowadays, is simply to rely on a computer application such as Maple or Math-
ematica to search for an explicit formula for an indefinite integral. These packages will
even tell you if no explicit formula exists.

It is probably a waste of lecture time to teach for long any method that uses tables
and it is a waste of paper to write about them. The interested reader should just Google
“tables of integrals” to see what can be done. It has the same historical interest that

4See especially Section3.11.1.
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logarithms as devices for computation have. Store your old tables of integrals in the
same drawer with your grandparent’s slide rules.



Chapter 3

The Definite Integral

We have defined already the notion of an indefinite integral∫
F ′(x)dx= F(x)+C.

on an open interval(a,b). The theory of the indefinite integral is described best as
the study of continous functions on open intervals that are mostly everywhere differen-
tiable.

The definite integral ∫ b

a
F ′(x)dx= F(b)−F(a)

on a bounded, closed interval[a,b] is defined as a special case of that and the connection
between the two concepts is immediate. We can describe the theory of thedefinite
integral as the study ofuniformlycontinous functions onclosed and boundedintervals
that are mostly everywhere differentiable.

In other calculus courses one might be introduced to a different (also very limited)
version of the integral introduced in the middle of the 19th century by Riemann. Then
the connection with the indefinite integral is established by means of a deep theorem
known as the fundamental theorem of the calculus. Here we runthis program back-
wards. We take the simpler approach of starting with the fundamental theorem as a
definition and then recover the Riemann integration methodslater.

There are numerous advantages in this. We can immediately start doing some very
interesting integration theory and computing integrals. Since we have already learned
indefinite integration we have an immediate grasp of the new theory. We are not con-
fined to the limited Riemann integral and we have no need to introduce the improper
integral. We can make, eventually, a seamless transition tothe Lebesgue integral and
beyond.

This calculus integral (also known as “Newton’s integral”)is a limited version of
the full integration theory on the real line. It is intended as a teaching method for
introducing integration theory. Later, in Chapter 4, we will present an introduction to
the full modern version of integration theory on the real line.

49
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3.1 Definition of the calculus integral

The definite integral is defined directly by means of the indefinite integral and uses a
similar notation.

Definition 3.1 (The definite integral) Let f be a function defined at every point of
a closed, bounded interval[a,b] with possibly finitely many exceptions. Then f is
said to beintegrable[calculus sense] if there exists a uniformly continuous function
F : [a,b]→ R that is an indefinite integral for f on the open interval(a,b). In that
case the number ∫ b

a
f (x)dx= F(b)−F(a),

is called the definite integral of f on[a,b].

To make this perfectly clear let us specify what this statement would mean: We
require:

1. f is defined on[a,b] except possibly at points of a finite set. [In particularf (a)
and f (b) need not be defined.]

2. There is a uniformly continuous functionF on [a,b].

3. F ′(x) = f (x) at every pointa< x< b except possibly at points of a finite set.

4. We computeF(b)−F(a) and call this number the definite integral off on [a,b].

Thus our integration focuses on the study of uniformly continuous functionsF :
[a,b]→ R for which there is at most a finite number of points of nondifferentiability in
(a,b). For these functions we can write∫ b

a
F ′(x)dx= F(b)−F(a). (3.1)

The integration theory is, consequently, all about derivatives, just as was the indefinite
integration theory. The statement (3.1) is here a definition not (as it would be in many
other textbooks) a theorem.

3.1.1 Alternative definition of the integral

In many applications it is more convenient to work with a definition that expresses
everything within the corresponding open interval(a,b).

Definition 3.2 (The definite integral) Let f be a function defined at every point
of a bounded, open interval(a,b) with possibly finitely many exceptions. Then f is
said to beintegrable[calculus sense] on the closed interval[a,b] if there exists a
uniformly continuous indefinite integral F for f on(a,b). In that case the number∫ b

a
f (x)dx= F(b−)−F(a+),

is called the definite integral of f on[a,b].

This statement would mean.
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1. f is defined at least on(a,b) except possibly at points of a finite set.

2. There is a uniformly continuous functionF on (a,b), with F ′(x) = f (x) at every
point a< x< b except possibly at points of a finite set.

3. BecauseF is uniformly continuous on(a,b), the two one-sided limits

lim
x→a+

F(x) = F(a+) and lim
x→b−

F(x) = F(b−)

will exist.

4. The numberF(b−)−F(a+) is the definite integral off on [a,b].

Exercise 210To be sure that a function f is integrable on a closed, boundedinter-
val [a,b] you need to find an indefinite integral F on(a,b) and then check one of the
following:

1. F is uniformly continuous on(a,b), or

2. F is uniformly continuous on[a,b], or

3. F is continuous on(a,b) and the one-sided limits,

lim
x→a+

F(x) = F(a+) and lim
x→b−

F(x) = F(b−)

exist.

Show that these are equivalent. Answer

3.1.2 Infinite integrals

Exactly the same definition for the infinite integrals∫ ∞

−∞
f (x)dx,

∫ ∞

a
f (x)dx, and

∫ b

−∞
f (x)dx

can be given as for the integral over a closed bounded interval.

Definition 3.3 (Infinite integral) Let f be a function defined at every point of
(∞,∞) with possibly finitely many exceptions. Then f is said to beintegrablein
the calculus sense on(∞,∞) if there exists an indefinite integral F: (∞,∞)→R for
f for which both limits

F(∞) = lim
x→∞

F(x) and F(−∞) = lim
x→−∞

F(x)

exist. In that case the number∫ ∞

−∞
f (x)dx= F(∞)−F(−∞),

is called the definite integral of f on(∞,∞) .

This statement would mean.

1. f is defined at all real numbers except possibly at points of a finite set.

2. There is a continuous functionF on (∞,∞), with F ′(x) = f (x) at every point
except possibly at points of a finite set.
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3. The two infinite limits

F(∞) = lim
x→∞

F(x) and F(−∞) = lim
x→−∞

F(x)

exist. This must be checked. For this either compute the limits or else use Exer-
cise64: for all ε > 0 there should exist a positive numberT so that

ωF((T,∞))< ε and ωF((−∞,T))< ε.

4. The numberF(∞)−F(−∞) is the definite integral off on [a,b].

Similar assertions define∫ b

−∞
f (x)dx= F(b)−F(−∞)

and ∫ ∞

a
f (x)dx= F(∞)−F(a).

In analogy with the terminology of an infinite series
∞

∑
k=1

ak

we often say that the integral ∫ ∞

a
f (x)dx

convergeswhen the integral exists. That suggests language assertingthat the integral
converges absolutelyif both integrals∫ ∞

a
f (x)dx and

∫ ∞

a
| f (x)|dx

exist.

3.1.3 Notation:
∫ a

a f (x)dxand
∫ a

b f (x)dx

The expressions ∫ a

a
f (x)dx and

∫ a

b
f (x)dx

for b > a do not yet make sense since integration is required to hold ona closed,
bounded interval. But these notations are extremely convenient.

Thus we will agree that ∫ a

a
f (x)dx= 0

and, ifa< b and the integral
∫ b

a f (x)dxexists as a calculus integral, then we assign this
meaning to the “backwards” integral:∫ a

b
f (x)dx=−

∫ b

a
f (x)dx.

Exercise 211Suppose that the integral
∫ b

a f (x)dx exists as a calculus integral and that
F is an indefinite integral for f on that interval. Does the formula∫ t

s
f (x)dx= F(t)−F(s) (s, t ∈ [a,b])
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work even if s= t or if s> t? Answer

Exercise 212Check that the formula∫ b

a
f (x)dx+

∫ c

b
f (x)dx=

∫ c

a
f (x)dx

works forall real numbers a, b and c. Answer

3.1.4 The dummy variable: what is the “x” in
∫ b

a f (x)dx?

If you examine the two statements∫
x2 dx= x3/3+C and

∫ 2

1
x2 dx= 23/3−13/3= 7/3

you might notice an odd feature. The first integral [the indefinite integral] requires the
symbolx to express the functions on both sides. But in the second integral [the definite
integral] the symbolx plays no role except to signify the function being integrated. If
we had given the function a name, sayg(x) = x2 then the first identity could be written∫

g(x)dx= x3/3 or
∫

g(t)dt = t3/3+c

while the second one might be more simply written as∫ 2

1
g= 7/3.

In definite integrals the symbolsx anddxare considered as dummy variables, useful
for notational purposes and helpful as aids to computation,but carrying no significance.
Thus you should feel free [and are encouraged] to use any other letters you like to
represent the dummy variable. But do not use a letter that serves some other purpose
elsewhere in your discussion.

Here are some bad and even terrible abuses of this:

Exercise 213What is wrong with this? Let x= 2 and let

y=
∫ 2

1
x2 dx.

Exercise 214What is wrong with this? Show that∫ x

1
x2 dx= x3/3−1/3.

Exercise 215Do you know of any other bad uses of dummy variables?Answer

3.1.5 Definite vs. indefinite integrals

The connection between the definite and indefinite integralsis immediate; we have
simply defined one in terms of the other.



54 CHAPTER 3. THE DEFINITE INTEGRAL

If F is an indefinite integral of an integrable functionf on an interval(a,b) then∫ b

a
f (x)dx= F(b−)−F(a+)

provided that these two one-sided limits do exist.
In the other direction iff is integrable on an interval[a,b] then, on the open interval

(a,b), the indefinite integral can be expressed as∫
f (x)dx=

∫ x

a
f (t)dt+C.

Both statements are tautologies; this is a matter of definition not of computation or
argument.

Exercise 216A student is asked to find the indefinite integral of e2x and he writes∫
e2xdx=

∫ x

0
e2t dt+C.

How would you grade? Answer

Exercise 217A student is asked to find the indefinite integral of ex2
and she writes∫

ex2
dx=

∫ x

0
et2

dt+C.

How would you grade? Answer

3.1.6 The calculus student’s notation

The procedure that we have learned in order to compute a definite integral is actually
just the definition. For example, if we wish to evaluate∫ 6

−5
x2 dx

we first determine that ∫
x2 dx= x3/3+C

on any interval. So that, using the functionF(x) = x3/3 as an indefinite integral,∫ 6

−5
x2 dx= F(6)−F(−5) = 63/3− (−5)3/3= (63+53)/3.

Calculus students often use a shortened notation for this computation:
∫ 6

−5
x2 dx=

x3

3

]x=6

x=−5
= 63/3− (−5)3/3.

Exercise 218Which of these is correct:
∫ 6

−5
x2 dx=

x3

3

]x=6

x=−5
or

∫ 6

−5
x2 dx=

x3

3
+1

]x=6

x=−5
?

Answer

Exercise 219Would you accept this notation:∫ ∞

1

dx√
x3

= − 2√
x

]x=∞

x=1
= 0− (−2)?
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Answer

3.2 Integrability

What functions are integrable on an interval[a,b]? According to the definition we need
to find an indefinite integral on(a,b) and then determine whether it is uniformly con-
tinuous. If we cannot explicitly obtain an indefinite integral we can still take advantage
of what we know about continuous functions to decide whethera given function is
integrable or not.

This focus on continuity, however, will not answer the problem in general. But it
does give us a useful and interesting theory. Continuity will be our most used tool in
this chapter. For a more advanced theory we would need to find some other ideas.

3.2.1 Integrability of bounded, continuous functions

If there does exist an indefinite integral of a bounded function, we know that it would
have to be Lipschitz and so must be uniformly continuous. Thus integrability of bounded
functions on bounded intervals reduces simply to ensuring that there is an indefinite in-
tegral.

Theorem 3.4 If f : (a,b) → R is a bounded function that is continuous at all but
finitely many points of an open bounded interval(a,b) then f is integrable on[a,b].

Corollary 3.5 If f : [a,b] → R is a uniformly continuous function then f is inte-
grable on[a,b].

Exercise 220Show that all step functions are integrable. Answer

Exercise 221Show that all differentiable functions are integrable. Answer

3.2.2 Integrability of unbounded continuous functions

What unbounded functions are integrable on an interval[a,b]? We know that abounded
function f : (a,b) → R that is continuous at each point of the open interval would be
integrable. The unbounded case is covered in this theorem.

Theorem 3.6 Suppose that f: (a,b) → R is a function that is continuous at all
points of a bounded open interval(a,b). Then f is integrable on every closed,
bounded subinterval[c,d] ⊂ (a,b). Moreover f is integrable on[a,b] itself if and
only if the one-sided limits

lim
t→a+

∫ c

t
f (x)dx and lim

t→b−

∫ t

c
f (x)dx

exist for some a< c< b. In that case∫ b

a
f (x)dx= lim

t→a+

∫ c

t
f (x)dx+ lim

t→b−

∫ t

c
f (x)dx.

Exercise 222Prove Theorem3.6. Answer
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3.2.3 Comparison test for integrability

What unbounded functions are integrable on an interval[a,b]? What functions are
integrable on an unbounded interval(−∞,∞)?

Sometimes the most convenient way of checking for integrability is to compare
an unknown case to the case of a known integrable function. The following simple
theorem is sometimes called a comparison test for integrals.

Theorem 3.7 (comparison test I)Suppose that f , g: (a,b)→ R are functions on
(a,b), both of which have an indefinite integral on(a,b). Suppose that| f (x)| ≤
g(x) for all a < x< b. If g is integrable on[a,b] then so too is f .

We recall that we know already:

If f : (a,b) → R is an unbounded function that is continuous at all points
of (a,b) then f has an indefinite integral on(a,b). That indefinite integral
may or may not be uniformly continuous.

That provides a quick corollary of our theorems.

Corollary 3.8 Suppose that f is an unbounded function on(a,b) that is continuous
at all but a finite number of points, and suppose that g: (a,b) → R with | f (x)| ≤
g(x) for all a < x< b. If g is integrable on[a,b] then so too is f .

3.2.4 Comparison test for infinite integrals

For infinite integrals there are similar statements available.

Theorem 3.9 (comparison test II) Suppose that f , g: (a,∞) → R are functions
on(a,∞), both of which have an indefinite integral on(a,∞). Suppose that| f (x)| ≤
g(x) for all a < x. If g is integrable on[a,∞) then so too is f .

Corollary 3.10 Suppose that f is function on(a,∞) that is continuous at all but a
finite number of points, and suppose that g: (a,∞)→ R with | f (x)| ≤ g(x) for all
a< x. If g is integrable on[a,∞) then so too is f .

Exercise 223Prove the two comparison tests [Theorems3.7and3.9]. Answer

Exercise 224Prove Corollary3.8. Answer

Exercise 225Prove Corollary3.10. Answer

Exercise 226Which, if any, of these integrals exist:
∫ π/2

0

√

sinx
x

dx,
∫ π/2

0

√

sinx
x2 dx, and

∫ π/2

0

√

sinx
x3 dx?

Answer

Exercise 227Apply the comparison test to each of these integrals:∫ ∞

1

sinx√
x

dx,
∫ ∞

1

sinx
x

dx, and
∫ ∞

1

sinx
x2 dx.

Answer
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Exercise 228 (nonnegative functions)Show that a nonnegative function f: (a,b) →
R is integrable on[a,b] if and only if it has a bounded indefinite integral on(a,b).

Answer

Exercise 229Give an example of a function f: (a,b) → R that is not integrable on
[a,b] and yet it does have a bounded indefinite integral on(a,b). Answer

Exercise 230Discuss the existence of the definite integral∫ b

a

p(x)dx
q(x)

where p(x) and q(x) are both polynomials. Answer

Exercise 231Discuss the existence of the integral∫ ∞

a

p(x)
q(x)

dx

where p(x) and q(x) are polynomials. Answer

3.2.5 The integral test

It is useful to have a way of comparing infinite integrals to series. When one converges
so too does the other.

Theorem 3.11 (The integral test)Let f be a continuous, nonnegative, decreasing
function on[1,∞). Then the definite integral

∫ ∞
1 f (x)dx exists if and only if the

series∑∞
n=1 f (n) converges.

Exercise 232Prove the integral test. Answer

Exercise 233Give an example of a function f that is continuous and nonnegative on
[1,∞) so that the integral

∫ ∞
1 f (x)dx exists but the series∑∞

n=1 f (n) diverges.
Answer

Exercise 234Give an example of a function f that is continuous and nonnegative on
[1,∞) so that the integral

∫ ∞
1 f (x)dx does not exist but the series∑∞

n=1 f (n) converges.
Answer

3.2.6 Products of integrable functions

When is the product of a pair of integrable functions integrable? When both functions
are bounded and defined on a closed, bounded interval we shalllikely be successful.
When both functions are unbounded, or the interval is unbounded simple examples
exist to show that products of integrable functions need notbe integrable.

Exercise 235Suppose we are given a pair of functions f and g such that each is uni-
formly continuous on[a,b]. Show that each of f , g and the product f g is integrable on
[a,b]. Answer
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Exercise 236Suppose we are given a pair of functions f and g such that each is
bounded and has at most a finite number of discontinuities in(a,b). Show that each of
f , g and the product f g is integrable on[a,b]. Answer

Exercise 237Find a pair of functions f and g, integrable on[0,1] and continuous on
(0,1) but such that the product f g is not. Answer

Exercise 238Find a pair of continuous functions f and g, integrable on[1,∞) but such
that the product f g is not. Answer

Exercise 239Suppose that F, G: [a,b] → R are uniformly continuous functions that
are differentiable at all but a finite number of points in(a,b). Show that F′G is inte-
grable on[a,b] if and only if FG′ is integrable on[a,b].

Answer

3.3 Properties of the integral

The basic properties of integrals are easily obtained for usbecause the integral is defined
directly by differentiation. Thus we can apply all the ruleswe know about derivatives
to obtain corresponding facts about integrals.

3.3.1 Integrability on all subintervals

When a function has a calculus integral on an interval it mustalso have a calculus
integral on all subintervals.

Theorem 3.12 (integrability on subintervals) If f is integrable on a closed,
bounded interval[a,b] then f is integrable on any subinterval[c,d]⊂ [a,b].

3.3.2 Additivity of the integral

When a function has a calculus integral on two adjacent intervals it must also have a
calculus integral on the union of the two intervals. Moreover the integral on the large
interval is the sum of the other two integrals.

Theorem 3.13 (additivity of the integral) If f is integrable on the closed,
bounded intervals[a,b] and [b,c] then f is integrable on the interval[a,c] and,
moreover, ∫ b

a
f (x)dx+

∫ c

b
f (x)dx=

∫ c

a
f (x)dx.

3.3.3 Inequalities for integrals

Larger functions have larger integrals. The formula forinequalities:∫ b

a
f (x)dx≤

∫ b

a
g(x)dx

if f (x) ≤ g(x) for all but finitely many pointsx in (a,b).
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Theorem 3.14 (integral inequalities) Suppose that the two functions f , g are
both integrable on a closed, bounded interval[a,b] and that f(x) ≤ g(x) for all
x∈ [a,b] with possibly finitely many exceptions. Then∫ b

a
f (x)dx≤

∫ b

a
g(x)dx.

The proof is an easy exercise in derivatives. We know that ifH is uniformly con-
tinuous on[a,b] and if

d
dx

H(x)≥ 0

for all but finitely many pointsx in (a,b) thenH(x) must be nondecreasing on[a,b].

Exercise 240Complete the details needed to prove the inequality formulaof Theo-
rem thm:intineqal.

Answer

3.3.4 Linear combinations

Formula forlinear combinations:∫ b

a
[r f (x)+sg(x)]dx= r

∫ b

a
f (x)dx+s

∫ b

a
g(x)dx (r,s∈R).

Here is a precise statement of what we intend by this formula:If both functions
f (x) andg(x) have a calculus integral on the interval[a,b] then any linear combination
r f (x)+sg(x) (r, s∈R) also has a calculus integral on the interval[a,b] and, moreover,
the identity must hold. The proof is an easy exercise in derivatives. We know that

d
dx

(rF (x)+sG(x)) = rF ′(x)+sG′(x)

at any pointx at which bothF andG are differentiable.

Exercise 241Complete the details needed to prove the linear combinationformula.

3.3.5 Integration by parts

Integration by partsformula:∫ b

a
F(x)G′(x)dx= F(x)G(x)−

∫ b

a
F ′(x)G(x)dx

The intention of the formula is contained in the product rulefor derivatives:
d
dx

(F(x)G(x)) = F(x)G′(x)+F ′(x)G(x)

which holds at any point where both functions are differentiable. One must then give
strong enough hypotheses that the functionF(x)G(x) is an indefinite integral for the
function

F(x)G′(x)+F ′(x)G(x)

in the sense needed for our integral.
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Exercise 242Supply the details needed to prove the integration by parts formula in the
special case where F and G are continuously differentiable everywhere.

Exercise 243Supply the details needed to state and prove an integration by parts for-
mula that is stronger than the one in the preceding exercise.

3.3.6 Change of variable

Thechange of variableformula (i.e., integration by substitution):∫ b

a
f (g(t))g′(t)dt =

∫ g(b)

g(a)
f (x)dx.

The intention of the formula is contained in the following statement which contains
a sufficient condition that allows this formula to be proved:Let I be an interval andg :
[a,b]→ I a continuously differentiable function. Suppose thatF : I →R is an integrable
function. Then the functionF(g(t))g′(t) is integrable on[a,b] and the functionf is
integrable on the interval[g(a),g(b)] (or rather on[g(a),g(b)] if g(b) < g(a)) and the
identity holds. There are various assumptions under which this might be valid.

The proof is an application of the chain rule for the derivative of a composite func-
tion:

d
dx

F(G(x)) = F ′(G(x))G′(x).

Exercise 244Supply the details needed to prove the change of variable formula in the
special case where F and G are differentiable everywhere. Answer

Exercise 245 (a failed change of variables)Let F(x)= |x| and G(x)= x2 sinx−1, G(0)=
0. Does ∫ 1

0
F ′(G(x))G′(x)dx= F(G(1))−F(G(0)) = |sin1|?

Answer

Exercise 246 (calculus student notation)Explain the procedure being used by this
calculus student:

In the integral
∫ 2

0 xcos(x2+1)dx we substitute u= x2+1, du= 2xdx and
obtain∫ 2

0
xcos(x2+1)dx=

1
2

∫ u=5

u=1
cosudu=

1
2
(sin(5)−sin(1)).

Exercise 247 (calculus student notation)Explain the procedure being used by this
calculus student:

The substitution x= sinu, dx= cosudu is useful, because
√

1−sin2u=

cosu. Therefore∫ 1

0

√

1−x2 dx=
∫ π

2

0

√

1−sin2 ucosu du=
∫ π

2

0
cos2 u du.



3.3. PROPERTIES OF THE INTEGRAL 61

Exercise 248Supply the details needed to prove the change of variable formula in the
special case where G is strictly increasing and differentiable everywhere. Answer

Exercise 249Show that the integral
∫ π2

0

cos
√

x√
x

dx

exists and use a change of variable to determine the exact value. Answer

3.3.7 What is the derivative of the definite integral?

What is
d
dx

∫ x

a
f (t)dt?

We know that
∫ x

a f (t)dt is an indefinite integral off and so, by definition,

d
dx

∫ x

a
f (t)dt = f (x)

at all but finitely many points in the interval(a,b) if f is integrable on[a,b].
If we need to know more than that then there is the following version which we

have already proved:
d
dx

∫ x

a
f (t)dt = f (x)

at all pointsa< x< b at which f is continuous. We should keep in mind, though, that
there may also be many points wheref is discontinuous and yet the derivative formula
holds.

Advanced note. If we go beyond the calculus interval, as we do in Chapter 4, then the
same formula is valid

d
dx

∫ x

a
f (t)dt = f (x)

but there may be many more than finitely many exceptions possible. For “most” values
of t this is true but there may even be infinitely many exceptions possible. It will still
be true at points of continuity but it must also be true at mostpoints when an integrable
function is badly discontinuous (as it may well be).

Exercise 250Prove Theorem3.12both for integrals on[a,b] or (−∞,∞). Answer

Exercise 251Prove Theorem3.13both for integrals on[a,b] or (−∞,∞). Answer

Exercise 252Prove Theorem3.14both for integrals on[a,b] or (−∞,∞). Answer

Exercise 253Show that the function f(x) = x2 is integrable on[−1,2] and compute its
definite integral there. Answer



62 CHAPTER 3. THE DEFINITE INTEGRAL

Exercise 254Show that the function f(x) = x−1 is not integrable on[−1,0], [0,1], nor
on any closed bounded interval that contains the point x= 0. Did the fact that f(0) is
undefined influence your argument? Is this function integrable on(∞,−1] or on [1,∞)?

Answer

Exercise 255Show that the function f(x) = x−1/2 is integrable on[0,2] and compute
its definite integral there. Did the fact that f(0) is undefined interfere with your argu-
ment? Is this function integrable on[0,∞)?

Answer

Exercise 256Show that the function f(x) = 1/
√

|x| is integrable on any interval[a,b]
and determine the value of the integral. Answer

Exercise 257 (why the finite exceptional set?)In the definition of the calculus inte-
gral we permit a finite exceptional set. Why not just skip the exceptional set and just
split the interval into pieces? Answer

Exercise 258 (limitations of the calculus integral)Define a function F: [0,1] → R

in such a way that F(0) = 0, and for each odd integer n= 1,3,5. . . , F(1/n) = 1/n
and each even integer n= 2,4,6. . . , F(1/n) = 0. On the intervals[1/(n+1),1/n] for
n= 1,2,3, the function is linear. Show that

∫ b
a F ′(x)dx exists as a calculus integral for

all 0< a< b≤ 1 but that
∫ 1

0 F ′(x)dx does not.

Hint: too many exceptional points. Answer

Exercise 259Show that each of the following functions is not integrable on the interval
stated:

1. f(x) = 1 for all x irrational and f(x) = 0 if x is rational, on any interval[a,b].

2. f(x) = 1 for all x irrational and f(x) is undefined if x is rational, on any interval
[a,b].

3. f(x) = 1 for all x 6= 1,1/2,1/3,1/4, . . . and f(1/n) = cn for some sequence of
positive numbers c1, c2, c3, . . . , on the interval[0,1].

Answer

Exercise 260Determine all values of p for which the integrals∫ 1

0
xp dx or

∫ ∞

1
xp dx

exist. Answer

Exercise 261Are the following additivity formulas for infinite integrals valid:

1.
∫ ∞

−∞
f (x)dx=

∫ a

−∞
f (x)dx+

∫ b

a
f (x)dx+

∫ ∞

b
f (x)dx?

2.
∫ ∞

0
f (x)dx=

∞

∑
n=1

∫ n

n−1
f (x)dx?

3.
∫ ∞

−∞
f (x)dx=

∞

∑
n=−∞

∫ n

n−1
f (x)dx?

Answer
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3.4 Mean-value theorems for integrals

In general the expression
1

b−a

∫ b

a
f (x)dx

is thought of as an averaging operation on the functionf , determining its “average
value” throughout the whole interval[a,b]. Thefirst mean-valuetheorem for integrals
says that the function actually attains this average value at some point inside the inter-
val, i.e., under appropriate hypotheses there is a pointa< ξ < b at which

1
b−a

∫ b

a
f (x)dx= f (ξ).

But this is nothing new to us. Since the integral is defined by using an indefinite integral
F for f this is just the observation that

1
b−a

∫ b

a
f (x)dx=

F(b)−F(a)
b−a

= f (ξ),

the very familiar mean-value theorem for derivatives.

Theorem 3.15 Let f : (a,b) → R be integrable on[a,b] and suppose that F is an
indefinite integral. Suppose further that F′(x) = f (x) for all a < x < b with no
exceptional points. Then there must exist a pointξ ∈ (a,b) so that∫ b

a
f (x)dx= f (ξ)(b−a).

Corollary 3.16 Let f : (a,b) → R be integrable on[a,b] and suppose that f is
continuous at each point of(a,b). Then there must exist a pointξ ∈ (a,b) so that∫ b

a
f (x)dx= f (ξ)(b−a).

Exercise 262Give an example of an integrable function for which the first mean-value
theorem for integrals fails. Answer

Exercise 263 (another mean-value theorem)Suppose that G: [a,b]→R is a contin-
uous function andϕ : [a,b] → R is an integrable, nonnegative function. If G(t)ϕ(t) is
integrable, show that there exists a numberξ ∈ (a,b) such that∫ b

a
G(t)ϕ(t)dt = G(ξ)

∫ b

a
ϕ(t)dt.

Answer

Exercise 264 (and another)Suppose that G: [a,b] → R is a positive, monotonically
decreasing function andϕ : [a,b] → R is an integrable function. Suppose that Gϕ is
integrable. Then there exists a numberξ ∈ (a,b] such that∫ b

a
G(t)ϕ(t)dt = G(a+0)

∫ ξ

a
ϕ(t)dt.

Note: Here, as usual,G(a+0) stands for limx→a+ G(x) , the existence of which follows
from the monotonicity of the functionG. Note thatξ in the exercise might possibly be
b.
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Exercise 265 (. . . and another)Suppose that G: [a,b] → R is a monotonic (not nec-
essarily decreasing and positive) function andϕ : [a,b] → R is an integrable function.
Suppose that Gϕ is integrable. Then there exists a numberξ ∈ (a,b) such that

∫ b

a
G(t)ϕ(t)dt = G(a+0)

∫ ξ

a
ϕ(t)dt+G(b−0)

∫ b

ξ
ϕ(t)dt.

Exercise 266 (Dirichelet integral) As an application of mean-value theorems, show
that the integral ∫ ∞

0

sinx
x

dx

is convergent but is not absolutely convergent. Answer

3.5 Riemann sums

The expression of an integral by its definition∫ b

a
f (x)dx= F(b)−F(a)

requires finding a functionF to serve as an antiderivative. It would be more convenient,
both for theory and practice, if we can relate the value of theintegral directly to the
actual values of the functionf . Approximations of the form∫ b

a
f (x)dx≈

n

∑
i=1

f (ξi)(xi −xi−1)

have long been used. Here the pointsxi are chosen so as to begin at the left endpointa
and end at the right endpointb,

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

and the pointsξi (called theassociated points) are required to be chosen at or between
the corresponding pointsxi−1 andxi . Most readers would have encountered such sums
under the stricter conditions that

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b and xi−1 ≤ ξi ≤ xi

so that the points are arranged in increasing order. This need not always be the case,
but it is most frequently so.

We have used this notion before as apartition and we write partitions in the form

{([xi ,xi−1],ξi) : i = 1,2, . . .n}.
Moreover, in most settings, one is interested also in choosing points close together so
that an inequality of the form

|xi−1−xi <|δ
might be imposed with a small choice ofδ.
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Riemann sums and integration theory These sums
n

∑
i=1

f (ξi)(xi −xi−1)

will be calledRiemann sumseven though their use predates Riemann’s birth by many
years. Thus we use the following language to describe these sums.

Definition 3.17 (Riemann sum)Suppose that f: [a,b]→ R and that a collection
of points in the interval[a,b] is given

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

and along with associated pointsξi at or between xi−1 and xi for i = 1,2, . . . ,n.
Then any sum of the form

n

∑
i=1

f (ξi)(xi −xi−1).

is called aRiemann sumfor the function f on the interval[a,b].

Such sums, however, and the connection with integration theory do not originate
with Riemann1 nor are they that late in the history of the subject. Poisson in 1820
proposed such an investigation as “the fundamental proposition of the theory of definite
integrals.” Euler, by at least 1768, had already used such sums to approximate integrals.
Of course, for both Poisson and Euler the integral was understood in our sense as an
antiderivative2.

3.5.1 Mean-value theorem and Riemann sums

The mean-value theorem allows an interpretation in terms ofRiemann sums that is a
convenient starting point for the theory. IfF : [a,b] → R is a uniformly continuous
function that is differentiable at every point of the open interval(a,b) [i.e., every point
with no exceptions] then we know thatf = F ′ is integrable and that the first mean-value
theorem can be applied to express the integral in the form∫ b

a
f (x)dx= F(b)−F(a) = f (ξ)(b−a)

for someξ∈ (a,b). This expresses the integral exactly as a very simple kind ofRiemann
sum with just one term. Herex0 = a andx1 = b.

Take now the three distinct points

a= x0,x1,x2 = b

and do the same thing in both of the intervals[a,x1] and[x1,b]. Then∫ b

a
f (x)dx= F(b)−F(a) = [F(x1)−F(a)]+ [F(b)−F(x1)]

= f (ξ1)(x1−a)+ f (ξ2)(b−x1) =
2

∑
i=1

f (ξi)(xi −xi−1)

1Georg Friedrich Bernhard Riemann (1826–1866). His lecturenotes on integration theory date from
the 1850s.

2See Judith V. Grabiner,Who gave you the epsilon? Cauchy and the origins of rigorous calculus,
American Mathematical Monthly 90 (3), 1983, 185–194.
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for some pointsξ1 ∈ (a,x1) andξ2 ∈ (x1,b). Again, this expresses the integral exactly
as a simple kind of Riemann sum with just two terms.

In fact then we can do this for any number of points. Take any collection

a= x0,x1,x2,x3, . . . ,xn−1,xn = b

arranged in any order (not necessarily increasing) and choose the associated pointsξi

betweenxi−1 andxi for i = 1,2, . . . ,n in such a way that∫ b

a
f (x)dx=

n

∑
i=1

[F(xi)−F(xi−1)] =
n

∑
i=1

f (ξi)(xi −xi−1). (3.2)

Using our language, we have just proved in the identity (3.2) that an integral in many
situations can be computed exactly by some Riemann sum.

This seems both wonderful and, maybe, not so wonderful. In the first place it means
that an integral

∫ b
a f (x)dx can be computed by a simple sum using the values of the

function f rather than by using the definition and having, instead, to solve a difficult or
impossible indefinite integration problem. On the other hand this only works if we can
select the right associated points{ξi} that make this precise. In theory the mean-value
theorem supplies the points, but in practice we would be mostoften unable to select the
correct points.

3.5.2 Exact computation by Riemann sums

We have just proved the following theorem that shows that, inmost situations, the
definite integral can be computed exactly by a Riemann sum. The proof, as we have
just seen, is obtained directly from the first mean-value theorem for integrals, which
itself is simply the mean-value theorem for derivatives.

Theorem 3.18 Let f : (a,b) → R be integrable on[a,b] and suppose that F is an
indefinite integral. Suppose further that F′(x) = f (x) for all a < x < b with the
possible exception of points in a finite set C⊂ (a,b). Choose any points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

so that at least all points of C are included. Then there must exist associated points
ξi between the points xi−1 and xi for i = 1,2, . . . ,n so that∫ xi

xi−1

f (x)dx= f (ξi)(xi −xi−1) (i = 1,2,3, . . . ,n)

and ∫ b

a
f (x)dx=

n

∑
i=1

f (ξi)(xi −xi−1).

Exercise 267Show that the integral
∫ b

a xdx can be computed exactly by any Riemann
sum ∫ b

a
xdx=

n

∑
i=1

xi +xi−1

2
(xi −xi−1) =

1
2

n

∑
i=1

(x2
i −x2

i−1).

Answer
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Exercise 268Subdivide the interval[0,1] at the points x0 = 0, x1 = 1/3, x2 = 2/3 and
x3 = 1. Determine the pointsξi so that

∫ 1

0
x2 dx=

3

∑
i=1

ξ2
i (xi −xi−1).

Exercise 269Subdivide the interval[0,1] at the points x0 = 0, x1 = 1/3, x2 = 2/3 and
x3 = 1. Determine the pointsξi ∈ [xi−1,xi ] so that

3

∑
i=1

ξ2
i (xi −xi−1).

is as large as possible. By how much does this sum exceed
∫ 1

0 x2 dx?

Exercise 270Subdivide the interval[0,1] at the points x0 = 0, x1 = 1/3, x2 = 2/3 and
x3 = 1. Consider various choices of the pointsξi ∈ [xi−1,xi ] in the sum

3

∑
i=1

ξ2
i (xi −xi−1).

What are all the possible values of this sum? What is the relation between this set of
values and the number

∫ 1
0 x2 dx?

Exercise 271Subdivide the interval[0,1] by defining the points x0 = 0, x1 = 1/n, x2 =

2/n, . . . xn−1 = (n−1)/n, and xn = n/n= 1. Determine the pointsξi ∈ [xi−1,xi ] so that
n

∑
i=1

ξ2
i (xi −xi−1).

is as large as possible. By how much does this sum exceed
∫ 1

0 x2 dx?

Exercise 272Let0< r < 1. Subdivide the interval[0,1] by defining the points x0 = 0,
x1 = rn−1, x2 = rn−2, . . . , xn−1 = rn−(n−1) = r, and xn = rn−(−n) = 1. Determine the
pointsξi ∈ [xi−1,xi ] so that

n

∑
i=1

ξ2
i (xi −xi−1).

is as large as possible. By how much does this sum exceed
∫ 1

0 x2 dx?

Exercise 273 (error estimate)Let f : [a,b] → R be an integrable function. Suppose
further that F′(x) = f (x) for all a < x< b where F is an indefinite integral. Suppose
that

{([xi ,xi−1],ξi) : i = 1,2, . . .n}
is an arbitrary partition of[a,b]. Show that

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

≤ ω f ([xi ,xi−1])(xi −xi−1) (i = 1,2,3, . . . ,n)

and that
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

≤
n

∑
i=1

ω f ([xi ,xi−1])(xi −xi−1). (3.3)
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Note: that, if the right hand side of the inequality (3.3) is small then the Riemann sum,
while not precisely equal to the integral, would be a good estimate. Of course, the right
hand side might also be big. Answer

3.5.3 Uniform Approximation by Riemann sums

Theorem3.18shows that calculus integrals can beexactlycomputed by Riemann sums.
Since it must appeal to the mean-value theorem, it gives no procedure for determining
the correct associated points that make the computation exact.

Suppose we relax our goal. Instead of asking for an exact computation, perhaps an
approximate computation might be useful:∫ b

a
f (x)dx≈

n

∑
i=1

f (ξi)(xi −xi−1) ?

Here we wish to allow an arbitrary choice of associated points. Thus we will certainly
introduce an error, depending on how farf (ξi) is from the “correct” choice of associ-
ated point. To control the error we need to make the pointsxi andxi−1 close together.
By a uniform approximation we mean that we shall specify the smallness bya single
small numberδ and require that the points be chosen so that, for eachi = 1,2,3, . . . ,n,

|xi −xi−1|< δ.
In Section3.5.8we specify this smallness in a more general way, by requiringthat the
points be chosen instead so that

|xi −xi−1|< δ(ξi)

using a different measure of smallness at each associated point. This is thepointwise
version.

Since each term in the sum can add in a small error we need also to restrict the
choice of sequence

a= x0,x1,x2, . . . ,xn−1,xn = b

so that it is not too large. One way to accomplish this is to require that the points are
chosen in the natural order:

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b.

A different way is to limit the size of the variation of the sequence of points by restrict-
ing the size of the sum

n

∑
i=1

|xi −xi−1| .

We do the former for Cauchy’s theorem and the latter for Robbins’s theorem.

3.5.4 Cauchy’s theorem

The earliest theorem of this type is due to Cauchy in 1820. Eighteenth century authors
would certainly have known and recognized this result. It itonly attributable to Cauchy
because he was the first to articulate what the notion of continuity should mean.
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Theorem 3.19 Let f be a bounded function that is defined and continuous at every
point of(a,b) with at most finitely many exceptions: Then, f is integrable on [a,b]
and moreover the integral may be uniformly approximated by Riemann sums: for
everyε > 0 there is aδ > 0 so that

n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

for which
xi −xi−1 < δ

with associated pointsξi ∈ [xi−1,xi ] chosen at any such point where f is defined.

In the special case wheref is defined and continuous at every point of the interval
[a,b] we get the original version of Cauchy.

Corollary 3.20 (Cauchy) Let f : [a,b] → R be a uniformly continuous function.
Then, f is integrable on[a,b] and moreover the integral may be uniformly approx-
imated by Riemann sums.

Exercise 274Prove Theorem3.19in the case when f is uniformly continuous on[a,b]
by using the error estimate in Exercise273. Answer

Exercise 275Prove Theorem3.19in the case when f is continuous on(a,b).
Answer

Exercise 276Complete the proof of Theorem3.19. Answer

Exercise 277Let f : [a,b]→ R be an integrable function on[a,b] and suppose, more-
over, the integral may be uniformly approximated by Riemannsums. Show that f would
have to be bounded. Answer

Exercise 278Show that the integral∫ 1

0
x2 dx= lim

n→∞

12+22+32+42+52+62+ · · ·+n2

n3 .

Answer

Exercise 279Show that the integral∫ 1

0
x2 dx= lim

r→1−

[

(1− r)+ r(r − r2)+ r2(r2− r3)+ r3(r3− r4)+ . . .
]

.

Answer
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Exercise 280Show that the integral
∫ 1

0 x5 dx can be exactly computed by the method
of Riemann sums provided one has the formula

15+25+35+45+55+65++ · · ·+N5 =
N6

6
+

N5

2
+

5N4

12
− N2

12
.

3.5.5 Riemann’s integral

By the middle of the nineteenth century Riemann, clearly inspired by Cauchy’s clar-
ification of integration theory, was teaching a more generalintegration theory to his
students. He took the observations of the preceding sectionand gave a definition of
an integral based on it. This is a standard and time-honored tradition in mathematics.
What an earlier mathematician proposes as a theorem, you will propose as a definition.
Thus Theorem3.19turned into this.

Definition 3.21 Let f be a function that is defined at every point of[a,b]. Then,
f is said to be Riemann integrable on[a,b] if it satisfies the following “uniform
integrability” criterion: there is a number I so that, for every ε > 0 there is a
δ > 0, with the property that

∣

∣

∣

∣

∣

I −
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

for which
xi −xi−1 < δ

with associated pointsξi ∈ [xi−1,xi ].

The numberI in the definition would then be written in integral notation as

I = (R)
∫ b

a
f (x)dx.

Most bounded functions (but not all) that are integrable in the calculus sense that we
are using are Riemann integrable and the values of the integrals agree. Thus it is safe
to write

(R)
∫ b

a
f (x)dx=

∫ b

a
f (x)dx

when we are sure that the functionf is integrable in both senses.

Confused? There are no unbounded functions that are Riemann integrable, although
many unbounded functions are integrable in the calculus sense. Some highly discon-
tinuous functions are Riemann integrable, but not integrable as we understand it.

So that is rather confusing. Should we incorporate Riemann’s ideas into our inte-
gration study or not? Mathematicians of the late nineteenthcentury did, but there was
some considerable difficulties that arose as a result. We findit best for our purposes to
leave the Riemann integral as an historical curiosity untilwe have developed the correct
integration theory on the real line.
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Neither the calculus integral nor the Riemann integral is the correct theory for all
purposes. When we return to the Riemann integral we can placeit within the appro-
priate theoretical framework. As a “teaching integral” thecalculus integral is arguably
more appropriate since it is easier to develop and does lead eventually to the correct
theory in any case.

Exercise 281Can you find a function that is Riemann integrable but not integrable in
the calculus sense taken in the text? Answer

3.5.6 Robbins’s theorem

This section introduces some basic ideas from integration theory. Most
students learn such ideas studying the Riemann integral. Here everything
remains in the context of the calculus integral.

There is another approach possible to Cauchy’s theorem. While Riemann took the
idea as a definition of a different kind of integration theory, we can find a generalization
of that theorem by refining the Riemann definition. For Cauchy’s theorem the points of
the subdivisiona= x0, x1, . . . ,xn = b were arranged in increasing order. In Robbins’s
theorem3 we drop the insistence that the points in the Riemann sum mustform an
increasing sequence. This allows us to characterize the calculus integral of uniformly
continuous functions entirely by a statement using Riemannsums.

Theorem 3.22 (Robbins)A real-valued function f is uniformly continuous on an
interval [a,b] if and only if it satisfies the following strong uniform integrability
criterion: there is a number I so that, for everyε > 0 and C> 0, there is aδ > 0
with the property that

∣

∣

∣

∣

∣

I −
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn andξ1,ξ2, . . . ,ξn from [a,b] satisfying
n

∑
i=1

|xi −xi−1| ≤C

where a= x0, b= xn, 0< |xi − xi−1| < δ and eachξi belongs to the interval with
endpoints xi and xi−1 for i = 1,2, . . . ,n. In that case, necessarily,

I =
∫ b

a
f (x)dx.

This theorem gives us some insight into integration theory.Instead of basing the
calculus integral on the concept of an antiderivative, it could instead be obtained from
a definition of an integral based on the concept of Riemann sums. This gives us two
equivalent formulations of the calculus integral of uniformly continuous functions: one
uses an antiderivative and one uses Riemann sums.

3Only one direction in the theorem is due to Robbins and a proofcan be found in Herbert E. Robbins,
Note on the Riemann integral, American Math. Monthly, Vol. 50, No. 10 (Dec., 1943), 617–618.. The
other direction is proved in B. S. Thomson,On Riemann sums, Real Analysis Exchange 37, no. 1 (2010).
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Exercise 282Prove the easy direction in Robbins’s theorem, i.e, assume that f is uni-
formly continuous and prove that the statement holds with

I =
∫ b

a
f (x)dx.

Answer

Exercise 283Show that the number I that appears in the statement of Theorem 3.22
is unique, i.e., that there cannot be two different numbers Iand I′ possessing the same
property. Answer

Exercise 284Show that a function satisfies the hypotheses of Robbins theorem, Theo-
rem3.22, on an interval[a,b] if and only if it satisfies the following equivalent strong
integrability criterion: for everyε > 0 and C> 0, there is aδ > 0 with the property that

∣

∣

∣

∣

∣

m

∑
j=1

f (ξ′j)(x
′
j −x′j−1)−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points

x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn and x′0,x
′
1, . . . ,x

′
m and ξ′1,ξ

′
2, . . . ,ξ

′
m

from [a,b] satisfying
n

∑
i=1

|xi −xi−1| ≤C and
m

∑
j=1

|x′j −x′j−1| ≤C

where a= x0 = x′0, b= xn = x′m, 0< |xi −xi−1|< δ, 0< |x′j −x′j−1|< δ, eachξi belongs
to the interval with endpoints xi and xi−1 for i = 1,2, . . . ,n, and eachξ′j belongs to the
interval with endpoints x′j and x′j−1 for j = 1,2, . . . ,m, Answer

Exercise 285Show that, if a function satisfies the hypotheses of Robbins theorem (The-
orem3.22) on an interval[a,b] then it satisfies this same strong uniform integrability
criterion on every subinterval[c,d] ⊂ [a,b]: there is a number I(c,d) so that, for every
ε > 0 and C> 0, there is aδ > 0 with the property that

∣

∣

∣

∣

∣

I(c,d)−
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn andξ1,ξ2, . . . ,ξn from [c,d] satisfying
n

∑
i=1

|xi −xi−1| ≤C

where c= x0, d = xn, 0 < |xi − xi−1| < δ and eachξi belongs to the interval with
endpoints xi and xi−1 for i = 1,2, . . . ,n. Answer

Exercise 286Further to Exercise285show that

I(x,z) = I(x,y)+ I(y,z)

for all a ≤ x< y< z≤ b.

Exercise 287Prove the harder direction in Robbins’s theorem, i.e, assume that f satis-
fies the strong “integrability” criterion and prove that it must be uniformly continuous
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and that

I =
∫ b

a
f (x)dx.

Answer

3.5.7 Theorem of G. A. Bliss

Students of the calculus and physics are often required to “set up” integrals by which is
meant interpreting a problem as an integral. Basically thisamounts to interpreting the
problem as a limit of Riemann sums∫ b

a
f (x)dx= lim

n

∑
i=1

f (ξi)(xi −xi−1).

In this way the student shows that the integral captures all the computations of the
problem. In simple cases this is easy enough, but complications can arise.

For example iff andg are two continuous functions, sometimes the correct set up
would involve a sum of the form

lim
n

∑
i=1

f (ξi)g(ηi)(xi −xi−1)

and not the more convenient

lim
n

∑
i=1

f (ξi)g(ξi)(xi −xi−1).

Here, rather than a single pointξi associated with the interval[xi ,xi−1], two different
pointsξi andηi must be used.

Nineteenth century students had been taught a rather murky method for handling
this case known as the Duhamel principle; it involved an argument using infinitesimals
that, at bottom, was simply manipulations of Riemann sums. Bliss4 felt that this should
be clarified and so produced an elementary theorem of which Theorem3.23is a special
case. It is just a minor adjustment to our Theorem3.19.

Theorem 3.23 (Bliss)Let f and g be bounded functions that are defined and con-
tinuous at every point of(a,b) with at most finitely many exceptions: Then, f g is
integrable on[a,b] and moreover the integral may be uniformly approximated by
Riemann sums in this alternative sense: for everyε > 0 there is aδ > 0 so that

∣

∣

∣

∣

∣

∫ b

a
f (x)g(x)dx−

n

∑
i=1

f (ξi)g(ξ∗i )(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

are given with each
0< xi −xi−1 < δ

and whereξi andξ∗i are any points in[xi−1,xi ] where f g is defined.

Exercise 288Prove the Bliss theorem.
Answer

4G. A. Bliss,A substitute for Duhamel’s theorem, Annals of Mathematics, Ser. 2, Vol. 16, (1914).
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Exercise 289Prove this further variant of Theorem3.19.

Theorem 3.24 (Bliss)Let f1, f2, . . . , fp bounded functions that are defined and
continuous at every point of(a,b) with at most finitely many exceptions: Then,
the product f1 f2 f3 . . . fp is integrable on[a,b] and moreover the integral may be
uniformly approximated by Riemann sums in this alternativesense: for everyε > 0
there is aδ > 0 so that

∣

∣

∣

∣

∫ b

a
f1(x) f2(x) f3(x) . . . fp(x)dx

−
n

∑
i=1

f1(ξi) f2
(

ξ(2)i

)

f3
(

ξ(3)i

)

. . . fp

(

ξ(p)i

)

(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever{([xi ,xi−1],ξi) : i = 1,2, . . .n} is a partition of[a,b] with each

xi −xi−1 < δ

and ξi,ξ
(2)
i ,ξ(3)i , . . . ,ξ(p)i ∈ [xi−1,xi ] with these being points in(a,b) where the

functions are defined.
Answer

Exercise 290Prove one more variant of Theorem3.19.

Theorem 3.25Suppose that the function H(s, t) satisfies

|H(s, t)| ≤ M(|s|+ |t|)
for some real number M and all real numbers s and t. Let f and g bebounded func-
tions that are defined and continuous at every point of(a,b) with at most finitely
many exceptions: Then, H( f (x),g(x)) is integrable on[a,b] and moreover the in-
tegral may be uniformly approximated by Riemann sums in thissense: for every
ε > 0 there is aδ > 0 so that

∣

∣

∣

∣

∣

∫ b

a
H( f (x),g(x))dx−

n

∑
i=1

H ( f (ξi) ,g(ξ∗i )) (xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever{([xi ,xi−1],ξi) : i = 1,2, . . .n} is a partition of[a,b],

xi −xi−1 < δ
and ξi , ξ∗i ,∈ [xi−1,xi ] with both ξi and ξ∗i points in (a,b) where f and g are
defined.

Answer

3.5.8 Pointwise approximation by Riemann sums

For unbounded, but integrable, functions there cannot be auniform approximation by
Riemann sums. Even for bounded functions there will be no uniform approximation by
Riemann sums unless the function is almost everywhere continuous, which is rather a
strong condition.

If we are permitted to adjust the smallness of the partition in a pointwise manner,
however, then such an approximation by Riemann sums is available. This is less con-
venient, of course, since for eachε we need find not merely a single positiveδ but a
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positiveδ(x) at each pointx of the interval. While this appears, at the outset, to be a
deep property of calculus integrals it is an entirely trivial property.

Much more remarkable is that Henstock,5 who first noted the property, was able
also to recognize that all Lebesgue integrable functions have the same property and that
this property characterized the much more general integralof Denjoy and Perron. Thus
we will see this property again, but next time it will appear as a condition that is both
necessary and sufficient.

Theorem 3.26 (Henstock property) Let f : [a,b] → R be defined and integrable
on [a,b]. Then, for everyε > 0 and for each point x in[a,b] there is aδ(x) > 0 so
that

n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever whenever points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

are given with each

xi −xi−1 < δ(ξi) and ξi ∈ [xi−1,xi ].

Note that our statement requires that the functionf being integrated is defined at all
points of the interval[a,b]. This is not really an inconvenience since we could simply
set f (x) = 0 (or any other value) at points where the given functionf is not defined.
The resulting integral is indifferent to changing the valueof a function at finitely many
points.

Note also that, if there areno such partitions having the property of the statements
in Theorem3.26, then the statement is certainly valid, but has no content. This is not the
case, i.e., no matter what choice of a functionδ(x) occurs in this situation there must
be at least one partition having this property. This is precisely the Cousin covering
argument.

Exercise 291 In the statement of the theorem show that if the first inequality
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

< ε

holds then the second inequality
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

must follow by simple arithmetic. Answer

5Ralph Henstock (1923-2007) first worked with this concept inthe 1950s while studying nonabsolute
integration theory. The characterization of the Denjoy-Perron integral as a pointwise limit of Riemann
sums was at the same time discovered by the Czech mathematician Jaroslav Kurweil and today that integral
is called the Henstock-Kurzweil integral by most users.
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Exercise 292Prove Theorem3.26 in the case when f is the exact derivative of an
everywhere differentiable function F. Answer

Exercise 293Prove Theorem3.19in the case where F is an everywhere differentiable
function except at one point c inside(a,b) at which F is continuous. Answer

Exercise 294Complete the proof of Theorem3.19. Answer

3.5.9 Characterization of derivatives

This section continues some basic ideas from integration theory, continued
from Section3.5.6. Most students learn such ideas studying the Riemann
integral. Here everything remains, as before, in the context of the calculus
integral.

It was an old problem of W. H. Young to determine, if possible,necessary and
sufficient conditions on a functionf in order that it should be the derivative of some
other function. Elementary students know only one sufficient condition (thatf might be
continuous) and perhaps one necessary condition (thatf should have the intermediate
value property).

We can use a pointwise version of Robbins’s theorem to give ananswer to this
problem in terms of Riemann sums. We begin with the easy direction.

Theorem 3.27 Let F : [c,d] → R be a differentiable function and let a, b∈ [c,d],
ε > 0, and C> 0 be given. Then there is a positive functionδ : [c,d] → R

+ with
the property that

∣

∣

∣

∣

∣

∫ b

a
F ′(x)dx−

n

∑
i=1

F ′(ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] with these four
properties:

1. a= x0 and b= xn.

2. 0< |xi −xi−1|< δ(ξi) for all i = 1,2, . . . ,n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i = 1,2, . . . ,n.

4. ∑n
i=1 |xi −xi−1| ≤C.

Characterization of derivatives What properties should a function have in order that
we would know it to be the derivative of some other function? One answer is that it
must have a strong integrability property expressed in terms of Riemann sums.
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Theorem 3.28 A function f : [a,b] → R is an exact derivative if and only if it has
the following strong pointwise integrability property: there is a number I so that,
for any choice ofε> 0and C> 0, there must exist a positive functionδ : [a,b]→R

+

with the property that
∣

∣

∣

∣

∣

I −
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn from [c,d] with these four
properties:

1. a= x0 and b= xn.

2. 0< |xi −xi−1|< δ(ξi) for all i = 1,2, . . . ,n.

3. ξi belongs to the interval with endpoints xi and xi−1 for i = 1,2, . . . ,n.

4. ∑n
i=1 |xi −xi−1| ≤C.

Necessarily then,

I =
∫ b

a
f (x)dx.

This theorem too gives us some insight into integration theory. Instead of basing
the calculus integral on the concept of an antiderivative itcould instead be based on a
definition of an integral centered on the concept of Riemann sums. This gives us two
equivalent formulations of the calculus integral of derivative functions: one uses an
antiderivative and one uses Riemann sums. The latter has some theoretical advantages
since it is hard to examine a function and conclude that it is aderivative without actually
finding the antiderivative itself.

Exercise 295Prove Theorem3.27. Answer

Exercise 296Show that the number I that appears in the statement of Theorem 3.28
is unique, i.e., that there cannot be two different numbers Iand I′ possessing the same
property.

Exercise 297Show that a function satisfies the hypotheses of Theorem3.28on an inter-
val [a,b] if and only if it satisfies the following equivalent strong integrability criterion:
for everyε > 0 and C> 0, there is a positive functionδ on [a,b] with the property that

∣

∣

∣

∣

∣

m

∑
j=1

f (ξ′j)(x
′
j −x′j−1)−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points

x0,x1, . . . ,xn and ξ1,ξ2, . . . ,ξn and x′0,x
′
1, . . . ,x

′
m and ξ′1,ξ

′
2, . . . ,ξ

′
m

from [a,b] satisfying a= x0 = x′0, b= xn = x′m, and
n

∑
i=1

|xi −xi−1| ≤C and
m

∑
j=1

|x′j −x′j−1| ≤C
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where a= x0 = x′0, b= xn = x′n, 0< |xi −xi−1|< δ(ξi), 0< |x′j −x′j−1|< δ(ξ′j), eachξi

belongs to the interval with endpoints xi and xi−1 for i = 1,2, . . . ,n, and eachξ′j belongs
to the interval with endpoints x′j and x′j−1 for j = 1,2, . . . ,m, Answer

Exercise 298Show that, if a function satisfies the hypotheses of theorem3.28 on an
interval [a,b], then it satisfies this same strong “integrability” criterion on every subin-
terval [c,d] ⊂ [a,b]: there is a number I(c,d) so that, for everyε > 0 and C> 0, there
is a positive functionδ on [a,b] with the property that

∣

∣

∣

∣

∣

I(c,d)−
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

for any choice of points x0,x1, . . . ,xn andξ1,ξ2, . . . ,ξn from [c,d] satisfying
n

∑
i=1

|xi −xi−1| ≤C

where c= x0, d = xn, 0< |xi − xi−1| < δ(ξi) and eachξi belongs to the interval with
endpoints xi and xi−1 for i = 1,2, . . . ,n. Answer

Exercise 299Further to Exercise298show that

I(x,z) = I(x,y)+ I(y,z)

for all a ≤ x< y,z≤ b.

Exercise 300Prove the harder direction in Theorem3.28. Answer

3.5.10 Unstraddled Riemann sums

Perhaps the reader can tolerate yet one more discussion of Riemann sums, albeit one of
marginal interest. When we have considered a Riemann sum

n

∑
i=1

f (ξi)(xi −xi−1)

to this point, we have always insisted that the associated points ξi should be selected
between the corresponding pointsxi−1 andxi . We can relax this. We requireξi to be
close to the two pointsxi−1 andxi, but we do not require that it appear between them.

E. J. McShane was likely the first to exploit this idea to find a new characterization
of the Lebesgue integral in terms of Riemann sums (i.e., unstraddled sums). Here we
simply show that the integral of continuous functions can beobtained by such sums.
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Theorem 3.29 Let f : [a,b] → R be a uniformly continuous function. Then the
integral may be uniformly approximated by unstraddled Riemann sums: for every
ε > 0 there is aδ > 0 so that

n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever points are given

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

with associated points satisfying

ξi −δ < xi−1 < xi < ξi +δ
for each i= 1, 2, . . . , n.

The proof is sufficiently similar to that for Theorem3.19that the reader need not
trouble over it. The only moral here is that one should remainalert to other formulations
of technical ideas and be prepared to exploit them (as did McShane) in other contexts.

3.6 Absolute integrability

If a function f is integrable, does it necessarily follow that the absolutevalue of that
function, | f |, is also integrable? This is important in many applications. Since a solu-
tion to this problem rests on the concept of the total variation of a function, we will give
that definition below in Section3.6.1.

Definition 3.30 (absolutely integrable) A function f isabsolutely integrableon
an interval[a,b] if both f and| f | are integrable there.

Exercise 301Show that, if f is absolutely integrable on an interval[a,b] then
∣

∣

∣

∣

∫ b

a
f (x)dx

∣

∣

∣

∣

≤
∫ b

a
| f (x)| dx.

Answer

Exercise 302 (preview of bounded variation)Show that if a function f is absolutely
integrable on a closed, bounded interval[a,b] and F is its indefinite integral then, for
all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b,
n

∑
i=1

|F(xi)−F(xi−1)| ≤
∫ b

a
| f (x)|dx.

Answer

Exercise 303 (calculus integral is a nonabsolute integral)An integration method is
an absolute integration methodif whenever a function f is integrable on an interval
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[a,b] then the absolute value| f | is also integrable there. Show that the calculus integral
is a nonabsoluteintegration method6.

Hint: Consider
d
dx

xcos
(π

x

)

.

Answer

Exercise 304Repeat Exercise303but using

d
dx

x2 sin

(

1
x2

)

.

Show that this derivative exists ateverypoint. Thus there is an exact derivative which
is integrable on every interval but not absolutely integrable. Answer

Exercise 305Let f be continuous at every point of(a,b) with at most finitely many
exceptions and suppose that f is bounded. Show that f is absolutely integrable on
[a,b]. Answer

3.6.1 Functions of bounded variation

The clue to the property that expresses absolute integrability is in Exercise302. The no-
tion is due to Jordan and the language is that of variation, meaning here a measurement
of how much the function is fluctuating.

Definition 3.31 (total variation) A function F: [a,b]→R is said to be ofbounded
variationif there is a number M so that

n

∑
i=1

|F(xi)−F(xi−1)| ≤ M

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

The least such number M is called thetotal variationof F on [a,b] and is written
V(F, [a,b]). If F is not of bounded variation then we set V(F, [a,b]) = ∞.

Definition 3.32 (total variation function) let F : [a,b] → R be a function of
bounded variation. Then the function

T(x) =V(F, [a,x]) (a< x≤ b), T(a) = 0

is called thetotal variation functionfor F on [a,b].

Our main theorem in this section establishes the propertiesof the total variation
function and gives, at least for continuous functions, the connection this concept has
with absolute integrability.

6Both the Riemann integral and the Lebesgue integral are absolute integration methods.
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Theorem 3.33 (Properties of the total variation) Let F : [a,b]→R be a function
of bounded variation and let T(x) =V(F, [a,x]) be its total variation. Then

1. for all a≤ c< d ≤ b,

|F(d)−F(c)| ≤V(F, [c,d]) = T(d)−T(c).

2. T is monotonic, nondecreasing on[a,b].

3. If F is continuous at a point a< x0 < b then so too is T .

4. If F is uniformly continuous on[a,b] then so too is T .

5. If F is continuously differentiable at a point a< x0 < b then so too is T and,
moreover T′(x0) = |F ′(x0)|.

6. If F is uniformly continuous on[a,b] and continuously differentiable at all
but finitely many points in(a,b) then F′ is absolutely integrable and

F(x)−F(a) =
∫ x

a
F ′(t)dt and T(x) =

∫ x

a
|F ′(t)|dt.

As we see here in assertion (6.) of the theorem and will discover further in the
exercises, the two notions of total variation and absolute integrability are closely inter-
related. The notion of total variation plays such a significant role in the study of real
functions in general and in integration theory in particular that it is worthwhile spend-
ing some considerable time on it, even at an elementary calculus level. Since the ideas
are closely related to other ideas which we are studying thistopic should seem a natu-
ral development of the theory. Indeed we will find that our discussion of arc length in
Section3.10.3will require a use of this same language.

Exercise 306Show directly from the definition that if F: [a,b] → R is a function of
bounded variation then F is a bounded function on[a,b]. Answer

Exercise 307Compute the total variation for a function F that is monotonic on [a,b].
Answer

Exercise 308Compute the total variation function for the function F(x) = sinx on
[−π,π]. Answer

Exercise 309Let F(x) have the value zero everywhere except at the point x= 0 where
F(0) = 1. Choose points

−1= x0 < x1 < x2 < · · ·< xn−1 < xn = 1.

What are all the possible values of
n

∑
i=1

|F(xi)−F(xi−1)|?

What is V(F, [−1,1])? Answer

Exercise 310Give an example of a function F defined everywhere and with theprop-
erty that V(F, [a,b]) = ∞ for every interval[a,b].

Answer
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Exercise 311Show that if F: [a,b] → R is Lipschitz then F is a function of bounded
variation. Is the converse true? Answer

Exercise 312Show that V(F +G, [a,b])≤V(F, [a,b])+V(G, [a,b]). Answer

Exercise 313Does

V(F +G, [a,b]) =V(F, [a,b])+V(G, [a,b]).

Answer

Exercise 314Prove Theorem3.33. Answer

Exercise 315 (Jordan decomposition)Show that a function F has bounded variation
on an interval[a,b] if and only if it can expressed as the difference of two monotonic,
nondecreasing functions. Answer

Exercise 316Show that the function F(x) = xcos
(π

x

)

, F(0) = 0 is continuous every-
where but does not have bounded variation on the interval[0,1], i.e., that V(F, [0,1]) =
∞. Answer

Exercise 317 (derivative of the variation) Suppose that F(x) = xr cosx−1 for x > 0,
F(x) = −(−x)r cosx−1 for x< 0, and finally F(0) = 0. Show that if r> 1 then F has
bounded variation on[−1,1] and that F′(0) = 0. Let T be the total variation function
of F. Show that T′(0) = 0 if r > 2, that T′(0) = 2/π if r = 2, and that T′(0) = ∞ if
1< r < 2.

Note: In particular, at points where F is differentiable, the total variation T need not
be. Theorem3.33said, in contrast, that at points where F is continuously differentiable,
the total variation T must also be continuously differentiable. Answer

Exercise 318 (uniformly approximating the variation) Suppose that F is uniformly
continuous on[a,b]. Show that for any v<V(F, [a,b] there is aδ > 0 so that so that

v<
n

∑
i=1

|F(xi)−F(xi−1)| ≤V(F, [a,b]

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

provided that each xi −xi−1 < δ. Is it possible to drop or relax the assumption that F is
continuous?

Note: This means the variation of acontinuousfunction can be computed much like
our Riemann sums approximation to the integral. Answer

Exercise 319Let Fk : [a,b]→R (k= 1,2,3, . . . ) be a sequence of functions of bounded
variation, suppose that

F(x) = lim
k→∞

Fk(x)
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for every k= 1,2,3, . . . and suppose that there is a number M so that

V(Fk, [a,b]) ≤ M. k= 1,2,3, . . . .

Show that F must also have bounded variation.
Does this prove that every limit of a sequence of functions ofbounded variation

must also have bounded variation?

Exercise 320 (locally of bounded variation)Let F : R → R be a function. We say
that F is locally of bounded variationat a point x if there is some positiveδ so that
V(F, [x−δ,x+δ])< ∞. Show that F has bounded variation on every compact interval
[a,b] if and only if F is locally of bounded variation at every pointx∈ R. Answer

Exercise 321 (comparison test for variations)Suppose that F, G: [a,b]→R and that
F is uniformly continuous on[a,b].

1. If |F ′(x)| ≤ |G′(x)| for mostly every point x in(a,b) show that

|F(b)−F(a)| ≤V(F, [a,b]) ≤V(G, [a,b]).

2. If F′(x)≤ |G′(x)| for mostly every point x in(a,b) show that

F(b)−F(a) ≤V(G, [a,b]).

(If you are feeling more ambitious replace “mostly everywhere” with “nearly every-
where.”)

Answer

Exercise 322Here is a stronger version of bounded variation for a function F : [a,b]→
R. For every C> 0 there is a number M so that

n

∑
i=1

|F(xi)−F(xi−1)| ≤ M

for all choices of points
a= x0,x1,x2, . . . ,xn−1,xn = b

for which
n

∑
i=1

|xi −xi−1| ≤C.

Show that this property is equivalent to the statement that Fis Lipschitz on[a,b].
Answer

3.6.2 Indefinite integrals and bounded variation

In the preceding section we spent some time mastering the important concept of total
variation. We now see that it precisely describes the absolute integrability of a func-
tion. Indefinite integrals of nonabsolutely integrable functions will not be of bounded
variation; indefinite integrals of absolutely integrable functions must be of bounded
variation.
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Theorem 3.34 Suppose that a function f: (a,b) → R is absolutely integrable on
a closed, bounded interval[a,b]. Then its indefinite integral F must be a function
of bounded variation there and, moreover,

V(F, [a,b]) =
∫ b

a
| f (x)|dx.

This theorem states only a necessary condition for absoluteintegrability. If we add
in a continuity assumption we can get a complete picture of what happens. Continuity
is needed for the calculus integral, but is not needed for more advanced theories of
integration.

Theorem 3.35 Let F : [a,b]→R be a uniformly continuous function that is contin-
uously differentiable at every point in a bounded, open interval (a,b) with possibly
finitely many exceptions. Then F′ is integrable on[a,b] and will be, moreover, ab-
solutely integrable on[a,b] if and only if F has bounded variation on that interval.

Exercise 323Prove Theorem3.34. Answer

Exercise 324Prove Theorem3.35. Answer

3.7 Sequences and series of integrals

Throughout the 18th century much progress in applications of the calculus was made
through quite liberal use of the formulas

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a

{

lim
n→∞

fn(x)
}

dx

and
∞

∑
k=1

∫ b

a
gk(x)dx=

∫ b

a

{

∞

∑
k=1

gk(x)

}

dx.

These are vitally important tools but they require careful application and justification.
That justification did not come until the middle of the 19th century.

We introduce two definitions of convergence allowing us to interpret what the limit
and sum of a sequence,

lim
n→∞

fn(x) and
∞

∑
k=1

gk(x)

should mean. We will find that uniform convergence allows an easy justification for the
basic formulas above. Pointwise convergence is equally important but more delicate.
At the level of a calculus course we will find that uniform convergence is the concept
we shall use most frequently.

3.7.1 The counterexamples

We begin by asking, naively, whether there is any difficulty in taking limits in the
calculus. Suppose thatf1, f2, f3, . . . is a sequence of functions defined on an open
interval I = (a,b). We suppose that this sequenceconverges pointwiseto a function f ,
i.e., that for eachx∈ I the sequence of numbers{ fn(x)} converges to the valuef (x).
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1


1
1


Figure 3.1: Graphs ofxn on [0,1] for n= 1, 3, 5, 7, 9, and 50.

Is it true that

1. If fn is bounded onI for all n, then is f also bounded onI?

2. If fn is continuous onI for all n, then is f also continuous onI?

3. If fn is uniformly continuous onI for all n, then is f also uniformly continuous
on I?

4. If fn is differentiable onI for all n, then is f also differentiable onI and, if so,
does

f ′ = lim
n→∞

f ′n?

5. If fn is integrable on a subinterval[c,d] of I for all n, then is f also integrable on
[c,d] and, if so, does

lim
n→∞

∫ d

c
fn(x)dx=

∫ d

c

{

lim
n→∞

fn(x)
}

dx?

These five questions havenegativeanswers in general, as the examples that follow
show.

Exercise 325 (An unbounded limit of bounded functions)On the interval(0,∞) and
for each integer n let fn(x) = 1/x for x> 1/n and fn(x) = n for each0< x≤ 1/n. Show
that each function fn is both continuous and bounded on(0,∞). Is the limit function
f (x) = limn→∞ fn(x) also continuous ? Is the limit function bounded? Answer

Exercise 326 (A discontinuous limit of continuous functions) For each integer n and
−1< x ≤ 1, let fn(x) = xn. For x> 1 let fn(x) = 1. Show that each fn is a continu-
ous function on(−1,∞) and that the sequence converges pointwise to a function f on
(−1,∞) that has a single point of discontinuity. Answer

Exercise 327 (A limit of uniformly continuous functions) Show that the previous ex-
ercise supplies a pointwise convergence sequence of uniformly continuous functions on
the interval[0,1] that does not converge to a uniformly continuous function.
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Figure 3.2: Graph offn(x) on [0,1] in Exercise329.

Exercise 328 (The derivative of the limit is not the limit of the derivative) Let fn(x)=
xn/n for −1< x≤ 1 and let fn(x) = x− (n−1)/n for x> 1. Show that each fn is dif-
ferentiable at every point of the interval(−1,∞) but that the limit function has a point
of nondifferentiability. Answer

Exercise 329 (The integral of the limit is not the limit of theintegrals) In this exam-
ple we consider a sequence of continuous functions, each of which has the same inte-
gral over the interval. For each n let fn be defined on[0,1] as follows: fn(0) = 0,
fn(1/(2n)) = 2n, fn(1/n) = 0, fn is linear on [0,1/(2n)] and on [1/(2n),1/n], and
fn = 0 on [1/n,1]. (See Figure3.2.)

It is easy to verify that fn → 0 on [0,1]. Now, for each n,∫ 1

0
fnx= 1.

But ∫ 1

0
( lim
n→∞

n fn(x))dx=
∫ 1

0
0dx= 0.

Thus

lim
n→∞

n
∫ 1

0
fnx 6=

∫ 1

0
lim
n→∞

n fn(x)dx

so that the limit of the integrals is not the integral of the limit.

Exercise 330 (interchange of limit operations)To prove the (false) theorem that the
pointwise limit of a sequence of continuous functions is continuous, why cannot we
simply write

lim
x→x0

(

lim
n→∞

fn(x)
)

= lim
n→∞

fn(x0) = lim
n→∞

(

lim
x→x0

fn(x)

)

and deduce that
lim
x→x0

f (x) = f (x0)?

This assumes fn is continuous at x0 and “proves” that f is continuous at x0. that
Answer
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Exercise 331 Is there anything wrong with this “proof” that a limit of bounded func-
tions is bounded? If each fn is bounded on an interval I then there must be, by definition,
a number M so that| fn(x)| ≤ M for all x in I. By properties of sequence limits

| f (x)| = | lim
n→∞

fn(x)| ≤ M

also, so f is bounded. Answer

Exercise 332 (interchange of limit operations)Let

Smn=

{

0, if m≤ n
1, if m> n.

Viewed as a matrix,

[Smn] =











0 0 0 · · ·
1 0 0 · · ·
1 1 0 · · ·
...

...
...

.. .











where we are placing the entry Smn in the mth row and nth column. Show that

lim
n→∞

(

lim
m→∞

Smn

)

6= lim
m→∞

(

lim
n→∞

Smn

)

.

Answer

Exercise 333Examine the pointwise limiting behavior of the sequence of functions

fn(x) =
xn

1+xn .

Exercise 334Show that the natural logarithm function can be expressed asthe point-
wise limit of a sequence of “simpler” functions,

logx= lim
n→∞

n
(

n
√

x−1
)

for every point in the interval. If the answer to our initial five questions for this par-
ticular limit is affirmative, what can you deduce about the continuity of the logarithm
function? What would be its derivative? What would be

∫ 2
1 logxdx?

Exercise 335Let x1,x2, . . . be a sequence that contains every rational number, let

fn(x) =

{

1, if x ∈ {x1, . . . ,xn}
0, otherwise,

and f(x) =

{

1, if x is rational
0, otherwise.

1. Show that fn → f pointwise on any interval.

2. Show that fn has only finitely many points of discontinuity while f has no points
of continuity.

3. Show that each fn has a calculus integral on any interval[c,d] while f has a
calculus integral on no interval.

4. Show that, for any interval[c,d],

lim
n→∞

∫ d

c
fn(x)dx 6=

∫ d

c

{

lim
n→∞

fn(x)
}

dx.
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Figure 3.3: Construction in Exercise338.

Answer

Exercise 336Let fn(x) = sinnx/
√

n. Show thatlimn→∞ n fn = 0 but limn→∞ n f ′n(0) =
∞.

Exercise 337Let fn → f pointwise at every point in the interval[a,b]. We have seen
that even if each fn is continuous it does not follow that f is continuous. Which of the
following statements are true?

1. If each fn is increasing on[a,b], then so is f .

2. If each fn is nondecreasing on[a,b], then so is f .

3. If each fn is bounded on[a,b], then so is f .

4. If each fn is everywhere discontinuous on[a,b], then so is f .

5. If each fn is constant on[a,b], then so is f .

6. If each fn is positive on[a,b], then so is f .

7. If each fn is linear on[a,b], then so is f .

8. If each fn is convex on[a,b], then so is f .
Answer

Exercise 338A careless student7 once argued as follows: “It seems to me that one can
construct a curve without a tangent in a very elementary way.We divide the diagonal of
a square into n equal parts and construct on each subdivisionas base a right isosceles
triangle. In this way we get a kind of delicate little saw. NowI put n= ∞. The saw
becomes a continuous curve that is infinitesimally different from the diagonal. But it
is perfectly clear that its tangent is alternately parallelnow to the x-axis, now to the
y-axis.” What is the error? (Figure3.3 illustrates the construction.) Answer

7In this case the “careless student” was the great Russian analyst N. N. Luzin (1883–1950), who
recounted in a letter [reproduced inAmer. Math. Monthly, 107, (2000), pp. 64–82] how he offered this
argument to his professor after a lecture on the Weierstrasscontinuous nowhere differentiable function.
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Exercise 339Consider again the sequence{ fn} of functions fn(x) = xn on the interval
(0,1). We saw that fn → 0 pointwise on(0,1), and we proved this by establishing that,
for every fixed x0 ∈ (0,1) andε > 0,

|x0|n < ε if and only if n> logε/ logx0.

Is it possible to find an integer N so that, for all x∈ (0,1),

|x|n < ε if f n > N?

Discuss. Answer

3.7.2 Uniform convergence

The most immediate of the conditions which allows an interchange of limits in the
calculus is the notion of uniform convergence. This is a verymuch stronger condition
than pointwise convergence.

Definition 3.36 Let { fn} be a sequence of functions defined on an interval I. We
say that{ fn} converges uniformlyto a function f on I if, for everyε > 0, there
exists an integer N such that

| fn(x)− f (x)| < ε for all n ≥ N and all x∈ I .

Exercise 340Show that the sequence of functions fn(x) = xn converges uniformly on
any interval[0,η] provided that0< η < 1. Answer

Exercise 341Using this definition of the Cauchy Criterion

Definition 3.37 (Cauchy Criterion)Let{ fn} be a sequence of functions defined on
an interval set I. The sequence is said to beuniformly Cauchyon I if for everyε> 0
there exists an integer N such that if n≥ N and m≥ N, then| fm(x)− fn(x)|< ε for
all x ∈ I.

prove the following theorem:

Theorem 3.38Let { fn} be a sequence of functions defined on an interval I. Then
there exists a function f defined on the interval I such that the sequence uniformly
on I if and only if{ fn} is uniformly Cauchy on I.

Answer

Exercise 342 In Exercise340we showed that the sequence fn(x) = xn converges uni-
formly on any interval[0,η], for 0 < η < 1. Prove this again, but using the Cauchy
criterion. Answer

Exercise 343 (Cauchy criterion for series)The Cauchy criterion can be expressed for
uniformly convergent series too. We say that a series∑∞

k=1 gk convergesuniformly to
the function f on an interval I if the sequence of partial sums{Sn} where

Sn(x) =
n

∑
k=1

gk(x)

converges uniformly to f on I. Prove this theorem:
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Theorem 3.39Let{gk} be a sequence of functions defined on an interval I. Then
the series∑∞

k=1 fk converges uniformly to some function f on the interval I if and
only if for everyε > 0 there is an integer N so that

∣

∣

∣

∣

∣

n

∑
j=m

f j(x)

∣

∣

∣

∣

∣

< ε

for all n ≥ m≥ N and all x∈ I.
Answer

Exercise 344Show that the series

1+x+x2+x3+x4+ . . .

converges pointwise on[0,1), converges uniformly on any interval[0,η] for 0< η < 1,
but that the series does not converge uniformly on[0,1). Answer

Exercise 345 (WeierstrassM-Test) Prove the following theorem, which is usually known
as the Weierstrass M-test for uniform convergence of series.

Theorem 3.40 (M-Test) Let{ fk} be a sequence of functions defined on an interval
I and let{Mk} be a sequence of positive constants. If

∞

∑
k=1

Mk < ∞ and | fk(x)| ≤ Mk for each x∈ I and k= 0,1,2, . . . ,

then the series∑∞
k=1 fk converges uniformly on the interval I.

Answer

Exercise 346Consider again the geometric series1+ x+ x2 + . . . (as we did in Ex-
ercise344). Use the Weierstrass M-test to prove uniform convergence on the interval
[−a,a], for any0< a< 1. Answer

Exercise 347Use the Weierstrass M-test to investigate the uniform convergence of the
series

∞

∑
k=1

sinkθ
kp

on an interval for values of p> 0. Answer

Exercise 348 (Abel’s Test for Uniform Convergence)Prove Abel’s test for uniform
convergence:

Theorem 3.41 (Abel)Let {ak} and{bk} be sequences of functions on an interval
I. Suppose that there is a number M so that

−M ≤ sN(x) =
N

∑
k=1

ak(x) ≤ M

for all x ∈ I and every integer N. Suppose that the sequence of functions{bk} → 0
converges monotonically to zero at each point and that this convergence is uniform
on I. Then the series∑∞

k=1ak(x)bk(x) converges uniformly on I.
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Answer

Exercise 349Apply Theorem3.41, to the following series that often arises in Fourier
analysis:

∞

∑
k=1

sinkθ
k

.

Answer

Exercise 350Examine the uniform limiting behavior of the sequence of functions

fn(x) =
xn

1+xn .

On what sets can you determine uniform convergence?

Exercise 351Examine the uniform limiting behavior of the sequence of functions

fn(x) = x2e−nx.

On what sets can you determine uniform convergence? On what sets can you determine
uniform convergence for the sequence of functions n2 fn(x)?

Exercise 352Prove that if{ fn} and {gn} both converge uniformly on an interval I,
then so too does the sequence{ fn+gn}.

Exercise 353Prove or disprove that if{ fn} and{gn} both converge uniformly on an
interval I, then so too does the sequence{ fngn}.

Exercise 354Prove or disprove that if f is a continuous function on(−∞,∞), then

f (x+1/n)→ f (x)

uniformly on(−∞,∞). (What extra condition, stronger than continuity, would work if
not?)

Exercise 355Prove that fn → f converges uniformly on an interval I, if and only if

lim
n

sup
x∈I

| fn(x)− f (x)| = 0.

Exercise 356Show that a sequence of functions{ fn} fails to converge to a function f
uniformly on an interval I if and only if there is some positive ε0 so that a sequence
{xk} of points in I and a subsequence{ fnk} can be found such that

| fnk(xk)− f (xk)| ≥ ε0.

Exercise 357Apply the criterion in the preceding exercise to show that the sequence
fn(x) = xn does not converge uniformly to zero on(0,1).

Exercise 358Prove Theorem3.38. Answer

Exercise 359Verify that the geometric series∑∞
k=0xk, which converges pointwise on

(−1,1), does not converge uniformly there.
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Exercise 360Do the same for the series obtained by differentiating the series in Ex-
ercise359; that is, show that∑∞

k=1 kxk−1 converges pointwise but not uniformly on
(−1,1). Show that this series does converge uniformly on every closed interval[a,b]
contained in(−1,1).

Exercise 361Verify that the series
∞

∑
k=1

coskx
k2

converges uniformly on(−∞,∞).

Exercise 362 If { fn} is a sequence of functions converging uniformly on an interval
I to a function f , what conditions on the function g would allow you to conclude that
g◦ fn converges uniformly on I to g◦ f ?

Exercise 363Prove that the series
∞

∑
k=0

xk

k
converges uniformly on[0,b] for every b∈

[0,1) but does not converge uniformly on[0,1).

Exercise 364Prove that if∑∞
k=1 fk converges uniformly on an interval I, then the se-

quence of terms{ fk} converges uniformly on I.

Exercise 365A sequence of functions{ fn} is said to beuniformly bounded on an
interval [a,b] if there is a number M so that

| fn(x)| ≤ M

for every n and also for every x∈ [a,b]. Show that a uniformly convergent sequence
{ fn} of continuous functions on[a,b] must be uniformly bounded. Show that the same
statement would not be true for pointwise convergence.

Exercise 366Suppose that fn → f on (−∞,+∞). What conditions would allow you to
compute that

lim
n→∞

fn(x+1/n) = f (x)?

Exercise 367Suppose that{ fn} is a sequence of continuous functions on the interval
[0,1] and that you know that{ fn} converges uniformly on the set of rational numbers
inside [0,1]. Can you conclude that{ fn} uniformly on [0,1]? (Would this be true
without the continuity assertion?)

Exercise 368Prove the following variant of the Weierstrass M-test: Let{ fk} and{gk}
be sequences of functions on an interval I. Suppose that| fk(x)| ≤ gk(x) for all k and
x ∈ I and that ∑∞

k=1 gk converges uniformly on I. Then the series∑∞
k=1 fk converges

uniformly on I.

Exercise 369Prove the following variant on Theorem3.41: Let {ak} and {bk} be
sequences of functions on an interval I. Suppose that∑∞

k=1ak(x) converges uniformly
on I. Suppose that{bk} is monotone for each x∈ I and uniformly bounded on E. Then
the series∑∞

k=1 akbk converges uniformly on I.
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Exercise 370Prove the following variant on Theorem3.41: Let {ak} and {bk} be
sequences of functions on an interval I. Suppose that there is a number M so that

∣

∣

∣

∣

∣

N

∑
k=1

ak(x)

∣

∣

∣

∣

∣

≤ M

for all x ∈ I and every integer N. Suppose that
∞

∑
k=1

|bk−bk+1|

converges uniformly on I and that bk → 0 uniformly on I. Then the series∑∞
k=1 akbk

converges uniformly on I.

Exercise 371Prove the following variant on Abel’s test (Theorem3.41): Let {ak(x)}
and{bk(x)} be sequences of functions on an interval I. Suppose that∑∞

k=1ak(x) con-
verges uniformly on I. Suppose that the series

∞

∑
k=1

|bk(x)−bk+1(x)|

has uniformly bounded partial sums on I. Suppose that the sequence of functions
{bk(x)} is uniformly bounded on I. Then the series∑∞

k=1 ak(x)bk(x) converges uni-
formly on I.

Exercise 372Suppose that{ fn(x)} is a sequence of continuous functions on an inter-
val [a,b] converging uniformly to a function f on the open interval(a,b). If f is also
continuous on[a,b], show that the convergence is uniform on[a,b].

Exercise 373Suppose that{ fn} is a sequence of functions converging uniformly to
zero on an interval[a,b]. Show thatlimn→∞ fn(xn) = 0 for every convergent sequence
{xn} of points in[a,b]. Give an example to show that this statement may be false if
fn → 0 merely pointwise.

Exercise 374Suppose that{ fn} is a sequence of functions on an interval[a,b] with the
property thatlimn→∞ fn(xn) = 0 for every convergent sequence{xn} of points in[a,b].
Show that{ fn} converges uniformly to zero on[a,b].

3.7.3 Uniform convergence and integrals

We state our main theorem for continuous functions. We know that bounded, continu-
ous functions are integrable and we have several tools that handle unbounded continu-
ous functions.
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Theorem 3.42 (uniform convergence of sequences of continuous functions)
Let f1, f2, f3, . . . be a sequence of functions defined and continuous on an open
interval (a,b). Suppose that{ fn} converges uniformly on(a,b) to a function f .
Then

1. f is continuous on(a,b).

2. If each fn is bounded on the interval(a,b) then so too is f .

3. For each closed, bounded interval[c,d]⊂ (a,b)

lim
n→∞

∫ d

c
fn(x)dx=

∫ d

c

{

lim
n→∞

fn(x)
}

dx=
∫ d

c
f (x)dx.

4. If each fn is integrable on the interval[a,b] then so too is f and

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a

{

lim
n→∞

fn(x)
}

dx=
∫ b

a
f (x)dx.

We have defined uniform convergence of series in a simple way,merely by requiring
that the sequence of partial sums converges uniformly. Thusthe Corollary follows
immediately from the theorem applied to these partial sums.

Corollary 3.43 (uniform convergence of series of continuous functions) Let
g1, g2, g3, . . . be a sequence of functions defined and continuous on an open
interval (a,b). Suppose that the series∑∞

k=1 gk converges uniformly on(a,b) to a
function f . Then

1. f is continuous on(a,b).

2. For each closed, bounded interval[c,d]⊂ (a,b)

∞

∑
k=1

∫ d

c
gk(x)dx=

∫ d

c

{

∞

∑
k=1

gk(x)

}

dx=
∫ d

c
f (x)dx.

3. If each gk is integrable on the interval[a,b] then so too is f and

∞

∑
k=1

∫ b

a
gk(x)dx=

∫ b

a

{

∞

∑
k=1

gk(x)

}

dx=
∫ b

a
f (x)dx.

Exercise 375To prove Theorem3.42 and its corollary is just a matter of putting to-
gether facts that we already know. Do this.

3.7.4 A defect of the calculus integral

In the preceding section we have seen that uniform convergence of continuous functions
allows for us to interchange the order of integration and limit to obtain the important
formula

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a

{

lim
n→∞

fn(x)
}

dx.

Is this still true if we drop the assumption that the functions fn are continuous?
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We will prove one very weak theorem and give one counterexample to show that the
class of integrable functions in the calculus sense is not closed under uniform limits8.
We will work on this problem again in Section3.7.6but we cannot completely handle
the defect. We will remedy this defect of the calculus integral in Chapter 4.

Theorem 3.44 Let f1, f2, f3, . . . be a sequence of functions defined and integrable
on a closed, bounded interval[a,b]. Suppose that{ fn} converges uniformly on
[a,b] to a function f . Then, provided we assume that f is integrableon [a,b],∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx.

Exercise 376Let

gk(x) =

{

0 if 0≤ x≤ 1− 1
k

2−k if 1− 1
k < x≤ 1.

Show that the series∑∞
k=2 gk(x) of integrable functions converges uniformly on[0,1] to

a function f that is not integrable in the calculus sense. Answer

Exercise 377Prove Theorem3.44. Answer

3.7.5 Uniform limits of continuous derivatives

We saw in Section3.7.3that a uniformly convergent sequence (or series) of continuous
functions can be integrated term-by-term . As an application of our integration theorem
we obtain a theorem on term-by-term differentiation. We write this in a form suggesting
that the order of differentiation and limit is being reversed.

Theorem 3.45 Let {Fn} be a sequence of uniformly continuous functions on an
interval [a,b], suppose that each function has a continuous derivative F′

n on (a,b),
and suppose that

1. The sequence{F ′
n} of derivatives converges uniformly to a function on(a,b).

2. The sequence{Fn} converges pointwise to a function F.

Then F is differentiable on(a,b) and, for all a< x< b,

F ′(x) =
d
dx

F(x) =
d
dx

lim
n→∞

Fn(x) = lim
n→∞

d
dx

Fn(x) = lim
n→∞

F ′
n(x).

For series, the theorem takes the following form:

8Had we chosen back in Section2.1.1 to accept sequences of exceptional points rather than finite
exceptional sets we would not have had this problem here.
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Corollary 3.46 Let {Gk} be a sequence of uniformly continuous functions on an
interval [a,b], suppose that each function has a continuousderivative F′n on (a,b),
and suppose that

1. F(x) = ∑∞
k=1 Gk(x) pointwise on[a,b].

2. ∑∞
k=0 G′

k(x) converges uniformly on(a,b).

Then, for all a< x< b,

F ′(x) =
d
dx

F(x) =
d
dx

∞

∑
k=1

Gk(x) =
∞

∑
k=1

d
dx

Gk(x) =
∞

∑
k=1

G′
k(x).

Exercise 378Using Theorem3.42, prove Theorem3.45. Answer

Exercise 379Starting with the geometric series

1
1−x

=
∞

∑
k=0

xk on (−1,1), (3.4)

show how to obtain
1

(1−x)2 =
∞

∑
k=1

kxk−1 on (−1,1). (3.5)

[Note that the series∑∞
k=1 kxk−1 does not converge uniformly on(−1,1). Is this trou-

blesome?]
Answer

Exercise 380Starting with the definition

ex =
∞

∑
k=0

xk

k!
on (−∞,∞), (3.6)

show how to obtain
d
dx

ex =
∞

∑
k=0

xk

k!
= ex on (−∞,∞). (3.7)

[Note that the series∑∞
k=1

xk

k! does not converge uniformly on(−∞,∞). Is this trouble-
some?]

Answer

Exercise 381Can the sequence of functions fn(x) =
sinnx

n3 be differentiated term-by-

term?

Exercise 382Can the series of functions
∞

∑
k=1

sinkx
k3 be differentiated term-by-term?

Exercise 383Verify that the function

y(x) = 1+
x2

1!
+

x4

2!
+

x6

3!
+

x8

4!
+ . . .

is a solution of the differential equation y′ = 2xy on(−∞,∞) without first finding an
explicit formula for y(x).
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3.7.6 Uniform limits of discontinuous derivatives

The following theorem reduces the hypotheses of Theorem3.45 and, accordingly is
much more difficult to prove. Here we have dropped the continuity of the derivatives
as an assumption.

Theorem 3.47 Let { fn} be a sequence of uniformly continuous functions defined
on an interval[a,b]. Suppose that f′n(x) exists for each n and each x∈ (a,b) except
possibly for x in some finite set C. Suppose that the sequence{ f ′n} of derivatives
converges uniformly on(a,b)\C and that there exists at least one point x0 ∈ [a,b]
such that the sequence of numbers{ fn(x0)} converges. Then the sequence{ fn}
converges uniformly to a function f on the interval[a,b], f is differentiable with,
at each point x∈ (a,b)\C,

f ′(x) = lim
n→∞

f ′n(x) and lim
n→∞

∫ b

a
f ′n(x)dx=

∫ b

a
f ′(x)dx.

Exercise 384Prove Theorem3.47. Answer

Exercise 385For infinite series, how can Theorem3.47be rewritten? Answer

Exercise 386 (uniform limits of integrable functions) At first sight Theorem3.47seems
to supply the following observation: If{gn} is a sequence of functions integrable in the
calculus sense on an interval[a,b] and gn converges uniformly to a function g on[a,b]
then g must also be integrable. Is this true? Answer

Exercise 387 In the statement of Theorem3.47we hypothesized the existence of a sin-
gle point x0 at which the sequence{ fn(x0)} converges. It then followed that the se-
quence{ fn} converges on all of the interval I. If we drop that requirement but retain
the requirement that the sequence{ f ′n} converges uniformly to a function g on I, show
that we cannot conclude that{ fn} converges on I, but we can still conclude that there
exists f such that f′ = g= limn→∞ f ′n on I. Answer

3.8 The monotone convergence theorem

Two of the most important computations with integrals are taking a limit inside an
integral,

lim
n→∞

∫ b

a
fn(x)dx=

∫ b

a

(

lim
n→∞

fn(x)
)

dx

and summing a series inside an integral,
∞

∑
k=1

∫ b

a
gk(x)dx=

∫ b

a

(

∞

∑
k=1

gk(x)

)

dx.

The counterexamples in Section3.7.1, however, have made us very wary of doing
this. The uniform convergence results of Section3.7.5, on the other hand, have encour-
aged us to check for uniform convergence as a guarantee that these operations will be
successful.
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But uniform convergence is not anecessaryrequirement. There are important
weaker assumptions that will allow us to use sequence and series techniques on in-
tegrals. For sequences an assumption that the sequence is monotone will work. For
series an assumption that the terms are nonnegative will work.

3.8.1 Summing inside the integral

We establish that the summation formula∫ b

a

(

∞

∑
n=1

gk(x)

)

dx=
∞

∑
n=1

(∫ b

a
gk(x)dx

)

is possible fornonnegativefunctions. We need also to assume that the sum function
f (x) = ∑∞

n=1gk(x) is itself integrable since that cannot be deduced otherwise.
This is just a defect in the calculus integral; in a more general theory of integration

we would be able to conclude both that the sum is indeed integrable and also that the
sum formula is correct. This defect is more serious than it might appear. In most
applications the only thing we might know about the function

f (x) =
∞

∑
n=1

gk(x)

is that it is the sum of this series. We may not be able to check continuity and we
certainly are unlikely to be able to find an indefinite integral.

We split the statement into two lemmas for ease of proof. Together they supply the
integration formula for the sum of nonnegative integrable functions.

Lemma 3.48 Suppose that f , g1, g2, g3,. . . is a sequence of nonnegative functions,
each one integrable on a closed bounded interval[a,b]. If, for all but finitely many
x in (a,b)

f (x) ≥
∞

∑
k=1

gk(x),

then ∫ b

a
f (x)dx≥

∞

∑
k=1

(∫ b

a
gk(x)dx

)

. (3.8)

Lemma 3.49 Suppose that f , g1, g2, g3,. . . is a sequence of nonnegative functions,
each one integrable on a closed bounded interval[a,b]. If, for all but finitely many
x in (a,b),

f (x) ≤
∞

∑
k=1

gk(x),

then ∫ b

a
f (x)dx≤

∞

∑
k=1

(∫ b

a
gk(x)dx

)

. (3.9)

Exercise 388 In each of the lemmas show that we may assume, without loss of gener-
ality, that the inequalities

f (x)≤
∞

∑
k=1

gk(x), or f (x)≥
∞

∑
k=1

gk(x),
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hold for all values of x in the entire interval[a,b]. Answer

Exercise 389Prove the easier of the two lemmas. Answer

Exercise 390Prove Lemma3.49, or rather give it a try and then consult the write up
in the answer section. This is just an argument manipulatingRiemann sums so it is not
particularly deep; even so it requires some care. Answer

Exercise 391Construct an example of a convergent series of continuous functions that
converges pointwise to a function that is not integrable in the calculus sense.

3.8.2 Monotone convergence theorem

The series formula immediately supplies the monotone convergence theorem.

Theorem 3.50 (Monotone convergence theorem)Let fn : [a,b] → R (n =

1,2,3, . . . ) be a nondecreasing sequence of functions, each integrableon the in-
terval [a,b] and suppose that

f (x) = lim
n→∞

fn(x)

for every x in[a,b] with possibly finitely many exceptions. Then, provided f is also
integrable on[a,b], ∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx.

Exercise 392Deduce Theorem3.50from Lemmas3.48and3.49. Answer

Exercise 393Prove Theorem3.50directly by a suitable Riemann sums argument.
Answer

Exercise 394Construct an example of a convergent, monotonic sequence ofcontinu-
ous functions that converges pointwise to a function that isnot integrable in the calculus
sense.

3.9 Integration of power series

A power seriesis an infinite series of the form

f (x) =
∞

∑
n=0

an (x−c)n = a0+a1(x−c)1+a2(x−c)2+a3(x−c)3+ · · ·

wherean is called thecoefficientof thenth term andc is a constant. One usually says
that the series iscenteredatc. By a simple change of variables any power series can be
centered at zero and so all of the theory is usually stated forsuch a power series

f (x) =
∞

∑
n=0

anxn = a0+a1x+a2x2+a3x3+ . . . .

The set of pointsx where the series converges is called theinterval of convergence. (We
could call it asetof convergence, but we are anticipating that it will turn outto be an
interval.)
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The main concern we shall have in this chapter is the integration of such series. The
topic of power series in general is huge and central to much ofmathematics. We can
present a fairly narrow picture but one that is complete onlyinsofar as applications of
integration theory are concerned.

Theorem 3.51 (convergence of power series)Let

f (x) =
∞

∑
n=0

anxn = a0+a1x+a2x2+a3x3+ . . . .

be a power series. Then there is a number R,0 ≤ R≤ ∞, called theradius of
convergenceof the series, so that

1. If R= 0 then the series converges only for x= 0.

2. If R> 0 the series converges absolutely for all x in the interval(−R,R).

3. If 0< R< ∞ the interval of convergence for the series is one of the intervals

(−R,R), (−R,R], [−R,R) or [−R,R]

and at the endpoints the series may converge absolutely or nonabsolutely.

The next theorem establishes the continuity of a power series within its interval of
convergence.

Theorem 3.52 (continuity of power series)Let

f (x) =
∞

∑
n=0

anxn = a0+a1x+a2x2+a3x3+ . . . .

be a power series with a radius of convergence R,0< R≤ ∞. Then

1. f is a continuous function on its interval of convergence [i.e., continuous at
all interior points and continuous on the right or left at an endpoint if that
endpoint is included].

2. If 0< R< ∞ and the interval of convergence for the series is[−R,R] then f
is uniformly continuous on[−R,R].

Finally we are in position to show that term-by-term integration of power series is
possible in nearly all situations.
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Theorem 3.53 (integration of power series)Let

f (x) =
∞

∑
n=0

anxn = a0+a1x+a2x2+a3x3+ . . . .

be a power series and let

F(x) =
∞

∑
n=0

anxn+1

n+1
= a0x+a1x2/2+a2x3/3+a3x4/4+ . . . .

be its formally integrated series. Then

1. Both series have the same radius of convergence R, but not necessarily the
same interval of convergence.

2. If R> 0 then F′(x) = f (x) for every x in(−R,R) and so F is an indefinite
integral for f on the interval(−R,R).

3. f is integrable on any closed, bounded interval[a,b]⊂ (−R,R) and∫ b

a
f (x)dx= F(b)−F(a).

4. If the interval of convergence of the integrated series for F is [−R,R] then f
is integrable on[−R,R] and∫ R

−R
f (x)dx= F(R)−F(−R).

5. If the interval of convergence of the integrated series for F is (−R,R] then f
is integrable on[0,R] and∫ R

0
f (x)dx= F(R)−F(0).

6. If the interval of convergence of the integrated series for F is [−R,R) then f
is integrable on[−R,0] and∫ 0

−R
f (x)dx= F(0)−F(−R).

Note that the integration theorem uses the interval of convergence of the integrated
series. It is not a concern whether the original series forf converges at the endpoints
of the interval of convergence, but it is essential to look atthese endpoints for the
integrated series. The proofs of the separate statements inthe two theorems appear
in various of the exercises. Note that, while we are interested in integration problems
here the proofs are all about derivatives; this is not surprising since the calculus integral
itself is simply about derivatives.

Exercise 395Compute, if possible, the integrals
∫ 1

0

(

∞

∑
n=0

xn

)

dx and
∫ 0

−1

(

∞

∑
n=0

xn

)

dx.

Answer
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Exercise 396Repeat the previous exercise but use only the fact that
∞

∑
n=0

xn = 1+x+x2+x3+x4+ · · ·+=
1

1−x
.

Is the answer the same? Answer

Exercise 397 (careless student)“But,” says the careless student, “both of Exercises395
and396are wrong surely. After all, the series

f (x) = 1+x+x2+x3+x4+ · · ·+
converges only on the interval(−1,1) and diverges at the endpointsx= 1 andx= −1
since

1−1+1−1+1−1+1−1=?

and
1+1+1+1+ · · ·+= ∞.

You cannot expect to integrate on either of the intervals[−1,0] or [0,1].” What is your
response? Answer

Exercise 398 (calculus student notation)For most calculus students it is tempting to
write∫
(

a0+a1x+a2x2+a3x3+ . . .
)

dx=
∫

a0dx+
∫

a1xdx+
∫

a2x2 dx+
∫

a3x3 dx+ . . . .

Is this a legitimate interpretation of this indefinite integral? Answer

Exercise 399 (calculus student notation)For most calculus students it is tempting to
write∫ b

a

(

a0+a1x+a2x2+a3x3+ . . .
)

dx=
∫ b

a
a0 dx+

∫ b

a
a1xdx+

∫ b

a
a2x2 dx+

∫ b

a
a3x3 dx+ . . . .

Is this a legitimate interpretation of this definite integral? Answer

Exercise 400Show that the series

f (x) = 1+2x+3x2+4x3+ . . .

has a radius of convergence1 and an interval of convergence exactly equal to(−1,1).
Show that f is not integrable on[0,1], but that it is integrable[−1,0] and yet the com-
putation∫ 0

−1

(

1+2x+3x2+4x3+ . . .
)

dx=
∫ 0

−1
dx+

∫ 0

−1
2xdx+

∫ 0

−1
3x2 dx+

∫ 0

−1
4x3 dx+ . . .

=−1+1−1+1−1+1− . . .

cannot be used to evaluate the integral.

Note: Since the interval of convergence of the integrated seriesis also(−1,1), Theo-
rem3.53has nothing to say about whetherf is integrable on[0,1] or [−1,0].

Answer
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Exercise 401Determine the radius of convergence of the series
∞

∑
k=1

kkxk = x+4x2+27x3+ . . . .

Answer

Exercise 402Show that, for every0≤ s≤ ∞, there is a power series whose radius of
convergence R is exactly s. Answer

Exercise 403Show that the radius of convergence of a series

a0+a1x+a2x2+a3x3+ . . .

can be described as

R= sup{r : 0< r and
∞

∑
k=0

akrk converges}.

Exercise 404 (root test for power series)Show that the radius of convergence of a se-
ries

a0+a1x+a2x2+a3x3+ . . .

is given by the formula

R=
1

limsupk→∞
k
√

|ak|
.

Exercise 405Show that the radius of convergence of the series

a0+a1x+a2x2+a3x3+ . . .

is the same as the radius of convergence of the formally differentiated series

a1+2a2x+3a3x2+4a4x3+ . . . .

Exercise 406Show that the radius of convergence of the series

a0+a1x+a2x2+a3x3+ . . .

is the same as the radius of convergence of the formally integrated series

a0x+a1x2/2+a2x3/3+a3x4/4+ . . . .

Answer

Exercise 407 (ratio test for power series)Show that the radius of convergence of the
series

a0+a1x+a2x2+a3x3+ . . .

is given by the formula

R= lim
k→∞

∣

∣

∣

∣

ak

ak+1

∣

∣

∣

∣

,

assuming that this limit exists or equals∞. Answer
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Exercise 408 (ratio/root test for power series)Give an example of a power series for
which the radius of convergence R satisfies

R=
1

limk→∞
k
√

|ak|
but

lim
k→∞

∣

∣

∣

∣

ak

ak+1

∣

∣

∣

∣

does not exist. Answer

Exercise 409 (ratio test for power series)Give an example of a power series for which
the radius of convergence R satisfies

lim inf
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

< R< limsup
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

.

Note: for such a series the ratio test cannot give a satisfactory estimate of the radius of
convergence. Answer

Exercise 410 If the coefficients{ak} of a power series

a0+a1x+a2x2+a3x3+ . . .

form a bounded sequence show that the radius of convergence is at least1. Answer

Exercise 411 If the coefficients{ak} of a power series

a0+a1x+a2x2+a3x3+ . . .

form an unbounded sequence show that the radius of convergence is no more than1.
Answer

Exercise 412 If the power series

a0+a1x+a2x2+a3x3+ . . .

has a radius of convergence Ra and the power series

b0+b1x+b2x2+b3x3+ . . .

has a radius of convergence Rb and |ak| ≤ |bk| for all k sufficiently large, what relation
must hold between Ra and Rb? Answer

Exercise 413 If the power series

a0+a1x+a2x2+a3x3+ . . .

has a radius of convergence R, what must be the radius of convergence of the series

a0+a1x2+a2x4+a3x6+ . . .

Answer

Exercise 414Suppose that the series

a0+a1x+a2x2+a3x3+ . . .

has a finite radius of convergence R and suppose that|x0|>R. Show that, not only does

a0+a1x0+a2x2
0+a3x3

0+ . . .

diverge but thatlimn→∞ |anxn
0|= ∞.
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Exercise 415Suppose that the series

a0+a1x+a2x2+a3x3+ . . .

has a positive radius of convergence R. Use the Weierstrass M-test to show that the
series converges uniformly on any closed, bounded subinterval [a,b] ⊂ (−R,R).

Exercise 416Suppose that the series

f (x) = a0+a1x+a2x2+a3x3+ . . .

has a positive radius of convergence R. Use Exercise415to show that f is differentiable
on (−R,R) and that, for all x in that interval,

f ′(x) = a1+2a2x+3a3x2+4a4x3+ . . . .

Exercise 417Suppose that the series

f (x) = a0+a1x+a2x2+a3x3+ . . .

has a positive radius of convergence R. Use Exercise416to show that f has an indefi-
nite integral on(−R,R) given by the function

F(x) = a0x+a1x2/2+a2x3/3+a3x4/4+ . . . .

Exercise 418Suppose that the series

f (x) = a0+a1x+a2x2+a3x3+ . . .

has a positive, finite radius of convergence R and that the series converges absolutely
at one of the two endpoints R or−R of the interval of convergence. Use the Weierstrass
M-test to show that the series converges uniformly on[−R,R]. Deduce from this that f′

is integrable on[−R,R].
Note: this is the best that the Weierstrass M-test can do applied to power series. If the
series converges nonabsolutely at one of the two endpointsRor−Rof the interval then
the test does not help. Answer

Exercise 419Suppose that the series

f (x) = a0+a1x+a2x2+a3x3+ . . .

has a positive, finite radius of convergence R and that the series converges nonabso-
lutely at one of the two endpoints R or−R of the interval of convergence. Use a variant
of the Abel test for uniform convergence to show that the series converges uniformly on
any closed subinterval[a,b] of the interval of convergence. Deduce from this that f′ is
integrable on any such interval[a,b].
Note: this completes the picture for the integrability problem of this section.

Answer

Exercise 420What power series will converge uniformly on(−∞,∞)?
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Exercise 421Show that if∑∞
k=0akxk converges uniformly on an interval(−r, r), then

it must in fact converge uniformly on[−r, r]. Deduce that if the interval of convergence
is exactly of the form(−R,R), or [−R,R) or [−R,R), then the series cannot converge
uniformly on the entire interval of convergence.

Answer

Exercise 422Suppose that a function f(x) has two power series representations

f (x) = a0+a1x+a2x2+a3x3+ . . .

and
f (x) = b0+b1x+b2x2+b3x3+ . . .

both valid at least in some interval(−r, r) for r > 0. What can you conclude?

Exercise 423Suppose that a function f(x) has a power series representations

f (x) = a0+a1x+a2x2+a3x3+ . . .

valid at least in some interval(−r, r) for r > 0. Show that, for each k= 0,1,2,3, . . . ,

ak =
f (k)(0)

k!
.

Exercise 424 In view of Exercise423it would seem that we must have the formula

f (x) =
∞

∑
k=0

f (k)(0)
k!

xk

provided only that the function f is infinitely often differentiable at x= 0. Is this a
correct observation? Answer

3.10 Applications of the integral

It would be presumptuous to try to teach here applications ofthe integral, since those
applications are nearly unlimited. But here are a few that follow a simple theme and
are traditionally taught in all calculus courses.

The theme takes advantage of the fact that an integral can (under certain hypotheses)
be approximated by a Riemann sum∫ b

a
f (x)dx≈

n

∑
i=1

f (ξi)(xi −xi−1).

If there is an application where some concept can be expressed as a limiting version
of sums of this type, then that concept can be captured by an integral. Whatever the
concept is, it must be necessarily “additive” and expressible as sums of products that
can be interpreted as

f (ξi)× (xi −xi−1).

The simplest illustration is area. We normally think of areaas additive. We can
interpret the product

f (ξi)× (xi −xi−1).
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as the area of a rectangle with length(xi − xi−1) and heightf (ξi). The Riemann sum
itself then is a sum of areas of rectangles. If we can determine that the area of some
figure is approximated by such a sum, then the area can be described completely by an
integral.

For applications in physics one might uset as a time variable and then interpret∫ b

a
f (t)dt ≈

n

∑
i=1

f (τi)(ti − ti−1)

thinking of f (τi) as some measurement (e.g., velocity, acceleration, force)that is oc-
curring throughout the time interval[ti−1, ti ].

An accumulation point of view For many applications of the calculus the Riemann
sum approach is an attractive way of expressing the conceptsthat arise as a definite
integral. There is another way which bypasses Riemann sums and goes directly back to
the definition of the integral as an antiderivative.

We can write this method using the slogan∫ x+h

a
f (t)dt−

∫ x

a
f (t)dt ≈ f (ξ)×h. (3.10)

Suppose that a concept we are trying to measure can be captured by a functionA(x) on
some interval[a,b]. We suppose that we have already measuredA(x) and now wish to
add on a bit more to get toA(x+h) whereh is small. We imagine the new amount that
we must add on can be expressed as

f (ξ)×h

thinking of f (ξ) as some measurement that is occurring throughout the interval [x,x+
h]. In that case our model for the concept is the integral

∫ b
a f (t)dt. This is because

(3.10) suggests thatA′(x) = f (x).

3.10.1 Area and the method of exhaustion

There is a long historical and cultural connection between the theory of integration and
the geometrical theory of area. Usually one takes the following as the primary definition
of area.

Definition 3.54 Let f : [a,b]→R be an integrable, nonnegative function and sup-
pose that R( f ,a,b) denotes the region in the plane bounded on the left by the line
x= a, on the right by the line x= b, on the bottom by the line y= 0 and on the top
by the graph of the function f (i.e., by y= f (x)). Then this region is said to have
an area and value of that area is assigned to be∫ b

a
f (x)dx.

The region can also be described by writing it as a set of points:

R( f ,a,b) = {(x,y) : a≤ x≤ b, 0≤ y≤ f (x)}.
We can justify this definition by the method of Riemann sums combined with a method
of the ancient Greeks known as the method of exhaustion of areas.
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Let us suppose thatf : [a,b] → R is a uniformly continuous, nonnegative function
and suppose thatR( f ,a,b) is the region as described above. Take any subdivision

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

Then there must exist pointsξi, ηi ∈ [xi−1,xi ] for i = 1,2, . . . ,n so that f (ξi) is the
maximum value off in the interval[xi−1,xi ] and f (ηi) is the minimum value off in
that interval. We consider the two partitions

{([xi ,xi−1],ξi) : i = 1,2, . . .n} and {([xi ,xi−1],ηi) : i = 1,2, . . .n}
and the two corresponding Riemann sums

n

∑
i=1

f (ξi)(xi −xi−1) and
n

∑
i=1

f (ηi)(xi −xi−1).

The larger sum is greater than the integral
∫ b

a f (x)dx and the smaller sum is lesser than
that number. This is because there is a choice of pointsξ∗i that is exactly equal to the
integral, ∫ b

a
f (x)dx=

n

∑
i=1

f (ξ∗i )(xi −xi−1)

and here we havef (ηi)≤ f (ξ∗i )≤ f (ξi). (See Section3.5.2.)
But if the region were to have an “area” we would expect that area is also between

these two sums. That is because the larger sum represents thearea of a collection
of n rectangles that include our region and the smaller sum represents the area of a
collection ofn rectangles that are included inside our region. If we consider all possible
subdivisions then the same situation holds: the area of the region (if it has one) must lie
between the upper sums and the lower sums. But according to Theorem3.19the only
number with this property is the integral

∫ b
a f (x)dx itself.

Certainly then, for continuous functions anyway, this definition of the area of such
a region would be compatible with any other theory of area.

Exercise 425 (an accumulation argument)Here is another way to argue that inte-
gration theory and area theory must be closely related. Imagine that area has some
(at the moment) vague meaning to you. Let f: [a,b] → R be a uniformly continuous,
nonnegative function. For any a≤ s< t ≤ b let A( f ,s, t) denote the area of the region
in the plane bounded on the left by the line x= s, on the right by the line x= t, on the
bottom by the line y= 0 and on the top by the curve y= f (x). Argue for each of the
following statements:

1. A( f ,a,s)+A( f ,s, t) = A( f ,a, t).

2. If m≤ f (x) ≤ M for all s≤ x≤ t then m(t −s)≤ A( f ,s, t) ≤ M(t −s).

3. At any point a< x< b,
d
dx

A( f ,a,x) = f (x).

4. At any point a< x< b,

A( f ,a,x) =
∫ x

a
f (t)dt.

Answer
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Exercise 426Show that the area of the triangle

{(x,y) : a≤ x≤ b, 0≤ y≤ m(x−a)}.
is exactly as you would normally have computed it precalculus.

Exercise 427Show that the area of the trapezium

{(x,y) : a≤ x≤ b, 0≤ y≤ c+m(x−a)}.
is exactly as you would normally have computed it precalculus.

Exercise 428Show that the area of the half-circle

{(x,y) : −1≤ x≤ 1, 0≤ y≤
√

1−x2}.
is exactly as you would normally have computed it precalculus. Answer

Exercise 429One usually takes this definition for the area between two curves:

Definition 3.55 Let f , g : [a,b] → R be integrable functions and suppose that
f (x) ≥ g(x) for all a ≤ x ≤ b. Let R( f ,g,a,b) denote the region in the plane
bounded on the left by the line x= a, on the right by the line x= b, on the bottom
by the curve y= g(x) and on the top by the curve by y= f (x). Then this region is
said to have an area and value of that area is assigned to be∫ b

a
[ f (x)−g(x)]dx.

Use this definition to find the area inside the circle x2+y2 = r2. Answer

Exercise 430Using Definition3.55compute the area between the graphs of the func-
tions g(x) = 1+x2 and h(x) = 2x2 on [0,1]. Explain why the Riemann sum

n

∑
i=1

[g(ξi)−h(ξi)](xi −xi−1)

and the corresponding integral
∫ 1

0 [g(x)−h(x)]dx cannot be interpreted using the method
of exhaustion to be computing both upper and lower bounds forthis area. Discuss.

Answer

Exercise 431 In Figure 3.4 we show graphically how to interpret the area that is rep-
resented by

∫ ∞
1 x−2 dx. Note that∫ 2

1
x−2 dx= 1/2,

∫ 4

2
x−2dx= 1/4,

∫ 8

4
x−2 dx= 1/8

and so we would expect∫ ∞

1
x−2 dx= 1/2+1/4+1/8+ . . . .

Check that this is true. Answer
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1
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Figure 3.4: Computation of an area by
∫ ∞

1
x−2dx.

3.10.2 Volume

A full treatment of the problem of defining and calculating volumes is outside the scope
of a calculus course that focuses only on integrals of this type:∫ b

a
f (x)dx.

But if the problem addresses a very special type of volume, those volumes obtained by
rotating a curve about some line, then often the formula

π
∫ b

a
[ f (x)]2 dx

can be interpreted as providing the correct volume interpretation and computation.
Once again the justification is the method of exhaustion. We assume that volumes,

like areas, are additive. We assume that a correct computation of the volume of cylinder
that has radiusr and heighth is πr2h. In particular the volume of a cylinder that has
radius f (ξi) and height(xi −xi−1) is

π[ f (ξi)]
2(xi −xi−1).

The total volume for a collection of such cylinders would be (since we assume volume
is additive)

π
n

∑
i=1

[ f (ξi)]
2(xi −xi−1).

We then have a connection with the formula

π
∫ b

a
[ f (x)]2 dx.

One example with suitable pictures illustrates the method.Take the graph of the
function f (x) = sinx on the interval[0,π] and rotate it (into three dimensional space)
around thex-axis. Figure3.5shows the football (i.e., American football) shaped object.

Subdivide the interval[0,π],
0= x0 < x1 < x2 < · · ·< xn−1 < xn = π

Then there must exist pointsξi , ηi ∈ [xi−1,xi ] for i = 1,2, . . . ,n so that sin(ξi) is the
maximum value of sinx in the interval[xi−1,xi ] and sin(ηi) is the minimum value of
sinx in that interval. We consider the two partitions

{([xi ,xi−1],ξi) : i = 1,2, . . .n} and {([xi ,xi−1],ηi) : i = 1,2, . . .n}
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Figure 3.5: sinx rotated around thex-axis.

and the two corresponding Riemann sums

π
n

∑
i=1

sin2(ξi)(xi −xi−1) and π
n

∑
i=1

sin2(ηi)(xi −xi−1).

The “football” is entirely contained inside the cylinders representing the first sum and
the cylinders representing the second sum are entirely inside the football.

There is only one value that lies between these sums for all possible choice of
partition, namely the number

π
∫ π

0
[sinx]2 dx.

We know this because this integral can be uniformly approximated by Riemann sums.
The method of exhaustion then claims that the volume of the football must be this
number.

In general this argument justifies the following working definition. This is the ana-
logue for volumes of revolution of Definition3.55.

Definition 3.56 Let f and g be continuous, nonnegative functions on an interval
[a,b] and suppose that g(x) ≤ f (x) for all a ≤ x≤ b. Then the volume of the solid
obtained by rotating the region between the two curves y= f (x) and y= g(x) about
the x-axis is given by

π
∫ b

a

(

[ f (x)]2− [g(x)]2
)

dx.

Exercise 432 (shell method)There is a similar formula for a volume of revolution
when the curve y= f (x) on [a,b] (with a< 0) is rotated about the y-axis. One can
either readjust by interchanging x and y to get a formula of the formπ

∫ d
c [g(y)]

2 dy or
use the so-called shell method that has a formula

2π
∫ b

a
x×hdx

where h is a height measurement in the shell method. Investigate.

Exercise 433 (surface area)If a nonnegative function y= f (x) is continuously dif-
ferentiable throughout the interval[a,b], then the formula for the area of the surface
generated by revolving the curve about the x-axis is generally claimed to be

π
∫ b

a
2 f (x)

√

1+[ f ′(x)]2 dx.
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Using the same football studied in this section how could youjustify this formula.

3.10.3 Length of a curve

In mathematics acurve [sometimes called aparametric curve] is a pair of uniformly
continuous functionsF, G defined on an interval[a,b]. The points(F(t),G(t)) in the
plane are considered to trace out the curve ast moves from the endpointa to the end-
point b. The curve is thought of as a mapping taking points in the interval [a,b] to
corresponding points in the plane. Elementary courses often express the curve this
way,

x= F(t), y= G(t) a≤ t ≤ b,

referring to the two equations asparametric equationsfor the curve and to the variable
t as aparameter.

The set of points

{(x,y) : x= F(t), y= G(t),a≤ t ≤ b}
is called thegraph of the curve. It is not the curve itself but, for novices, it may be
difficult to make this distinction. The curve is thought to beorientedin the sense that
ast moves in its positive direction [i.e., froma to b] the curve is traced out in that order.
Any point on the curve may be covered many times by the curve itself; the curve can
cross itself or be very complicated indeed, even though the graph might be simple.

For example, take any continuous functionF on [0,1] with F(0) = 0 andF(1) = 1
and 0≤ F(x)≤ 1 for 0≤ x≤ 1. Then the curve(F(t),F(t)) traces out the points on the
line connecting(0,0) to (1,1). But the points can be traced and retraced many times
and the “trip” itself may have infinite length. All this even though the line segment
itself is simple and short (it has length

√
2).

The length of a curve is defined by estimating the length of theroute taken by the
curve by approximating its length by a polygonal path. Subdivide the interval

a= t0 < t1 < t2 < · · ·< tn−1 < tn = b

and then just compute the length of a trip to visit each of the points (F(a),G(a)),
(F(t1),G(t1)), (F(t2),G(t2)), . . . , (F(b),G(a)) in that order. The definition should
resemble our definition of a function of bounded variation and, indeed, the two ideas
are very closely related.

Definition 3.57 (rectifiable curve) A curve give by a pair of functions F, G:
[a,b]→ R is said to berectifiableif there is a number M so that

n

∑
i=1

√

[F(ti)−F(ti−1)]2+[G(ti)−G(ti−1)]2 ≤ M

for all choices of points

a= t0 < t1 < t2 < · · ·< tn−1 < tn = b.

The least such number M is called thelength of the curve.

Exercise 434Show that a curve given by a pair of uniformly continuous functions F,
G : [a,b]→R is rectifiable if and only if both functions F and G have bounded variation
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on [a,b]. Obtain, moreover, that the length L of the curve must satisfy

max{V(F, [a,b]),V(G, [a,b])} ≤ L ≤V(F, [a,b])+V(G, [a,b]).

Answer

Exercise 435Prove the following theorem which supplies the familiar integral formula
for the length of a curve.

Theorem 3.58Suppose that a curve is given by a pair of uniformly continuous
functions F, G: [a,b]→R and suppose that both F and G have bounded, continu-
ous derivatives at every point of(a,b) with possibly finitely many exceptions. Then
the curve is rectifiable and, moreover, the length L of the curve must satisfy

L =
∫ b

a

√

[F ′(t)]2+[G′(t)]2 dt.

Answer

Exercise 436Take any continuous function F on[0,1] with F(0) = 0 and F(1) = 1
and 0≤ F(x)1 ≤ for 0 ≤ x ≤ 1. Then the curve(F(t),F(t)) traces out the points on
the line segment connecting(0,0) to (1,1). Why does the graph of the curve containall
points on the line segment? Answer

Exercise 437Find an example of a continuous function F on[0,1] with F(0) = 0 and
F(1) = 1 and0≤ F(x)1 ≤ for 0≤ x≤ 1 such that the curve(F(t),F(t)) has infinite
length. Can you find an example where the length is2? Can you find one where the
length is1?. Which choices will have length equal to

√
2 which is, after all, the actual

length of the graph of the curve?

Exercise 438A curve in three dimensional space is a triple of uniformly continuous
functions(F(t),G(t),H(t)) defined on an interval[a,b]. Generalize to the theory of
such curves the notions presented in this section for curvesin the plane.

Exercise 439The graph of a uniformly continuous function f: [a,b]→R may be con-
sidered a curve in this sense using the pair of functions F(t) = t, G(t) = f (t) for
a ≤ t ≤ b. This curve has for its graph precisely the graph of the function, i.e., the
set

{(x,y) : y= f (x) a≤ x≤ b}.
Under this interpretation the graph of the function has a length if this curve has a
length. Discuss. Answer

Exercise 440Find the length of the graph of the function

f (x) =
1
2
(ex+e−x), 0≤ x≤ 2.

[The answer is1
2(e

2−e−2). This is a typical question in a calculus course, chosen not
because the curve is of great interest, but because it is one of the very few examples that
can be computed by hand.] Answer
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3.11 Numerical methods

This is a big subject with many ideas and many pitfalls. As a calculus student you
are mainly [but check with your instructor] responsible forlearning a few standard
methods, eg., the trapezoidal rule and Simpson’s rule.

In any practical situation where numbers are needed how might we compute∫ b

a
f (x)dx?

The computation of any integral would seem (judging by the definition) to require first
obtaining an indefinite integralF [checking to see it is continuous, of course, and that
F ′(x) = f (x) at all but finitely many points in(a,b)]. Then the formula∫ b

a
f (x)dx= F(b)−F(a)

would give the precise value.
But finding an indefinite integral may be impractical. There must be an indefinite

integral if the integral exists, but that does not mean that it must be given by an ac-
cessible formula or that we would have the skills to find it. The history of our subject
is very long so many problems have already been solved but finding antiderivatives is
most often not the best method even when it is possible to carry it out.

Finding a close enough value for
∫ b

a f (x)dx may be considerably easier and less
time consuming than finding an indefinite integral. The former is just a number, the
latter is a function, possibly mysterious.

Just use Riemann sums? If we have no knowledge whatever about the functionf
beyond the fact that it is bounded and continuous mostly everywhere then to estimate∫ b

a f (x)dx we could simply use Riemann sums. Divide the interval[a,b] into pieces of
equal lengthh

a< a+h< a+2h< a+3h< a+(n−1)h< b.

Here there aren−1 pieces of equal length and the last piece, thenth piece, has (perhaps)
smaller length

b− (a+(n−1)h≤ h.

Then∫ b

a
f (x)dx≈ [ f (ξ1)+ f (ξ2)+ . . . f (ξn−1)]h+ f (ξn)[b− (a+(n−1)h].

We do know that, for small enoughh, the approximation is as close as we please to the
actual value. And we can estimate the error if we know the oscillation of the function
in each of these intervals.

If we were to use this in practice then the computation is simpler if we choose
alwaysξi as an endpoint of the corresponding interval and we choose for h only lengths
(b−a)/n so thatall the pieces have equal length. The methods that follow are better
for functions that arise in real applications, but if we wanta method that works for all
continuous functions, there is no guarantee that any other method would surpass this
very naive method.
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Trapezoidal rule Here is the (current) Wikipedia statement of the rule:

In mathematics, the trapezoidal rule (also known as the trapezoid rule, or
the trapezium rule in British English) is a way to approximately calculate
the definite integral ∫ b

a
f (x)dx.

The trapezoidal rule works by approximating the region under the graph of
the function f(x) by a trapezoid and calculating its area. Itfollows that∫ b

a
f (x)dx≈ (b−a)

f (a)+ f (b)
2

.

To calculate this integral more accurately, one first splitsthe interval of in-
tegration [a,b] inton smaller subintervals, and then applies the trapezoidal
rule on each of them. One obtains the composite trapezoidal rule:

∫ b

a
f (x)dx≈ b−a

n

[

f (a)+ f (b)
2

+
n−1

∑
k=1

f

(

a+k
b−a

n

)

]

.

This can alternatively be written as:∫ b

a
f (x)dx≈ b−a

2n
( f (x0)+2 f (x1)+2 f (x2)+ · · ·+2 f (xn−1)+ f (xn))

where

xk = a+k
b−a

n
, for k= 0,1, . . . ,n

The error of the composite trapezoidal rule is the difference between the
value of the integral and the numerical result:

error=
∫ b

a
f (x)dx− b−a

n

[

f (a)+ f (b)
2

+
n−1

∑
k=1

f

(

a+k
b−a

n

)

]

.

This error can be written as

error=−(b−a)3

12n2 f ′′(ξ),

whereξ is some number betweena andb.

It follows that if the integrand is concave up (and thus has a positive sec-
ond derivative), then the error is negative and the trapezoidal rule overesti-
mates the true value. This can also been seen from the geometric picture:
the trapezoids include all of the area under the curve and extend over it.
Similarly, a concave-down function yields an underestimate because area
is unaccounted for under the curve, but none is counted above. If the in-
terval of the integral being approximated includes an inflection point, then
the error is harder to identify.

Simpson’s rule Simpson’s rule is another method for numerical approximation of
definite integrals. The approximation on a single interval uses the endpoints and the
midpoint. In place of a trapezoidal approximation, an approximation using quadratics
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produces: ∫ b

a
f (x)dx≈ b−a

6

[

f (a)+4 f

(

a+b
2

)

+ f (b)

]

.

It is named after the English mathematician Thomas Simpson (1710–1761). An ex-
tended version of the rule forf (x) tabulated at 2n evenly spaced points a distanceh
apart,

a= x0 < x1 < · · ·< x2n = b

is∫ x2n

x0

f (x)dx=
h
3
[ f0+4( f1+ f3+ ...+ f2n−1)+2( f2+ f4+ ...+ f2n−2)+ f2n]−Rn,

where fi = f (xi) and where the remainder term is

Rn =
nh5 f ′′′′(ξ)

90
for someξ ∈ [x0,x2n].

Exercise 441Show that the trapezoidal rule can be interpreted as asserting that a
reasonable computation of the mean value of a function on an interval,

1
b−a

∫ b

a
f (x)dx,

is simply to average the values of the function at the two endpoints. Answer

Exercise 442Establish the identity∫ b

a
f (x)dx=

f (a)+ f (b)
2

(b−a)− 1
2

∫ b

a
(x−a)(b−x) f ′′(x)dx

under suitable hypotheses on f . Answer

Exercise 443Establish the identity∫ b

a
f (x)dx− f (a)+ f (b)

2
(b−a) =−(b−a)3 f ′′(ξ)

12
for some point a< ξ < b, under suitable hypotheses on f . Answer

Exercise 444Establish the inequality
∣

∣

∣

∣

∫ b

a
f (x)dx− f (a)+ f (b)

2
(b−a)

∣

∣

∣

∣

≤ (b−a)2

8

∫ b

a
| f ′′(x)|dx.

under suitable hypotheses on f . Answer

Exercise 445Prove the following theorem and use it to provide the estimate for the
error given in the text for an application of the trapezoidalrule.
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Theorem 3.59Suppose that f is twice continuously differentiable at all points of
the interval[a,b]. Let

Tn =
b−a

n

[

f (a)+ f (b)
2

+
n−1

∑
k=1

f

(

a+k
b−a

n

)

]

denote the usual trapezoidal sum for f . Then∫ b

a
f (x)dx−Tn =−

n

∑
k=1

(b−a)3

12n3 f ′′(ξi)

for appropriately chosen pointsξi in each interval

[xi−1,xi ] =

[

a+
(i −1)(b−a)

n
,a+

i(b−a)
n

]

(i = 1,2,3, . . . ,n)

Answer

Exercise 446Prove the following theorem which elaborates on the error inthe trape-
zoidal rule.

Theorem 3.60Suppose that f is twice continuously differentiable at all points of
the interval[a,b]. Let

Tn =
b−a

n

[

f (a)+ f (b)
2

+
n−1

∑
k=1

f

(

a+k
b−a

n

)

]

denote the usual trapezoidal sum for f . Show that the error term for using Tn to
estimate

∫ b
a f (x)dx is approximately

−(b−a)2

12n2 [ f ′(b)− f ′(a)].

Answer

Exercise 447The integral ∫ 1

0
ex2

dx= 1.462651746

is correct to nine decimal places. The trapezoidal rule, forn= 1,2 would give∫ 1

0
ex2

dx≈ e0+e1

2
= 1.859140914

and ∫ 1

0
ex2

dx≈ e0+2e1/2+e1

4
= 1.753931093.

At what stage in the trapezoidal rule would the approximation be correct to nine deci-
mal places?

Answer

3.11.1 Maple methods

With the advent of computer algebra packages like Maple and Mathematica one does
not need to gain any expertise in computation to perform definite and indefinite integra-
tion. The reason, then, why we still drill our students on these methods is to produce
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an intelligent and informed user of mathematics. To illustrate here is a short Maple
session on a unix computer named dogwood. After giving the maple command we are
in Maple and have asked it to do some calculus questions for us. Specifically we are
seeking ∫

x2 dx,
∫ 2

0
x2/dx,

∫
sin(4x)dx, and

∫
x[3x2+2]5/3 dx.

All of these can be determined by hand using the standard methods taught for gen-
erations in calculus courses. Note that Maple is indifferent to our requirement that
constants of integration should always be specified or that the interval of indefinite in-
tegration should be acknowledged.

[31]dogwood% maple
|\^/| Maple 12 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> int(x^2,x);

3
x
----
3

> int(x^2,x=0..2);
8/3

> int(sin(4*x),x);
-1/4 cos(4 x)

> int(x*(3*x^2+2)^(5/3),x);
2 8/3

(3 x + 2)
-------------

16

If we go on to ask problems that would not normally be asked on acalculus exam-
ination then the answer may be more surprising. There is no simple expression of the
indefinite integral

∫
cosx3 dx and consequently Maple will not find a method. The first

try to obtain a precise value for
∫ 1

0 cosx3 dx produces

> int(cos(x^3),x=0..1);
memory used=3.8MB, alloc=3.0MB, time=0.36
memory used=7.6MB, alloc=5.4MB, time=0.77

/ 2/3 2/3
1/2 (1/3) | 2 sin(1) 2 2 (-3/2 cos(1) + 3/2 sin(1))

1/6 Pi 2 |30/7 ----------- - ---------------------------------
| 1/2 1/2
\ Pi Pi

2/3 2/3 \
2 sin(1) LommelS1(11/6, 3/2, 1) 3 2 (cos(1) - sin(1)) LommelS1(5/6, 1/2, 1)|

- 9/7 ---------------------------------- - ----------------------------------------------|
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1/2 1/2 |
Pi Pi /

The second try asks Maple to give a numerical approximation.Maple uses a numer-
ical integration routine with automatic error control to evaluate definite integrals that it
cannot do analytically.

> evalf(int(cos(x^3),x=0..1));
0.9317044407

Thus we can be assured that
∫ 1

0 cosx3 dx= 0.9317044407 correct to 10 decimal places.
In short, with access to such computer methods, we can be surethat our time in

studying integration theory is best spent on learning the theory so that we will under-
stand what we are doing when we ask a computer to make calculations for us.

3.11.2 Maple and infinite integrals

For numerical computations of infinite integrals one can again turn to computer algebra
packages. Here is a short Maple session that computes the infinite integrals∫ ∞

0
e−xdx,

∫ ∞

0
xe−x dx,

∫ ∞

0
x3e−xdx, and

∫ ∞

0
x10e−xdx.

We have all the tools to do these by hand, but computer methodsare rather faster.

[32]dogwood% maple
|\^/| Maple 12 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2008
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> int( exp(-x), x=0..infinity );

1

> int(x* exp(-x), x=0..infinity );
1

> int(x^3* exp(-x), x=0..infinity );
6

> int(x^10* exp(-x), x=0..infinity );
3628800

Exercise 448Show that
∫ ∞

0
xne−xdx= n!. Answer

3.12 More Exercises

Exercise 449 If f is continuous on an interval[a,b] and∫ b

a
f (x)g(x)dx= 0

for every continuous function g on[a,b] show that f is identically equal to zero there.
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Exercise 450 ( (Cauchy-Schwarz inequality))If f and g are continuous on an inter-
val [a,b] show that

(∫ b

a
f (x)g(x)dx

)2

≤
(∫ b

a
[ f (x)]2 dx

)(∫ b

a
[g(x)]2 dx

)

.

Answer

Exercise 451 In elementary calculus classes it is sometimes convenient to define the
natural logarithm by using the integration theory,

logx=
∫ x

1
dx.

Taking this as a definition, not a computation, use the properties of integrals to develop
the properties of the logarithm function. Answer

Exercise 452Let f be a continuous function on[1,∞) such thatlimx→∞ f (x) = α.
Show that if the integral

∫ ∞
1 f (x)dx converges, thenα must be0.

Exercise 453Let f be a continuous function on[1,∞) such that the integral
∫ ∞

1 f (x)dx
converges. Can you conclude thatlimx→∞ f (x) = 0?



Chapter 4

Beyond the calculus integral

Our goal in this final chapter is to develop the modern integral by allowing more func-
tions to be integrated. We still insist on the viewpoint that∫ b

a
F ′(x)dx= F(b)−F(a),

but we wish to relax our assumptions to allow this formula to hold even when there are
infinitely many points of nondifferentiability ofF.

There may, at first sight, seem not to be much point in allowingmore functions to
be integrated, except perhaps when one encounters a function without an integral where
one seems to be needed. But the theory itself demands it. Manyprocesses of analysis
lead from integrable functions [in the calculus sense] to functions for which a broader
theory of integration is required. The modern theory is an indispensable tool of analysis
and the theory is elegant and complete.

Remember that, for the (naive) calculus integral, an integrable functionf must have
an indefinite integralF for whichF ′(x) = f (x) at every point of an intervalwith finitely
many exceptions. The path to generalization is to allow infinitely many exceptional
points where the derivativeF ′(x) may not exist or may not agree withf (x).

Although we will allow an infinite set, we cannot allow too large a set of exceptions.
In addition, as we will find, we must impose some restrictionson the functionF if we
do allow an infinite set of exceptions. Those two ideas will drive the theory.

4.1 Countable sets

The first notion, historically, of a concept that captures the smallness of an infinite set
is due to Cantor. If all of the elements of a set can be written in a list, then the set is said
to be countable. This idea only becomes startling and interesting when one discovers
that there are sets whose elements cannot be written in a list.

Definition 4.1 A set of real numbers is countable if there is a sequence of real
numbers r1, r2, r3, . . . that contains every element of the set.

Exercise 454Prove that the empty set is countable. Answer

Exercise 455Prove that every finite set is countable. Answer

121
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Exercise 456Prove that every subset of a countable set is countable. Answer

Exercise 457Prove that the set of all integers (positive, negative or zero) is countable.
Answer

Exercise 458Prove that the set of all rational numbers is countable. Answer

Exercise 459Prove that the union of two countable sets is countable. Answer

Exercise 460Prove that the union of a sequence of countable sets is countable.
Answer

Exercise 461Suppose that F: (a,b) → R is a monotonic, nondecreasing function.
Show that such a function may have many points of discontinuity but that the collection
of all points where F is not continuous is countable. Answer

Exercise 462 If a function F : (a,b) → R has a right-hand derivative and a left-hand
derivative at a point x0 and the derivatives on the two sides are different, then that
point is said to be acorner. Show that a function may have many corners but that the
collection of all corners is countable. Answer

4.1.1 Cantor’s theorem

Your first impression might be that few sets would be able to bethe range of a sequence.
But having seen in Exercise458that even the set of rational numbers that is seemingly
so large can be listed, it might then appear that all sets can be so listed. After all, can
you conceive of a set that is “larger” than the rationals in some way that would stop it
being listed? The remarkable fact that there are sets that cannot be arranged to form the
elements of some sequence was proved by Georg Cantor (1845–1918).

Theorem 4.2 (Cantor) No interval of real numbers is countable.

The proof is given in the next few exercises.

Exercise 463Prove that there would exist a countable interval if and onlyif the open
interval (0,1) is itself countable. Answer

Exercise 464Prove that the open interval(0,1) is not countable, using (as Cantor
himself did) properties of infinite decimal expansions to construct a proof. Answer

Exercise 465Some novices, on reading the proof of Cantor’s theorem, say “Why can’t
you just put the number c that you found at the front of the list.” What is your rejoinder?

Answer

Exercise 466Give a proof that the interval(a,b) is not countable using the nested
sequence of intervals argument. Answer
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Exercise 467We define a real number to bealgebraicif it is a solution of some poly-
nomial equation

anxn+an−1xn−1+ · · ·+a1x+a0 = 0,

where all the coefficients are integers. Thus
√

2 is algebraic because it is a solution of
x2−2 = 0. The numberπ is not algebraic because no such polynomial equation can
ever be found (although this is hard to prove). Show that the set of algebraic numbers
is countable. Answer

Exercise 468A real number that is not algebraic is said to betranscendental. For
example, it is known that e andπ are transcendental. What can you say about the
existence of other transcendental numbers? Answer

4.2 Derivatives which vanish outside of countable sets

Our first attempt to extend the indefinite and definite integral to handle a broader class
of functions is to introduce a countable exceptional set into the definitions. We have
used finite exceptional sets up to this point. Using countable sets will produce a much,
more general integral.

The principle is the following: ifF is a continuous function on an intervalI and if
F ′(x) = 0 for all but countably many points inI thenF must be constant. We repeat the
statement of the theorem here; the proof has already appeared in Section1.9.5.

Theorem 4.3 Let F : (a,b) → R be a function that is continuous at every point in
an open interval(a,b) and suppose that F′(x) = 0 for all x ∈ (a,b) with possibly
countably many exceptions. Then F is a constant function.

Exercise 469Suppose that F: [a,b]→ R and G: [a,b]→ R are uniformly continuous
and that f is a function for which each of the statements F′(x) = f (x) and G′(x) = f (x)
holds for all x∈ (a,b) with possibly countably many exceptions. Show that F and G
differ by a constant. Answer

4.2.1 Calculus integral [countable set version]

Our original calculus integral was defined in way that was entirely dependent on the
simple fact that continuous functions that have a zero derivative at all but a finite number
of points must be constant. We now know that that continuous functions that have a zero
derivative at all but a countable number of points must also be constant. Thus there is
no reason not to extend the calculus integral to allow a countable exceptional set.



124 CHAPTER 4. BEYOND THE CALCULUS INTEGRAL

Definition 4.4 The following describes an extension of our integration theory:

• f is a function defined at each point of a bounded open interval(a,b) with
possibly countably many exceptions.

• f is the derivative of some function in this sense: there exists a uniformly
continuous function F: (a,b) → R with the property that F′(x) = f (x) for
all a < x< b with at most a countable number of exceptions.

• Then the function f is said to be integrable [in the new sense]and the value
of the integral is determined by∫ b

a
f (x)dx= F(b−)−F(a+).

Zakon’s Analysis text. There is currently at least one analysis textbook available1that
follows exactly this program, replacing the Riemann integral by the Newton integral
(with countably many exceptions):

Mathematical Analysis I, by Elias Zakon, ISBN 1-931705-02-X, pub-
lished by The Trillia Group, 2004. 355+xii pages, 554 exercises, 26 fig-
ures, hypertextual cross-references, hyperlinked index of terms. Download
size: 2088 to 2298 KB, depending on format.

This can be downloaded freely from the web site

www.trillia.com/zakon-analysisI.html

Inexpensive site licenses are available for instructors wishing to adopt the text.
Zakon’s text offers a serious analysis course at the pre-measure theory level, and

commits itself to the Newton integral. There are rigorous proofs and the presentation is
carried far enough to establish that all regulated2 functions are integrable in this sense.

Exercise 470Show that the countable set version of the calculus integraldetermines
a unique value for the integral, i.e., does not depend on the particular antiderivative F
chosen. Answer

Exercise 471 In Exercise258we asked the following:

Define a function F: [0,1] → R in such a way that F(0) = 0, and for
each odd integer n= 1,3,5. . . , F(1/n) = 1/n and each even integer n=
2,4,6. . . , F(1/n) = 0. On the intervals[1/(n+1),1/n] for n= 1,2,3, the
function is linear. Show that

∫ b
a F ′(x)dx exists as a calculus integral for all

0< a< b≤ b but that
∫ 1

0 F ′(x)dx does not.

1I am indebted to Bradley Lucier, the founder of the Trillia Group, for this reference. The text has been
used by him successfully for beginning graduate students atPurdue.

2Regulated functions are uniform limits of step functions. Consequently regulated functions are
bounded and have only a countable set of points of discontinuity. So our methods would establish in-
tegrability in this sense. One could easily rewrite this text to use the Zakon integral instead of the calculus
integral. We won’t.

http://www.trillia.com/zakon-analysisI.html
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Show that the new version of the calculus integral would handle this easily. Answer

Exercise 472Show that all bounded functions with a countable number of discontinu-
ities must be integrable in this new sense.

Answer

Exercise 473Show that the new version of the integral has a property that the finite
set version of the integral did not have: if fn is a sequence of functions converging
uniformly to a function f on[a,b] and if each fn is integrable on[a,b] then the function
f must be integrable there too.

Exercise 474Rewrite the text to use the countable set version of the integral rather
than the more restrictive finite set version. Answer

Exercise 475 (limitations of the calculus integrals)Find an example of a sequence
of nonnegative, integrable functions gk(x) on the interval[0,1] such that such that

∞

∑
k=1

(∫ b

a
gk(x)dx

)

is convergent, and yet f= ∑∞
k=1 gk is not integrable in the calculus sense for either the

finite set or countable set version.

[Note: this functionshouldbe integrable and the value of this integralshouldbe the
sum of the series. The only difficulty is that we cannot integrate enough functions. The
Riemann integral has the same defect; the integral introduced later on does not.

Answer

4.3 Sets of measure zero

We shall go beyond countable sets in our search for a suitableclass of small sets. A set
is countable if it is small in the sense of counting. This is because we have defined a set
to be countable if we can list off the elements of the set in thesame way we list off all
thecountingnumbers (i.e., 1, 2, 3, 4, . . . ).

We introduce a larger class of sets that is small in the sense of measuring; here we
mean measuring the same way that we measure the length of an interval [a,b] by the
numberb−a.

Our sets of measure zero are defined using subpartitions and very simple Riemann
sums. Later on in our more advanced course we will find severalother characterizations
of this important class of sets.
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Definition 4.5 A set of real numbers N is said to havemeasure zeroif for everyε>
0 and every pointξ ∈ N there is aδ(ξ)> 0 with the following property: whenever
a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ N and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then
n

∑
i=1

(di −ci)< ε.

Recall that in order for the subset

{([ai ,bi ],ξi) : i = 1,2, . . . ,n}
to be a subpartition, we require merely that the intervals{[ai ,bi ]} do not overlap and
we always require that the associated pointξi belong to the interval[xi−1,xi ] with which
it is paired. The collection here is not necessarily a partition. Our choice of language,
calling it a subpartition, indicates that it could be (but won’t be) expanded to be a
partition.

Exercise 476Show that every finite set has measure zero. Answer

Exercise 477Show that every countable set has measure zero. Answer

Exercise 478Show that no interval has measure zero. Answer

Exercise 479Show that every subset of a set of measure zero must have measure zero.
Answer

Exercise 480Show that the union of two sets of measure zero must have measure zero.
Answer

Exercise 481Show that the union of a sequence of sets of measure zero must have
measure zero. Answer

Exercise 482Suppose that{(ak,bk)} is a sequence of open intervals and that
∞

∑
k=1

(bk−ak)< ∞.

If E is a set and every point in E belongs to infinitely many of the intervals{(ak,bk)},
show that E must have measure zero. Answer
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Figure 4.1: The third stage in the construction of the Cantorternary set.

4.3.1 The Cantor dust

In order to appreciate exactly what we intend by a set of measure zero we shall introduce
a classically important example of such a set: the Cantor ternary set. Mathematicians
who are fond of the fractal language call this set theCantor dust. This suggestive phrase
captures the fact that the Cantor set is indeed truly small even though it is large in the
sense of counting; it is measure zero but uncountable.

We begin with the closed interval[0,1]. From this interval we shall remove a dense
open setG. It is easiest to understand the setG if we construct it in stages. LetG1 =
(

1
3,

2
3

)

, and letK1 = [0,1] \G1. Thus

K1 =

[

0,
1
3

]

∪
[

2
3
,1

]

is what remains when the middle third of the interval [0,1] isremoved. This is the first
stage of our construction.

We repeat this construction on each of the two component intervals of K1. Let
G2 =

(

1
9,

2
9

)

∪
(

7
9,

8
9

)

and letK2 = [0,1] \ (G1∪G2). Thus

K2 =

[

0,
1
9

]

∪
[

2
9
,
1
3

]

∪
[

2
3
,
7
9

]

∪
[

8
9
,1

]

.

This completes the second stage.
We continue inductively, obtaining two sequences of sets,{Kn} and{Gn}. The set

K obtained by removing from[0,1] all of the open setsGn is called theCantor set.
Because of its construction, it is often called the Cantor middle third set. In an exercise
we shall present a purely arithmetic description of the Cantor set that suggests another
common name forK, theCantor ternary set. Figure 6.1 showsK1, K2, andK3.

We might mention here that variations in the constructions of K can lead to inter-
esting situations. For example, by changing the construction slightly, we can remove
intervals in such a way that

G′ =
∞⋃

k=1

(a′k,b
′
k)

with
∞

∑
k=1

(b′k−a′k) = 1/2

(instead of 1), while still keepingK′ = [0,1] \G′ nowhere dense and perfect. The re-
sulting setK′ created problems for late nineteenth-century mathematicians trying to de-
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velop a theory of measure. The “measure” ofG′ should be 1/2; the “measure” of [0,1]
should be 1. Intuition requires that the measure of the nowhere dense setK′ should be
1− 1

2 = 1
2. How can this be whenK′ is so “small?”

Exercise 483We have given explicit statements for K1 and K2,

K1 =

[

0,
1
3

]

∪
[

2
3
,1

]

and

K2 =

[

0,
1
9

]

∪
[

2
9
,
1
3

]

∪
[

2
3
,
7
9

]

∪
[

8
9
,1

]

.

What is K3? Answer

Exercise 484Show that if this process is continued inductively, we obtain two se-
quences of sets,{Kn} and{Gn} with the following properties: For each natural number
n

1. Gn is a union of2n−1 pairwise disjoint open intervals.

2. Kn is a union of2n pairwise disjoint closed intervals.

3. Kn = [0,1] \ (G1∪G2∪ ·· ·∪Gn).

4. Each component of Gn+1 is the “middle third” of some component of Kn.

5. The length of each component of Kn is 1/3n.

Exercise 485Establish the following observations:

1. G is an open dense set in[0,1].

2. Describe the intervals complementary to the Cantor set.

3. Describe the endpoints of the complementary intervals.

4. Show that the remaining set K= [0,1] \G is closed and nowhere dense in [0,1].

5. Show that K has no isolated points and is nonempty.

6. Show that K is a nonempty, nowhere dense perfect subset of[0,1].

Answer

Exercise 486Show that each component interval of the set Gn has length1/3n. Using
this, determine that the sum of the lengths of all component intervals of G, the set
removed from[0,1], is 1. Thus it appears that all of the length inside the interval[0,1]
has been removed leaving “nothing” remaining. Answer

Exercise 487Show that the Cantor set is a set of measure zero. Answer

Exercise 488Let E be the set of endpoints of intervals complementary to the Cantor
set K. Prove that the closure of the set E is the set K.
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Exercise 489Let G be a dense open subset of real numbers and let{(ak,bk)} be its set
of component intervals. Prove that H= R \G is perfect if and only if no two of these
intervals have common endpoints.

Exercise 490Let K be the Cantor set and let{(ak,bk)} be the sequence of intervals
complementary to K in[0,1]. For each integer k let ck = (ak +bk)/2 (the midpoint of
the interval(ak,bk)) and let N be the set of points ck for integers k. Prove each of the
following:

1. Every point of N is isolated.

2. If ci 6= c j , there exists an integer k such that ck is between ci and cj (i.e., no point
in N has an immediate “neighbor” in N).

Exercise 491Show that the Cantor dust K can be described arithmetically as the set

{x= .a1a2a3 . . . (base three): ai = 0 or 2 for each i= 1,2,3, . . .}.
Answer

Exercise 492Show that the Cantor dust is an uncountable set. Answer

Exercise 493Find a specific irrational number in the Cantor ternary set.Answer

Exercise 494Show that the Cantor ternary set can be defined as

K =

{

x∈ [0,1] : x=
∞

∑
n=1

in
3n for in = 0 or 2

}

.

Exercise 495Let

D =

{

x∈ [0,1] : x=
∞

∑
n=1

jn
3n for jn = 0 or 1

}

.

Show that D+D = {x+y : x,y∈ D}= [0,1]. From this deduce, for the Cantor ternary
set K, that K+K = [0,2].

Exercise 496A careless student makes the following argument. Explain the error.

“If G = (a,b), thenG= [a,b]. Similarly, if G=
⋃∞

i=1(ai ,bi) is an open set,
thenG=

⋃∞
i=1[ai ,bi ]. It follows that an open set G and its closureG differ

by at most a countable set. The closure just adds in all the endpoints.”
Answer
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4.4 The Devil’s staircase

The Cantor set allows the construction of a rather bizarre function that is continuous
and nondecreasing on the interval[0,1]. It has the property that it is constant on every
interval complementary to the Cantor set and yet manages to increase fromf (0) = 0 to
f (1) = 1 by doing all of its increasing on the Cantor set itself. It has sometimes been
called “the devil’s staircase” or simply the Cantor function.

Thus this is an example of a continuous function on the interval [0,1] which has
a zero derivative everywhere outside of the Cantor set. If wewere to try to develop a
theory of indefinite integration that allows exceptional sets of measure zero we would
have to impose some condition that excludes such functions.We will see that condition
in Section4.5.5.

4.4.1 Construction of Cantor’s function

Define the functionf in the following way. On the open interval(1
3,

2
3), let f = 1

2; on
the interval(1

9,
2
9), let f = 1

4; on (7
9,

8
9), let f = 3

4. Proceed inductively. On the 2n−1

open intervals appearing at thenth stage of our construction of the Cantor set, definef
to satisfy the following conditions:

1. f is constant on each of these intervals.

2. f takes the values
1
2n ,

3
2n , . . . ,

2n−1
2n

on these intervals.

3. If x andy are members of differentnth-stage intervals withx < y, then f (x) <
f (y).

This description definesf onG= [0,1]\K. Extendf to all of [0,1] by defining f (0) = 0
and, for 0< x≤ 1,

f (x) = sup{ f (t) : t ∈ G, t < x}.

Figure4.2 illustrates the initial stages of the construction. The function f is called
theCantor function. Observe thatf “does all its rising” on the setK.

The Cantor function allows a negative answer to many questions that might be asked
about functions and derivatives and, hence, has become a popular counterexample. For
example, let us follow this kind of reasoning. Iff is a continuous function on[0,1] and
f ′(x) = 0 for everyx∈ (0,1) then f is constant. (This is proved in most calculus courses
by using the mean value theorem.) Now suppose that we know less, that f ′(x) = 0 for
everyx∈ (0,1) excepting a “small” setE of points at which we know nothing. IfE is
finite it is still easy to show thatf must be constant. IfE is countable it is possible, but
a bit more difficult, to show that it is still true thatf must be constant. The question
then arises, just how small a setE can appear here; that is, what would we have to know
about a setE so that we could sayf ′(x) = 0 for everyx ∈ (0,1) \E implies that f is
constant?



4.4. THE DEVIL’S STAIRCASE 131

- x

6
y

1

1
2

1
4

3
4

1
8

3
8

5
8

7
8

11
3

2
3

1
9

2
9

7
9

8
9

Figure 4.2: The third stage in the construction of the Cantorfunction.

The Cantor function is an example of a function constant on every interval comple-
mentary to the Cantor setK (and so with a zero derivative at those points) and yet is
not constant. The Cantor set, since it is both measure zero and nowhere dense, might
be viewed as extremely small, but even so it is not insignificant for this problem.

Exercise 497 In the construction of the Cantor function complete the verification of
details.

1. Show that f(G) is dense in[0,1].

2. Show that f is nondecreasing on[0,1].

3. Infer from (a) and (b) that f is continuous on[0,1].

4. Show that f(K) = [0,1] and thus (again) conclude that K is uncountable.

Exercise 498Show that the Cantor function has a zero derivative everywhere on the
open set complementary to the Cantor set in the interval[0,1]. [In more colorful lan-
guage, we say that this function has a zero derivative almosteverywhere.]

Exercise 499Each number x in the Cantor set can be written in the form

x=
∞

∑
i=1

23−ni

for some increasing sequence of integers n1 < n2 < n3 < .. . . Show that the Cantor
function assumes the value F(x) = ∑∞

i=1 2−ni at each such point.

Exercise 500Show that the Cantor function is a monotone, nondecreasing function on
[0,1] that has these properties:

1. F(0) = 0,

2. F(x/3) = F(x)/2„
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3. F(1−x) = 1−F(x).

[In fact the Cantor function is the only monotone, nondecreasing function on[0,1] that
has these three properties.] Answer

4.5 Functions with zero variation

Sets of measure zero were defined by requiring certain small sums
n

∑
i=1

(bi −ai)

whenever a subpartition
{([ai ,bi ],ξi) : i = 1,2, . . . ,n}

is controlled by a functionδ(x). We are interested in other variants on this same theme,
involving sums of the form

n

∑
i=1

|F(bi)−F(ai)| or
n

∑
i=1

| f (ξi)|(bi −ai) or even
n

∑
i=1

|F(bi)−F(ai)− f (ξi)|(bi −ai)|.

A measurement of the sums
n

∑
i=1

|F(bi)−F(ai)|

taken over nonoverlapping subintervals is considered to compute thevariation of the
function F. This notion appears in the early literature and was formalized by Camile
Jordan (1838–1922) in the late 19th century under the terminology “variation of a func-
tion.”

We have already studied this concept in Section3.6.1. Here we focus on a narrower
notion, that of zero variation on specified subsets.

Zero variation We do not need the actual measurement of variation. What we do
need is the notion that a function haszero variation. This is a function that has only a
small change on a set, or whose growth on the set is insubstantial.

Definition 4.6 A function F : (a,b) → R is said to havezero variationon a set
E ⊂ (a,b) if for everyε > 0 and every x∈ E there is aδ(x)> 0

n

∑
i=1

|F(bi)−F(ai)|< ε

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ E∩ [ai,bi ] and bi −ai < δ(ξi).

We saw a definition very similar to this when we defined a set of measure zero. In
fact the formal nature of the definition is exactly the same asthe requirement that a set
E should have measure zero. Exercise501makes this explicit.

As we shall discover, all of the familiar functions of the calculus turn out to have
zero variation on sets of measure zero. Only rather pathological examples (notably the
Cantor function) do not have this property.
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Exercise 501Show that a set E has measure zero if and only if the function F(x) = x
has zero variation on E. Answer

Exercise 502Suppose that F: R→R has zero variation on a set E1 and that E2 ⊂ E1.
Show that then F has zero variation on E2. Answer

Exercise 503Suppose that F: R→ R has zero variation on the sets E1 and E2. Show
that then F has zero variation on the union E1∪E2. Answer

Exercise 504Suppose that F: R → R has zero variation on each member of a se-
quence of sets E1, E2, E3, . . . . Show that then F has zero variation on the union

⋃∞
n=1En.

Answer

Exercise 505Prove the following theorem that shows another important version of
zero variation. We could also describe this as showing a function has small Riemann
sums over sets of measure zero.

Theorem 4.7Let f be defined at every point of a measure zero set N and letε > 0.
Then for every x∈ N there is aδ(x)> 0 so that

n

∑
i=1

| f (ξi)|(bi −ai)< ε

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ N∩ [ai ,bi ] and bi −ai < δ(ξi).
Answer

Exercise 506Let F be defined on an open interval(a,b) and let f be defined at every
point of a measure zero set N⊂ (a,b). Suppose that F has zero variation on N. Let
ε > 0. Show for every x∈ N there is aδ(x)> 0 such that

n

∑
i=1

|F(bi)−F(ai)− f (ξi)(bi −ai)|< ε

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which Answer

Exercise 507Let F be defined on an open interval(a,b) and let f be defined at every
point of a set E. Suppose that F′(x) = f (x) for every x∈ E. Letε > 0. Show for every
x∈ E there is aδ(x)> 0 such that

n

∑
i=1

|F(bi)−F(ai)− f (ξi)(bi −ai)|< ε

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ E∩ [ai,bi ] and bi −ai < δ(ξi).

Answer

Exercise 508Show that the Cantor function has zero variation on the open set com-
plementary to the Cantor set in the interval[0,1].

Answer



134 CHAPTER 4. BEYOND THE CALCULUS INTEGRAL

4.5.1 Zero variation lemma

The fundamental growth theorem that we need shows that only constant functions have
zero variation on an interval.

Theorem 4.8 Suppose that a function F: (a,b) → R has zero variation on the
entire interval(a,b). Then F is constant on that interval.

Exercise 509Use a Cousin covering argument to prove the theorem. Answer

Exercise 510Show that the Cantor function does not have zero variation onthe Cantor
set. Answer

4.5.2 Zero derivatives imply zero variation

There is an immediate connection between the derivative andits variation in a set.
In the simplest case we see that a function has zero variationon a set on which it has
everywhere a zero derivative. There is a partial converse that would be studied in a more
advanced course: if a functionF : (a,b)→ R has zero variation onE thenF ′(x) = 0 at
almost every pointx of E. For this chapter we need only the one direction.

Theorem 4.9 Suppose that a function F: (a,b) → R has a zero derivative F′(x)
at every point x of a set E⊂ (a,b). Then F has zero variation on E.

Exercise 511Prove Theorem4.9by applying Exercise507.

Exercise 512Give a direct proof of Theorem4.9. Answer

Exercise 513 (comparison test for variations)Suppose that F, G: R→ R.

1. If |F ′(x)| ≤ |G′(x)| for every point x in a compact interval[a,b] except for x in a
set on which F has variation zero, show that

|F(b)−F(a)| ≤V(F, [a,b]) ≤V(G, [a,b]).

2. If F ′(x) ≤ |G′(x)| for every point x in a compact interval[a,b] except for x in a
set on which F has variation zero, show that

F(b)−F(a) ≤V(G, [a,b]).
Answer

4.5.3 Continuity and zero variation

There is an intimate and immediate relation between continuity and zero variation.

Theorem 4.10 Suppose F: (a,b)→R. Then F is continuous at a point x0 ∈ (a,b)
if and only if F has zero variation on the singleton set E= {x0}.
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Corollary 4.11 Suppose F: (a,b) → R. Then F is continuous at each point
c1, c2, c3, . . . ck ∈ (a,b) if and only if F has zero variation on the finite set
E = {c1,c2,c3, . . .ck}.

Corollary 4.12 Suppose F: (a,b)→R. Then F is continuous at each point c1, c2,
c3, . . . from a sequence of points in(a,b) if and only if F has zero variation on the
countable set E= {c1,c2,c3, . . .}.

Exercise 514Suppose F: (a,b) → R. Show that F is continuous at every point in a
set E if and only F has zero variation in every countable subset of E.

4.5.4 Lipschitz functions and zero variation

For us, one of the key properties of Lipschitz functions is that they must always have
zero variation on sets of measure zero. In the next section weshall describe such
functions as beingabsolutely continuous.

Theorem 4.13 Suppose that F: [a,b]→R is a Lipschitz function. Then F has zero
variation on every subset of(a,b) that has measure zero.

As a consequence of this theorem we can show that Lipschitz functions behave in
a way that is useful for integration theory. We took much advantage of the fact that two
continuous functions whose derivatives agree mostly everywhere or nearly everywhere
differ by a constant. For Lipschitz functions we can use “almost everywhere” and have
the same conclusion.

Theorem 4.14 Suppose that F: [a,b] → R is a Lipschitz function and that F has
a zero derivative at almost every point of the interval(a,b). Then F is a constant.

Corollary 4.15 Suppose that F, G: [a,b] → R are Lipschitz functions and that
F ′(x) = G′(x) at almost every point x of the interval(a,b). Then F and G differ by
a constant.

Exercise 515Prove Theorem4.13.

Exercise 516Prove Theorem4.14and its corollary.

4.5.5 Absolute continuity [variational sense]

We have seen that the functionF(x) = x has zero variation on a setN precisely when
that setN is a set of measure zero. We see, then, thatF(x) = x has zero variation
on all sets of measure zero. Most functions that we have encountered in the calculus
also have this property. All Lipschitz functions have this property (as we have seen in
Theorem4.13).

We shall see, too, that all differentiable functions have this property. It plays a vital
role in the theory; such functions are said to be absolutely continuous in the variational
sense3.

3The idea is due essentially to Arnaud Denjoy (1884–1974) as ageneralized version of the absolute
continuity as defined by Vitali. In the treatiseTheory of the Integralby Stanislaw Saks this concept appears
under the terminology ACG∗. The definition here is easier and much more accessible.
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Definition 4.16 A uniformly continuous function F: [a,b[→ R is said to beabso-
lutely continuousin the variational sense on[a,b] if F has zero variation on every
subset N of the interval(a,b) that has measure zero.

The exercises show that most continuous functions we encounter in the calculus
will be absolutely continuous. In fact the only continuous function we have seen so
far that is not absolutely continuous is the Cantor function. We would likely drop the
phrase “in the variational sense” when it is clear that this is what we intend4.

Exercise 517Show that the function F(x) = x is absolutely continuous on every open
interval.

Exercise 518Show that a linear combination of absolutely continuous functions is
absolutely continuous.

Exercise 519Show that a Lipschitz function is absolutely continuous.

Exercise 520Give an example of an absolutely continuous function that isnot Lips-
chitz.

Exercise 521Show that the Cantor function is not absolutely continuous on [0,1].

Exercise 522Suppose that a uniformly continuous function F: [a,b] → R is differen-
tiable at each point of the open interval(a,b). Show that F is absolutely continuous on
[a,b].

Exercise 523Suppose that that a uniformly continuous function F: [a,b] → R is dif-
ferentiable at each point of the open interval(a,b) with finitely many exceptions. Show
that F is absolutely continuous on[a,b].

Exercise 524Suppose that that a uniformly continuous function F: [a,b] → R is dif-
ferentiable at each point of the open interval(a,b) with countably many exceptions.
Show that F is absolutely continuous on[a,b].

Exercise 525Suppose that that a uniformly continuous function F: [a,b]→R is differ-
entiable at each point of the open interval(a,b) with the exception of a set N⊂ (a,b).
Suppose further that F has zero variation on N. Show that F is absolutely continuous
on [a,b].

Exercise 526Suppose that F: [a,b]→R is absolutely continuous on the interval[a,b].
Then by definition F has zero variation on every subset of measure zero. Is it possible
that F has zero variation on subsets that are not measure zero?

4This is, however, a bit dangerous. The concept of absolute continuity is used in the literature in two
different ways. The first, in classical real analysis, uses the Vitali sense of the next section. The second
uses a measure-theoretic version which is closer to the intent meant in the variational senses.
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Exercise 527A function F: [a,b] → R is said to havefinite derived numberson a set
E ⊂ (a,b) if, for each x∈ E, there is a number Mx and one can chooseδ > 0 so that

∣

∣

∣

∣

F(x+h)−F(x)
h

∣

∣

∣

∣

≤ Mx

whenever x+h∈ I and |h| < δ. Suppose that that a uniformly continuous function F:
[a,b]→R has finite derived numbers at every point of(a,b). Show that F is absolutely
continuous on[a,b]. [cf. Exercise171.]

4.5.6 Absolute continuity [Vitali’s sense]

There is a type of absolute continuity, due to Vitali, that isvery similar to theε–δ
definition of uniform continuity. This the first version of absolute continuity in the
literature. The concept is due to Giuseppe Vitali (1875–1932) who introduced it is as
the correct characterization of the property of indefinite integrals in the Lebesgue theory
of integration.

Definition 4.17 A function F: [a,b]→R is absolutely continuous in Vitali’s sense
on [a,b] provided that for everyε > 0 there is aδ > 0 so that

n

∑
i=1

|F(xi)−F(yi)|< ε

whenever{[xi ,yi ]} are nonoverlapping subintervals of[a,b] for which
n

∑
i=1

(yi −xi)< δ.

This condition is strictly stronger than absolute continuity in the variational sense:
there are absolutely continuous functions that are not absolutely continuous in Vitali’s
sense. In fact we should remember these implications:

Lipschitz =⇒ AC [Vitali sense]=⇒ AC [variational sense].

The arrows cannot be reversed.
The full story of the connection between the two concepts is explained by the notion

of bounded variation: a function is absolutely continuous in Vitali’s sense if and only
if it is absolutely continuous in the variational sense and it also has bounded variation.
This is left for a more advanced course as it is not needed for our exposition.

Exercise 528Prove that if F is absolutely continuous in Vitali’s sense on[a,b] then F
is uniformly continuous there.

Exercise 529Prove that if F is absolutely continuous in Vitali’s sense on[a,b] then F
is absolutely continuous in the variational sense on[a,b].

Exercise 530Prove that ifF is absolutely continuous in Vitali’s sense on[a,b] then F
has bounded variation on[a,b].

Exercise 531Prove that if F is Lipschitz then F is absolutely continuous in Vitali’s
sense.
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Exercise 532Show that an everywhere differentiable function must be absolutely con-
tinuous in the variational sense on any interval[a,b] but need not be absolutely contin-
uous in Vitali’s sense on[a,b].

4.6 The integral

Our theory so far in Chapters 2 and 3 has introduced and studied the calculus integral,
both as an indefinite and a definite integral. The key point in that theory was simply
this observation:

⋆ Continuous functions whose derivatives are determined at all but finitely
many points are unique up to an additive constant.

The whole theory of the calculus integral was based on this simple concept. We can
consider that this simple phrase is enough to explain the elementary theory of integra-
tion.

The exceptional set that we allowed was always finite. To go beyond that and
provide a more comprehensive integration theory we must allow infinite sets. We have
seen that sets of measure zero offer a useful class of exceptional sets. But we also saw
the Cantor function whose derivative is zero everywhere except on the measure zero
Cantor set, and yet the Cantor function is not constant. Thussome further restriction
must be made on the functions that are allowed as our indefinite integral; continuity is
not enough.

The modern theory is essentially the same as the calculus integral, except that the
observation⋆ above is replaced by this one:

⋆ ⋆ Absolutely continuous functions whose derivatives are determined at
all but a set of measure zero are unique up to an additive constant.

Here we can use either version of absolute continuity, either the variational version or
the Vitali version. Moreover, since Lipschitz functions are absolutely continuous, we
could use those.

4.6.1 The Lebesgue integral of bounded functions

Lebesgue gave a number of definitions for his integral; the most famous is the construc-
tive definition using his measure theory. He also gave a descriptive definition similar
to the calculus definitions that we are using in this text. Forbounded functions his
definition5 is exactly as given below.

5Here is a remark on this fact fromFunctional Analysis, by Frigyes Riesz, Bela Szökefalvi-Nagy, and
Leo F. Boron: “Finally, we discuss a definition of the Lebesgue integral based on differentiation, just as
the classical integral was formerly defined in many textbooks of analysis. A similar definition, if only for
bounded functions, was already formulated in the first edition of Lebesgue’sLeçons sur l’intégration, but
without being followed up: ‘A bounded functionf (x) is said to be summable if there exists a function
F(x) with bounded derived numbers [i.e., Lipschitz] such thatF(x) has f (x) for derivative, except for a
set of values ofx of measure zero. The integral in(a,b) is then, by definition,F(b)−F(a).’
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Definition 4.18 (Lebesgue integral of bounded functions)Let f be a bounded
function that is defined at almost every point of[a,b]. Then, f is said to be
Lebesgue integrableon [a,b] if there is a Lipschitz function F: [a,b] → R such
that F′(x) = f (x) at every point of(a,b) with the exception of points in a set of
measure zero. In that case we define∫ b

a
f (x)dx= F(b)−F(a)

and this number is called theintegralof f on [a,b].

This integral (the Lebesgue integral) applied to bounded functions does go quite
a bit “beyond the calculus integral.” For bounded functions, the Lebesgue integral
includes the calculus integral and integrates many important classes of functions that
the calculus integral cannot manage.

Further study of the Lebesgue integral requires learning the measure theory. The
traditional approach is to start with the measure theory andarrive at these descriptive
descriptions of his integral only after many weeks. There isan abundance of good texts
for this. Try to remember when you are going through such a study that eventually,
after much detail, you will indeed arrive back at this point of seeing the integral as an
antiderivative.

4.6.2 The Lebesgue integral in general

The use of Lipschitz functions in our definition of the definite integral was motivated by
the fact that two Lipschitz functions whose derivatives agree almost everywhere must
differ by a constant. This allows us to define an integral entirely similar to the calculus
integral of Chapter 3. This definition however can apply onlyto bounded functions.

For unbounded functions we need a more general definition that goes beyond the
scope of Lipschitz functions. For this the concept of absolute continuity in the Vitali
sense will replace the requirement that we have a Lipschitz function.

The Lebesgue integral We choose now to define our integral based on the notion
of absolute continuity in the Vitali sense. A more general kind of integral is obtained
in Section4.6.3below when we choose to use absolute continuity in the broader vari-
ational sense. For both historical and technical reasons itis important to distinguish
between the two theories.

Definition 4.19 (Definite Lebesgue integral)Let f : (a,b)→R be a function de-
fined at all points of the open interval(a,b) with the possible exception of a set
of measure zero. Then f is said to be Lebesgue integrable on the closed, bounded
interval [a,b] provided there is a function F: (a,b)→ R so that

1. F is absolutely continuous in the Vitali sense on[a,b].

2. F′(x) = f (x) at all points x of(a,b) with the possible exception of a set of
measure zero.

In that case we define
∫ b

a
f (x)dx= F(b)−F(a).



140 CHAPTER 4. BEYOND THE CALCULUS INTEGRAL

For bounded functions, the requirement that the indefinite integralF is Lipschitz is
equivalent to the requirement that it be absolutely continuous in the Vitali sense. Thus
either of the two definitions may be used.

4.6.3 The integral in general

Finally we choose now to define an integral based on the notionof absolute continuity
in the variational sense. This offers the most general version of integration theory, one
that includes the two definitions for the Lebesgue integral given above.

Definition 4.20 (Definite integral) Let f : (a,b) → R be a function defined at all
points of the open interval(a,b) with the possible exception of a set of measure
zero. Then f is said to be integrable on the closed, bounded interval [a,b] provided
there is a function F: (a,b)→ R so that

1. F is absolutely continuous in the variational sense on[a,b].

2. F′(x) = f (x) at all points x of(a,b) with the possible exception of a set of
measure zero.

In that case we define
∫ b

a
f (x)dx= F(b)−F(a).

Recall that we have the following relation:

Lipschitz =⇒ AC (Vitali sense)=⇒ AC (variational sense).

From this we deduce these two facts:

For unbounded functions: Lebesgue integrable=⇒ integrable.

and

For bounded functions: Lebesgue integrable⇐⇒ integrable.

If a function is integrable in the sense of this definition, but not integrable in the
sense of the two previous definitions (i.e., is not Lebesgue integrable) then we would
need some appropriate terminology. The simplest for the purposes of our limited Chap-
ter 4 would be to use

integrable, but not Lebesgue integrable

or

nonabsolutely integrable.

This can occur if and only iff is unbounded and the function

F(x) =
∫ x

a
f (u)du (a≤ x≤ b)

is absolutely continuous in the variational sense, but is not absolutely continuous in
the Vitali sense. It can be shown that this would occur if and only it F does not have
bounded variation on[a,b]. Another equivalent condition would be that, whilef is
integrable, the absolute value| f | is not integrable. All of these remarks would be part
of a more advanced course than this chapter allows.
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4.6.4 The integral in general (alternative definition)

Sometimes it is more convenient to state the conditions for the integral with direct
attention to the set of exceptional points where the derivative F ′(x) = f (x) may fail.

Definition 4.21 (Definite integral) Let f : (a,b) → R be a function defined at all
points of the open interval(a,b) with the possible exception of a set of measure
zero. Then f is said to be integrable on the closed, bounded interval [a,b] provided
there is a function F: (a,b)→ R and there is a set N⊂ (a,b) so that

1. F is uniformly continuous on(a,b).

2. N has measure zero.

3. F′(x) = f (x) at all points x of(a,b) with the possible exception of points in
N.

4. F has zero variation on N.

In that case we define
∫ b

a
f (x)dx= F(b−)−F(a+).

Exercise 533Show that Definition4.20and Definition4.21are equivalent.

Exercise 534Under what hypotheses is∫ b

a
F ′(x)dx= F(b)−F(a)

a correct statement? Answer

Exercise 535Show that the new definition of definite integral (either Definition 4.20
or Definition4.21) includes the notion of definite integral from Chapter 3.

Exercise 536Show that the new definition of definite integral (either Definition 4.20
or Definition4.21) includes, as integrable, functions that would not be considered inte-
grable in Chapter 3.

4.6.5 Infinite integrals

Exactly the same definition for the infinite integrals∫ ∞

−∞
f (x)dx,

∫ ∞

a
f (x)dx, and

∫ b

−∞
f (x)dx

can be given as for the integral over a closed bounded interval.
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Definition 4.22 Let f be a function defined at every point of(∞,∞) with the pos-
sible exception of a set of measure zero. Then f is said to be integrable on(∞,∞)

provided there is a function F: (−∞,∞)→ R so that

1. F is absolutely continuous in the variational sense on every closed bounded
interval.

2. F′(x) = f (x) at all points x with the possible exception of a set of measure
zero.

3. Both limits F(∞) = limx→∞ F(x) and F(−∞) = limx→−∞ F(x) exist.

In that case the number
∫ ∞

−∞
f (x)dx=F(∞)−F(−∞), is called the definite integral

of f on the interval(∞,∞) .

Here the statement thatF is absolutely continuous in the variational sense on on
every closed bounded interval is equivalent to the simple assertion thatF is continuous
and has zero variation on every set of measure zero.

Similar definitions are available for∫ b

−∞
f (x)dx= F(b)−F(−∞)

and ∫ ∞

a
f (x)dx= F(∞)−F(a).

In analogy with the terminology of an infinite series∑∞
k=1ak we often say that the

integral
∫ ∞

a f (x)dx convergeswhen the integral exists. That suggests language asserting
that the integralconverges absolutelyif both integrals∫ ∞

a
f (x)dx and

∫ ∞

a
| f (x)|dx

exist.

4.7 Approximation by Riemann sums

We have seen that all calculus integrals can be approximatedby Riemann sums. We
have two modes of approximation, a uniform approximation and a pointwise approxi-
mation. The same is true for the advanced integration theory. In Theorem4.23below
we see that the property of being an integral (which is a property expressed in the lan-
guage of derivatives, zero measure sets and zero variation)can be completely described
by a property expressed by partitions and Riemann sums.

This theorem was first observed by the Irish mathematician Ralph Henstock. Since
then it has become the basis for a definition of the modern integral. The proof is ele-
mentary. Even so, it is remarkable and was not discovered until the 1950s, in spite of
intense research into integration theory in the preceding half-century.
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Theorem 4.23 (Henstock’s criterion) Suppose that f is an integrable function
defined at every point of a closed, bounded interval[a,b]. Then for everyε > 0
and every point x∈ [a,b] there is aδ(x) > 0 so that

n

∑
i=1

∣

∣

∣

∣

∫ bi

ai

f (x)dx− f (ξi)(bi −ai)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(bi −ai)

∣

∣

∣

∣

∣

< ε

whenever a partition of the interval[a,b]

{([ai ,bi ],ξi) : i = 1,2, . . . ,n}
is chosen for which

ξi ∈ [ai ,bi ] and bi −ai < δ(ξi).

This theorem is stated in only one direction: iff is integrable then the integral has
a pointwise approximation using Riemann sums. The conversedirection is true too
and can be used to define the integral by means of Riemann sums.Of course, one is
then obliged to develop the full theory of zero measure sets,zero variation and absolute
continuity in order to connect the two theories and show thatthey are equivalent.

The theorem provides only for a pointwise approximation by Riemann sums. It is
only under rather severe conditions that it is possible to find a uniform approximation
by Riemann sums. Exercises551, ??, and?? provide that information.

Exercise 537Prove Theorem4.23. Answer

4.8 Properties of the integral

The basic properties of integrals are easily studied for themost part since they are
natural extensions of properties we have already investigated for the calculus integral.
There are some surprises and some deep properties which wereeither false for the
calculus integral or were hidden too deep for us to find without the tools we have now
developed.

We know these formulas for the narrow calculus integral and we are interested now
in extending them to full generality.

4.8.1 Inequalities

Formula for inequalities: ∫ b

a
f (x)dx≤

∫ b

a
g(x)dx

if f (x) ≤ g(x) for all pointsx in (a,b) except possibly points of a set of measure zero.
We have seen this statement before for the calculus integralin Section?? where

we allowed only a finite number of exceptions for the inequality. Here is a precise
statement of what we intend here by this statement: If both functions f (x) andg(x)
have an integral on the interval[a,b] and, if f (x)≤ g(x) for all pointsx in (a,b) except
possibly points of a set of measure zero. then the stated inequality must hold.
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Exercise 538Complete the details needed to prove the inequality formula.
Answer

4.8.2 Linear combinations

Formula for linear combinations:∫ b

a
[r f (x)+sg(x)]dx= r

∫ b

a
f (x)dx+s

∫ b

a
g(x)dx (r,s∈R).

We have seen this statement before for the calculus integralin Section3.3.4Here is
a precise statement of what we intend now by this formula: If both functionsf (x) and
g(x) have an integral on the interval[a,b] then any linear combinationr f (x)+sg(x) (r,
s∈ R) also has an integral on the interval[a,b] and, moreover, the identity must hold.
The proof is an exercise in derivatives, taking proper care of the exceptional sets of
measure zero. We know, as usual, that

d
dx

(rF (x)+sG(x)) = rF ′(x)+sG′(x)

at any pointx at which bothF andG are differentiable.

Exercise 539Complete the details needed to prove the linear combinationformula.
Answer

4.8.3 Subintervals

Formula for subintervals: Ifa< c< b then∫ b

a
f (x)dx=

∫ c

a
f (x)dx+

∫ b

c
f (x)dx

The intention of the formula is contained in two statements in this case:

If the function f (x) has an integral on the interval[a,b] then f (x) must
also have an integral on any closed subinterval of the interval [a,b] and,
moreover, the identity must hold.

and

If the function f (x) has an integral on the interval[a,c] and also on the
interval[c,b] then f (x) must also have an integral on the interval[a,b] and,
moreover, the identity must hold.

Exercise 540Supply the details needed to prove the subinterval formula.Answer

4.8.4 Integration by parts

Integration by parts formula:∫ b

a
F(x)G′(x)dx= F(b)G(b)−F(a)G(b)−

∫ b

a
F ′(x)G(x)dx

The intention of the formula is contained in the product rulefor derivatives:
d
dx

(F(x)G(x)) = F(x)G′(x)+F ′(x)G(x)
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which holds at any point where both functions are differentiable. One must then give
strong enough hypotheses that the functionF(x)G(x) is an indefinite integral for the
function

F(x)G′(x)+F ′(x)G(x)

in the sense needed for our integral.

Exercise 541Supply the details needed to state and prove an integration by parts for-
mula for this integral.

Answer

4.8.5 Change of variable

The change of variable formula (i.e., integration by substitution) that we would expect
to find is this, under some hypotheses:∫ b

a
f (G(t))G′(t)dt =

∫ G(b)

G(a)
f (x)dx.

The proof for the calculus integral was merely an application of the chain rule for the
derivative of a composite function:

d
dx

F(G(x)) = F ′(G(x))G′(x).

Since our extended integral includes the calculus integralwe still have this formula for
all the old familiar cases.

It is possible to extend the formula to handle much more general situations. As-
sume, as usual, thatg is integrable on an interval[a,b] with

G(x) =
∫ x

a
g(s)ds (a≤ x≤ b)

and that f is integrable on an interval[c,d] that includes all the values ofG(x) for
x∈ [a,b]. Assume that

F(t) =
∫ t

a
f (u)du (c≤ t ≤ d)

Then we would like to be able to assert the change of variable formula:

F(G(x))−F(G(a)) =
∫ G(x)

G(a)
f (u)du=

∫ x

a
f (G(t))g(t)dt. (a≤ x≤ b).

There is an obvious necessary condition, namely that the composed functionF ◦G must
be absolutely continuous in the variational sense. Moreover, in order that the function
( f ◦G)g be not only integrable, but Lebesgue integrable, we would have a stricter neces-
sary condition, namely that the composed functionF ◦G must be absolutely continuous
in the Vitali sense.

Quite remarkably these necessary conditions are also sufficient. We must, however,
leave the proofs of these facts to our later, more advanced course.

Exercise 542Supply the details needed to state and prove at least one change of vari-
ables formula for this integral.

Answer
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Exercise 543 (no longer failed change of variables)In Exercise245 we discovered
that the calculus integral did not permit the change of variables, F(x) = |x| and G(x) =
x2 sinx−1, G(0) = 0 in the integral∫ 1

0
F ′(G(x))G′(x)dx= F(G(1))−F(G(0)) = |sin1|.

Is this valid now? Answer

4.8.6 What is the derivative of the definite integral?

What is
d
dx

∫ x

a
f (t)dt?

We know that
∫ x

a f (t)dt is an indefinite integral off and so, by definition,

d
dx

∫ x

a
f (t)dt = f (x)

at all points in the interval(a,b) except possibly at the points of a set of measure zero.
We can still make the same observation that we did in Section3.3.7for the calculus

integral:
d
dx

∫ x

a
f (t)dt = f (x)

at all pointsa< x< b at which f is continuous. But this is quite misleading here. The
function may be discontinuous everywhere, and yet the differentiation formula always
holds for most pointsx.

4.8.7 Monotone convergence theorem

For this integral we can integrate a limit of a monotone sequence by interchanging the
limit and the integral.

Theorem 4.24 (Monotone convergence theorem)Let fn : [a,b] → R (n =

1,2,3, . . . ) be a nondecreasing sequence of functions, each integrableon the in-
terval [a,b]. Suppose that, for all x in(a,b) except possibly a set of measure zero,

f (x) = lim
n→∞

fn(x).

Then f is integrableon [a,b] and
∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx

provided this limit exists.

The exciting part of this statement has been underlined. Unfortunately it is more
convenient for us to leave the proof of this fact to a more advanced course. Thus in the
exercise you are asked to prove only a weaker version in whichthe integrability of the
function f is assumed (not proved).

Exercise 544Prove the formula without the underlined statement, i.e., assume that f
is integrable and then prove the identity. Answer
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Exercise 545State and prove a version of the formula∫ b

a

(

lim
n→∞

fn(x)
)

dx= lim
n→∞

∫ b

a
fn(x)dx.

using uniform convergence as your main hypothesis.

4.8.8 Summation of series theorem

For this integral we can sum series of nonnegative terms and integrate term-by-term.

Theorem 4.25 (summation of series)Suppose that g1, g2, g3,. . . is a sequence of
nonnegative functions, each one integrable on a closed bounded interval[a,b].
Suppose that, for all x in(a,b) except possibly a set of measure zero,

f (x) =
∞

∑
k=1

gk(x).

Then f is integrableon [a,b] and
∫ b

a
f (x)dx=

∞

∑
k=1

(∫ b

a
gk(x)dx

)

(4.1)

provided the series converges.

The exciting part of this statement, again, has been underlined. Unfortunately it is
more convenient for us to leave the proof of this fact to a moreadvanced course. Thus
in the exercise you are asked to prove only a weaker version.

Exercise 546Prove the formula without the underlined statement, i.e., assume that f
is integrable and then prove the identity. Answer

4.8.9 Null functions

A function f : [a,b] → R is said to be a null function on[a,b] if it is defined at almost
every point of[a,b] and is zero at almost every point of[a,b]. Thus these functions are,
for all practical purposes, just the zero function. They areparticularly easy to handle in
this theory for that reason.

Exercise 547Let f : [a,b] → R be a null function on[a,b]. Then f is integrable on
[a,b] and ∫ b

a
f (x)dx= 0.

Answer

Exercise 548Suppose that f: [a,b]→ R is an integrable function on[a,b] and that∫ d

c
f (x)dx= 0 for all a ≤ c< d ≤ b.

Then f is a null function on[a,b]. Answer
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Exercise 549Suppose that f: [a,b]→R is a nonnegative, integrable function on[a,b]
and that ∫ b

a
f (x)dx= 0.

Then f is a null function on[a,b]. Answer

4.9 The Henstock-Kurweil integral

We leave our study of integration theory with two final sections included for historical
perspective. The Riemann sums property expressed in Theorem 4.23for all integrable
functions can be turned into a definition. That definition defines an integral. At first
sight it might appear to be yet more general than the integration theory that we have
already developed.

In fact this definition gives an equivalent theory. The advantage (which will require
further study) is that we have then two powerful methods for establishing the theory
of the integral, one as an antiderivative and another as a limiting property of Riemann
sums.

Definition 4.26 (Henstock-Kurzweil integral) Suppose that f is defined at every
point of a closed, bounded interval[a,b]. Then f is said to be Henstock-Kurzweil
integrable on[a,b] if there is a number I with the property that, for everyε > 0 and
every point x∈ [a,b] there is aδ(x) > 0 so that

∣

∣

∣

∣

∣

I −
n

∑
i=1

f (ξi)(bi −ai)

∣

∣

∣

∣

∣

< ε

whenever a partition of[a,b] {([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ [ai ,bi ] and bi −ai < δ(ξi).

The number I is set equal to
∫ b

a f (x)dx and the latter is called the Henstock-
Kurzweil integral of f on[a,b].

Defined everywhere? The definition of the Henstock-Kurzweil integral requires that
the function to be integrated must be defined at every point ofthe interval[a,b]. Our
descriptive definition of the equivalent integral requiresonly that the function is defined
at almost every point. In practice, users of the definition just given usually agree to
replace a functionf that is defined almost everywhere with an equivalent function g
that is defined everywhere.

Perspectives Here are some remarks that you should be able to prove or research.

1. The Henstock-Kurzweil integral not only includes, but isequivalent to the inte-
gral defined in this chapter.

2. There are bounded, Henstock-Kurzweil integrable functions that are not inte-
grable [naive calculus sense].

3. There are unbounded, Henstock-Kurzweil integrable functions that are not inte-
grable [naive calculus sense].
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4. The Henstock-Kurzweil integral is a nonabsolute integral, i.e., there are inte-
grable functionsf for which | f | is not integrable.

5. A function is Lebesgue integrable if and only both functions f and| f | are Henstock-
Kurzweil integrable.

6. The Henstock-Kurzweil integral is often considered to bethe correct version of
integration theory on the line, but one that only specialists would care to learn.

There are now a number of texts that start with Definition4.26 and develop the
theory of integration on the real line in a systematic way. Too much time, however,
working with the technical details of Riemann sums may not beentirely profitable
since most advanced textbooks will use measure theory exclusively. Our text

[TBB] B. S. Thomson, J. B. Bruckner, A. M.Bruckner,Elementary Real Analysis:
Dripped Version, ClassicalRealAnalysis.com (2008).

available for free at our website contains a brief account ofthe calculus integral and
several chapters devoted to the Henstock-Kurweil integral. After that integration theory
is developed we then can give a fairly rapid and intuitive account of the measure theory
that most of us are expected to know by a graduate level.

4.10 The Riemann integral

The last word in our elementary text goes to the unfortunate Riemann integral, long
taught to freshman calculus students in spite of the clamor against it. We can, however,
define this integral in a natural way that fits closely into theperspective of our current
chapter. This is not the way that most students would first encounter this integral. But,
having started our integration theory by the descriptive method of antidifferentiation, it
is a natural development for us.

We ask, naively, what bounded functions are integrable by our methods of this
chapter? This is naive because the correct answer to that question requires some so-
phisticated tools develop by Lebesgue in his 1901 thesis. Even so, we can find a limited
answer to this problem by using a tool which has helped us considerably in the earlier
chapters—continuity.

We recall that one of our fundamental tools was this: iff : [a,b]→ R is a bounded
function then there is a Lipschitz functionF : [a,b] → R so thatF ′(x) = f (x) at every
point x in [a,b] at which f is continuous. Consequently we know immediately thatf is
integrable if any one of the following is true:

1. f is uniformly continuous on[a,b].

2. f is bounded and is continuous mostly everywhere in[a.b].

3. f is bounded and is continuous nearly everywhere in[a,b].

4. f is bounded and is continuous almost everywhere in[a,b].

We take the most general answer (the last one) as our definition of a Riemann
integrable function.
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Definition 4.27 (Descriptive definition) A function f : [a,b] → R is said to be
Riemann integrable if f is bounded and is continuous almost everywhere in[a,b].

This definition would be used simply to specify an historically important subclass of
the family of integrable functions. There is great interestto us in knowing if a function
is integrable. Occasionally we might also like to know if that function is, in addition,
also Riemann integrable.

Exercise 550What properties can you determine are possessed by the classof Rie-
mann integrable functions on an interval[a,b]?

Answer

4.10.1 Constructive definition

The formal constructive definition is due to Riemann sometime in the middle of the
nineteenth century. The definition just given for Riemann integrable functions dates
to Lebesgue in the early years of the twentieth century. By taking the latter as our
definition we are reversing the history. This is a natural mathematical technique, taking
a later characterization as a starting point for a theory.

The earlier characterization is constructive and is familiar, of course, since we have
already studied the notion of uniform approximation by Riemann sums in Section3.5.3.

Definition 4.28 (Constructive definition) Let f be a bounded function that is de-
fined at every point of[a,b]. Then, f is said to beRiemann integrableon [a,b] if
there is a number I so that for everyε > 0 there is aδ > 0 so that

∣

∣

∣

∣

∣

I −
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε

whenever{([xi ,xi−1],ξi) : i = 1,2, . . .n} is a partition of[a,b] with each

xi −xi−1 < δ and ξi ∈ [xi−1,xi ].

The number I is set equal to(R)− ∫ b
a f (x)dx and the latter is called the Riemann

integral of f on[a,b].

The equivalence of Definition4.27 and Definition4.28 can be established by the
reader as a research project. The identity

(R)−
∫ b

a
f (x)dx=

∫ b

a
f (x)dx

also follows. This means that one can develop the theory of the Riemann integral in
two equivalent ways:

• Start with the constructive definition of the Riemann integral and develop the
properties of such an “integral.” Relate those properties to the calculus integral
of this text. [Not recommended, but commonly done this way.]

• Start with the calculus integrala and use the descriptive definition of Riemann
integrable function. This immediately places the Riemann integral in the correct
theoretical framework for understanding elementary integration theory. [Recom-
mended, but hardly ever done this way.]
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Defined everywhere? In our integration theory of this chapter we have required of
the function being integrated that it be defined at almost every point of the interval[a.b].
For the Riemann integral the function is very much required to be defined everywhere.
This is an unfortunate feature of the theory and must be kept in mind by the user.

Perspectives The Riemann integral does not go “beyond the calculus integral.” The
Riemann integral will handle no unbounded functions and we have been successful with
the calculus integral in handling many such functions. Evenfor bounded functions the
relation between the calculus integral and the Riemann integral is confused: there are
functions integrable in either of these senses, but not in the other.

Here are some remarks that you should be able to prove or research.

1. There are Riemann integrable functions that are not integrable [naive calculus
sense].

2. There are bounded, integrable functions [naive calculussense] that are not Rie-
mann integrable.

3. All Riemann integrable functions are integrable in the sense of Lebesgue.

4. A bounded function is Riemann integrable if and only if it is continuous at every
point, excepting possibly at points in a set of measure zero.

5. The Riemann integral is considered to be a completely inadequate theory of in-
tegration and yet is the theory that is taught to most undergraduate mathematics
students.

We do not believe that you need to know more about the Riemann integral than these
bare facts. Certainly any study that starts with Definition4.28and attempts to build and
prove a theory of integration is a waste of time; few of the techniques generalize to
other settings.

Exercise 551 (Riemann criterion) Show that a function f would be Riemann inte-
grable if and only if, for anyε > 0, there is a partition of the interval[a,b]

{([ai ,bi ],ξi) : i = 1,2, . . . ,n}
for which

n

∑
i=1

ω( f , [ai ,bi ])(bi −ai)< ε.
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Chapter 5

ANSWERS

5.1 Answers to problems

Exercise1, page 3

The symbols−∞ and∞ do not stand for real numbers; they are used in various contexts
to describe asituation. For example limn→∞

n
n+1 = 1 and limn→∞

n2

n+1 = ∞ have mean-
ings that do not depend on there being a real number called∞. Thus statinga< x< ∞
simply means thatx is a real number larger thana. [It does not mean thatx is a real
number smaller than∞, because there is no such number .]

Exercise2, page 4

Well, we have labeled some intervals as “bounded” and some asunbounded. But the
definition of a bounded setE requires that we produce a real numberM so that|x| ≤ M
for all x∈ E or, equivalently that−M ≤ x≤ M for all x∈ E Show that the labels are
correct in terms of this definition of what bounded means.

Exercise3, page 4

Well, we have labeled some intervals as “open” and some as not. But the definition of
an open setG requires that we produce, for eachx∈ G at least one interval(c,d) that
containsx and is contained inside the setG. Show that the labels are correct in terms of
the definition of what open means here. (It is almost immediate from the definition but
make sure that you understand the logic and can write it down.)

Exercise4, page 4

Again, we have labeled some intervals as “closed” and some asnot. Show that the
labels are correct in terms of the definition of what closed means here. Remember that
the definition of closed is given in terms of the complementary set. A setE is closed
if the setR \E is an open set. So, for these intervals, write down explicitly what that
complementary set is.

153
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Exercise5, page 4

For example[a,b) is not open because the pointa is in the set but we cannot find an
open interval that containsa and is also a subset of[a,b). Thus the definition fails at
one point of the set. For not closed, work with the complementof [a,b), i.e., the set
(−∞,a)∪ [b,∞) and find a point that illustrates that this set cannot be open.

A glib (and incorrect) answer would be to say that[a,b) is not open because we
have defined “open interval” to mean something different. The point here is that the
interval[a,b) would include only points betweena andb as well as the pointa itself. Is
that set open? No, because of the argument just given.

Exercise6, page 4

Yes, if the two open intervals have a point in common [i.e., are not disjoint]. Otherwise
the intersection would be the empty set/0; for this reason some authors [not us] call the
empty set a degenerate open interval.

Exercise7, page 4

Not in general. If the two intervals have only one point in common or no points in
common the intersection is not an interval. Yes, if the two closed intervals have at least
two points in common.

If we have agreed (as in the discussion to the preceding exercise) to call the empty
set a degenerate open interval we would be obliged also to call it a degenerate closed
interval.

Exercise8, page 4

Not necessarily. The intersection could, of course, be the empty set which we do not
interpret as an interval, and we must consider the empty set as bounded. Even if it is
not empty it need not be unbounded. Consider(∞,1)∩ (0,∞) = (0,1).

Exercise9, page 4

The only possibility would be

(a,b)∪ (c,d) = (s, t)

where the two intervals(a,b) and (c,d) have a point in common. In that cases=
min{a,c} andt = max{b,d}. If (a,b) and(c,d) are disjoint then(a,b)∪ (c,d) is not
an interval, but a disjoint union of two open intervals.

Exercise10, page 4

The only possibility would be(−∞,c]∪ [c,∞) = (−∞, ,∞).

Exercise11, page 4

Yes. Prove, in fact, that the union of a finite number of bounded sets is a bounded set.
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Exercise12, page 4

Remember thatA\B is the set of all points that are in the setA but are not in the setB.
If I is open you should discover thatI \C is a union of a finite number of disjoint open
intervals, and is an open set itself. For example ifI = (a,b) andC = {c1,c2, . . . ,cm}
where these are points inside(a,b) then

(a,b)\C = (a,c1)∪ (c1,c2)∪ (c2,c3)∪ ·· ·∪ (cm,b).

Exercise13, page 4

Remember thatA\B is the set of all points that are in the setA but are not in the setB.
The setI \C must be a union of intervals. There are a number of possibilities and

so, to answer the exercise, it is best to just catalog them. For example ifI = [a,b] and
C = {a,b} then[a,b]\C is the open interval(a,b). If C = {c1,c2, . . . ,cm} where these
are points inside(a,b) then

[a,b]\C = [a,c1)∪ (c1,c2)∪ (c2,c3)∪ ·· ·∪ (cm,b].

After handling all the possibilities it should be clear thatI \C is a union of a finite
number of disjoint intervals. The intervals need not all be open or closed.

Exercise14, page 6

If a sequence of real numbers{sn} converges to a real numberL then, for any choice of
ε0 > 0 there is an integerN so that

L− ε0 < sn < L+ ε0

for all integersn= N,N+1,N+2,N+3, . . . .
Thus to find a numberM larger than all the values of|sn| we can select the maximum

of these numbers:
|s1|, |s2|, |s3|, . . . , |sN−2|, |sN−1|, |L|+ ε0.

Exercise15, page 6

The simplest bounded sequence that is not convergent would besn = (−1)n. It is clearly
bounded and obviously violates the definition of convergent.

Exercise16, page 6

If a sequence of real numbers{sn} is Cauchy then, for any choice ofε0 > 0 there is an
integerN so that

|sn−sN|< ε0

for all integersn= N,N+1,N+2,N+3, . . . .
Thus to find a numberM larger than all the values of|sn| we can select the maximum

of these numbers:
|s1|, |s2|, |s3|, . . . , |sN−2|, |sN−1|, |sN|+ ε0.



156 CHAPTER 5. ANSWERS

The simplest bounded sequence that is not Cauchy would besn = (−1)n. It is
clearly bounded and obviously violates the definition of a Cauchy sequence.

Exercise17, page 6

The easiest of these is the formula

lim
n→∞

(asn+btn) = a
(

lim
n→∞

sn

)

+b
(

lim
n→∞

tn
)

.

You should certainly review your studies of sequence limitsif it does not immediately
occur to you how to prove this using the definition of limit.

The productsntn and quotientsn
tn

formulas are a little harder to prove and require a
bit of thinking about the inequalities. Make that when you state and try to prove the
quotient formula

lim
n→∞

sn

tn
=

limn→∞ sn

limn→∞ tn
you include an hypothesis to exclude division by zero on either side of the identity.

Exercise18, page 6

We already know by an earlier exercise that a convergent sequence would have to be
bounded, so it is enough for us to prove that on the assumptionthat this sequence is
bounded it must converge.

Since the sequence is bounded

L = sup{sn : n= 1,2,3, . . . }
is a real number. It has the property (as do all suprema) thatsn ≤ L for all n and, if
ε > 0, thensn > L− ε for somen.

Choose any integerN such thatsN > L− ε. Then for all integersn≥ N,

L− ε < sN ≤ sn ≤ L < L+ ε.
By definition, then,

lim
n→∞

sn = L.

Notice that if the sequence is unbounded then

sup{sn : n= 1,2,3, . . .}= ∞
and the sequence diverges to∞,

lim
n→∞

sn = ∞.

You should be able to give a precise proof of this that refers to Definition1.4.

Exercise19, page 6

We construct first a nonincreasing subsequence if possible.We call themth elementsm

of the sequence{sn} a turn-back point if all later elements are less than or equalto it, in
symbols ifsm ≥ sn for all n> m. If there is an infinite subsequence of turn-back points
sm1, sm2, sm3, sm4, . . . then we have found our nonincreasing subsequence since

sm1 ≥ sm2 ≥ sm3 ≥ sm4 ≥ . . . .
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This would not be possible if there are only finitely many turn-back points. Let us
suppose thatsM is the last turn-back point so that any elementsn for n > M is not a
turn-back point. Since it is not there must be an element further on in the sequence
greater than it, in symbolssm > sn for somem> n. Thus we can choosesm1 > sM+1

with m1 > M+1, thensm2 > sm1 with m2 > m1, and thensm3 > sm2 with m3 > m2, and
so on to obtain an increasing subsequence

sM+1 < sm1 < sm2 < sm3 < sm4 < .. .

as required.

Exercise20, page 7

The condition on the intervals immediately shows that the two sequences{an} and
{bn} are bounded and monotone. The sequence{an} is monotone nondecreasing and
bounded above byb1; the sequence{bn} is monotone nonincreasing and bounded be-
low by a1.

By Exercise18these sequences converge. Take eitherz= limn→∞ an orz= limn→∞ bn.
This point is in all of the intervals. The assumption that

lim
n→∞

(bn−an) = 0

makes it clear that only one point can be in all of the intervals.

Exercise21, page 7

This follows immediately from Exercises18and19. Take any monotone subsequence.
Any one of them converges by Exercise18 since the sequence and the subsequence
must be bounded.

Exercise22, page 7

If a sequence of real numbers{sn} converges to a real numberL then, for everyε > 0
there is an integerN so that

L− ε/2< sn < L+ ε/2

for all integersn≥ N.
Now consider pairs of integersn, m≥ N. We compute that

|sn−sm|= |sn−L+L−sm| ≤ |sn−L|+ |L−sm|< ε.
By definition then{sn} is a Cauchy sequence.

Exercise23, page 7

By the way, before seeing a hint you might want to ask for a reason for the terminology.
If every Cauchy sequence is convergent and every convergentsequence is Cauchy why
bother with two words for the same idea. The answer is that this same language is used
in other parts of mathematics where every convergent sequence is Cauchy, but not every
Cauchy sequence is convergent. Since we are on the real line in this course we don’t
have to worry about such unhappy possibilities. But we retain the language anyway.
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What is most important for you to remember is the logic of thisexercise so we will
sketch that and leave the details for you to write out:

1. Every Cauchy sequence is bounded.

2. Every sequence has a monotone subsequence.

3. Every bounded, monotone sequence converges.

4. Therefore every Cauchy sequence has a convergent subsequence.

5. When a Cauchy sequence has a subsequence converging to a numberL the se-
quence itself must converge to the numberL. [Using anε, N argument.]

Exercise24, page 7

If x does not belong toE then it belongs to a component interval(a,b) of R \E that
contains no points ofE. Thus there is aδ > 0 so that(x−δ,x+δ) does not contain any
points ofE. Since all points in the sequence{xn} belong toE this would contradict the
statement thatx= limn→∞ xn.

Exercise25, page 8

Just notice that

Sn−Sm =
n

∑
k=m−1

ak

provided thatn≥ m.

Exercise26, page 8

First observe, by the triangle inequality that
∣

∣

∣

∣

∣

n

∑
k=m

ak

∣

∣

∣

∣

∣

≤
n

∑
k=m

|ak| .

Then if we can choose an integerN so that
n

∑
k=m

|ak|< ε

for all n≥ m≥ N, we can deduce immediately that
∣

∣

∣

∣

∣

n

∑
k=m

ak

∣

∣

∣

∣

∣

< ε

for all n≥ m≥ N.
What can we conclude? If the series of absolute values

n

∑
k=1

|ak|= |a1|+ |a2|+ |a3|+ |a4|+ . . .

converges then it must follow, without further checking, that the original series
n

∑
k=1

ak = a1+a2+a3+a4+ . . .
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is also convergent. Thus to determine whether a series∑n
k=1 ak is absolutely convergent

we need only check the corresponding series of absolute values.

Exercise27, page 9

Just choose any finite number of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

so that the points are closer together thanδ. Then no matter what pointsξi in [xi−1,xi ]

we choose the partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[a,b] has the property that each interval[xi−1,xi ] has length smaller than
δ(ξi) = δ.

Note that this construction reveals just how hard it might seem to arrange for a
partition if the values ofδ(x) are allowed to vary.

Exercise28, page 9

For every pointx in a closed, bounded interval[a,b] let there be given a positive number
δ(x). Let us call an interval[c,d] ⊂ [a,b] a black interval if there exists at least one
partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[c,d] with the property that each interval[xi−1,xi ] has length smaller than
δ(ξi). If an interval is not black let us say it iswhite.

Observe these facts about black intervals.

1. If [c,d] and[d,e] are black then[c,e] is black.

2. If [c,d] contains a pointz for which d−c< δ(z) then[c,d] is black.

The first statement follows from the fact that any partitionsfor [c,d] and [d,e] can be
joined together to form a partition of[c,e]. The second statement follows from the
fact that{[c,d],z)} alone makes up a partition satisfying the required condition in the
Cousin lemma.

Now here is the nested interval argument. We wish to prove that [a,b] is black. If it
is not black then one of the two intervals[a, 1

2(a+b)] or [1
2(a+b),b] is white. If both

were black then statement (1) makes[a,b] black. Choose that interval (the white one)
as [a1,b1]. Divide that interval into half again and produce another white interval of
half the length. This produces[a1,b1] ⊃ [a2,b2] ⊃ [a3,b3] . . . , a shrinking sequence of
white intervals with lengths decreasing to zero,

lim
n→∞

(bn−an) = 0.

By the nested interval argument then there is a unique pointz that belongs to each of
the intervals and there must be an integerN so that(bN −aN)< δ(z). By statement (2)
above that makes[aN,bN] black which is a contradiction.
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Exercise29, page 9

For every pointx in a closed, bounded interval[a,b] let there be given a positive number
δ(x). Let us say that a numbera < r ≤ b can be reachedif there exists at least one
partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[a, r] with the property that each interval[xi−1,xi ] has length smaller than
δ(ξi).

DefineR as the last point that can be reached, i.e.,

R= sup{r : a< r ≤ b andr can be reached}.
This set is not empty since all points in(a,a+ δ(a)) can be reached. ThusR is a real
number no larger thanb. Check thatR itself can be reached. Indeed there must be
pointsr in the interval(R− δ(R),R] that can be reached (by the definition of sups). If
R− δ(R) < r < R andr can be reached, thenR also can be reached by simply adding
the element([r,R],R) to the partition for[a, r].

Is R< b? No since if it were then we could reach a bigger point by adding a suitable
pair ([R,s],R) to a partition for[a,R]. ConsequentlyR= b andb can be reached, i.e., it
is the last point that can be reached.

Exercise30, page 9

For eachx in [a,b] select a positive numberδ(x) so that the open interval

(x−δ(x),x+δ(x))
is inside some open interval of the familyC .

By Cousin’s lemma there exists at least one partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[a,b] with the property that each interval[xi−1,xi ] has length smaller than
δ(ξi). For eachi = 1,2,3, . . . select fromC some open interval(ci ,di) that contains

(ξi −δ(ξi),ξi +δ(ξi)).

This finite list of intervals fromC

(c1,d1), (c2,c3), , . . . , (cn,dn)

contains every point of[a,b] since every interval[xi−1,xi ] is contained in one of these
open intervals.

Exercise31, page 9

Use a proof by contradiction. For example if(a,b) ⊂ G1∪G2, G1∪G2 = /0, then for
everyx∈ G1∩ [a,b] there is aδ(x)> 0 so that

(x−δ(x),x+δ(x)) ⊂ G1

and for everyx∈ G2∩ [a,b] there is aδ(x) > 0 so that

(x−δ(x),x+δ(x)) ⊂ G2.
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By Cousin’s lemma there exists at least one partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[a,b] with the property that each interval[xi−1,xi ] has length smaller
thanδ(ξi). Consequently each interval[xi−1,xi ] belongs entirely either toG1 or belongs
entirely either toG2.

This is impossible. For ifa∈ G1, then[x0,x1] ⊂ G1. But that means[x1,x2] ⊂ G1,
and[x2,x3]⊂ G1, . . . , and indeed all of the intervals are subsets ofG1.

Exercise32, page 9

Use a proof by contradiction. Suppose, for example that[a,b]⊂ G1∪G2, G1∪G2 = /0.
Thena is in one of these two open sets, saya ∈ G1. Take the last pointt for which
[a, t) ⊂ G1, i.e.,

t = sup{r : a< r ≤ b, [a, r) ⊂ G1}.
That number cannot beb, otherwiseG2 contains no point of the interval. And that
number cannot be in the open setG1, otherwise we failed to pick the last such number.
Thust ∈G2. But the situationt ∈G2 requires there to be some interval(c,d) containing
t and entirely contained insideG2. That gives us(c, t) ⊂ G1 and(c, t) ⊂ G2. This is a
contradiction to the requirement thatG1∪G2 = /0.

Exercise33, page 9

Take any two points in the set,s< t. If there is a points< c< t that is not in the setE
thenE ⊂ (−∞,c)∪ (c,∞) exhibits, by definition, that the set is disconnected. So theset
E contains all points between any two of its elements. Consequently E is either(a,b)
or [a,b) or (a,b] or [a,b] where fora take infE and forb take supE.

Exercise34, page 10

You should remember that these functions are defined for all real numbers, with the
exception that tan(±π/2) =±∞. So, since we do not consider functions to have infinite
values, the function tanx is considered to be defined at all reals that are not of the form
(n+1/2)π/2 for some integern.

Exercise35, page 10

The value of arcsinx is defined to be the number−π/2≤ y≤ π/2 such that siny= x.
The only numbersx that permit a solution to this equation are from the interval[−1,1].
The value of arctanx is defined to be the number−π/2≤ y≤ π/2 such that tany= x.
This equation can be solved for all real numbersx so the assumed domain of arctanx is
the entire real line.

Exercise36, page 11

The exponential functionex is defined for all values ofx so its domain is the whole
real line. The logarithm function is the inverse defined by requiring logx= y to mean
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ey = x. Sinceey is always positive the logarithm function cannot be defined at zero or at
any negative number. In fact the domain of logx is the open unbounded interval(0,∞).

Exercise37, page 11

Check thatx2−x−1 only at the pointsc1 = 1/2+
√

5/2 andc2 = 1/2−
√

5/2. Thus
the domain of the first function would be assumed to be(−∞,c2)∪ (c2,c1)∪ (c1,∞)>

Also x2−x−1≥ 0 only on the intervals(∞,c2] and[c1,∞) so the the domain of the
second function would be assumed to be(∞,c2]∪ [c1,∞).

Finally, the third function is a composition. We cannot write arcsint unless−1≤
t ≤ 1, consequently we cannot write arcsin(x2− x−1) unless−1≤ x2− x−1≤ 1, or
equivalently 0≤ x2−x≤ 2.

But−1≤ x2−x−1 on the intervals(−∞,0) and(1,∞), while x2−x−1≤ 1 on the
interval [−1,2]. So finally arcsin(x2− x−1) can only be written forx in the intervals
[−1,0] and [1,2]. So the the domain of the third function would be assumed to be
[−1,0]∪ [1,2].

Exercise38, page 12

This is trivial. Just state the definition of uniform continuity and notice that it applies
immediately to every point.

Exercise39, page 12

Find a counterexample, i.e., find a function that is continuous on some open intervalI
and that is not necessarily uniformly continuous on that interval.

Exercise40, page 13

There are lots of choices. Our favorite might be to setf (x) = x if x is rational and
f (x) =−x if x is irrational. Then just check the definition at each point.

Exercise41, page 13

To work with the definition one must know it precisely and alsohave an intuitive grasp.
Usually we think that uniform continuity off means

. . . if d−c is small enough f(d)− f (c) should be small.

For the functionf (x) = x this becomes

. . . if d−c is small enough d−c should be small.

That alone is enough to indicate that the exercise must be trivial. Just write out the
definition usingδ = ε.
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Exercise42, page 13

Obtain a contradiction by assuming [falsely] thatf (x) = x2 is uniformly continuous on
the interval(−∞,∞).

Usually we think that uniform continuity off means

. . . if d−c is small enoughf (d)− f (c) should be small.

That means that the failure of uniform continuity should be thought of this way:

. . . even thoughd−c is small f (d)− f (c) might not be small.

For the functionf (x) = x2 this becomes

. . .even though d−c is small d2−c2 might not be small.

A similar way of thinking is

. . .even though t is small(x+ t)2−x2 might not be small.

That should be enough to indicate a method of answering the exercise.
Thus, take any particularε > 0 and suppose [wrongly] that

|d2−c2)|< ε
wheneverc, d are points for which|d−c|< δ. Take any large integerN so that 1/N< δ.
Then

|(N+1/N)2−1/N2)|= N2+2< ε.
This cannot be true for all large integersN so we have a contradiction.

By the way, this method of finding two sequencesxN = N andyN = N+ 1/N to
show that uniform continuity fails is turned into a general method in Exercise91.

Exercise43, page 13

The key is to factor
x2−y2 = (x+y)(x−y).

Then, we think that uniform continuity off means

. . . if x−y is small enough f(x)− f (y) should be small.

For the functionf (x) = x2 this becomes

. . . if x−y is small enough[x+y](x−y) should be small.

In any bounded interval we can control the size of[x+y].
Here is a formal proof using this thinking. LetI be a bounded interval and suppose

that |x| ≤ M for all x∈ I . Let ε > 0 and chooseδ = ε/(2M). Then, if|d−c|< δ
| f (d)− f (c)|= |d2−c2|= |[d+c](d−c)| ≤ [|d|+ |c|]|d−c| ≤ [2M]|d−c|< 2Mδ = ε.
By definition, f is uniformly continuous onI .

Exercise44, page 13

We have already proved that this function is uniformly continuous on any bounded
interval. Use that fact on the interval(x0−1,x0+1).
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Exercise45, page 13

Suppose [falsely] thatf (x) = 1
x is uniformly continuous on the interval(0,∞); then it

must also be uniformly continuous on the bounded interval(0,1). Usingε = 1 choose
δ > 0 so that

∣

∣

∣

∣

1
x
− 1

y

∣

∣

∣

∣

< 1

if |x−y|< δ. In particular take a point 0< y0 < δ and notice that
∣

∣

∣

∣

1
x

∣

∣

∣

∣

< 1+
1
y0

for all 0< x< δ. Forδ ≤ x< 1
∣

∣

∣

∣

1
x

∣

∣

∣

∣

≤ 1
δ

We know that this functionf (x) = 1
x is unbounded and yet we seem to have produced

an upper bound on the interval(0,1). This is a contradiction and hence the function
cannot be uniformly continuous.

In fact we can make this particular observation into a method. When a function is
uniformly continuous on a bounded interval we will prove that the function is bounded.
Hence unbounded functions cannot be uniformly continuous on a bounded interval.

We now show thatf (x) = 1
x is continuous at every real numberx0 6= 0. Take any

point x0 > 0 and letε > 0. We must choose aδ > 0 so that

|1/x−1/x0|< ε
wheneverx is a point in(0,∞) for which |x−x0| < δ. This an exercise in inequalities.
Write

|1/x−1/x0|=
∣

∣

∣

∣

x−x0

xx0

∣

∣

∣

∣

.

Note that if x > x0/2 thenxx0/2 > x2
0 so that 1/[xx0] ≤ 1/[2x2

0]. These inequalities
reveal the correct choice ofδ and reveal where we should place the argument. We need
not work in the entire interval(0,∞) but can restrict the argument to the subinterval
(x0/2,3x0/2).

Letx0 be a point in the interval(0,∞). Work entirely inside the interval(x0/2,3x0/2).
Let ε > 0. Chooseδ = εx2

0 and suppose that|x− x0| < δ = εx2
0 and thatx is a point in

the interval(x0/2,3x0/2). Then sincex0/2< x,

| f (x)− f (x0)|=
∣

∣

∣

∣

x−x0

xx0

∣

∣

∣

∣

≤ εx2
0

2x2
0

< ε.

By definition f (x) = 1
x is continuous at the pointx0.

Note this device used here: since pointwise continuity atx0 is a local property at a
point we can restrict the argument toanyopen interval that containsx0. If, by doing so,
you can make the inequality work easier then, certainly, do so.
Note: We have gone into some great detail in the exercise since thisis at an early stage
in our theory and it is an opportunity for instruction. You should be able to write up
this proof in a shorter, more compelling presentation.
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Exercise46, page 13

It is easy to check that bothrF (x) andsG(x) must be continuous at the pointx0. Thus
it is enough to prove the result forr = s= 1, i.e., to prove thatF(x)+G(x) must be
continuous at the pointx0.

The inequality

|F(x)+G(x)− [F(x0)+G(x0)| ≤ |F(x)−F(x0)|+ |G(x)−G(x0)|
suggests an easy proof.

Using the same method you should be successful in proving thefollowing state-
ment:

Let F and G be functions that are uniformly continuous on an interval I.
Then any linear combination H(x)= rF (x)+sG(x) must also be uniformly
continuous on I.

Exercise47, page 13

The key is to use the simple inequality

|F(x)G(x)−F(x0)G(x0)|= |F(x)G(x)−F(x0)G(x)+F(x0)G(x0)−F(x0)G(x0)|
≤ |F(x)G(x)−F(x0)G(x)|+ |F(x0)G(x)−F(x0)G(x0)|

= |G(x)| · |F(x)−F(x0)|+ |F(x0)| · |G(x)−G(x0)|
SinceG is continuous at the pointx0 there must be at least one interval(c,d) ⊂ I

containing the pointx0 so thatG is bounded on(c,d). In fact we can use the definition
of continuity to find aη > 0 so that

|G(x)−G(x0)|< 1 for all x in (x0−η,x0+η)
and so, also

|G(x)| < |G(x0)|+1 for all x in (x0−η,x0+η).
Thus we can select such an interval(c,d) and a positive numberM that is larger than
|G(x)|+ |F(x0)| for all x in the interval(c,d).

Let ε > 0. The assumptions imply the existence of the positive numbers δ1 andδ2,
such that

|F(x)−F(x0)|<
ε

2M
if |x−x0|< δ1 and

|G(x)−G(x0)|<
ε

2M
if |x−x0|< δ2.

Then, using anyδ smaller than bothδ1 andδ2, and arguing inside the interval(c,d)
we observe that

|F(x)G(x)−F(x0)G(x0)| ≤ M|F(x)−F(x0)|+M|G(x)−G(x0)|< 2Mε/(2M) = ε.
if |x− x0| < δ. This is immediate from the inequalities above. This provesthat the
productH(x) = F(x)G(x) must be continuous at the pointx0.

Does the same statement apply to uniform continuity? In viewof Exercise46 you
might be tempted to prove the following false theorem:
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FALSE: Let F and G be functions that are uniformly continuouson an
interval I. Then the product H(x) = F(x)G(x) must also be uniformly
continuous on I.

But note thatF(x)=G(x)= x are both uniformly continuous on(−∞,∞)whileFG(x)=
F(x)G(x) = x2 is not. The key is contained in your proof of this exercise. You needed
boundedness to make the inequalities work.

Here is a true version that you can prove using the methods that we used for the
pointwise case:

TRUE: Let F and G be functions that are uniformly continuous on an
interval I. Suppose that G is bounded on the interval I. Then the product
H(x) = F(x)G(x) must also be uniformly continuous on I.

Later on we will find that, when working on bounded intervals,all uniformly con-
tinuous functions must be bounded. If you use this fact now and repeat your arguments
you can prove the following version:

Let F and G be functions that are uniformly continuous on a bounded
interval I. Then the product H(x) = F(x)G(x) must also be uniformly
continuous on I.

Exercise48, page 13

Yes, if G(x0) 6= 0. The identity
∣

∣

∣

∣

F(x)
G(x)

− F(x0)

G(x0)

∣

∣

∣

∣

=

∣

∣

∣

∣

F(x)G(x0)−F(x)G(x)+F(x)G(x)−F(x0)G(x)
G(x)G(x0

∣

∣

∣

∣

.

should help. You can also prove the following version for uniform continuity.

Let F and G be functions that are uniformly continuous on an interval I.
Then the quotient H(x) = F(x)/G(x) must also be uniformly continuous
on I provided that the functions F and1/G are also defined and bounded
on I.

Exercise49, page 13

Let ε > 0 and determineη > 0 so that

|G(z)−G(z0)|< ε
wheneverz is a point inJ for which |z− z0| < η. Now use the continuity ofF at the
point x0 to determine aδ > 0 so that

|F(x)−F(x0)|< η
wheneverx is a point inI for which |x−x0|< δ.

Note that ifx is a point inI for which |x−x0|< δ, thenz= F(x) is a point inJ for
which |z−z0|< η. Thus

|G(F(x))−G(F(x0))|= |G(z)−G(z0)|< ε.
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Exercise52, page 14

Too simple for a hint.

Exercise53, page 14

Another way to think about this is that a function that is a sumof characteristic functions

f (x) =
M

∑
i=1

aiχAi (x)

is a step function if all theAi are intervals or singleton sets. [HereχE(x), for a setE, is
equal to 1 for pointsx in E and equal to 0 otherwise.]

Let f : [a,b]→ R be a step function. Show first that there is a partition

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

so that f is constant on each interval(xi−1,xi), i = 1, 2, . . . ,n. This will display all
possible discontinuities.

Exercise54, page 14

This is not so hard and the title gives it away. Show first thatR(x) = 1 if x is rational
and is otherwise 0.

Exercise55, page 14

We can interpret this statement, that the distance functionis continuous, geometrically
this way: if two pointsx1 andx2 are close together, then they are at roughly the same
distance from the closed setC.

Exercise56, page 15

This just requires connecting two definitions: the definition of continuity at a point and
the definition of sequential limit at a point.

Let ε > 0 and chooseδ > 0 so that| f (x)− f (x0)| < ε if |x− x0|< δ. Now choose
N so that|xn−x0|< δ for n> N. Combining the two we get that| f (xn)− f (x0)|< ε if
n> N. By definition that means that limn→∞ f (xn) = f (x0).

That proves one direction. To prove the other direction we can use a contrapositive
argument: assume that continuity fails and then deduce thatthe sequence property also
fails. Suppose thatf is not continuous atx0. Then, for some value ofε there cannot
be aδ for which | f (x)− f (x0)| < ε if |x− x0| < δ. Consequently, for every integer
n there must be at least one pointxn in the interval so that|x0 − xn| < 1/n and yet
| f (x)− f (x0)|> ε.

In other words we have produced a sequence{xn} → x0 for which limn→∞ f (xn) =

f (x0) fails.
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Exercise57, page 15

Suppose first thatf is continuous. LetV be open, letx0 ∈ f−1(V) and chooseα < β
so that(α,β) ⊂ V and so thatx0 ∈ f−1((α,β)). Thenα < f (x0) < β. We will find a
neighborhoodU of x0 such thatα < f (x)< β for all x∈U . Let

ε = min(β− f (x0), f (x0)−α).
Since f is continuous atx0, there exists aδ > 0 such that if

x∈ (x0−δ,x0+δ),
then

| f (x)− f (x0)|< ε.
Thus

f (x)− f (x0)< β− f (x0),

and sof (x)< β. Similarly,

f (x)− f (x0)> α− f (x0),

and sof (x)> α. Thus the neighborhoodU = (x0−δ,x0+δ) is a subset off−1((α,β))
and hence also a subset off−1(V). We have shown that each member off−1(V) has a
neighborhood inf−1(V). That is, f−1(V) is open.

To prove the converse, supposef satisfies the condition that for each open interval
(α,β) with α < β, the setf−1((α,β)) is open. Take a pointx0. We must show thatf is
continuous atx0. Let ε > 0, β = f (x0)+ ε, α = f (x0)− ε. Our hypothesis implies that
f−1((α,β)) is open.

Thus there is at least open interval,(c,d) say, that is contained in this open set and
contains the pointx0. Let

δ = min(x0−c,d−x0).

For |x−x0|< δ we find
α < f (x) < β.

Becauseβ = f (x0)+ ε andα = f (x0)− ε we must have

| f (x)− f (x0)|< ε.
This shows thatf is continuous atx0.

Exercise59, page 15

In preparation . . .

Exercise60, page 15

Because of Exercise59 we already know that ifε > 0 then there isδ > 0 so that

ω f ([c,d]) < ε
whenever[c,d] is a subinterval ofI for which |d−c|< δ. If the points of the subdivision

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b
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are chosen with gaps smaller thanδ then, certainly, each of

ω f ([x0,x1]), ω f ([x1,x2]), . . . , and ω f ([xn−1,xn])

is smaller thanε.
Conversely suppose that there is such a subdivision. Letδ be one-half of the mini-

mum of the lengths of the intervals[x0,x1], [x1,x2], . . . , [xn−1,xn]. Note that if we take
any interval[c,d] with length less thanδ that interval can meet no more than two of the
intervals above. For example if[c,d] meets both[x0,x1] and[x1,x2], then

ω f ([c,d]) ≤ ω f ([x1,x2])+ω f ([x1,x2])< 2ε.
In fact then any interval[c,d] with length less thanδ must have

ω f ([c,d]) < 2ε.
It follows that f is uniformly continuous on[a,b].

Is there a similar statement for uniform continuity on open intervals? Yes. Just
check thatf is a uniformly continuous function on an open, bounded interval (a,b) if
and only if, for everyε > 0, there are points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

so that each of

ω f ((x0,x1]), ω f ([x1,x2]), . . . , and ω f ([xn−1,xn))

is smaller thanε.

Exercise61, page 16

If f is continuous at a pointx0 andε > 0 there is aδ(x0)> 0 so that

| f (x)− f (x0)|< ε/2

for all |x−x0| ≤ δ(x0). Take any two pointsu andv in the interval[x0−δ(x0),x0+δ(x0)]

and check that

| f (v)− f (u)| ≤ | f (v)− f (x0)|+ | f (v)− f (x0)|< ε/2+ ε/2= ε.
It follows that

ω f ([x0−δ(x0),x0+δ(x0)])≤ ε.
The other direction is easier since

| f (x)− f (x0)| ≤ ω f ([x0−δ(x0),x0+δ(x0)])

for all |x−x0| ≤ δ(x0).

Exercise62, page 16

This is just a rephrasing of the previous exercise.

Exercise63, page 16

We use the fact that one-sided limits and sequential limits are equivalent in this sense:

A necessary and sufficient condition in order that

L = lim
x→a+

F(x)
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should exist is that for all decreasing sequence of points{xn} convergent
to a, the sequence{ f (xn)} converges toL.

Let us prove the easy direction first. Suppose thatF(a+) = limx→a+ F(x) exists
and letε > 0. Chooseδ(a) > 0 so that

|F(a+)−F(x)| ≤ ε/3

for all a< x< a+δ(a). Then, for allc, d ∈ (a,a+δ(a),
|F(d)−F(c)| ≤ |F(a+)−F(d)|+ |F(a+)−F(c)| ≤ 2ε/3.

It follows that
ωF((a,a+δ(a)) ≤ 2ε/3< ε.

In the other direction consider a decreasing sequence of points{xn} convergent to
a. Let ε > 0 and chooseδ(a) so that

ωF((a,a+δ(a)) < ε.
Then there is an integerN so that|xn−a|< δ(a) for all n≥ N. Thus

|F(xn)−F(xm)| ≤ ωF((a,a+δ))< ε
for all m, n ≥ N. It follows from the Cauchy criterion for sequences that every such
sequence{F(xn)} converges. The limit is evidentlyf (a+).

Exercise64, page 16

We use the fact that infinite limits and sequential limits areequivalent in this sense:

A necessary and sufficient condition in order that

L = lim
x→∞

F(x)

should exist is that for all sequence of points{xn} divergent to∞, the se-
quence{F(xn)} converges toL.

Let us prove the easy direction first. Suppose thatF(∞) = limx→∞ F(x) exists and
let ε > 0. ChooseT > 0 so that

|F(∞)−F(x)| ≤ ε/3

for all T < x. Then, for allc, d ∈ (T,∞),

|F(d)−F(c)| ≤ |F(∞)−F(d)|+ |F(∞)−F(c)| ≤ 2ε/3.

It follows that
ωF((T,∞))≤ 2ε/3< ε.

In the other direction consider a sequence of points{xn} divergent to∞. Let ε > 0
and chooseT so that

ωF((T,∞))< ε.
Then there is an integerN so thatxn > T for all n≥ N. Thus

|F(xn)−F(xm)| ≤ ωF((T,∞))< ε
for all m, n ≥ N. It follows from the Cauchy criterion for sequences that every such
sequence{F(xn)} converges. The limit is evidentlyF(∞).
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Exercise65, page 18

This is a direct consequence of Exercise63. Let ε > 0 and chooseδ > 0 so that

ωF((c,d)) < ε
for all subintervals[c,d] of (a,b) for which d−c< δ.

Then, certainly,

ωF((a,a+δ)) < ε and ωF((b,b−δ))< ε.
From this, Exercise63 supplies the existence of the two one-sided limits

F(a+) = lim
x→a+

F(x) and F(b−) = lim
x→b−

F(x).

Exercise66, page 18

Let ε > 0 and, using Exercise63, choose positive numbersδ(a) andδ(a) so that

ωF((a,a+δ(a))) < ε and ωF((b−δ(b),b)) < ε/2.

Now choose, for any pointξ ∈ (a,b), a positive number andδ(ξ) so that

ωF([ξ−δ(ξ),ξ+δ(ξ)])< ε.
This just uses the continuity of the functionf at the pointξ in the oscillation version of
that property that we studied in Section1.5.5.

By the Cousin partitioning argument there must exist points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

and a partition
{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}

of the whole interval[a,b] such that

ξi ∈ [xi−1,xi ] and xi −xi−1 < δ(ξi).

Just observe that this means that each of the following oscillations is smaller than
ε:

ωF((a,x1]), ωF([x1,x2]), ωF([x2,x3]), . . . ,ωF([xn−1,b)).

It follows from Exercise60 that f is uniformly continuous on(a,b).

Exercise67, page 18

In one direction this is trivial. IfF is defined on(a,b) but can be extended to a uniformly
continuous function on[a,b] thenF is already uniformly continuous on(a,b).

The other direction is supplied by the theorem, in fact in theproof of the theorem.
That proof supplied points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

so that each of the following oscillations is smaller thanε:

ωF((a,x1])), ωF([x1,x2]), ωF([x2,x3]), . . . , ωF([xn−1,b)).
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Now defineG= F on (a,b) andG(a) = F(a+), G(b) = F(b−). Then

ωF((a,x1])) = ωG([a,x1]))

and
ωF([xn−1,b)) = ωG([xn−1,b]).

With this rather subtle change we have now produced points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

so that each of the following oscillations is smaller thanε:

ωG([a,x1])), ωG([x1,x2])), ωG([x2,x3])), . . . , ωG([xn−1,b]).

It follows from Exercise60 thatG is uniformly continuous on[a,b].

Exercise68, page 18

If F is continuous on(a,b) and[c,d]⊂ (a,b) note thatF is continuous on[c,d] and that
F(c) = F(c+) andF(d) = F(d−). Applying the theorem we see thatF is uniformly
continuous on[c,d].

Exercise69, page 18

If F is continuous on(a,b) and monotone nondecreasing then we know that either
F(a+) = limx→a+ F(x) exists as a finite real number or elseF(a+) = −∞. Simi-
larly know that eitherF(b−) = limx→b− F(x) exists as a finite real number or else
F(b−) = +∞. Thus, by Theorem1.12the function is uniformly continuous on(a,b)
provided only that the function is bounded. Conversely, in order for the functionF to
be uniformly continuous on(a,b), it must be bounded since all uniformly continuous
functions are bounded on bounded intervals.

Exercise70, page 18

This proof invokes a Bolzano-Weierstrass compactness argument. We use an indirect
proof. If F is not uniformly continuous, then there are sequences{xn} and{yn} so that
xn−yn → 0 but

|F(xn)−F(yn)|> c

for some positivec. (The verification of this step is left out, but you should supply
it. This can be obtained merely by negating the formal statement that f is uniformly
continuous on[a,b].)

Now apply the Bolzano-Weierstrass property to obtain a convergent subsequence
{xnk}. Write zas the limit of this new sequence{xnk}. Observe thatxnk −ynk → 0 since
xn−yn → 0. Thus{xnk} and the corresponding subsequence{ynk} of the sequence{yn}
both converge to the same limitz, which must be a point in the interval[a,b].

If a < z< b then we get a contradiction from the continuity off : F(xnk) → F(z)
andF(ynk)→ F(z). Since|F(xn)−F(yn)| > c for all n, this means from our study of
sequence limits that

|F(z)−F(z)| ≥ c> 0

and this is impossible.
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Now suppose thatz= a. Since

F(a+) = lim
x→a+

F(x)

exists it also follows thatF(xnk)→ F(a+) andF(ynk)→ F(a+). Again this is impos-
sible. The remaining case,z= b is similarly handled.

Exercise71, page 18

Choose open intervals(a,a+δ(a)), (b−δ(b),b) so that

ωF((a,a+δ(a))) < ε/2 and ωF((b−δ(b),b)) < ε/2

At the endpointsa and b this is possible because the one-sided limits exist (i.e., by
Exercise63).

For each pointx∈ (a,b) we may choose intervals(x−δ(x),x+δ(x) in such a way
that

ωF((x−δ(x)x+δ(x)) < ε/2.

At the pointsx∈ (a,b) this is possible because of our assumption thatF is continuous
at all such points.

Pick pointss and t with a < s< a+ δ(a) andb− δ(b) < t < b. Now apply the
Heine-Borel property to this covering of the closed interval [s, t]. There are now a finite
number of open intervals(xi −δ(xi),xi +δ(xi) with i = 1,2,3, . . . ,k covering[s, t].

Let δ be half the minimum length of all the intervals

(a,a+δ(a)),(b−δ(b),b),(xi −δ(xi),xi +δ(xi) (i = 1,2,3, . . . ,k).

Use this to show thatωF([c,d]) < ε if [c,d] ⊂ (a,b) andd−c< δ.

Exercise72, page 18

There are functions that are continuous at every point of(−∞,∞) and yet are not uni-
formly continuous. Find one.

Exercise73, page 18

There are functions that are continuous at every point of(0,1) and yet are not uniformly
continuous. Find one.

Exercise74, page 18

Slight of hand. Chooseδ. Wait a minute. Our choice ofδ depended onx0 so, to make
the trick more transparent, call itδ(x0). Then if d is some other point you will need a
different value ofδ.

Exercise75, page 19

If G is continuous ateverypoint of an interval[c,d] then the theorem (Theorem1.12)
applies to show thatG is uniformly continuous on that interval.
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Exercise76, page 19

Just read this from the theorem.

Exercise77, page 19

Just read this from the theorem.

Exercise78, page 19

In preparation . . .

Exercise79, page 20

Let f be a uniformly continuous function on a closed, bounded interval [a,b]. Take any
value ofε0 > 0. Then Exercise60 supplies points

a= x0 < x1 < x2 < x3 < · · ·< xn−1 < xn = b

so that each of
ω f ([), ω f ((x1,x2]), . . . ,ω f ((xn−1,xn])

is smaller thanε0. In particular, f is bounded on each of these intervals. Consequently
f is bounded on all of[a,b].

The same proof could be used if we had started with a uniformlycontinuous func-
tion on an open bounded interval(a,b). Note that if the interval is unbounded then such
a finite collection of subintervals would not exist.

Exercise80, page 20

The condition of pointwise continuity at a pointx0 gives us an inequality

| f (x)− f (x0)|< ε
that must hold for some interval(x0 − δ,x0 + δ). This immediately provides the in-
equality

| f (x)| = | f (x)− f (x0)+ f (x0)| ≤ | f (x)− f (x0)|+ | f (x0)|< ε+ | f (x0)|
which provides an upper bound forf in the interval(x0−δ,x0+δ).

Exercise81, page 20

No. It doesn’t follow. For a counterexample, the functionf (x) = sin(1/x) is a contin-
uous, bounded function on the bounded open interval(0,1). This cannot be uniformly
continuous because

ω f ((0, t)) = 2

for everyt > 0. This function appears again in Exercise107The graph ofF is shown
in Figure5.1and helps to illustrate that the continuity cannot be uniform on(0,1).

Later on we will see that if a functionf is uniformly continuous on a bounded open
interval (a,b) then the one-sided limits at the endpointsa andb must exist. For the
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examplef (x) = sin(1/x) on the bounded open interval(0,1) we can check thatf (0+)

does not exist, which it must iff were to be uniformly continuous on(0,1).

Exercise82, page 20

We assume here that you have studied sequences and convergence of sequences. Iff
is not bounded then there must be a pointx1 in the interval for which| f (x1)| > 1. If
not then| f (x)| ≤ 1 and we have found an upper bound for the values of the function.
Similarly there must be a pointx2 in the interval for which| f (x2)| > 2, and a point
x3 in the interval for which| f (x3)| > 3. Continue choosing points and then check that
| f (xn)| → ∞.

Exercise85, page 20

The functionf (x) = x is uniformly continuous on the unbounded interval(∞,∞) and yet
it is not bounded. On the other hand the functionf (x) = sinx is uniformly continuous
on the unbounded interval(∞,∞) and it is bounded, since|sinx| ≤ 1.

Exercise86, page 20

Yes and yes. If| f (x)| ≤ M and|g(x)| ≤ N for all x in an intervalI then

| f (x)+g(x)| ≤ | f (x)|+ |g(x)| ≤ M+N

and
| f (x)g(x)| ≤ MN.

Exercise87, page 20

No. On the interval(0,1) the functionsf (x) = x andg(x) = x2 are bounded functions
that do not assume the value zero. The quotient functiong/ f is bounded but the quotient
function f/g is unbounded.

Exercise88, page 20

If the values of f (t) are bounded then the values off (g(x)) are bounded since they
include only the same values. Thus there is no need for the extra hypothesis thatg is
bounded.

Exercise89, page 21

Use the mean-value theorem to assist in this. Ifc< d then

sind−sinc= (d−c)cosξ
for some pointξ betweenc andd.

Don’t remember the mean-value theorem? Well use these basicfacts instead:

sind−sinc= sin[(d−c)/2]cos[(d+c)/2]
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and
|sinx| ≤ |x|.

Stop reading and try the problem now . . .

If you followed either of these hints then you have arrived atan inequality of the
form

|sind−sinc| ≤ M|d−c|.
Functions that satisfy this so-called Lipschitz conditionare easily shown to be uni-
formly continuous. Forδ you will find thatδ = ε/M works.

Exercise90, page 21

For δ you will find thatδ = ε/M works.

Exercise91, page 21

If f is uniformly continuous then, by definition, for everyε > 0 there is aδ > 0 so that

| f (d)− f (c)| < ε
wheneverc, d are points inI for which |d−c| < δ. If there did exist two sequences of
points{xn} and{xn} from that interval for whichxn− yn → 0 then there would be an
integerN so that|xn−yn|< δ for n> N. Consequently

| f (xn)− f (yn)|< ε
for n > N. By that means, by the usual sequence definitions thatf (xn)− f (yn) does
indeed converge to zero.

Conversely if f is not uniformly continuous on the intervalI then for some value
ε0 > 0 and every integern the statement that

the inequality
| f (d)− f (c)|< ε0

holds whenever c, d are points in I for which|d−c|< 1/n.

must fail. Thus it is possible to select points{xn} and{xn} from that interval for which
|xn−yn|< 1/n but

| f (xn)− f (yn)| ≥ ε0.

Consequently we have exhibited two sequences of points{xn} and{xn} from that in-
terval for whichxn−yn → 0 but f (xn)− f (yn) does not converge to zero.

Exercise92, page 21

By Theorem1.18, F is bounded and so we may suppose thatM is the least upper bound
for the values ofF, i.e.,

M = sup{ f (x) : a≤ x≤ b}.
If there existsx0 such thatF(x0) = M, thenF achieves a maximum valueM. Sup-

pose, then, thatF(x) < M for all x∈ [a,b]. We show this is impossible.
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Let g(x) = 1/(M −F(x)). For eachx ∈ [a,b], F(x) 6= M; as a consequence,g is
uniformly continuous andg(x) > 0 for all x∈ [a,b]. From the definition ofM we see
that

inf{M− f (x) : x∈ [a,b]} = 0,

so

sup

{

1
M− f (x)

: x∈ [a,b]

}

= ∞.

This means thatg is not bounded on[a,b]. This is impossible because uniformly con-
tinuous are bounded on bounded intervals. A similar proof would show thatF has an
absolute minimum.

Exercise93, page 21

We can also prove Theorem1.21using a Bolzano-Weierstrass argument. Let

M = sup{F(x) : a≤ x≤ b}.
That means that for any integern the smaller numberM−1/n cannot be an upper bound
for the values of the functionF on this interval.

Consequently we can choose a sequence of points{xn} from [a,b] so that

F(xn)> M−1/n.

Now apply the Bolzano-Weierstrass theorem to find a subsequence{xnk} that con-
verges to some pointz0 in [a,b]. Use the continuity ofF to deduce that

lim
k→∞

F(xnk) = F(z0).

Since
M ≥ F(xnk)> M−1/nk

it must follow thatF(z0) = M. Thus the functionF attains its maximum value atz0.

Exercise94, page 21

How about sin2πx? This example is particularly easy to think about since the minimum
value could only occur at an endpoint and we have excluded both endpoints by working
only on the interval(0,1). In fact we should notice that this feature is general: iff is
a uniformly continuous function on the interval(0,1) then there is an extension off to
a uniformly continuous function on the interval[0,1] and the maximum and minimum
values are attained on[0,1] [but not necessarily on(0,1)].

Exercise95, page 21

How about 1−sin2πx?

Exercise96, page 21

Simplest isf (x) = x.
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Exercise97, page 21

Simplest isf (x) = x.

Exercise98, page 21

Try f (x) = arctanx.

Exercise99, page 22

If there is a pointf (x0) = c> 0, then there is an interval[−N,N] so thatx0 ∈ [−N,N]

and| f (x)| < c/2 for all x> N andx< −N. Now since f is uniformly continuous on
[−N,N] we may select a maximum point. That maximum will be the maximum also on
(−∞,∞).

If there is no such pointx0 then f assumes only values negative or zero. Apply the
same argument but to the function− f . For a suitable example of a function that has an
absolute maximum but not an absolute minimum you may takef (x) = (1+x2)−1.

Exercise100, page 22

All values of f (x) are assumed in the interval[0, p] and f is uniformly continuous on
[0, p]. It would not be correct to argue thatf is uniformly continuous on(−∞,∞) [it is]
and “hence” thatf must have a maximum and minimum [it would not follow].

Exercise101, page 22

This is a deeper theorem than you might imagine and will require a use of one of our
more sophisticated arguments. Try using the Cousin covering argument.

Let f be continuous at pointsa andb and at all points in between, and letc∈ R. If
for everyx ∈ [a,b], f (x) 6= c, then eitherf (x) > c for all x∈ [a,b] or f (x) < c for all
x∈ [a,b].

Let C denote the collection of closed intervalsJ such thatf (x) < c for all x∈ J or
f (x) > c for all x∈ J. We verify thatC forms a Cousin cover of[a,b].

If x∈ [a,b], then| f (x)−c|= ε > 0, so there existsδ > 0 such that| f (t)− f (x)|< ε
whenever|t − x| < δ > and t ∈ [a,b]. Thus, if f (x) < c, then f (t) < c for all t ∈
[x− δ/2,x+ δ/2], while if f (x) > c, then f (t) > c for all t ∈ [x− δ/2,x+ δ/2]. By
Cousin’s lemma there exists a partition of[a,b], a= x0 < x1 < · · · < xn = b such that
for i = 1, . . . ,n, [xi−1,xi ] ∈ C .

Suppose now thatf (a) < c. The argument is similar iff (a) > c. Since[a,x1] =

[x0,x1] ∈ C , f (x)< c for all x∈ [x0,x1]. Analogously, since[x1,x2] ∈ C , and f (x1)< c,
f (x) < c for x∈ [x1,x2]. Proceeding in this way, we see thatf (x)< c for all x∈ [a,b].

Exercise102, page 22

We can prove Theorem1.23using the Bolzano-Weierstrass property of sequences rather
than Cousin’s lemma. Suppose that the theorem is false and explain, then, why there
should exist sequences{xn} and{yn} from [a,b] so thatf (xn)> c, f (yn)< c and|xn−
yn|< 1/n.
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Exercise103, page 22

We can prove Theorem1.23using the Heine-Borel property. Suppose that the theorem
is false and explain, then, why there should exist at each point x∈ [a,b] an open interval
Ix centered atx so that eitherf (t) > c for all t ∈ Ix ∩ [a,b] or else f (t) < c for all
t ∈ Ix∩ [a,b].

Exercise104, page 22

We can prove Theorem1.23using the following “last point” argument: suppose that
f (a)< c< f (b) and letzbe the last point in[a,b] where f (z) stays belowc, that is, let

z= sup{x∈ [a,b] : f (t)≤ c for all a≤ t ≤ x}.
Show thatf (z) = c.

You may takec = 0. Show that if f (z) > 0, then there is an interval[z− δ,z] on
which f is positive. Show that iff (z)< 0, then there is an interval[z,z+δ] on which f
is negative. Explain why each of these two cases is impossible.

Exercise105, page 22

For any such functionf the Darboux property implies that the image set is connected.
In an earlier exercise we determined that all connected setson the real line are intervals.

For the examples we will need three functionsF, G, H : (0,1) → R so that the
image underF is not open, the image underG is not closed, and the image underH is
not bounded. You can check thatF(x) = G(x) = x(1−x) maps(0,1) onto(0,1/4], and
thatH(x) = 1/x maps(0,1) onto(0,∞).

Exercise106, page 22

As in the preceding exercise we know that the image set is a connected set [by the
Darboux property] and hence that it is an interval. This interval must be bounded
since a uniformly continuous function on a closed, bounded interval [a,b] is bounded.
This interval must be then either(A,B) or [A,b) or (A,B] or [A,B]. The possibilities
(A,B) and(A,B] are impossible, for then the function would not have a minimum. The
possibilities(A,B) and [A,B) are impossible, for then the function would not have a
maximum.

Exercise107, page 23

The graph ofF, shown in Figure5.1, will help in thinking about this function.
Let us check thatF is continuous everywhere, except atx0 = 0. If we are at a

point x0 6= 0 then this function is the composition of two functionsG(x) = sinx and
H(x) = 1/x, both suitably continuous. So on any interval[s, t] that does not contain
x0 = 0 the function is continuous and continuous functions satisfy the Darboux property.

Let t > 0. On the interval[0, t], F(0) = 0 andF assumes every value between 1
and−1 infinitely often. On the interval[−t,0], F(0) = 0 andF assumes every value
between 1 and−1 infinitely often.
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Figure 5.1: Graph of the functionF(x) = sinx−1 on [−π/8,π/8].

Exercise108, page 23

Consider the functiong(x) = f (x)−x which must also be uniformly continuous. Now
g(a) = f (a)−a≥ 0 andg(b) = f (b)−b≤ 0. By the Darboux property there must be
a point whereg(c) = 0. At that point f (c)−c= 0.

Exercise109, page 23

If zn → c thenzn = f (zn−1)→ f (c). Consequentlyc= f (c).

Exercise110, page 23

This is a puzzle. Use the fact that such functions will have maxima and minima in any
interval [c,d] ⊂ I and that continuous functions have the Darboux property.

Exercise111, page 23

This is again a puzzle. Use the fact that such functions will have maxima and minima
in any interval[c,d] ⊂ I and that continuous functions have the Darboux property. You
shouldn’t have too much trouble finding an example ifI is a closed, bounded interval.
What about ifI is open?

Exercise112, page 23

For such functions the one-sided limitsf (x0+) f (x0−) exist at every pointx0 and
f (x0−)≤ f (x0+). The function is discontinuous atx0 if and only if f (x0−)< f (x0+).
Show that the Darboux property would not allowf (x0−)< f (x0+) at any point.

Exercise113, page 24

In its usual definition

F ′(x) = lim
y→x

F(y)−F(x)
y−x

or, equivalently,

lim
y→x

{

F(y)−F(x)
y−x

−F ′(x)

}

= 0.
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But limits are defined exactly byε, δ(x) methods. So that, in fact, this statement about
the limit is equivalent to the statement that, for everyε > 0 there is aδ(x)> 0 so that

∣

∣

∣

∣

F(y)−F(x)
y−x

−F ′(x)

∣

∣

∣

∣

≤ ε

whenever 0< |y−x|< δ. [Note the exclusion ofy= x here.] The statement that

0< |y−x|< δ(x)
is equivalent to the statement that

0< y−x< δ(x) or 0< x−y< δ(x).
This, in turn, is identical to the statement that

∣

∣F(y)−F(x)−F ′(x)(y−x)
∣

∣ ≤ ε|y−x|
whenever 0< |y−x| < δ. The casey= x which is formally excluded from such state-
ments about limits can be accommodated here because the expression is zero fory= x.
Consequently, a very small [hardly noticeable] cosmetic change shows that the limit
derivative statement is exactly equivalent to the statement that, for everyε > 0, there is
a δ(x)> 0 so that

∣

∣F(y)−F(x)−F ′(x)(y−x)
∣

∣ ≤ ε|y−x|
whenevery is a points inI for which |y−x|< δ(x).

Exercise114, page 24

As we just proved, ifF ′(x0) exists andF is defined on an intervalI containing that point
then, there is aδ(x0)> 0 so that

∣

∣F(y)−F(x0)−F ′(x0)(y−x)
∣

∣≤ |y−x0|
whenevery is a point in the intervalI for which |y−x0|< δ(x0).

That translates quickly to the statement that

|F(y)−F(x0)| ≤ (|F ′(x0)|+1)|y−x0|
whenevery is a point in the intervalI for which |y−x0|< δ(x0).

This gives the clue needed to write up this proof: Ifε > 0 then we chooseδ1 < δ(x0)

so that
δ1 < ε/(|F ′(x0)|+1).

Then
|F(y)−F(x0)| ≤ (|F ′(x0)|+1)|y−x0|< ε

whenevery is a point in the intervalI for which |y− x0| < δ1. This is exactly the
requirement for continuity at the pointx0.

Exercise115, page 25

Note that
∣

∣F(z)−F(y)−F ′(x)(z−y)
∣

∣=
∣

∣[F(z)−F(x)]− [F(x)−F(y)]−F ′(x)([z−x]− [y−x])
∣

∣

≤
∣

∣F(z)−F(x)−F ′(x)(z−x)
∣

∣+
∣

∣F(y)−F(x)−F ′(x)(y−x)
∣

∣ .
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Thus the usual version of this statement quickly leads to thestraddled version. Note
that the straddled version includes the usual one.

The word “straddled” refers to the fact that, instead of estimating[F(y)−F(x)]/[y−
x] to obtainF ′(x) we can straddle the point by takingz≤ x≤ y and estimating[F(y)−
F(z)]/[y− z], still obtaining F ′(x). If we neglect to straddle the point [it would be
unstraddled ify andz were on the same side ofx] then we would be talking about a
much stronger notion of derivative.

Exercise116, page 25

In preparation . . .

Exercise117, page 25

If F ′(x0)> 0 then, usingε = F ′(x0)/2, there must be aδ > 0 so that
∣

∣F(z)−F(x0)−F ′(x0)(z−x0)
∣

∣≤ ε|z−x0|
wheneverz is a point inI for which |z−x0|< δ.

Supposex0 < z< x0+δ; then it follows from this inequality that

F(z)−F(x0)−F ′(x0)(z−x0)≥−ε(z−x0)

and so
F(z) ≥ F(x0)+ ε(z−x0)/2> F(x0).

The argument is similar on the left atx0.
It is easy to use the definition of locally strictly increasing at a point to show that

the derivative is nonnegative. Must it be positive? For a counterexample simply note
that f (x) = x3 is locally strictly increasing at every point but that the derivative is not
positive everywhere but has a zero atx0 = 0.

Exercise118, page 25

Take any[c,d]⊂ (a,b). We will show thatF(d)>F(c) and this will complete the proof
thatF is strictly increasing on(a,b).

For eachx0 in c,d] there is aδ(x0)> 0 so that
∣

∣F(z)−F(x0)−F ′(x0)(z−x0)
∣

∣≤ ε|z−x0|
wheneverz is a point inI for which |z−x0|< δ(x0).

We apply the Cousin partitioning argument. There must existat least one partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the interval[c,d] with the property that each interval[xi−1,xi ] has length smaller than
δ(ξi). Thus

F(d)−F(c) =
n

∑
i=1

[F(xi −F(xi−1)]> 0

since each of these terms must satisfy

[F(xi −F(xi−1)] = [F(xi −F(ξi)]+ [F(ξi)−F(xi−1)]> 0.
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f


a
 c
1
 c
2
 b


Figure 5.2: Rolle’s theorem [note thatf (a) = f (b)].

Exercise119, page 26

The strategy, quite simply, is to argue that there is a point inside the interval where a
maximum or minimum occurs. Accordingly the derivative is zero at that point.

First, if f is constant on the interval, thenf ′(x) = 0 for all x∈ (a,b), soξ can be
taken to be any point of the interval. Suppose then thatf is not constant. Becausef
is uniformly continuous on the closed, bounded interval[a,b] , f achieves a maximum
valueM and a minimum valuem on [a,b].

Becausef is not constant, one of the valuesM or m is different from f (a) and f (b),
say M > f (a). Choosef (ξ) = M. SinceM > f (a) = f (b), c ∈ (a,b). Check that
f ′(c) = 0. If f ′(c) > 0 then, by Exercise117, the function f must be locally strictly
increasing atx0. But this is impossible ifx0 is at a maximum forf . If f ′(c) < 0 then,
again by Exercise117, the function− f must be locally strictly increasing atx0. But
this is impossible ifx0 is at a maximum forf . It follows that f ′(c) = 0.

Exercise120, page 26

Rolle’s theorem asserts that, under our hypotheses, there is a point at which the tangent
to the graph of the function is horizontal, and therefore hasthe same slope as the chord
determined by the points(a, f (a)) and(b, f (b)). (See Figure5.2.)

Exercise121, page 26

There may, of course, be many such points; Rolle’s theorem just guarantees the exis-
tence of at least one such point. You should be able to construct a function, under these
hypotheses, with an entire subinterval where the derivative vanishes.

Exercise122, page 26

First check continuity at every point. This function is not differentiable at zero, but
Rolle’s theorem requires differentiability only inside the interval, not at the endpoints.
Continuity at the point zero is easily checked by using the inequality| f (x)|= |xsinx−1| ≤
|x|. Continuity elsewhere follows from the fact that functionf is differentiable (by the
usual rules) and so continuous. Finally, in order to apply Rolle’s theorem, just check
that 0= f (0) = f (1/π).
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There are an infinite number of points between 0 and 1/π where the derivative is
zero. Rolle’s theorem guarantees that there is at least one.

Exercise123, page 26

Yes. Notice thatf fails to be differentiable at the endpoints of the interval,but Rolle’s
theorem does not demand differentiability at either endpoint.

Exercise124, page 26

No. Notice that f fails to be differentiable only at the midpoint of this interval, but
Rolle’s theorem demands differentiability atall interior points, permitting nondifferen-
tiability only at either endpoint. In this case, even thoughf (−1) = f (1), there is no
point inside the interval where the derivative vanishes.

Exercise125, page 26

In preparation . . .

Exercise126, page 27

Use Rolle’s theorem to show that ifx1 andx2 are distinct solutions ofp(x) = 0, then
between them is a solution ofp′(x) = 0.

Exercise127, page 27

In preparation . . .

Exercise128, page 27

Use Rolle’s theorem twice. See Exercise130for another variant on the same theme.

Exercise129, page 27

Since f is continuous we already know (look it up) thatf maps[a,b] to some closed,
bounded interval[c,d]. Use Rolle’s theorem to show that there cannot be two values in
[a,b] mapping to the same point.

Exercise130, page 27

cf. Exercise128.

Exercise131, page 27

We prove this theorem by subtracting fromf a function whose graph is the straight line
determined by the chord in question and then applying Rolle’s theorem. Let

L(x) = f (a)+
f (b)− f (a)

b−a
(x−a).
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We see thatL(a) = f (a) andL(b) = f (b). Now let

g(x) = f (x)−L(x). (5.1)

Theng is continuous on [a,b], differentiable on (a,b) , and satisfies the conditiong(a) =
g(b) = 0.

By Rolle’s theorem, there existsc∈ (a,b) such thatg′(c) = 0. Differentiating (5.1),
we see thatf ′(c) = L′(c). But

L′(c) =
f (b)− f (a)

b−a
,

so

f ′(c) =
f (b)− f (a)

b−a
,

as was to be proved.

Exercise132, page 28

The first statement is just the mean-value theorem applied toevery subinterval. For the
second statement, note that an increasing functionf would allow only positive numbers
in S. But increasing functions may have zero derivatives (e.g.,f (x) = x3).

Exercise133, page 28

If t, measured in hours, starts at timet = 0 and advances to timet = 2 then

s′(τ) =
s(2)−s(1)

2
= 100/2

at some pointτ in time between starting and finishing.

Exercise134, page 28

The mean-value theorem includes Rolle’s theorem as a special case. So our previous
examplef (x) =

√

|x| which fails to have a derivative at the pointx0 = 0 does not satisfy
the hypotheses of the mean-value theorem and the conclusion, as we noted earlier, fails.

Exercise135, page 28

Take any example where the mean-value theorem can be appliedand then just change
the values of the function at the endpoints.

Exercise136, page 28

Apply the mean-value theorem tof on the interval[x,x+ a] to obtain a pointξ in
[x,x+a] with

f (x+a)− f (x) = a f ′(ξ).
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Exercise137, page 28

Use the mean-value theorem to compute

lim
x→a+

f (x)− f (a)
x−a

.

Exercise138, page 28

This is just a variant on Exercise137. Show that under these assumptionsf ′ is contin-
uous atx0.

Exercise139, page 29

Use the mean-value theorem to relate
∞

∑
i=1

( f (i +1)− f (i))

to
∞

∑
i=1

f ′(i).

Note that f is increasing and treat the former series as a telescoping series.

Exercise140, page 29

The proof of the mean-value theorem was obtained by applyingRolle’s theorem to the
function

g(x) = f (x)− f (a)− f (b)− f (a)
b−a

(x−a).

For this mean-value theorem apply Rolle’s theorem twice to afunction of the form

h(x) = f (x)− f (a)− f ′(a)(x−a)−α(x−a)2

for an appropriate numberα.

Exercise141, page 29

In preparation . . .

Exercise142, page 29

Write
f (x+h)+ f (x−h)−2 f (x) =

[ f (x+h)− f (x)]+ [ f (x−h)− f (x)]

and apply the mean-value theorem to each term.
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Exercise143, page 29

Let
φ(x) = [ f (b)− f (a)]g(x)− [g(b)−g(a)] f (x).

Thenφ is continuous on [a,b] and differentiable on (a,b) . Furthermore,

φ(a) = f (b)g(a)− f (a)g(b) = φ(b).
By Rolle’s theorem, there existsξ ∈ (a,b) for whichφ′(ξ) = 0. It is clear that this point
ξ satisfies

[ f (b)− f (a)]g′(ξ) = [g(b)−g(a)] f ′(ξ).

Exercise144, page 29

We can interpret the mean-value theorem as applied to curvesgiven parametrically.
Supposef andg are uniformly continuous on[a,b] and differentiable on(a,b). Con-
sider the curve given parametrically by

x= g(t) , y= f (t) (t ∈ [a,b]).

As t varies over the interval [a,b], the point(x,y) traces out a curveC joining the points
(g(a), f (a)) and(g(b), f (b)). If g(a) 6= g(b), the slope of the chord determined by these
points is

f (b)− f (a)
g(b)−g(a)

.

Cauchy’s form of the mean-value theorem asserts that there is a point(x,y) on C at
which the tangent is parallel to the chord in question.

Exercise145, page 29

In its simplest form, l’Hï£¡pital’s rule states that for functions f andg, if

lim
x→c

f (x) = lim
x→c

g(x) = 0

and
lim
x→c

f ′(x)/g′(x)

exists, then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

You can use Cauchy’s mean-value theorem to prove this simpleversion. Make sure
to state your assumptions to match up to the situation in the statement of Cauchy’s
mean-value theorem.

Exercise146, page 30

Just expand the determinant.
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Exercise147, page 30

Let φ(x) be
∣

∣

∣

∣

∣

∣

f (a) g(a) h(a)
f (b) g(b) h(b)
f (x) g(x) h(x)

∣

∣

∣

∣

∣

∣

and imitate the proof of Theorem143.

Exercise148, page 30

By the mean-value theorem

f (c)− f (b)
c−b

= f ′(ξ1)≥ f ′(ξ2) =
f (b)− f (a)

b−a
for some pointsa< ξ1 < b< ξ2 < c. The rest is just elementary algebra.

Note that we should be able to conclude even more if the derivative is strictly in-
creasing since then

f (c)− f (b)
c−b

= f ′(ξ1)> f ′(ξ2) =
f (b)− f (a)

b−a
.

Exercise149, page 30

From Lipman Bers,Classroom Notes: On Avoiding the Mean Value Theorem, Amer.
Math. Monthly 74 (1967), no. 5, 583.

It is hard to agree with this eminent mathematician that students should avoid the
mean-value theorem, but (perhaps) for some elementary classes this is reasonable. Here
is his proof:

“This is intuitively obvious and easy to prove. Indeed, assume that there is
a p, a< p< b, such that the setSof all x, a< x< p, with f (x)≥ f (p) is not
empty. Setq= supS; since f ′(p)> 0 we havea< q< p. If f (q) ≥ f (p),
then sincef ′(q)> 0, there are points ofS to the right ofq. If f (q)< f (p),
thenq is not inSand, by continuity, there are no points ofSnear and to the
left of q. Contradiction.

. . . The “full" mean value theorem, for differentiable but not continuously
differentiable functions is a curiosity. It may be discussed together with
another curiosity, Darboux’ theorem that every derivativeobeys the inter-
mediate value theorem.”

Exercise150, page 30

From Howard Levi,Classroom Notes: Integration, Anti-Differentiation and aConverse
to the Mean Value Theorem, Amer. Math. Monthly 74 (1967), no. 5, 585–586.
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Exercise151, page 30

If there are no exceptional points then the usual mean-valuetheorem does the job. If,
say, there is only one pointc inside wheref ′(c) does not exist then apply the mean-
value theorem on both of the intervals[a,c] and [c,b] to get two pointsξ1 andξ2 so
that

f (c)− f (a)
c−a

= f ′(ξ1)

and
f (b)− f (c)

b−c
= f ′(ξ2).

Then
| f (b)− f (a)| ≤ (c−a)| f ′(ξ1)|+(b−c)| f ′(ξ2)| ≤ M(b−a)

where forM we just choose whichever is larger,| f ′(ξ1)| or | f ′(ξ1)|. A similar proof
will handle more exceptional points.

For a method of proof that does not invoke the mean-value theorem see Israel
Halperin,Classroom Notes: A Fundamental Theorem of the Calculus, Amer. Math.
Monthly 61 (1954), no. 2, 122–123.

Exercise152, page 30

This simple theorem first appears in T. Flett,A mean value theorem, Math. Gazette
(1958), 42, 38–39.

We can assume thatf ′(a) = f ′(b) = 0 [otherwise work withf (x)− f ′(a)x]. Con-
sider the functiong(x) defined to be[ f (x)− f (a)]/[x−a] for x 6= a and f ′(a) at x= a.
We compute that

g′(x) =− f (x)− f (a)
(x−a))2 +

f ′(x)
x−a

=− g(x)
x−a

+
f ′(x)
x−a

.

Evidently to prove the theorem is to prove thatg′ has a zero in(a,b). Check that such
a zero will solve the problem.

To get the zero ofg′ first consider whetherg(a) = g(b). If so then Rolle’s theorem
does the job. If, instead,g(b)> g(a) then

g′(b) =− g(b)
b−a

< 0.

Thusg is locally decreasing atb. There would then have to be at least one pointx1 for
which g(x1) > g(b) > g(a). The Darboux property of the continuous functiong will
supply a pointx0 at whichg(x0) = g(b). Apply Rolle’s theorem to find thatg′ has a
zero in(x0,b). Finally, if g(b) < g(a), then an identical argument should produce the
same result.

Exercise153, page 31

Repeat the arguments for Rolle’s theorem with these new hypotheses. Then just take
anyγ betweenF ′(a) andF ′(b) and writeG(x) = F(x)− γx. If F ′(a)< γ < F ′(b), then
G′(a) = F ′(a)− γ < 0 andG′(b) = F ′(b)− γ > 0. This shows then that there is a point
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ξ ∈ (a,b) such thatG′(ξ) = 0. For thisξ we have

F ′(ξ) = G′(ξ)+ γ = γ,
completing the proof for the caseF ′(a) < F ′(b). The proof whenF ′(a) > F ′(b) is
similar.

Exercise154, page 31

If F ′ is continuous, then it is easy to check thatEα is closed. In the opposite direction
suppose that everyEα is closed andF ′ is not continuous. Then show that there must be
a numberβ and a sequence of points{xn} converging to a pointz and yet f ′(xn) ≥ β
and f ′(z) < β. Apply the Darboux property of the derivative to show that this cannot
happen ifEβ is closed. Deduce thatF ′ is continuous.

Exercise155, page 31

Polynomials have continuous derivatives and only finitely many points where the value
is zero. Letp(x) be a polynomial. Thenp′(x) is also a polynomial. Collect all the points
c1, c2, . . . , cp wherep′(x) = 0. In between these points, the value of the derivative is
either always positive or always negative otherwise the Darboux property ofp′ would
be violated. On those intervals the function is decreasing or increasing.

Exercise156, page 31

Take any pointa< x≤ b and, applying the mean-value theorem on the interval[a,x],
we obtain that

|F(x)−F(a)|= F ′(ξ)(x−a) = 0(x−a) = 0.

ConsequentlyF(x) = F(a) for all a< x≤ b. ThusF is constant.

Exercise157, page 32

In Exercise149we established (without the mean-value theorem) that a function with
a positive derivative is increasing.

Now we assume thatF ′(x) = 0 everywhere in the interval(a,b). Consequently,
for any integern, the functionsG(x) = F(x)+x/n andH(x) = x/n−F(x) both have a
positive derivative and are therefore increasing. In particular, if x< y, then

H(x)< H(y) and G(x)< G(y)

so that
−(y−x)/n< F(y)−F(x) < (y−x)/n

would be true for alln= 1,2,3, . . . . This is only possible ifF(y) = F(x).

Exercise158, page 32

We wish to prove that, ifF : I → R is defined at each point of an open intervalI and
F ′(x) = 0 for everyx∈ I , thenF is a constant function onI . On every closed subinterval
[a,b] ⊂ I the theorem can be applied. Thusf is a constant on the whole intervalI . If
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not then we could find at least two different pointsx1 andx2 with f (x1) 6= f (x2). But
then we already know thatf is constant on the interval[x1,x2] (or, rather on the interval
[x2,x1] if x2 < x1).

Exercise159, page 32

Take any pointsc< d from the interval[a,b] in such a way that(c,d) contains no one
of these exceptional points. Consider the closed, bounded interval [c,d] ⊂ [a,b]. An
application of the mean-value theorem to this smaller interval shows that

F(d)−F(c) = F ′(ξ)(d−c) = 0

for some pointc< ξ < d. ThusF(c) = F(d).
Now take any two pointsa≤ x1 < x2 ≤ b and find all the exceptional points between

them: sayx1 < c1 < c2 < · · · < cn < x2. On each interval[x1,c1], [c1,c2], . . . , [cn,x2]

we have (by what we just proved) that

F(x1) = F(c1], F(c1) = F(c2), . . . ,F(cn) = F(x2).

ThusF(x1) = F(x2). This is true for any pair of points from the interval[a,b] and so
the function is constant.

Exercise161, page 32

Take any pointscandx inside the interval and consider the intervals[x,c] or [c,x]. Apply
the theorem to determine thatF must be constant on any such interval. Consequently
F(x) = F(c) for all a< x< b.

Exercise162, page 32

This looks obvious but be a little bit careful with the exceptional set of pointsx where
F ′(x) 6= G′(x).

If F ′(x) = f (x) for everya< x< b except for points in the finite setC1 andG′(x) =
f (x) for everya< x< b except for points in the finite setC2, then the functionH(x) =
F(x)−G(x) is uniformly continuous on[a.b] andH ′(x) = 0 for everya< x< b with the
possible exception of points in the finite setC1∪C2. By the theoremH is a constant.

Exercise163, page 32

According to the theorem such a function would have to be discontinuous. Any step
function will do here.

Exercise164, page 32

Let ε > 0. At every pointx0 in the interval(a,b) at whichF ′(x0) = 0 we can choose a
δ(x0)> 0 so that

|F(y)−F(z)| ≤ ε|y−z|
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for x0−δ(x0)< z≤ x0 ≤ y< x0+δ(x0). At the remaining pointsa, b, c1, c2, c3, . . . we
chooseδ(·) so that:

ω(F, [a,a+δ(a)]) <
ε
2
,

ω(F, [b−δ(b),b]) <
ε
4
,

and
ω(F, [c j −δ(c j),c j −δ(c j)])<

ε
2 j+2

for j = 1,2,3, . . . . This merely uses the continuity off at each of these points.
Take any subinterval[c,d] ⊂ [a,b]. By the Cousin covering argument there is a

partition
{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}

of the whole interval[c,d] such that

ξi ∈ [xi−1,xi ] and xi −xi−1 < δ(ξi).

For this partition

|F(d)−F(c)| ≤
n

∑
i=1

|F(xi)−F(xi−1)| ≤ ε(d−c)+
∞

∑
j=1

ε
2 j

= ε(d−c+1).

This is possible only if|F(d)−F(c)|= 0. Since this applies to any such interval[c,d]⊂
[a,b] the function must be constant.

Exercise165, page 32

According to Theorem1.33 this will be proved if it is possible to write the rational
numbers (whereF ′(x) is not known) as a sequence. This is well-known. To try it on
your own. Start off

1/1,−1/1,1/2,−1/2,2/1,−2/1,3/1,−3/1,1/3,−1/3, . . .

and describe a listing process that will ultimately includeall rational numbersm/n.

Exercise166, page 33

Apply Exercise165 to the functionF(x) = G(x)− x2/2. SinceF is constant,G(x) =
x2/2+C for some constantC.

Exercise167, page 33

This looks like an immediate consequence of Theorem1.33, but we need to be slightly
careful about the exceptional sequence of points.

If F ′(x)= f (x) for everya< x< bexcept for points in the a sequence{c1,c2,c3, . . .}
andG′(x) = f (x) for everya< x< b except for points in the sequence{d1,d2,d3, . . .},
then the functionH(x) = F(x)−G(x) is uniformly continuous on[a.b] andH ′(x) = 0
for everya < x < b with the possible exception of points in the combined sequence
{c1,d1,c2,d2,c3,d3, . . .}. By Theorem1.33, the functionH is a constant.
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Exercise169, page 33

First show directly from the definition that the Lipschitz condition will imply a bounded
derivative. Then use the mean-value theorem to get the converse, that is, apply the
mean-value theorem tof on the interval[x,y] for anya≤ x< y≤ b.

Exercise170, page 33

The derivative off (x) =
√

x = x1/2 is the function f ′(x) = x1/2/2 which exists but is
not bounded on(0,1).

Exercise171, page 33

One direction is easy. IfF is Lipschitz then, for some numberM,

| f (x)− f (y)| ≤ M|x−y|
for all x, y in the interval. In particular

∣

∣

∣

∣

F(x+h)−F(x)
h

∣

∣

∣

∣

≤
∣

∣

∣

∣

M|(x+h)−x|
h

∣

∣

∣

∣

= M.

The other direction will take a more sophisticated argument. At each pointx0

choose aδ(x0)> 0 so that
∣

∣

∣

∣

F(x0+h)−F(x)
h

∣

∣

∣

∣

≤ M

wheneverx0+h∈ I and|h|< δ(x0). Note that, then,
∣

∣

∣

∣

F(y)−F(z)
y−z

∣

∣

∣

∣

≤ M

for x0− δ(x0) < z≤ x0 ≤ y < x0 + δ(x0). Take any subinterval[c,d] ⊂ [a,b]. By the
Cousin partitioning argument there is a partition

{([xi−1,xi ],ξi) : i = 1,2,3, . . . ,n}
of the whole interval[c,d] such that

ξi ∈ [xi−1,xi ] and xi −xi−1 < δ(ξi).

For this partition

|F(d)−F(c)| ≤
n

∑
i=1

|F(xi)−F(xi−1)| ≤
n

∑
i=1

M|xi −xi−1|= M(d−c).

ThusF is Lipschitz.

Exercise172, page 33

In preparation . . .

Exercise173, page 34

In preparation . . .



194 CHAPTER 5. ANSWERS

Exercise174, page 34

Yes on any interval(a,∞) if a> 0 but not on(0,∞).

Exercise175, page 34

Yes. This is a simple example of a nondifferentiable Lipschitz function, but note that
there is only one point of nondifferentiability.

Exercise178, page 34

From the inequality
∣

∣

∣

∣

F(y)−F(x)
y−x

∣

∣

∣

∣

≤ M|y−x|

deduce thatF ′(x) = 0 everywhere.

Exercise180, page 34

Find an example illustrating that the first condition can hold without the second condi-
tion holding for any value ofK < 1.

Exercise181, page 34

Yes if all the functionsF1, F2, F3, . . . have the same Lipschitz constant. But, in general,
not otherwise.

This is just a simple consequence of the theory of sequence limits and how they
behave with inequalities. If we suppose thatx< y and that

−M(y−x)≤ Fn(y)−Fn(x)≤ M(y−x)

for all n= 1,2,3, . . . , then

−M(y−x)≤ lim
n→∞

[Fn(y)−Fn(x)] ≤ M(y−x)

must be true.

Exercise182, page 36

By the definition, it is indeed an indefinite integral forF ′ except that we require all
indefinite integrals to be continuous. But then we recall that a function is continuous at
all points where the derivative exists. So, finally, yes.

Exercise183, page 36

No. There may be finitely many points wheref (x) is not defined, and even iff (x) has
been assigned a value there may still be finitely many points whereF ′(x) = f (x) fails.
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Exercise184, page 36

Exercise162 is almost identical except that it is stated for two uniformly continuous
functionsF andG on closed, bounded intervals[a,b]. Here(a,b) is open and need
not be bounded. But you can apply Exercise162to any closed, bounded subinterval of
(a,b).

Exercise185, page 38

The two functionsF(x) = x and G(x) = 1/x are continuous on(0,1) but G is not
uniformly continuous. [It is unbounded and any uniformly continuous function on
(0,1) would have to be bounded.] Thus the two functionsf (x) = F ′(x) = 1 andg(x) =
G′(x) =−1/x2 both possess indefinite integrals on the interval(0,1) so that, of the two
indefinite integralsF is uniformly continuous and the otherG is not.

Exercise186, page 38

The mean-value theorem supplies this on any subinterval[c,d] on whichF is differen-
tiable; the proof thus requires handling the finite exceptional set. LetM be larger than
the values of| f (x)| at points whereF ′(x) = f (x). Fix x< y in the interval and split the
interval at all the points where the derivativeF ′ might not exist:

a< x< c1 < c2 < · · ·< cn < y< b.

The mean-value theorem supplies that

|F(t)−F(s)| ≤ M|s− t|
on any interval[s, t] for which (s, t) misses all the points of the subdivision. But adding
these together we find that

|F(t)−F(s)| ≤ M|s− t|
on any interval[s, t] ⊂ [x,y]. But x andy are completely arbitrary so that

|F(t)−F(s)| ≤ M|s− t|
on any interval[s, t] ⊂ (a,b).

We already know that if a function is Lipschitz on(a,b) then it is uniformly con-
tinuous on(a,b).

Exercise187, page 38

It is true that the derivative ofx3/3+1 is indeedx2 at every pointx. So, provided you
also specify the interval in question [here(−∞,∞) will do] then the functionF(x) =
x3/3+ 1 is one possible indefinite integral off (x) = x2. But there are others and the
symbol

∫
x2 dx is intended to represent all of them.

Exercise188, page 39

As we know
(x+1)2 = x2+2x+1.
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The two functions(x+1)2 andx2+2x+1 differ by a constant (in this case the constant
1). In situations like this it is far better to write∫

(2x+1)dx= (x+1)2+C1

and ∫
(2x+1)dx= (x2+2x)+C2

whereC1 andC2 represent arbitrary constants. Then one won’t be using the same letter
to represent two different objects.

Exercise189, page 39

Show thatF is an indefinite integral off (x) = x2 on(0,1) in this stupid sense if and only
if there are three numbers,C1, C2, andC3 with 0<C1 < 1 such thatF(x) = x3/3+C2

on (0,C1) andF(x) = x3/3+C3 on (C1,1).

Exercise190, page 39

By a direct computation ∫
1
x

dx= log|x|+C

on any open intervalI for which 0 6∈ I . The functionF(x) = log|x| is a continuous
indefinite integral on such an intervalI . It cannot be extended to a continuous function
on [0,1] [say] because it is not uniformly continuous. (This is easy to see because
uniformly continuous functions are bounded.

The fact thatf (0) = 1/0 is undefined is entirely irrelevant. In order for a functionto
have an indefinite integral [in the calculus sense of this chapter] it is permitted to have
finitely many points where it is undefined. See the next exercise wheref (x) = 1/

√

|x|
which is also undefined atx= 0 but does have an indefinite integral.

Exercise191, page 39

By a direct computation the functionF(x) = 2
√

x for x> 0 has a derivative

F ′(x) =
1√
x
=

1
√

|x|
.

Thus on the interval(0,∞) it is true that∫
1
√

|x|
dx= 2

√

|x|+C.

On the other handG(x) =−2
√

|x| for x< 0 has a derivative

G′(x) =
1√
−x

=
1
√

|x|
.

Thus on the interval(−∞,0) it is true that∫
1
√

|x|
dx=−2

√

|x|+C.
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While this might look mysterious, the mystery disappears once the correct interval
is specified. The two integrals are not in conflict since one must be stated on the interval
(0,∞) and the other on the interval(−∞,0).

Exercise192, page 39

By a direct computation the functionF(x) = 2
√

x for x ≥ 0 andF(x) = −2
√
−x for

x < 0 hasF ′(x) = f (x) at every point with the single exception ofx = 0. Check that
this function is continuous everywhere. This is immediate at points whereF is differ-
entiable, so it is only atx= 0 that one needs to check continuity.

Once again, the fact thatf (0) is undefined plays no role in the discussion since this
function is defined everywhere else.

Exercise193, page 39

None of them are correct because no interval is specified. Thecorrect versions would
be ∫

1
x

dx= logx+C on (0,∞)

or ∫
1
x

dx= log(−x)+C on (−∞,0)

or ∫
1
x

dx= log|x|+C on (0,∞) or on(0,∞).

You may use subintervals, but we know by now that there are no larger intervals possi-
ble.

Exercise194, page 40

The maximum value off in each of the intervals[0, 1
4], [1

4,
1
2], [1

2,
3
4], and [3

4,1] is
1/8, 1/4, 9/16, and 1 respectively. Thus defineF to be x/8 in the first interval,
1/32+1/4(x−1/1/4) in the second interval, 1/32+1/16+9/16(x−1/2) in the third
interval, and to be 1/32+1/16+9/64+(x−3/4) in the final interval. This should be
(if the arithmetic was correct) a continuous, piecewise linear function whose slope in
each segment exceeds the value of the functionf .

Exercise195, page 41

Start at 0 and first of all work to the right. On the interval(0,1) the function f has
the constant value 1. So defineF(x) = x on [0,1]. Then on the the interval(1,2) the
function f has the constant value 2. So defineF(x) = 1+2(x−1) on [1,2]. Continue
until you see how to describeF in general. This is the same construction we used for
upper functions.



198 CHAPTER 5. ANSWERS

Exercise196, page 42

Let F0 denote the function on[0,1] that hasF0(0) = 0 and has constant slope equal to

c01 = sup{ f (t) : 0< t < 1}.
Subdivide[0,1] into [0, 1

2] and[1
2,1] and letF1 denote the continuous, piecewise linear

function on[0,1] that hasF0(0) = 0 and has constant slope equal to

c11 = sup{ f (t) : 0< t ≤ 1
2}

on [0, 1
2] and constant slope equal to

c12 = sup{ f (t) : 1
2 ≤ t < 1}

on [0, 1
2]. This construction is continued. For example, at the next stage, Subdivide

[0,1] further into[0, 1
4], [

1
4,

1
2], [

1
2,

3
4], and[3

4,1]. Let F2 denote the continuous, piecewise
linear function on[0,1] that hasF0(0) = 0 and has constant slope equal to

c11 = sup{ f (t) : 0< t ≤ 1
4}

on [0, 1
4], constant slope equal to

c12 = sup{ f (t) : 1
4 ≤ t ≤ 1

2}
on [1

4,
1
2], constant slope equal to

c13 = sup{ f (t) : 1
2 ≤ t ≤ 3

4}
on [1

2,
3
4], and constant slope equal to

c14 = sup{ f (t) : 3
4 ≤ t < 1}

on [3
4,1].
In this way we construct a sequence of such functions{Fn}. Note that eachFn is

continuous and nondecreasing. Moreover a look at the geometry reveals that

Fn(x)≥ Fn+1(x)

for all 0 ≤ x ≤ 1 and alln = 0, 1, 2, . . . . In particular{Fn(x)} is a nonincreasing
sequence of nonnegative numbers and consequently

F(x) = lim
n→∞

Fn(x)

exists for all 0≤ x≤ 1. We prove thatF ′(x) = f (x) at all pointsx in (0,1) at which the
function f is continuous.

Fix a pointx in (0,1) at which f is assumed to be continuous and letε > 0. Choose
δ > 0 so that the oscillation1

ω f ([x−2δ,x+2δ])
of f on the interval[x−2δ,x+2δ] does not exceedε. Let h be fixed so that 0< h< δ.
Choose an integerN sufficiently large that

|FN(x)−F(x)|< εh and |FN(x+h)−F(x+h)|< εh.

From the geometry of our construction notice that the inequality

|FN(x+h)−FN(x)− f (x)h| ≤ hω f ([x−2h,x+2h]),

must hold for large enoughN. (Simply observe that the graph ofFN will be composed

1See Exercise62.
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of line segments, each of whose slopes differ fromf (x) by no more than the number
ω f ([x−2h,x+2h]).)

Putting these inequalities together we find that

|F(x+h)−F(x)− f (x)h| ≤
|FN(x+h)−Fn(x)− f (x)h|+ |FN(x)−F(x)|+ |FN(x+h)−F(x+h)|< 3εh.

This shows that the right-hand derivative ofF at x must be exactlyf (x). A similar
argument will handle the left-hand derivative and we have verified the statement in the
theorem about the derivative.

The reader should now check that the functionF defined here is Lipschitz on[0,1].
Let M be an upper bound for the functionf . Check, first, that

0≤ Fn(y)−Fn(x)≤ M(y−x)

for all x< y in [0,1]. Deduce thatF is in fact Lipschitz on[0,1].

Exercise197, page 42

If H(t) = G(a+ t(b−a)) then, by the chain rule,

H ′(t) = G′(a+ t(b−a))× (b−a) = f (a+ t(b−a))× (b−a).

Substitutex= a+ t(b−a) for each 0≤ t ≤ 1.

Exercise198, page 42

If G′(t) = g(t) then d
dt (G(t)+Kt) = g(t)+K = f (t).

Exercise199, page 42

The assumption thatf is continuous on an interval(a,b) means thatf must be uni-
formly continuous on any closed subinterval[c,d]⊂ (a,b). Such functions are bounded.
Applying the theorem gives a continuous function withF ′(x)= f (x) everywhere on that
interval. This will construct our indefinite integral on(a,b). Note thatF will be Lips-
chitz on every subinterval[c,d]⊂ (a,b) but need not be Lipschitz on(a,b), because we
have not assumed thatf is bounded on(a,b).

Exercise200, page 43

You need merely to show thatH is continuous on the interval and thatH ′(x) = r f (x)+
sg(x) at all but finitely many points in the interval. But bothF andG are continuous
on that interval and so we need to recall that the sum of continuous functions is again
continuous.

Finally we know thatF ′(x) = f (x) for all x in I except for a finite setC1, and we
know thatG′(x) = g(x) for all x in I except for a finite setC2. It follows, by properties
of derivatives, that

H ′(x) = rF ′(x)+sG′(x) = r f (x)+sg(x)

at all pointsx in I that are not in the finite setC1∪C2.
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Exercise201, page 43

If F andG both have a derivative at a pointx then we know, from the product rule for
derivatives, that

d
dx

[F(x)G(x)] = F ′(x)G(x)+F(x)G′(x)

Thus, let us suppose thatF ′(x)G(x) has an indefinite integralH(x) on some intervalI .
ThenH is continuous onI andH ′(x) = F ′(x)G(x) at all but finitely many points ofI .
Notice then that

K(x) = F(x)G(x)−H(x)

satisfies (at points where derivatives exist)

K′(x) = F ′(x)G(x)+F(x)G′(x)−F ′(x)G(x) = F(x)G′(x).

Thus∫
F(x)G′(x)dx= K(x)+C= F(x)G(x)−H(x)+C= F(x)G(x)−

∫
F ′(x)G(x)dx.

Exercise202, page 43

One memorizes (as a calculus student) the formula∫
udv= uv−

∫
vdu.

and makes appropriate substitutions. For example to determine
∫

xcosxdx useu= x,
v= cosxdx, determinedu= dx and determinev= sinx [or v= sinx+1 for example].
Then substitute in the memorized formula to obtain∫

xcosxdx=
∫

udv= uv−
∫

vdu= xsinx−
∫

sinxdx= xsinx+cosx+C.

or [if you had usedv= sinx+1 instead]∫
xcosxdx= x(sinx+1)−

∫
(sinx+1)dx= xsinx+cosx+C.

Exercise203, page 44

If you need more [you are a masochist] then you can find them on the web where we
found these. The only reason to spend much further time is if you are shortly to face a
calculus exam where some such computation will be required.If you are an advanced
student it is enough to remember that “integration by parts”is merely the product rule
for derivatives applied to indefinite or definite integration.

There is one thing to keep in mind as a calculus student preparing for questions that
exploit integration by parts. An integral can be often splitup into many different ways
using the substitutions of integration by parts:u = f (x), dv= g′(x)dx, v = g(x) and
du= f ′(x)dx. You can do any such problem by trial-and-error and just abandon any
unpromising direction. If you care to think in advance abouthow best to choose the sub-
stitution, chooseu= f (x) only for functions f (x) that you would care to differentiate
and choosedv= g′(x)dx only for functions you would care to integrate.
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Exercise204, page 44

In most calculus courses the rule would be applied only in situations where both func-
tions F andG are everywhere differentiable. For our calculus integral we have been
encouraged to permit finitely many exceptional points and toinsist then that our indef-
inite integrals are continuous.

That does not work here: letF(x) = |x| andG(x) = x2 sinx−1, G(0) = 0. ThenG
is differentiable everywhere andF is continuous with only one point of nondifferentia-
bility. But F(G(x) = |x2 sinx−1| is not differentiable at any pointx = ±1/π, ±1/2π,
±1/3π, . . . . ThusF(G(x) is not an indefinite integral in the calculus sense forF ′(G(x))
on any open interval that contains zero and indeedF ′(G(x)) would have infinitely many
points where it is undefined. This function is integrable on any open interval that avoids
zero.

This should be considered a limitation of the calculus integral. This is basically
an 18th century integral that we are using for teaching purposes. If we allow infinite
exceptional sets [as we do in the later integration chapters] then the change of variable
rule will hold in great generality.

Exercise205, page 44

To be precise we should specify an open interval;(−∞,∞) will do. To verify the answer
itself, just compute

d
dx

{

1
2

sin(x2+1)

}

= cos(x2+1).

To verify the steps of the procedure just notice that the substitution u = x2 + 1, du=

2xdx is legitimate on this interval.

Exercise206, page 45

It would be expected that you have had sufficient experience solving similar problems to
realize that integration by parts or other methods will failbut that a change of variable
will succeed. The only choices likely in such a simple integral would beu = x2 or
perhapsv= ex2

. The former leads to∫
xex2

dx=
1
2

∫
eu du=

1
2

eu+C= ex2
+C [u= x2]

since ifu= x2 thendu= 2xdx; the latter leads to∫
xex2

dx= 2
∫

v
√

logvdv= ? [v= ex2
]

since ifv= ex2
thenx2 = logv, x=

√
logv anddv= 2xex2

dx= 2v
√

logv.
Note that a wrong choice of substitution may lead to an entirely correct result which

does not accord with the instructors “expectation.” Usually calculus instructors will
select examples that are sufficiently transparent that the correct choice of substitution
is immediate. Better yet, they might provide the substitution that they require and ask
you to carry it out.

Finally all these computations are valid everywhere so we should state our final
result on the interval(−∞,∞). Most calculus instructors, however, would not mark you
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incorrect if you failed to notice this.

Exercise207, page 45

Assuming thatr 6= 0 (in which case we are integrating a constant function), usethe
substitutionu= rx+s, du= rdx to obtain∫

f (rx+s)dx=
1
r

∫
f (u)du= F(u)+C= F(rs+x)+C.

This is a linear change of variables and is the most common change of variable in
numerous situations.

This can be justified in more detail this way. Suppose that
∫

f (t)dx= F(t)+C on
an open intervalI , meaning thatF is continuous andF ′(t) = f (t) on I with possibly
finitely many exceptions. Then find an open intervalJ so thatrx+ s∈ I for all x ∈ J.
It follows that F(rx+ s) is continuous onJ and that d

dxF(rx+ s) = f (rx+ s) again
with possibly finitely many exceptions. OnJ thenF(rx+s) is an indefinite integral for
f (rx+s).

Exercise208, page 45

This is an exercise in derivatives. Suppose thatf : (a,b)→ R has an indefinite integral
F on the interval(a,b). Let ξ be a point of continuity off . We can suppose thatξ
in contained in a subinterval(c,d) ⊂ (a,b) inside whichF ′(x) = f (x) for all points,
except possibly at the pointξ in question.

Let ε > 0. Then, sincef is continuous atξ, there is an interval[ξ−δ(ξ),ξ+δ(ξ)]
so that

f (ξ)− ε < f (x) < f (ξ)+ ε
on that interval. For anyu< ξ < v in this smaller interval

( f (ξ)− ε)(ξ−u)≤ F(ξ)−F(u)

and
( f (ξ)+ ε)(v−ξ)≥ F(v)−F(ξ).

This is because the functionF is continuous on[u,ξ] and [ξ,v] and has a derivative
larger than( f (ξ)− ε) on (u,ξ) and a derivative smaller than( f (ξ)+ ε) on (ξ,v). To-
gether these inequalities prove that, for anyu≤ ξ≤ v, u 6= von the interval(ξ−δ(ξ),ξ+
δ(ξ)) the inequality

∣

∣

∣

∣

F(v)−F(u)
v−u

− f (ξ)
∣

∣

∣

∣

≤ ε

must be valid. But this says thatF ′(ξ) = f (ξ).

Exercise209, page 47

In fact this is particularly sloppy. The function log(x−8) is defined only forx> 8 while
log(x+5) is defined only forx> −5. Thus an appropriate interval for the expression
given here would be(8,∞). But it is also true that∫

x+3
x2−3x−40

dx= [11/13] log(|x−8|)+ [2/13] log(|x+5|)+C
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on any open interval that does not contain either of the points x = 8 or x = −5. For
example, on the interval(−5,8), the following is valid:∫

x+3
x2−3x−40

dx= [11/13] log(8−x)+ [2/13] log(x+5)+C.

You might even prefer to write∫
x+3

x2−3x−40
dx=

1
13

log
{

(8−x)11(x+5)2}+C.

Exercise210, page 51

Find the necessary statements from Chapter 1 from which thiscan be concluded.

Exercise211, page 52

Yes. Just check the two cases.

Exercise212, page 53

We know this fora< b< c. Make sure to state the assumptions and formulate the thing
you want to prove correctly. For example, ifb< a= c does it work?

Exercise215, page 53

For a functionx(t) = t2 compute the integral
∫ 1

0 x( f )d f . That is perfectly legitimate
but will make most mathematicians nauseous.

How about usingd as a dummy variable: compute
∫ 1

0 d2dd? Or use the Greek letter
π as a dummy variable: what is

∫ 1
0 sinπdπ?

Most calculus students are mildly amused by this computation:∫ 2

1

d[cabin]
[cabin]

= {logcabin}cabin=2
cabin=1 = log2.

Exercise216, page 54

That is correct but he is being a jerk. More informative is∫
e2xdx= e2x/2+C,

which is valid on any interval. More serious, though, is thatthe student didn’t find
an indefinite integral so would be obliged to give some argument about the function
f (x) = e2x to convince us that it is indeed integrable. An appeal to continuity would be
enough.

Exercise217, page 54

That is correct but she is not being a jerk. There is no simple formula for any indefinite
integral ofex2

other than defining it as an integral as she did here (or perhaps an infinite
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series). Once again the student would be obliged to give someargument about the
function f (x) = ex2

to convince us that it is indeed integrable. An appeal to continuity
would be enough.

Exercise218, page 54

One can use any indefinite integral in the computation, so both of those methods are
correct.

Exercise219, page 54

Probably, but the student using the notation should remember that the computation at
the∞ end here is really a limit:

lim
x→∞

[

− 2√
x

]

= 0.

Exercise220, page 55

Step functions are bounded in every interval[a,b] and have only a finite number of
steps, so only a finite number of discontinuities.

Exercise221, page 55

Differentiable functions are continuous at every point andconsequently uniformly con-
tinuous on any closed, bounded interval.

Exercise222, page 55

If f : (a,b)→R is bounded we already know thatf is integrable and that the statements
here must all be valid. Iff is an unbounded function that is continuous at all points of
(a,b) then there is a continuous functionF on (a,b) for which F ′(x) = f (x) for all
points there. In particular,F is uniformly continuous on any interval[c,d] ⊂ (a,b) and
so serves as an indefinite integral proving thatf is integrable on these subintervals.

In order to claim thatf is actually integrable on[a,b] we need to be assured thatF
can be extended to a uniformly continuous function on all of[a,b]. But that is precisely
what the conditions

lim
t→a+

∫ c

t
f (x)dx and lim

t→b−

∫ t

c
f (x)dx

allow, since they verify that the limits

lim
t→a+

F(t) and lim
t→b−

F(t)

must both exist. We know that this is both necessary and sufficient in order thatF
should be extendable to a uniformly continuous function on all of [a,b].
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Exercise223, page 56

We suppose thatf has an indefinite integralF on (a,b). We know thatf is integrable
on any subinterval[c,d]⊂ (a,b) but we cannot claim thatf is integrable on all of[a,b]
until we check uniform continuity ofF .

We assume thatg is integrable on[a,b] and construct a proof thatf is also integrable
on [a,b]. Let G be an indefinite integral forg on the open interval(a,b). We know that
G is uniformly continuous becauseg is integrable.

We check, fora< s< t < b that
∣

∣

∣

∣

∫ t

s
f (x)dx

∣

∣

∣

∣

≤
∫ t

s
|g(x)| dx= G(t)−G(s).

from which we get that

|F(t)−F(s)| ≤ G(t)−G(s) for all a< s< t < c.

It follows from an easyε, δ argument that the uniform continuity ofF follows from the
uniform continuity ofG. Consequentlyf is integrable on[a,b].

For the infinite integral,
∫ ∞

a f (x)dx the same argument give us the uniform conti-
nuity but does not offer the existence ofF(∞). For that we can use Exercise64. Since
G(∞) must exist in order for the integral

∫ ∞
a g(x)dx to exist, that Exercise64 shows us,

that for allε > 0 there should exist a positive numberT so that

ωG((T,∞))< ε.
But we already know that

ωF((T,∞))≤ ωG((T,∞))< ε.
A further application of that same exercise shows us thatF(∞) does exist.

Exercise224, page 56

If f is continuous at all points of(a,b) with the exception of pointsa < c1 < c2 <

· · · < cm < b then we can argue on each interval[a,c1], [c1,c2], . . . , [cm,b]. If f is
integrable on each of these subintervals of[a,b] then, by the additive property,f must
be integrable on[a,b] itself.

We know thatf has an indefinite integral on(a,c1) becausef is continuous at each
point of that interval. By Theorem3.7 it follows that f is integrable on[a,c1]. The
same argument supplies thatf is integrable on on each interval[c1,c2], . . . , [cm,b].

Exercise225, page 56

The method used in the preceding exercise will work. Iff is continuous at all points of
(a,∞) with the exception of pointsa< c1 < c2 < · · · < cm then we can argue on each
interval [a,c1], [c1,c2], . . . , [cm,∞). If f is integrable on each of these subintervals of
[a,∞) then, by the additive property,f must be integrable on[a,∞) itself.

We know thatf has an indefinite integral on(a,c1) becausef is continuous at each
point of that interval. By Theorem3.7it follows that f is integrable on[a,c1]. The same
argument supplies thatf is integrable on on each interval[c1,c2], . . . , [cm−1,cm]. For
the final interval[cm,∞) note thatf is continuous at every point and so has an indefinite
integral on(cm,∞). Now invoke Theorem3.9to conclude integrability on[cm,∞).
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Exercise226, page 56

Note, first, that all of the integrands are continuous on the interval(0,π/2). Using the
simple inequality

x/2< sinx< x (0< x< π/2)

we can check that, on the interval(0,π/2),

1√
2
≤
√

sinx
x

≤ 1,

so that the first integral exists because the integrand is continuous and bounded.
For the next two integrals we observe that

1√
2x

≤
√

sinx
x2 ≤ 1√

x
,

and
1√
2x

≤
√

sinx
x3 ≤ 1

x
.

Thus, by the comparison test, one integral exists and the other does not. It is only the
integral ∫ π/2

0

√

sinx
x3 dx

that fails to exist by comparison with the integral

1√
2

∫ π/2

0

1
x

dx.

Exercise227, page 56

The comparison test will handle only the third of these integrals proving that it is in-
tegrable. We know that the integrands are continuous on(0,∞) and so there is an
indefinite integral in all cases. The inequality|sinx| ≤ 1 shows that

∣

∣

∣

∣

sinx
x2

∣

∣

∣

∣

≤ 1
x2

and we know that the integral ∫ ∞

1

1
x2 dx

converges. That proves, by the comparison test that∫ ∞

1

sinx
x2 dx

converges.
To handle the other two cases we would have to compute limits at ∞ to determine

convergence. The comparison test does not help.

Exercise228, page 56

If a nonnegative functionf : (a,b)→R is has a bounded indefinite integralF on (a,b),
then that functionF is evidently nondecreasing. We can claim thatf is integrable if
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and only if we can claim that the limitsF(a+) andF(b−) exist. For a nondecreasing
functionF this is equivalent merely to the observation thatF is bounded.

Exercise229, page 57

In view of the previous exercise we should search for a counterexample that is not non-
negative. Find a bounded functionF : (0,1) that is differentiable but is not uniformly
continuous. TryF(x) = sinx−1 and takef = F ′.

Exercise230, page 57

The focus of your discussion would have to be on points where the denominatorq(x)
has a zero. If[a,b] contains no points at whichq is zero then the integrand is continuous
everywhere (even differentiable) at all points of[a,b] so the function is integrable there.

You will need this distinction. A pointx0 is azeroof q(x) if q(x0) = 0. A point x0

is a zero ofq(x) of order k(k= 1,2,3, . . . ) if

q(x) = (x−x0)
kh(x)

for some polynomialh(x) that does not have a zero atx0.
Work on an interval[x0,c] that contains only the one zerox0. For example, ifx0 is

a zero of the first order forq, p(x0) 6= 0 and the interval contains no other zeros forp
andq then there are positive numbersm andM for which

m
x−x0

≤ p(x)
q(x)

≤ M
x−x0

on the interval[x0,c]. The comparison test supplies the nonintegrability of the function
on this interval.

Do the same at higher order zeros (where you will find the opposite conclusion).

Exercise231, page 57

Compare with Exercise230. First consider only the case where[a,∞] contains no zeros
of eitherp(x) or q(x). Then the integral∫ X

a

p(x)
q(x)

dx

exists and it is only the limiting behavior asX → ∞ that needs to be investigated. The
key idea is that if

m
x
≤
∣

∣

∣

∣

p(x)
q(x)

∣

∣

∣

∣

for somem> 0 and alla≤ x≤ ∞ then the integral must diverge. Similarly if

M
x2 ≥

∣

∣

∣

∣

p(x)
q(x)

∣

∣

∣

∣

for someM > 0 and alla≤ x≤ ∞ then the integral must converge.
For a further hint, if you need one, consider the following argument used on the

integral ∫ ∞

1

1+x
1+x+x2+x3 dx.
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Since

lim
x→∞

∣

∣

∣

∣

x2× 1+x
1+x+x2+x3

∣

∣

∣

∣

= 1

it follows that, for all sufficiently large values ofx,
∣

∣

∣

∣

x2× 1+x
1+x+x2+x3

∣

∣

∣

∣

< 2

or
∣

∣

∣

∣

1+x
1+x+x2+x3

∣

∣

∣

∣

<
2
x2 .

Exercise232, page 57

In Exercise261we established the identity∫ ∞

1
f (x)dx=

∞

∑
n=2

∫ n

n−1
f (x)dx,

valid if the function f is integrable on[0,∞). Becausef is a nonnegative, decreasing
function on[1,∞) we can see that

f (n−1)≥
∫ n

n−1
f (x)dx≥ f (n).

From that we can deduce that the series∑∞
n=1 f (n) converges.

Conversely suppose the series converges. Let

F(x) =
∫ x

1
f (t)dt

which is an indefinite integral forf on (0,∞). The functionF is nondecreasing. As
before,

f (n−1)≥ F(n)−F(n−1) =
∫ n

n−1
f (x)dx≥ f (n).

We can deduce from this that if the series∑∞
n=1 f (n) converges then the limit

F(∞) = lim
x→∞

F(x)

exists. It follows that the integral exists.

Exercise233, page 57

In Exercise3.11we saw that this would not be possible if the functionf is also nonde-
creasing. That should be the clue as to where to look for a counterexample.

Exercise234, page 57

In Exercise3.11we saw that this would not be possible if the functionf is also nonde-
creasing. Again that is a clue for finding a counterexample.

Exercise235, page 57

Uniformly continuous functions are integrable. Heref g is also uniformly continuous.
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Exercise236, page 57

Bounded, continuous functions are integrable. Heref g is also bounded continuous and
has discontinuities only at the points where one off or g is continuous.

Exercise237, page 57

Take f (x) = g(x) = 1√
x. Then f (x)g(x) = 1

x which we know is not integrable on[0,1].
It is the unboundedness of the functions that causes the difficulty. Clearly some un-
bounded functions are integrable, but “really big” unbounded functions may not be.

Exercise238, page 58

If both f andg are continuous functions on[1,∞) then they must be integrable on every
bounded interval. So it is just a delicate matter to arrange for them to be integrable
without the product being integrable; this requires attention to the large values.

In every interval[n,n+1] (n= 1,2,3, . . . ) choosef to be a continuous, nonnegative
function arranged so that ∫ n+1

n
f (x)dx≤ 1/n2

but ∫ n+1

n
( f (x))2 dx≥ 1/n.

This is just an arithmetic problem in each interval. Then observe that, forN≤ x≤N+1,

F(x) =
∫ x

1
f (t)dt ≤

N

∑
i=1

1
i2

and

G(x) =
∫ x

1
( f (t))2 dt ≥

N−1

∑
i=1

1
i
.

The functionsF andG are continuous, nondecreasing functions for which, evidently,
F(∞) exists butG(∞) does not.

Exercise239, page 58

By the product rule for derivatives

(FG)′ = F ′G+FG′

at all but finitely many points. Thus, sinceFG is uniformly continuous, the function
FG′+F ′G is integrable.

Exercise240, page 59

The proof is an easy exercise in derivatives. UseF andG for the indefinite integrals of
f andg. Let N0 be the set of pointsx in (a,b) where f (x) ≤ g(x) might fail. Suppose
thatF ′(x) = f (x) except on a finite setN1. Suppose thatG′(x) = g(x) except on a finite
setN2.
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ThenH = G−F hasH ′(x) = g(x)− f (x) ≥ 0 except on the finite setN0∪N1∪N2.
This set is also finite and, sinceF andG are uniformly continuous on the interval, so
too isH. We now know that ifH is uniformly continuous on[a,b] and

d
dx

H(x)≥ 0

for all but finitely many pointsx in (a,b); thenH(x) must be nondecreasing on[a,b].
Finally thenH(a)≤ H(b) shows thatF(a)−F(b) ≤ G(b)−G(a) and hence that∫ b

a
f (x)dx≤

∫ b

a
g(x)dx.

Exercise244, page 60

If the formula
d
dx

F(G(x)) = F ′(G(x))G′(x)

holds everywhere then∫ b

a
F ′(G(x))G′(x)dx= F(G(b))−F(G(a)).

But we also know that∫ G(b)

G(a)
F ′(x)dx= F(G(b))−F(G(a)).

Exercise245, page 60

That does not work here. IfF(x) = |x| andG(x) = x2 sinx−1, G(0) = 0, thenG is differ-
entiable everywhere andF is continuous with only one point of nondifferentiability.But
F(G(x) = |x2 sinx−1| is not differentiable at any pointx= ±1/π, ±1/2π, ±1/3π, . . . .
ThusF(G(x) is not an indefinite integral in the calculus sense forF ′(G(x)) on [0,1] and
indeedF ′(G(x)) would have infinitely many points where it is undefined. This function
is, however, integrable on any interval that avoids zero since there would then be only
finitely many points at which the continuous functionF(G(x)) is not differentiable.

This is a feature of the calculus integral. Other integration theories can handle this
function.

Exercise248, page 60

If F ′ is integrable [calculus sense] on[a,b] thenF is continuous there and differentiable
at all but finitely many points of the interval. Hence the formula

d
dx

F(G(x)) = F ′(G(x))G′(x)

holds everywhere with at most finitely many exceptions. ConsequentlyF ′(G(x))G′(x)
must be integrable and∫ b

a
F ′(G(x))G′(x)dx= F(G(b))−F(G(a)) =

∫ G(b)

G(a)
F ′(x)dx.
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Exercise249, page 61

The integrand is continuous at each point of(0,π2) so the inequality
∣

∣

∣

∣

cos
√

x√
x

∣

∣

∣

∣

≤ 1√
x

and the comparison test can be used to show that the integral exists.
With F(u) = sinu, F ′(u) = cosu, u=

√
x, and 2du= dx/

√
x, a change of variables

shows that ∫ π2

0

cos
√

x√
x

dx= 2
∫ π

0
cosudu= 2sinπ−2sin0.

Integrability also follows from the change of variable formula itself. TakeF(u) = sinu
andG(x) =

√
x. ThenG′(x) = 1/2

√
x. The functionF(G(x)) is continuous on[0,π2]

and is differentiable at every point of the open interval(0,π2) with a derivative

d
dx

F(G(x)) = cos(G(x))×G′(x) =
cos

√
x

2
√

x
.

It follows that the integral must exist and that
∫ π2

0

cos
√

x
2
√

x
dx= F(G(π2))−F(G(0)).

Exercise250, page 61

Let us just do the infinite integral. If
∫ ∞
−∞ f (x)dxexists then there is an indefinite integral

F on (−∞,∞) and bothF(∞) andF(∞) exist. By definition∫ ∞

a
f (x)dx= F(∞)−F(a),

∫ b

−∞
f (x)dx= F(b)−F(−∞)

and ∫ b

a
f (x)dx= F(b)−F(a)

must all exist.

Exercise251, page 61

Let us do the additivity formula for the infinite integral. If
∫ ∞
−∞ f (x)dx exists then there

is an indefinite integralF on (−∞,∞) and bothF(∞) andF(∞) exist. By definition∫ ∞

−∞
f (x)dx= F(∞)−F(−∞) = [F(∞)−F(b)]+ [F(b)−F(a)]+ [F(a)−F(−∞)] =

∫ a

−∞
f (x)dx+

∫ b

a
f (x)dx+

∫ ∞

b
f (x)dx.

Any other additivity formula can be proved the same way.
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The theorem requires proving another observation. If we know that the integral
exists on two abutting intervals then we must check that it exists on the union. Here is
the method. If ∫ a

−∞
f (x)dx and

∫ ∞

a
f (x)dx

both exist then select indefinite integralsF on (−∞,a] andG on [a,∞). DefineH(x) =
F(x) for x≤ a andH(x) = G(x)−G(a)+F(a) for x> a. ThenH is continuous and
must therefore be an indefinite integral forf on (−∞,∞). We need to know that the
limiting valuesH(−∞) andH(∞) both exist. ButH(−∞) = F(−∞) andH(∞) =G(∞).
Thus the integral ∫ ∞

−∞
f (x)dx

must exist.

Exercise252, page 61

We suppose that the two functionsf , g are both integrable on a closed, bounded interval
[a,b] and thatf (x) ≤ g(x) for all x∈ [a,b]. We can IfF is an indefinite integral forf
on [a,b] andG is an indefinite integral forg on [a,b] then setH(x) = G(x)−F(x) and
notice that

d
dx

H(x) =
d
dx

[G(x)−F(x)] ≥ g(x)− f (x) ≥ 0

except possibly at the finitely many points where the derivative does not have to agree
with the function. But we know that continuous functions with nonnegative derivatives
are nondecreasing; the finite number of exceptions does not matter for this statement.
ThusH(b)−H(a)≥ 0 and so[G(b)−G(a)]− [F(b)−F(a)]≥ 0. Consequently∫ b

a
f (x)dx= [F(b)−F(a)]≤ [G(b)−G(a)] =

∫ b

a
g(x)dx.

The details are similar for infinite integrals.

Exercise253, page 61

We know that ∫
x2 dx= x3/3+C

on any interval. So that, in fact, using [for example] the function F(x) = x3/3+1 as an
indefinite integral,∫ 2

−1
x2 dx= F(2)−F(−1) = [23/3+1]− [(−1)3/3+1] = 3.

Exercise254, page 61

We know that ∫
dx
x

= log|x|+C

on (0,∞) and on(−∞,0).
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In particular we do have a continuous indefinite integral on both of the open inter-
vals (−1,0) and(0,1). But this indefinite integral is not uniformly continuous. The
easiest clue to this is that the function log|x| is unbounded on both intervals(−1,0)
and(0,1).

As for integrability on, say the interval[−1,1]. This is even clearer: there is no
antiderivative at all, so the function cannot be integrableby definition.

As to the fact thatf (0) is undefined: an integrable function may be undefined at
any finite number of points. So this was not an issue and did notneed to be discussed.

Finally is this function integrable on the unbounded interval (∞,−1] or on the un-
bounded interval[1,∞)? No. Simply check that neither limit

lim
x→∞

logx or lim
x→−∞

log(−x)

exists.

Exercise255, page 61

We know that the functionF(x) = 2
√

x is uniformly continuous on[0,2] and that

d
dx

2
√

x=
1√
x

for all x> 0. Thus this function is integrable on[0,2] and∫ 2

0

1√
x

dx= F(2)−F(0) = 2
√

2.

The fact that f is undefined at an endpoint [or any one point for that matter] is no
concern to us.

Some calculus course instructors may object here, insisting that the ritual known as
“improper integration” needs to be invoked. It does not! We have defined the integral in
such a way that this procedure is simply part of the definition. For courses that start with
the Riemann integral this procedure would not be allowed since unbounded functions
are not Riemann integrable. The functionf (x) = x−1/2 is unbounded on(0,2) but this
causes us no concern since the definition is only about antiderivatives.

Finally, is this function integrable on[0,∞)? No. The endpoint 0 is no problem but
limx→∞ 2

√
x does not exist.

Exercise256, page 62

The simplest method to handle this is to split the problem at 0. If a< 0< b then∫ b

a
1/
√

|x|dx=
∫ 0

a
1/
√

|x|dx+
∫ b

0
1/
√

|x|dx=
∫ 0

a
1/
√
−xdx+

∫ b

0
1/
√

xdx

if these two integrals exist. For an indefinite integral off on (0,∞) useF(x) = 2
√

x
and for an indefinite integral off on (−∞,0) useF(x) =−2

√−x.
Thus ∫ 0

a
1/
√

|x|dx= F(0)−F(a) = 2
√

a

and ∫ b

0
1/
√

|x|dx= F(b)−F(0) = 2
√

b.
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Exercise257, page 62

In defining an integral on[a,b] as∫ b

a
f (x)dx= F(b)−F(a)

we have allowedF ′(x) = f (x) (a < x < b) to fail at a finite number of points, say at
c1 < c2 < · · · < cn provided we know thatF is continuous at each of these points. We
could merely take the separate integrals∫ c1

a
f (x)dx,

∫ c1

c1

f (x)dx, . . . ,
∫ b

cn

f (x)dx

and add them together whenever we need to. Thus the integral could be defined with
no exceptional set and, for applications, . . . well add up thepieces that you need.

The calculus integral is only a teaching integral. The modern theory requires a
much more general integral and that integral can be obtainedby allowing an infinite
exceptional set. Thus the training that you are getting by handling the finite exceptional
set is really preparing you for the infinite exceptional set.Besides we do get a much
better integration theory with our definition, a theory thatgeneralizes quite well to the
modern theory.

Another thing to keep in mind: when we pass to an infinite exceptional set we
maybe unable to “split the interval in pieces.” Indeed, we will eventually allow all of
the rational numbers as exceptional points where the derivative may not exist.

Exercise258, page 62

The derivative ofF exists at all points in(0,1) except at these corners 1/n, n =

2,3,4,5, . . . . If a> 0 then the interval[a,1] contains only finitely many corners. But the
interval (0,1) contains infinitely many corners! ThusF ′ undefined at infinitely many
points of[0,1] andF(x) is not differentiable at these points.

It is clear thatF is continuous at all points inside, since it is piecewise linear. At the
endpoint 0 we haveF(0) and we have to check that|F(x)−F(0)| is small if x is close
to zero. This is easy. SoF is uniformly continuous on[0,1] and the identity∫ b

a
F ′(x)dx= F(b)−F(a)

is true for the calculus integral ifa > 0. It fails for a = 1 only because there are too
many points where the derivative fails.

What should we do?

1. Accept thatF ′ is not integrable and not worry about such functions?

2. Wait for a slightly more advanced course where an infinite set of exceptional
points is allowed?

3. Immediately demand that the calculus integral accommodate a sequence of ex-
ceptional points, not merely a finite set?
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We have the resources to do the third of these suggestions. Wewould have to prove
this fact though:

If F, G : [a,b] are uniformly continuous functions, ifF ′(x) = f (x) for all
points in(a,b) except points in some sequence{cn} and if G′(x) = f (x)
for all points in(a,b) except points in some sequence{dn}, thenF andG
must differ by a constant.

If we prove that then, immediately, the definition of the calculus integral can be ex-
tended to handle this troublesome example. This fact is not too hard to prove, but it is
nonetheless much harder than the finite case. Remember the latter uses only the mean-
value theorem to find a proof. Accepting sequences of exceptional points will make our
simple calculus course just a little bit tougher.

So we stay with the finite case for this chapter and then introduce the infinite case
in the next. After all, the calculus integral is just a warm-up integral and is not intended
to be the final say in integration theory on the real line.

Exercise259, page 62

(1). There is no functionF ′(x) = 1 for all x irrational andF ′(x) = 0 if x is rational, on
any interval[c,d]. To be an indefinite integral in the calculus sense on an interval [a,b]
there must subintervals whereF is differentiable. Why is there not? Well derivatives
have the Darboux property.

(2) There are two many points wheref is not defined. Every interval contains
infinitely many rationals.

(3) The only possible indefinite integral isF(x) = x+k for some constant. But then
F ′(x) = f (x) has too many exceptions: at all the pointsxn = 1/n, 1= F ′(xn) 6= f (xn) =

cn unless we had insisted thatcn = 1 for all but finitely many of the{cn}.

Note: The first two are Lebesgue integrable, but not Riemann integrable. The third
is Lebesgue integrable and might be Riemann integrable, depending on whether the
sequence{cn} is bounded or not. Thus the calculus integral is quite distinct from these
other theories.

Exercise260, page 62

The functionF(x) = xp+1/(p+1) is an antiderivative on(0,∞) if p 6= 1. If p= 1 then
F(x) = logx is an antiderivative on(0,∞). Thus for your answer you will need to check
F(0+), F(1), andF(∞) in all possible cases.

Exercise261, page 62

Yes. Take an indefinite integralF for f and write∫ ∞

−∞
f (x)dx= F(∞)−F(−∞) = F(∞)−F(b)+F(b)−F(a)+F(a)−F(−∞)

=
∫ a

∞
f (x)dx+

∫ b

a
f (x)dx+

∫ ∞

b
f (x)dx.
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For the second formula write∫ ∞

0
f (x)dx= F(∞)−F(0) =

F(∞)−F(N)+ [F(N)−F(N−1)]+ . . . [F(2)−F(1)]+ [F(1)−F(0)]

= F(∞)−F(N)+
N

∑
n=1

∫ n

n−1
f (x)dx.

Then, since limN→∞[F(∞)−F(N)] = 0, it follows that
∫ ∞

0
f (x)dx= lim

N→∞

N

∑
n=1

∫ n

n−1
f (x)dx=

∞

∑
n=1

∫ n

n−1
f (x)dx.

The third formula is similar.

Exercise262, page 63

Let F(x) = 0 for x ≤ 0 and letF(x) = x for x> 0. ThenF is continuous everywhere
and is differentiable everywhere except atx= 0. Consider∫ 1

−1
F ′(x)dx= F(1)−F(−1) = 1

and try to find a pointξ whereF ′(ξ)(1− (−1)) = 1.

Exercise263, page 63

Let mandM be the minimum and maximum values of the functionG. It follows that

m
∫ b

a
ϕ(t)dt ≤

∫ b

a
G(t)ϕ(t)dt ≤ M

∫ b

a
ϕ(t)dt

by monotonicity of the integral. Dividing through by
∫ b

a ϕ(t)dt (which we can assume
is not zero), we have that

m≤
∫ b

a G(t)ϕ(t)dt∫ b
a ϕ(t)dt

≤ M.

SinceG(t) is continuous, the Darboux property of continuous functions (i.e., the inter-
mediate value theorem) implies that there existsξ ∈ [a,b] such that

G(x) =

∫ b
a G(t)ϕ(t)dt∫ b

a ϕ(t)dt

which completes the proof.

Exercise266, page 64

In Exercise227 we avoided looking closely at this important integral but let us do so
now.

We need to consider the indefinite integral

Si(x) =
∫ x

0

sint
t

dt

which is known as thesin integral function and plays a role in many investigations.
Since the functionsx−1 and sinx are both continuous on(0,∞) there is an indefinite
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integral on(0,∞). There is no trouble at the left-hand endpoint because the integrand
is bounded. Hence the functionSi(x) is defined for all 0≤ x< ∞.

Our job is simply to show that the limitSi(∞) exists. It is possible using more
advanced methods to evaluate the integral and obtain

Si(∞) =

∫ ∞

0

sinx
x

dx =
π
2
.

To obtain that the limitSi(∞) exists let us apply the mean-value theorem given as
Exercise265. On any interval[a,b] ⊂ (0,∞)∫ b

a
x−1 sinxdx=

cosa−cosξ
a

+
cosξ−cosb

b
for someξ. Consequently

|Si(b)−Si(a)| =
∣

∣

∣

∣

∫ b

a

sinx
x

dx

∣

∣

∣

∣

≤ 2
a
+

2
b
.

From this we deduce that the oscillation ofSi on intervals[T,∞) is small if T is large,
i.e., that

ωSi([T,∞])≤ 4
T

→ 0

asT → ∞. It follows thatSi(∞) must exist. This proves that the integral is convergent.
Finally let us show that the function

F(x) =
∫ x

0

∣

∣

∣

∣

sint
t

∣

∣

∣

∣

dt

is unbounded. Then we can conclude that the integral diverges and that the Dirichelet
integral is convergent but not absolutely convergent.

To see this take any interval[2nπ,(2n+1)π] on which sinx is nonnegative. Let us
apply the mean-value theorem given as Exercise264. This will show that∫ (2n+1)π

2nπ

∣

∣

∣

∣

sint
t

∣

∣

∣

∣

dt ≥ 1
2nπ

.

It follows that forx greater than(2N+1)π
∫ x

0

∣

∣

∣

∣

sint
t

∣

∣

∣

∣

dt ≥
N

∑
n=1

∫ (2n+1)π

2nπ

∣

∣

∣

∣

sint
t

∣

∣

∣

∣

dt ≥
N

∑
n=1

1
2nπ

.

ConsequentlyF is unbounded.

Exercise267, page 66

The choice of midpoint
xi +xi−1

2
= ξi

for the Riemann sum gives a sum

=
1
2

n

∑
i=1

(x2
i −x2

i−1) =
1
2

[

b2−x2
n−1+x2

n−1−x2
n−2+ · · ·−a2]= (b2−a2)/2.

To explain why this works you might take the indefinite integral F(x) = x2/2 and check
that

F(d)−F(c)
d−c

=
c+d

2
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so that the mean-value always picks out the midpoint of the interval [c,d] for this very
simple function.

Exercise273, page 67

Just take, first, the pointsξ∗i at which we have the exact identity∫ xi

xi−1

f (x)dx− f (ξ∗i )(xi −xi−1) = 0

Then for any other pointξi ,
∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

= | f (ξi)− f (ξ∗)|(xi −xi−1)≤ω f ([xi ,xi−1])(xi −xi−1).

The final comparison with
n

∑
i=1

ω f ([xi ,xi−1])(xi −xi−1)

follows from this.
To get a good approximation of the integral by Riemann sums itseems that we

might need
n

∑
i=1

ω f ([xi ,xi−1])(xi −xi−1)

to be small. Observe that the pieces in the sum here can be madesmall if (a) the function
is continuous so that the oscillations are small, or (b) points where the function is not
continuous occur in intervals[xi ,xi−1] that are small. Loosely then we can make these
sums small if the function is mostly continuous, i.e., whereit is not continuous can be
covered by some small intervals that don’t add up to much. Themodern statement of
this is “the function needs to be continuous almost everywhere.”

Exercise274, page 69

This is the simplest case to prove since we do not have to fuss at the endpoints or at
exceptional points wheref is discontinuous.

Let ε > 0 and chooseδ > 0 so that

ω f ([c,d]) <
ε

(b−a)

whenever[c,d] is a subinterval of[a,b] for which d−c< δ. Note then that if

{([xi ,xi−1],ξi) : i = 1,2, . . .n}
is a partition of[a,b] with intervals shorter thanδ then

n

∑
i=1

ω f ([xi ,xi−1])(xi −xi−1)<
n

∑
i=1

[ε/(b−a)](xi −xi−1) = ε.

Consequently, by Exercise273,
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣
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≤
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

< ε.

Exercise275, page 69

You can still use the error estimate in Exercise273, but will have to handle the endpoints
differently than you did in Exercise274.

Exercise276, page 69

Add one pointc of discontinuity of f in (a,b) and prove that case. [Do forc what you
did for the endpointsa andb in Exercise275.]

Exercise277, page 69

Once we have selected
{([xi ,xi−1],ξi) : i = 1,2, . . .n},

a partition of[a,b] with intervals shorter thanδ we would be free to move the points
ξi anywhere within the interval. Thus write the inequality andhold everything fixed
except, for one value ofi, let xi−1 ≤ ξi ≤ xi vary. That can be used to obtain an upper
bound for| f (ξ)| for xi−1 ≤ ξ ≤ xi .

Exercise278, page 69

Of course we can more easily use the definition of the integraland compute that
∫ 1

0 x2 dx=
1/3−0. This exercise shows that, under certain simple conditions,not merely can we
approximate the value of the integral by Riemann sums, we canproduce a sequence of
numbers which converges to the value of the integral. Simplydivide the interval at the
points 0, 1/n, 2/n, . . . , n−1)/n, and 1. Takeξ = i/n [the right hand endpoint of the
interval]. Then the Riemann sum for this partition is

n

∑
i=1

(

i
n

)2 1
n
=

12+22+32+42+52+62+ · · ·+n2

n3 .

As n→ ∞ this must converge to the value of the integral by Theorem3.19. The student
is advised to find the needed formula for

12+22+32+42+52+62+ · · ·+N2.

and determine whether the limit is indeed the correct value 1/3.

Exercise279, page 69

Determine the value of the integral ∫ 1

0
x2 dx

in the following way. Let 0< r < 1 be fixed. Subdivide the interval[0,1] by defining
the pointsx0 = 0, x1 = rn−1, x2 = rn−2, . . . ,xn−1 = rn−(n−1) = r, andxn = rn−(−n) = 1.



220 CHAPTER 5. ANSWERS

Choose the pointsξi ∈ [xi−1,xi ] as the right-hand endpoint of the interval. Then
n

∑
i=1

ξ2
i (xi −xi−1) =

n

∑
i=1

(

rn−i)2
(rn−i − rn−i+1).

Note that for every value ofn this is a Riemann sum over subintervals whose length is
smaller than 1− r.

As r → 1− this must converge to the value of the integral by Theorem3.19. The
student is advised to carry out the evaluation of this limit to determine whether the limit
is indeed the correct value 1/3.

Exercise281, page 71

Let f (x) = 1/n if x= 1/n for integersn= 1,2,3, . . . and let f (x) = 0 for all other values
of x. Show that f is Riemann integrable on the interval[0,1] and that

(R)
∫ b

a
f (x)dx= 0

but that f is not integrable in the calculus sense on[0,1].

Exercise282, page 72

Suppose first thatf is uniformly continuous on[a,b]. Then f is integrable on[a,b] in
the calculus sense. We prove (using a different method than that chosen by Robbins)
that f satisfies also this strong integrability condition. Letε > 0 andC > 0 be given.
Takeδ sufficiently small that| f (x)− f (y)|< ε/C if x andy are points of[a,b] for which
|x−y|< δ.

Write F(x) =
∫ x

a f (t)dt. Suppose thata ≤ x ≤ ξ ≤ y ≤ b and that 0< y− x< δ.
Then, by the mean-value theorem, there is a pointξ∗ betweenx andy for which

F(y)−F(x) = f (ξ∗)(y−x).

Thus we also have

|F(y)−F(x)− f (ξ)(y−x)|= |[ f (ξ∗)− f (ξ)](y−x)|< ε
C
(y−x).

Then, for any choice of pointsx0,x1, . . . ,xn andξ1,ξ2, . . . ,ξn from [a,b] with the
properties in the statement of the definition,

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

F(b)−F(a)−
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

[F(xi)−F(xi−1)− f (ξi)(xi −xi−1)]

∣

∣

∣

∣

∣

≤
n

∑
i=1

|F(xi)−F(xi−1)− f (ξi)(xi −xi−1)|<
ε
C

n

∑
i=1

|xi −xi−1| ≤ ε.

That completes the proof in this one direction.
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Exercise283, page 72

This is similar to proving that a sequence cannot have two different limits. If you review
how that proof is done you will find that the same method works here.

Exercise284, page 72

This is a standard “Cauchy” version of the integrability condition. Such a statement is
equivalent to the other version. It is an essential element of general integration theory
to prove the equivalence of such statements.

This is similar to proving that a sequence is convergent if and only if it is a Cauchy
sequence. If you review how that proof is done you will find that much of that method
works here.

Exercise285, page 72

Use Exercise297.

Exercise287, page 73

Because of Exercises285and297we know that such a functionf with these properties
would have to have the same properties on each subinterval. Moreover Exercise286
shows that there must be a functionF : [a,b] → R with I(x,y) = F(y)−F(x) for each
a≤ x< y≤ b.

Suppose, contrary to what we want to prove, that there is a point z of discontinuity
of f in the interval. We will assume thata < z< b and derive a contradiction. (The
casesz= a andz= b are similarly handled.) Then there must be a positive number
η > 0 so that, if we choose any pointsz1 < z< z2, the interval[z1,z2] must contain
pointsc1 andc2 for which | f (c1)− f (c2)|> η.

Now we apply the strong integrability hypothesis using

I = F(b)−F(a), ε = η/4, and C= b−a+4

to obtain a choice ofδ with 0 < δ < 1 that meets the conditions of the definition on
[a,b]. Choose pointsz1 < z< z2 so thatz2−z1 < δ and then select pointsc1 andc2 in
the interval[z1,z2] for which f (c1)− f (c2)> η.

Construct a sequence

a= x0 < x1 < · · ·< xp = z1

along with associated points{ξi} so that 0< xi −xi−1 < δ and so that
∣

∣

∣

∣

∣

F(z1)−F(a)−
p

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< η/4.

This just uses the integrability hypotheses of the functionf on the interval[a,z1].
Choose the least integerr so that

r(z2−z1)> 1.

Note that

1< r(z2−z1) = (r −1)(z2−z1)+ (z2−z1)≤ 1+(z2−z1)< 1+δ < 2.
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Usingr continue the sequence{xi} by defining points

xp = xp+2 = xp+4 = · · ·= xp+2r = z1

and
xp+1 = xp+3 = xp+5 = · · ·= xp+2r−1 = z2.

Write ξp+2 j = c2 andξp+2 j−1 = c1 for j = 1,2, . . . , r.
Finally complete the sequence{xi} by selecting points

z1 = xp+2r < xp+2r+1 < · · ·< xn−1 < xn = b

along with associated points{ξi} so that
∣

∣

∣

∣

∣

F(b)−F(z1)−
n

∑
i=p+2r+1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< η/4.

This just uses the integrability hypotheses forf on [z1,b].
Consider now the sum

n

∑
i=1

f (ξi)(xi −xi−1)

taken over the entire sequence thus constructed. Observe that
n

∑
i=1

|xi −xi−1|=
p

∑
i=1

(xi −xi−1)+
p+2r

∑
i=p+1

|xi −xi−1|+
n

∑
i=p+2r+1

(xi −xi−1)

= (z1−a)+2r(z2−z1)+ (b−z1) =

(b−a)+2r(z2−z1)≤ (b−a)+4=C.

Thus the points chosen satisfy the conditions of the definition for theδ selected and we
must have

∣

∣

∣

∣

∣

F(b)−F(a)−
n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε < η/4.

On the other hand
[

F(z1)−F(a)+F(b)−F(z1)−
n

∑
i=1

f (ξi)(xi −xi−1)

]

=

[

F(z1)−F(a)−
p

∑
i=1

f (xi)(xi −xi−1)

]

+

[

F(b)−F(z1)−
n

∑
i=p+2r+1

f (ξi)(xi −xi−1)

]

−
[

p+2r

∑
i=p+1

f (ξi)(xi −xi−1).

]

From this we deduce that
∣

∣

∣

∣

∣

p+2r

∑
i=p+1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< 3η/4.
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But a direct computation of this sum shows that
p+2r

∑
i=p+1

f (ξi)(xi −xi−1) = [ f (c1)− f (c2)]r(z2−z1)> ηr(z2−z1)> η.

This contradiction completes the proof.

Exercise288, page 73

The same methods will work for this theorem with a little effort. Obtain, first, an
inequality of the form

| f (ξi)g(ξi)− f (ξi)g(ξ∗i )|
≤ M (ω( f , [xi ,xi−1])+ω(g, [xi ,xi−1])) .

To obtain this use the simple identity

a1a2−b1b2 = (a1−b1)a2+(a2−b2)b1

and use forM an upper bound of the sum function| f |+ |g| which is evidently bounded,
since bothf andg are bounded.

Exercise289, page 74

Obtain, first, an inequality of the form
∣

∣

∣
f1(ξi) f2(ξi) f3(ξi) . . . fp(ξi)− f1(ξi) f2(ξ

(2)
i ) f3(ξ

(3)
i ) . . . fp(ξ

(p)
i )
∣

∣

∣

≤ M [ω( f1, [xi ,xi−1])+ω( f2, [xi ,xi−1])+ω( f3, [xi ,xi−1])+ · · ·+ω( fp, [xi ,xi−1])] .

To obtain this use the simple identity

a1a2a3 . . .ap−b1b2b3 . . .bp

= (a1−b1)a2a3 . . .ap+(a2−b2)b1a3 . . .ap+(a3−b3)b1b2a4 . . .ap+ . . .

+(ap−bp)b1b2b3 . . .bp−1

and use an appropriateM.

Exercise290, page 74

First note that the functionH( f (x),g(x)) is defined and bounded. To see this just write

|H( f (x),g(x))| ≤ M(| f (x))|+ |g(x)|)
and remember that bothf andg are bounded. It is also true that this function is contin-
uous at every point of(a,b) with at most finitely many exceptions. To see this, use the
inequality

|H( f (x),g(x))−H( f (x0),g(x0))| ≤ M(| f (x)− f (x0)|+ |g(x)−g(x0)|)
and the definition of continuity.

Thus the integral
∫ b

a F( f (x),g(x))dx exists as a calculus integral and can be ap-
proximated by Riemann sums

n

∑
i=1

H ( f (ξi) ,g(ξi))(xi −xi−1).
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To complete the proof just make sure that these sums do not differ much from these
other similar sums:

n

∑
i=1

H ( f (ξi) ,g(ξ∗i )) (xi −xi−1).

That will follow from the inequality

|H( f (ξi) ,g(ξi))−H( f (ξi) ,g(ξ∗i ))|
≤ M|g(ξi)−g(ξ∗i ) | ≤ Mω(g, [xi−1,xi ]).

Exercise291, page 75

Notice, first, that ∫ b

a
f (x)dx=

n

∑
i=1

∫ xi

xi−1

f (x)dx.

Thus
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

{∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

}

∣

∣

∣

∣

∣

≤
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

merely by the triangle inequality.

Exercise292, page 75

This is the simplest case to prove since we do not have to fuss at the endpoints or at
exceptional points whereF ′ may fail to exist. Simply letε > 0 and choose at each point
x a numberδ(x)> 0 sufficiently small so that

|F(z)−F(y)− f (x)(z−y)|| < ε(z−y)
b−a

when 0< z−y< δ(x) andy≤ x≤ z. This is merely the statementF ′(x) = f (x) trans-
lated intoε, δ language.

Now suppose that we have a partition

{([xi ,xi−1],ξi) : i = 1,2, . . .n}
of the interval[a,b] with each

xi −xi−1 < δ(ξi) and ξi ∈ [xi−1,xi ].

Then, using our estimate on each of the intervals[xi−1,xi−1],
∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

n

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

≤
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

=
n

∑
i=1

|[F(xi)−F(xi−1)]− f (ξi)(xi −xi−1)|<
ε

b−a

n

∑
i=1

(xi −xi−1) = ε.
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Exercise293, page 76

This is still a simpler case to prove since we do not have to fuss at the endpoints and
there is only one exceptional point to worry about, not a finite set of such points.

Let ε > 0 and, at each pointx 6= c, choose a numberδ(x) > 0 sufficiently small so
that

|F(z)−F(y)− f (x)(z−y)|| < ε(z−y)
2(b−a)

when 0< z−y< δ(x) andy≤ x≤ z. This is merely the statementF ′(x) = f (x) trans-
lated intoε, δ language.

At x= c select a positive numberδ(c)> 0 so that

|F(z)−F(y)|+ | f (c)|(z−y)< ε/2

when 0< z−y< δ(x) andy≤ x≤ z. This is possible becauseF is continuous atc so
that |F(z)−F(y)| is small if z andy are sufficiently close toc; the second part is small
since| f (c)| is simply a nonnegative number.

Now suppose that we have a partition

{([xi ,xi−1],ξi) : i = 1,2, . . .n}
of the interval[a,b] with each

xi −xi−1 < δ(ξi) and ξi ∈ [xi−1,xi ].

Then, using our estimate on each of the intervals[xi−1,xi−1],
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

=
n

∑
i=1

|[F(xi)−F(xi−1)]− f (ξi)(xi −xi−1)|< ε/2+
ε

b−a

n

∑
i=1

|(xi −xi−1)+|= ε.

Note that we have had to add theε/2 in case it happens that one of theξi = c. Otherwise
we do not need it.

Exercise294, page 76

Exercise274 and Exercise275 illustrate the method. Just add more points, including
the endpointsa andb into the argument.

Let c1, c2, . . . ,cM be a finite list containing the endpointsa andb and each of the
points in the interval whereF ′(x) = f (x) fails. Let ε > 0 and, at each pointx 6= ci ,
choose a numberδ(x)> 0 sufficiently small so that

|F(z)−F(y)− f (x)(z−y)|| < ε(z−y)
2(b−a)

when 0< z−y< δ(x) andy≤ x≤ z. This is merely the statementF ′(x) = f (x) trans-
lated intoε, δ language.

At x= c j ( j = 1,2,3, . . . ,M) select a positive numberδ(c j)> 0 so that

ω(F, [a,b]∩ [c j −δ(c j),c j +δ(c j)])+δ(c j)| f (c)| < ε/2M
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when 0< z−y< δ(x) andy≤ x≤ z. Thus just uses the continuity ofF.
Now suppose that we have a partition

{([xi ,xi−1],ξi) : i = 1,2, . . .n}
of the interval[a,b] with each

xi −xi−1 < δ(ξi) and ξi ∈ [xi−1,xi ].

Note, first, that ifξi = c j for somei and j (which might occur at mostM times), then

|[F(xi)−F(xi−1)]− f (ξi)(xi −xi−1)|
≤ ω(F, [a,b]∩ [c j −δ(c j),c j +δ(c j)])+δ(c j)| f (c)| < ε/2M.

At any other pointξi 6= c j

|F(z)−F(y)− f (x)(z−y)|| < ε(z−y)
2(b−a)

.

Consequently
n

∑
i=1

∣

∣

∣

∣

∫ xi

xi−1

f (x)dx− f (ξi)(xi −xi−1)

∣

∣

∣

∣

=
n

∑
i=1

|[F(xi)−F(xi−1)]− f (ξi)(xi −xi−1)|< ε/2+
ε

b−a

n

∑
i=1

|(xi −xi−1)+|= ε.

Exercise295, page 77

Note that the calculus integral∫ b

a
F ′(x)dx= F(b)−F(a)

exists For each pointξ in [c,d] takeδ(ξ) sufficiently small that
∣

∣

∣

∣

F(y)−F(x)
y−x

−F ′(ξ)
∣

∣

∣

∣

<
ε
C

wheneverx andy are points in[c,d] for which x ≤ ξ ≤ y and 0< y− x< δ(ξ). This
gives us

∣

∣F(y)−F(x)−F ′(ξ)(y−x)
∣

∣<
ε
C
(y−x).

Then, for any choice of pointsx0,x1, . . . ,xn andξ1,ξ2, . . . ,ξn from [c,d] with the
four properties of the statement of the theorem,

∣

∣

∣

∣

∣

∫ b

a
F ′(x)dx−

n

∑
i=1

F ′(ξi)(xi −xi−1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

∑
i=1

[

F(xi)−F(xi−1)−F ′(ξi)(xi −xi−1)
]

∣

∣

∣

∣

∣

≤
n

∑
i=1

∣

∣F(xi)−F(xi−1)−F ′(ξi)(xi −xi−1)
∣

∣<
ε
C

n

∑
i=1

|xi −xi−1| ≤ ε.
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Exercise297, page 77

This is a standard “Cauchy” version of the integrability condition. Such a statement is
equivalent to the other version. It is an essential element of general integration theory
to prove the equivalence of such statements.

Exercise298, page 78

Use Exercise??.

Exercise300, page 78

The easy direction is already contained in Theorem3.27. Theorem3.27 shows that
every derivative does have this strong version of the integrability property.

The proof is structured so as to be similar in many details to the proof of Theo-
rem??. Let us then suppose thatf is a function possessing this property on an interval
[a,b]. Under the hypotheses here, we need to establish two facts using fairly standard
methods of integration theory.

Our methods are similar to those used in Section3.5.6. Because of Exercises298
and?? we know that such a functionf with these properties would have to have the
same properties on each subinterval. Moreover Exercise299shows that there must be
a functionF : [a,b]→ R with I(x,y) = F(y)−F(x) for eacha≤ x< y≤ b.

We claim now thatF ′(x) = f (x) at every pointx in the interval[a,b]. Suppose
that there is a pointz in the interval at which it is not true thatF ′(z) = f (z). One
possibility is that this is because the upper right-hand (Dini) derivative atz exceeds
f (z) by some positive valueη > 0. Another is that the valuef (z) exceeds the upper
right-hand (Dini) derivative atz by some positive valueη > 0. There are six other
possibilities, corresponding to the other three Dini derivatives under whichF ′(z) = f (z)
might fail. It is sufficient for a proof that we show that this first possibility cannot occur.
From this we will obtain a contradiction to the statement in the theorem.

Thus we will assume that there must be a positive numberη > 0 so that we can
choose an arbitrarily small positive numbert so that the interval[z,z+ t] has this prop-
erty:

F(z+ t)−F(z)
t

> f (z)+η

and hence so that
F(z+ t)−F(z)> f (z)t +ηt.

We give the details assuming this and thata< z< b. Now we apply the theorem
usingε < η/4, andC= b−a+6 to obtain a choice of positive functionδ that meets the
conditions of the theorem. Choose a number 0< t < 1 for whicht < δ(z) andz+ t < b
and with the property that

F(z+ t)−F(z)> f (z)t +ηt.

Let sbe the least integer so thatst> 2. Note that, consequently,

2< st= (s−1)t + t ≤ 2+ t < 3.
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We first select a sequence of points

z= u0 < u1 < u2 < · · ·< uk−1 = z+ t

and pointsυi from [xi−1,xi ] so that 0< ui −ui−1 < δ(υi) and
∣

∣

∣

∣

∣

F(z+ t)−F(z)−
k−1

∑
i=1

f (υi)(ui −ui−1)

∣

∣

∣

∣

∣

< ηt/2

This is possible simply becausef possesses the strong integrability property on the
interval [z,z+ t]. Now we add in the pointuk = zandυk = z.

We compute that
k

∑
i=1

f (υi)(ui −ui−1) =− f (z)t +
k−1

∑
i=1

f (υi)(ui −ui−1)

>−[F(z+ t)−F(z)−ηt]+
k−1

∑
i=1

f (υi)(ui −ui−1)> ηt/2.

while at the same time
k

∑
i=1

|xi −xi−1|= 2t.

Repeat this sequence

z= u0 < u1 < · · ·< uk−1 > uk = z

exactlys times so as to produce a sequence

z= u0,u1, . . .ur−1,ur = z

with the property that
r

∑
i=1

f (υi)(ui −ui−1)> ηst/2> η

while at the same time
r

∑
i=1

|ui −ui−1|= 2st< 6.

Now construct a sequence

a= z0 < z1 < · · ·< zp = z

along with associated pointsζi so that 0< zi −zi−1 < δ(ζi) and so that
∣

∣

∣

∣

∣

∫ z

a
f (x)dx−

p

∑
i=1

f (ζi)(zi −zi−1)

∣

∣

∣

∣

∣

< η/4.

We also need a sequence
z= w0 < w1 < .. .wq = b

along with associated pointsωi so that 0< wi −wi−1 < δ(ωi) and so that
∣

∣

∣

∣

∣

∫ b

z
f (x)dx−

q

∑
i=1

f (ωi)(wi −wi−1)

∣

∣

∣

∣

∣

< η/4.

Both of these just use the strong integrability property off on the subintervals[a,z] and
[z,b]
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Now we put these three sequences together in this way

a= z0 < z1 < · · ·< zp = z= u0,u1, . . . ,ur = z= w0 < w1 < .. .wq = b

to form a new sequencea= x0,x1, . . . ,xN = b for which |xi −xi−1|< δ(ξi) and for which
N

∑
i=1

|xi −xi−1|= (z−a)+2st+(b−z) = b−a+2st< b−a+6=C.

We useξi in each case as the appropriate intermediate point used earlier: thus associated
with an interval[zi−1,zi ] we had usedζi; associated with an interval[wi−1,wi] we had
usedωi ; while associated with a pair(ui−1,ui) we useυi .

Consider the sum
N

∑
i=1

f (ξi)(xi −xi−1)

taken over the entire sequence thus constructed. Because the points satisfy the condi-
tions of the theorem for theδ function selected we must have

∣

∣

∣

∣

∣

∫ b

a
f (x)dx−

N

∑
i=1

f (ξi)(xi −xi−1)

∣

∣

∣

∣

∣

< ε < η/4.

On the other hand
[∫ z

a
f (x)dx+

∫ b

z
f (x)dx−

N

∑
i=1

f (ξi)(xi −xi−1)

]

=

[∫ z

a
f (x)dx−

p

∑
i=1

f (ζi)(zi −zi−1)

]

+

[∫ b

z
f (x)dx−

q

∑
i=1

f (ωi)(wi −wi−1)

]

+

[

r

∑
i=1

f (υi)(ui −ui−1)

]

.

From this we deduce that
r

∑
i=1

f (ξi)(ui −ui−1)< 3η/4

and yet we recall that
r

∑
i=1

f (ξi)(ui −ui−1)> ηst/2> η.

This contradiction completes the proof.

Exercise301, page 79

The inequalities
−| f (x)| ≤ f (x)≤ | f (x)|
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hold at every pointx at which f is defined. Since these functions are assumed to be
integrable on the interval[a,b],

−
∫ b

a
| f (x)| dx≤

∫ b

a
f (x)dx≤

∫ b

a
| f (x)| dx

which is exactly what the inequality in the exercise asserts.

Exercise302, page 79

Observe that
n

∑
i=1

|F(xi)−F(xi−1)|=
n

∑
i=1

∣

∣

∣

∣

∫ xk

xk−1

f (x)dx

∣

∣

∣

∣

≤
n

∑
i=1

∫ xk

xk−1

| f (x)| dx=
∫ b

a
| f (x)| dx

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

Exercise303, page 80

Define the functionF(x) = xcos
(π

x

)

, F(0) = 0 and compute

F ′(x) = cos(π/x)+ (π/x)sin(π/x), x 6= 0.

ThusF is differentiable everywhere except atx= 0 andF is continuous atx= 0. To
see the latter note that−|x| ≤ F(x) ≤ |x|.

Thus F ′ has a calculus integral on every interval. Note thatF ′(x) is continuous
everywhere except atx= 0 and that it is unbounded on(0,1).

We show that|F ′| is not integrable on[0,1]. It is, however, integrable on any subin-
terval [c,d] for which 0< c < d ≤ 1 sinceF ′ and hence|F ′| are continuous at every
point in such an interval.

Take any integerk and consider the pointsak = 2/(2k+1), bk = 1/k and check that
F(ak) = 0 while F(bk) = (−1)k/k. Observe that

0< ak < bk < ak−1 < bk−1 < · · ·< 1

and that ∫ bk

ak

|F ′(x)|dx≥
∣

∣

∣

∣

∫ bk

ak

F ′(x)dx

∣

∣

∣

∣

= |F(bk)−F(ak)|=
1
k
.

If |F ′| were, in fact, integrable on[0,1] then, summingn of these pieces, we would have
n

∑
k=1

1
k
≤

n

∑
k=1

∫ bk

ak

|F ′(x)|dx≤
∫ 1

0
|F ′(x)|dx.

This is impossible since∑∞
k=1

1
k = ∞.

Note: In the language introduced later, you may wish to observe thatF is not a function
of bounded variation on[0,1]. There is a close connection between this concept and
absolute integrability.
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Exercise304, page 80

You can use the same argument but with different arithmetic.This is the traditional
example that illustrates that the calculus integral, whichintegrates all derivatives, is
not contained in the Lebesgue integral. Indefinite Lebesgueintegrals, since Lebesgue’s
integral is an absolute integration method, must be of bounded variation on any interval.
In contrast, the function

F(x) = x2 sin

(

1
x2

)

is everywhere differentiable but fails to have bounded variation on[0,1].

Exercise305, page 80

Since f is continuous on(a,b) with at most finitely many exceptions and is bounded it
is integrable. But the same is true for| f |, since it too has the same properties. Hence
both f and| f | are integrable.

Exercise306, page 81

Subdivide at any one pointx inside(a,b),

a= x0 < x1 = x< x2 = b.

Then
|F(x)−F(a)|+ |F(x)−F(b)| ≤V(F, [a,b]).

Consequently
|F(x)| ≤ |F(a)|+ |F(b)|+V(F, [a,b])

offers an upper bound forF on [a,b].

Exercise307, page 81

If F : [a,b]→ R is nondecreasing thenT(x) = F(x)−F(a). This is because
n

∑
i=1

|F(xi)−F(xi−1)|=
n

∑
i=1

[F(xi)−F(xi−1)] = F(x)−F(a)

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = x.

If F : [a,b]→R is nonincreasing thenT(x) =F(a)−F(x). Putting these together yields
thatT(x) = |F(x)−F(a)| in both cases.

Exercise308, page 81

Work on the separate subintervals of[−π,π] on which sinx is monotonic. For example,
it is nondecreasing on[−π/2,π/2].
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Exercise309, page 81

You should be able to show that
n

∑
i=1

|F(xi)−F(xi−1)|

is either 0 (if none of the points chosen was 0) and is 2 (if one of the points chosen was
0). It follows thatV(F, [−1,1]) = 2.

Note that this example illustrates that the computation of the sum
n

∑
i=1

|F(xi)−F(xi−1)|

doesn’t depend merely on making the points close together, but may depend also on
which points get chosen. Later on in Exercise318 we will see that for continuous
functions the sum

n

∑
i=1

|F(xi)−F(xi−1)|

will be very close to the variation valueV(F, [a,b]) if we can choose points very close
together. For discontinuous functions, as we see here, we had better consider all points
and not miss even one.

Exercise310, page 81

Simplest to state would beF(x) = 0 if x is an irrational number andF(x) = 1 if x is a
rational number. Explain how to choose points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

so that the sum
n

∑
i=1

|F(xi)−F(xi−1)| ≥ n.

Exercise311, page 81

Suppose thatF : [a,b]→ R is Lipschitz with a Lipschitz constantK. Then
n

∑
i=1

|F(xi)−F(xi−1)| ≤
n

∑
i=1

K(xi −xi−1) = K(b−a)

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

ThusV(F, [a,b]) ≤ K(b−a).
The converse is not true and it is easy to invent a counterexample. Every monotonic

function is of bounded variation, and monotonic functions need not be Lipschitz, nor
even continuous.
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Exercise312, page 82

To estimateV(F +G, [a,b]) consider
n

∑
i=1

|[F(xi)+G(xi)]− [F(xi−1)+G(xi−1)]|

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

By the triangle inequality,
n

∑
i=1

|[F(xi)+G(xi)]− [F(xi−1)+G(xi−1)]|

≤
n

∑
i=1

|F(xi)−F(xi−1)|+
n

∑
i=1

|G(xi)−G(xi−1)| ≤V(F, [a,b])+V(G, [a,b]).

Exercise313, page 82

UseF = −G and thenF +G is a constant and soV(F +G, [a,b]) = 0. Thus it is easy
to supply an example for which

V(F +G, [a,b])<V(F, [a,b])+V(G, [a,b]).

For exact conditions on when equality might be possible see F. S. Cater,When total
variation is additive, Proceedings of the American Mathematical Society, Volume84,
No. 4, April 1982.

Exercise314, page 82

This is a substantial theorem and it is worthwhile making sure to master the methods
of proof. Mostly it is just a matter of using the definition andworking carefully with
inequalities.
(2). T is monotonic, nondecreasing on[a,b].

Takea≤ x< y≤ b and consider computingV(F, [a,x]). Take any points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = x

Observe that the sum
n

∑
i=1

|F(xi)−F(xi−1)|+ |F(y)−F(x)| ≤V(F, [a,y]).

This this would be true for any such choice of points, it follows that

V(F, [a,x])+ |F(y)−F(x)| ≤V(F, [a,y]).

ThusT(x) =V(F, [a,x]) ≤V(F, [a,y]) = T(y).

(1). for all a≤ c< d ≤ b,

|F(d)−F(c)| ≤V(F, [c,d]) = T(d)−T(c).

The first inequality,
|F(d)−F(c)| ≤V(F, [c,d])
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follows immediately from the definition of whatV(F, [c,d]) means. The second in-
equality says this:

V(F, [a,d]) =V(F, [a,c])+V(F, [c,d]) (5.2)

and it is this that we must prove.
To prove (5.2) we show first that

V(F, [a,d]) ≥V(F, [a,c])+V(F, [c,d]) (5.3)

Let ε > 0 and choose points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = c

so that
n

∑
i=1

|F(xi)−F(xi−1)|>V(F, [a,c])− ε.

Then choose points

c= xn < xn+1 < xn+2 < · · ·< xm−1 < xm = d

so that
m

∑
i=n+1

|F(xi)−F(xi−1)|>V(F, [c,d])− ε.

Observe that
m

∑
i=1

|F(xi)−F(xi−1)| ≤V(F, [a,d]).

Putting this together now you can conclude that

V(F, [a,d]) ≥V(F, [a,c])+V(F, [c,d])−2ε.
Sinceε is arbitrary the inequality (5.3) follows.

Now we prove that

V(F, [a,d]) ≤V(F, [a,c])+V(F, [c,d]) (5.4)

Choose points
a= x0 < x1 < x2 < · · ·< xn−1 < xn = d

so that
n

∑
i=1

|F(xi)−F(xi−1)|>V(F, [a,d])− ε.

We can insist that among the points selected is the pointc itself [since that does not
make the sum any smaller]. So let us claim thatxk = c. Then

k

∑
i=1

|F(xi)−F(xi−1)| ≤V(F, [a,c])

and
n

∑
i=k+1

|F(xi)−F(xi−1)| ≤V(F, [c,d]).

Putting this together now you can conclude that

V(F, [a,d])− ε <V(F, [a,c])+V(F, [c,d]).

Sinceε is arbitrary the inequality (5.4) follows. Finally, then, the inequalities (5.3)
and (5.4) verify (5.2).
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(3). If F is continuous at a point then so too is T .
We argue just on the right at the pointa to claim that ifF is continuous ata then

T(a+) = T(a) = 0. The same argument can be repeated at any point and on eitherside.
The valueT(a+) exists sinceT is monotonic, but it might be positive. Letε > 0 and
chooseδ1 so that

|T(x)−T(a+)|< ε
if a< x< a+δ1. Chooseδ2, using the continuity ofF at a, so that

|F(x)−F(a)| < ε
if a< x< a+δ2. Now take anya< x< min{δ1,δ2}. Choose points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = x

so that
n

∑
i=1

|F(xi)−F(xi−1)|> T(x)− ε.

Observe that
|F(x1)−F(x0)|= |F(x1)−F(a)|< ε

and that
n

∑
i=2

|F(xi)−F(xi−1)| ≤ T(x)−T(x1)≤ T(x)−T(a+)− [T(x1)−T(a+)]< 2ε.

Putting these together we can conclude that

T(x) < 3ε
for all a< x< min{δ1,δ2}. ThusT(a+) = 0.

(4). If F is uniformly continuous on[a,b] then so too is T .
This follows from (3).

(5). If F is continuously differentiable at a point then so too is T and, moreover
T ′(x0) = |F ′(x0)|.

This statement is not true without the continuity assumption so your proof will have
to make use of that assumption. We will assume thatF is continuously differentiable
ata and conclude that the derivative ofT on the right ata exists and is equal to|F ′(a)|.
This means thatF is differentiable in some interval containinga and that this derivative
is continuous ata.

Let ε > 0 and chooseδ so that

|F ′(a)−F ′(x)| < ε
if a< x< a+δ. Now choose points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = x

so that

T(x)≥
n

∑
i=1

|F(xi)−F(xi−1)|> T(x)− ε(x−a).

Apply the mean-value theorem on each of the intervals to obtain
n

∑
i=1

|F(xi)−F(xi−1)|=
n

∑
i=1

|F ′(ξi)|(xi −xi−1) = |F ′(a)|(x−a)± ε(x−a).
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We can interpret this to yield that

|T(x)−T(a)−|F ′(a)|(x−a)| ≤ 2ε(x−a)

for all a < x < a+ δ. This says precisely that the right-hand derivative ofT at a is
|F ′(a)|.
(6). If F is uniformly continuous on[a,b] and continuously differentiable at all but
finitely many points in(a,b) then F′ is absolutely integrable and

F(x)−F(a) =
∫ x

a
F ′(t)dt and T(x) =

∫ x

a
|F ′(t)|dt.

For F ′ to be absolutely integrable bothF ′ and|F ′| must be integrable. CertainlyF ′

is integrable. The reason that|F ′| is integrable is that is continuous at all but finitely
many points in(a,b) and has for an indefinite integral the uniformly continuous func-
tion T. This uses (5).

Exercise315, page 82

The natural way to do this is to write

F(x) =

(

V(F, [a,x])+
F(x)

2

)

−
(

V(F, [a,x])− F(x)
2

)

in which case this expression is called theJordan decomposition. It is then just a matter
of checking that the two parts do in fact expressf as the difference of two monotonic,
nondecreasing functions. Theorem3.33contains all the necessary information.

Exercise316, page 82

The methods in Exercise303can be repeated here. First establish continuity. The only
troublesome point is atx= 0 and, for that, just notice that−|x| ≤ F(x)≤ |x| which can
be used to show thatF is continuous atx= 0.

Then to compute the total variation of take any integerk and consider the points
ak = 2/(2k+1), bk = 1/k and check thatF(ak) = 0 while F(bk) = (−1)k/k. Observe
that

0< ak < bk < ak−1 < bk−1 < · · ·< 1.

Consequently
n

∑
k=1

|F(bk)−F(ak)| ≤V(F, [0,1]).

But
n

∑
k=1

1
k
=

n

∑
k=1

|F(bk)−F(ak)|

and∑∞
k=1

1
k = ∞. It follows thatV(F, [0,1]) = ∞.

Exercise317, page 82

See Gerald A. Heuer,The derivative of the total variation function, American Mathe-
matical Monthly, Vol. 78, No. 10 (1971), pp. 1110–1112. For the statement about the
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variation it is enough to work on[0,1] since the values on[−1,0] are symmetrical. For
the statement about the derivatives, it is enough to work on the right-hand side at 0,
sinceF(−x) = −F(x). Here is the argument forr = 2 from Heuer’s article. Note that,
on each interval[2/(2n+ 1)π,2/(2n− 1)π], the functionF vanishes at the endpoints
and has a single extreme pointxn where

1/nπ < xn < 2/(2n−1)π.
Thus the variation on this interval is 2|F(xn)|, and

(1/nπ)2 = |F(1/nπ)| < |F(xn)|< x2
n < {2/[(2n−1)π]}2 .

By the integral test for series (page??)

1/n=
∫ ∞

n
dx/x2 <

∞

∑
k=n

1/k2 < (π2/2)T(2/[(2n−1)π]) <
∞

∑
k=n

[2/(2k−1)]2

<

∫ ∞

(2n−3)/2
dx/x2 = 2/(2n−3).

Then, for 2/[(2n−1)π] ≤ x≤ 2/[(2n−3)π] (with n≥ 3) we have

1/n< (π2/2)T(x)< 2/(2n−5),

and hence
(2n−3)/nπ < (1/x)T(x)< (4n−2)/[(2n−5)π]

It follows that the derivative ofT on the right at zero is 2/π. By symmetry the same is
true on the left soT ′(0) = 2/π.

Exercise318, page 82

Exercise318shows that continuity would be needed for this result, even if there is only
one point of discontinuity.

Chooseε > 0 so thatv+ ε <V(F, [a,b]). Select points

a= y0 < y1 < y2 < · · ·< yn−1 < yk = b

so that
k

∑
j=1

|F(y j)−F(y j−1)|> v+ ε. (5.5)

SinceF is uniformly continuous on[a,b] there is aη > 0 so that

|F(x)−F(x′)|< ε
2(k+1)

whenever|x−x′|< η.
We are now ready to specify ourδ: we choose this smaller thanη and also smaller

than all the lengthsy j − y j−1 for j = 1,2,3, . . . ,k. Now suppose that we have made a
choice of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b

such that eachxi −xi−1 < δ. We shall show that

v<
n

∑
i=1

|F(xi)−F(xi−1)| ≤V(F, [a,b] (5.6)

and this will prove the statement in the exercise.
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We can split this sum up into two parts: if an interval(xi−1,xi) contains any one of
the points from the collection

a= y0 < y1 < y2 < · · ·< yn−1 < yk = b

that we started with, then we will call that interval a black interval. Note that, by
our choice ofδ, a black interval can contain only one of they j points. In fact, if
y j ∈ (xi−1,xi) we can make use of the fact that

|F(xi)−F(xi−1)| ≤ |F(xi)−F(y j)|+ |F(y j)−F(xi−1)| ≤
ε

(k+1)
. (5.7)

If (xi−1,xi) contains none of these points we will call it a white interval. The sum
in (5.6) is handled by thinking separately about the white intervals and the black inter-
vals.

Let combine all thexi ’s and all they j ’s:

a= z0 < z1 < z2 < · · ·< zn−1 < zm = b.

Note that
m

∑
p=1

|F(zp)−F(zp−1)|> v+ ε. (5.8)

This is because the addition of further points always enlarges the sum or leaves it the
same.

The inequality (5.6) now follows by comparing it to (5.8). There are extra white
intervals perhaps where a new point has been added, but each of these has been enlarged
by adding a single point and the total extra contribution is no more thanε because
of (5.7).

Exercise320, page 83

If F is locally of bounded variation at every pointx∈ R then the collection

β = {([u,v],w) : w∈ [u,v], V(F, [u,v]) < ∞}
is a full cover of the real line. Take any interval[a,b] and choose a partitionπ of the
interval [a,b] so thatπ ⊂ β. Then

V(F, [a,b]) ≤ ∑
([u,v],w)∈π

V(F, [u,v]) < ∞.

The converse is immediate.

Exercise321, page 83

Recall that “mostly everywhere” indicates a finite exceptional set is possible while
“nearly everywhere” allows a sequence of exceptional points where the derivative in-
equality may not hold.

This comparison test is presented in the expository paper

J. J. Koliha,Mean, Meaner and the Meanest Mean-Value Theorem, The
American Mathematical Monthly, 116, No. 4, (2009) 356-361.

as a preferred tool in elementary analysis to the mean-valuetheorem. It allows of
numerous extended versions (more than the three in that paper) and, indeed, the student
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would be better prepared for numerous problems thinking of an application of this
principle before trying to fit the mean-value problem to the solution.

As a starting point to constructing a proof of the first statement in the exercise,
consider a pointa< x0 < b at which|F ′(x0)| ≤ |G′(x0)|. Let ε > 0 and chooseδ0 > 0
so that

∣

∣

∣

∣

F(x)−F(x0)

x−x0
−F ′(x0)

∣

∣

∣

∣

< ε

and
∣

∣

∣

∣

G(x)−G(x0)

x−x0
−G′(x0)

∣

∣

∣

∣

< ε

if 0 < |x−x0|< δ0. Note that for suchx,

|F(x)−F(x0)| ≤ |G(x)−G(x0)|+2ε|x−x0|
because|F ′(x0)| ≤ |G′(x0)|.

For a pointx0 that is equal toa or b or for which the inequality|F ′(x0)| ≤ |G′(x0)|
fails just use the continuity ofF to selectδ0 > 0 so that

|F(x)−F(x0)|< ε
if |x−x0|< δ0.

Our standard Cousin partitioning argument can now be used; see Section1.9.5for
a number of worked-out examples. The paper of Koliha can alsobe consulted for
similar details if this hint doesn’t get you started. (Note that his paper assumes thatG
is nondecreasing so he does not have to work with the variations.)

Exercise322, page 83

It is easy to check that a Lipschitz function would have this property. Notice that
the property stated is similar to the statement of Robbins’stheorem and, accordingly,
similar methods will help here.

Suppose that the functionF : [a,b] → R has the stated property. LetC = 3(b−a)
and chooseM so that

m

∑
i=1

|F(xi)−F(xi−1)| ≤ M

for all choices of points

a= x0,x1,x2, . . . ,xm−1,xm = b

for which
m

∑
i=1

|xi −xi−1| ≤C= 3(b−a).

We claim thatF is Lipschitz, in fact that
∣

∣

∣

∣

F(y)−F(x)
y−x

∣

∣

∣

∣

≤ 2M
b−a

for all a≤ x< y≤ b. Suppose not. We obtain a contradiction by supposing that

|F(y)−F(x)| > 2M(y−x)
b−a

for some particular choice ofa≤ x< y≤ b. [We can suppose thata< x< y< b as the
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other cases are similarly handled.]
Let n be the largest integer for which

n(y−x)≤ 2(b−a).

Choose pointsx0 = a, x1 = x, x2 = y, x3 = x, x4 = y, . . .x2n+1 = x, x2n+2 = b. Note that
2n+2

∑
i=1

|xi −xi−1|= b−a+n(y−x)≤ 3(b−a) =C.

Consequently, by our choice ofM,
2n+1

∑
i=1

|F(xi)−F(xi−1)| ≤ M.

We can estimate this sum as
2n+1

∑
i=1

|F(xi)−F(xi−1)|> |F(x)−F(a)|+ |F(b)−F(x)|+ 2Mn(y−x)
b−a

.

Thus
2Mn(y−x)

b−a
≤ M

or
n(y−x)≤ (b−a)/2.

This contradicts our choice of the integern since that would mean that

[n+1](y−x) = n(y−x)+ (y−x)≤ (b−a)/2+(b−a)≤ 2(b−a).

This contradiction completes the proof.

Exercise323, page 84

We suppose thatf is absolutely integrable on[a,b]. Thus| f | is integrable here. Ob-
serve, then, that

n

∑
i=1

|F(xi)−F(xi−1)|=
n

∑
i=1

∣

∣

∣

∣

∫ xk

xk−1

f (x)dx

∣

∣

∣

∣

≤
n

∑
i=1

∫ xk

xk−1

| f (x)| dx=
∫ b

a
| f (x)| dx

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

It follows that

V(F, [a,b]) ≤
∫ b

a
| f (x)|dx.

ConsequentlyF must be a function of bounded variation and we have established an
inequality in one direction for the identity

V(F, [a,b]) =
∫ b

a
| f (x)|dx.

Let us prove the opposite direction. Sincef and| f | are integrable we may apply the
Henstock property (Theorem3.26) to each of them. WriteG for an indefinite integral
of | f | and recall thatF is an indefinite integral off .
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For everyε > 0 and for each pointx in [a,b] there is aδ(x) > 0 so that
n

∑
i=1

|F(xi)−F(xi−1)− f (ξi)(xi −xi−1)|< ε

n

∑
i=1

|Gxi)−G(xi−1)−| f (ξi)|(xi −xi−1)|< ε

whenever{([xi ,xi−1],ξi) : i = 1,2, . . .n} is a partition of[a,b] with each

xi −xi−1 < δ(ξi) and ξi ∈ [xi−1,xi ].

There must exist one such partition and for that partition

G(b)−G(a) =
n

∑
i=1

G(xi)−G(xi−1)≤ ε+
n

∑
i=1

| f (ξi)|(xi −xi−1)

≤ 2ε
n

∑
i=1

|Fxi)−F(xi−1)≤V(F, [a,b]+2ε.

It follows, sinceε can be any positive number, that∫ b

a
| f (x)|dx= G(b)−G(a)≤V(F, [a,b]).

This completes the proof.

Exercise324, page 84

This is a limited theorem but useful to state and fairly easy to prove given what we now
know.

We know thatF ′ is integrable on[a,b]; indeed, it is integrable by definition even
without the assumption about the continuity ofF ′. We also know that, ifF ′ is absolutely
integrable, thenF would have to be of bounded variation on[a,b]. So one direction is
clear.

To prove the other direction we suppose thatF has bounded variation. LetT be
the total variation function ofF on [a,b]. Then, by Theorem3.33, T is uniformly
continuous on[a,b] andT is differentiable at every point at whichF is continuously
differentiable, with moreoverT ′(x) = |F ′(x)| at such points. WhereverF ′ is continuous
so too is|F ′|.

Consequently we have this situation:T : [a,b]→R is a uniformly continuous func-
tion that is continuously differentiable at every point in abounded, open interval(a,b)
with possibly finitely many exceptions. ThusT ′ = |F ′| is integrable.

Exercise325, page 85

The limit function isf (x) = 1/x which is continuous on(0,∞) but certainly not bounded
there.

Exercise326, page 85

Each of the functions is continuous. Notice that for eachx∈ (−1,1), limn→∞ fn(x) = 0
and yet, forx≥ 1, limn→∞ fn(x) = 1. This is easy to see, but it is instructive to check
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the details since we can use them later to see what is going wrong in this example. At
the right-hand side on the interval[1,∞) it is clear that limn→∞ fn(x) = 1.

At the other side, on the interval(−1,1) the limit is zero. For if−1< x0 < 1 and
ε > 0, letN ≥ logε/ log|x0|. Then|x0|N ≤ ε, so forn≥ N

| fn(x0)−0|= |x0|n < |x0|N ≤ ε.
Thus

f (x) = lim
n→∞

fn(x) =

{

0 if −1< x< 1
1 if x≥ 1.

The pointwise limitf of the sequence of continuous functions{ fn} is discontinuous at
x= 1. (Figure3.1 shows the graphs of several of the functions in the sequence just on
the interval[0,1].)

Exercise328, page 85

The sequence of functionsfn(x) converges to zero on(−1,1) and tox− 1 on [1,∞) .
Now f ′n(x) = xn−1 on (−1,1), so by the previous exercise (Exercise326),

lim
n→∞

f ′n(x) =

{

0 if −1< x< 1
1 if x≥ 1,

while the derivative of the limit function, fails to exist atthe pointx= 1.. Thus

lim
n→∞

d
dx

( fn(x)) 6=
d
dx

(

lim
n→∞

fn(x)
)

atx= 1.

Exercise330, page 86

The concept of uniform convergence would allow this argument. But interchanging two
limiting operations cannot be justified with pointwise convergence. Just because this
argument looks plausible does not mean that we are under no obligation to useε, δ type
of arguments to try to justify it.

Apparently, though, to verify the continuity off at x0 we do need to use two limit
operations and be assured that the order of passing to the limits is immaterial.

Exercise331, page 87

If all the functionsfn had the same upper bound this argument would be valid. But each
may have a different upper bound so that the first statement should have been

If each fn is bounded on an intervalI then there must be, by definition, a
numberMn so that| fn(x)| ≤ Mn for all x in I .

Exercise332, page 87

In this exercise we illustrate that an interchange of limit operations may not give a
correct result.
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For each rowm, we have limn→∞ Smn= 0. Do the same thing holdingn fixed and
letting m→ ∞.

Exercise335, page 87

We have discussed, briefly, the possibility that there is a sequence that contains every
rational numbers. This topic appears in greater detail in Chapter4.

If f did have a calculus integral there would be a functionF such thatF ′ = f at
all but finitely many points. There would be at least one interval where f is an exact
derivative and yetf does not have the Darboux property since it assumes only the values
0 and 1 (and no values in between).

Exercise337, page 88

The statements that are defined by inequalities (e.g., bounded, convex) or by equalities
(e.g., constant, linear) will not lead to an interchange of two limit operations, and you
should expect that they are likely true.

Exercise338, page 88

As the footnote to the exercise explains, this was Luzin’s unfortunate attempt as a young
student to understand limits. The professor began by saying“What you say is non-
sense.” He gave him the example of the double sequencem/(m+n) where the limits as
m→ ∞ andn→ ∞ cannot be interchanged and continued by insisting that “permuting
two passages to the limitmust not be done.” He concluded with “Give it some thought;
you won’t get it immediately.”

As yet another illustration that some properties are not preserved in the limit, com-
pute the length of the curves in Exercise338(Fig. 3.3) and compare with the length of
the limiting curve [i.e., the straight liney= x].

Exercise339, page 89

The purpose of the exercise is to lead to the notion of uniformconvergence as a stronger
alternative to pointwise convergence.

Fix ε but let the pointx0 vary. Observe that, whenx0 is relatively small in com-
parison withε, the number logx0 is large in absolute value compared with logε, so
relatively small values ofn suffice for the inequality|x0|n < ε. On the other hand, when
x0 is near 1, logx0 is small in absolute value, so logε/ logx0 will be large. In fact,

lim
x0→1−

logε
logx0

= ∞. (5.9)

The following table illustrates how largen must be before|xn
0|< ε for ε = .1. Note that

for ε = .1, there is no single value ofN such that|x0|n < ε for every value ofx0 ∈ (0,1)
andn> N. (Figure5.3 illustrates this.)
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1


1


Figure 5.3: The sequence{xn} converges infinitely slowly on[0,1]. The functions
y = xn are shown withn = 2, 4, 22, and 100, withx0 = .1, .5, .9, and.99, and with
ε = .1.

x0 n
.1 2
.5 4
.9 22
.99 230
.999 2,302
.9999 23,025

Some nineteenth-century mathematicians would have described the varying rates
of convergence in the example by saying that “the sequence{xn} convergesinfinitely
slowlyon (0,1).” Today we would say that this sequence, which does convergepoint-
wise, doesnot converge uniformly. The formulation of the notion of uniform conver-
gence in the next section is designed precisely to avoid thispossibility of infinitely slow
convergence.

Exercise340, page 89

We observed that the sequence{ fn} converges pointwise, but not uniformly, on(0,1).
We realized that the difficulty arises from the fact that the convergence near 1 is very
“slow.” But for any fixedη with 0< η < 1, the convergenceis uniform on[0,η].

To see this, observe that for 0≤ x0 <η, 0≤ (x0)
n <ηn. Letε> 0. Since limn→∞ ηn =

0, there existsN such that ifn≥ N, then 0< ηn < ε. Thus, ifn≥ N, we have

0≤ xn
0 < ηn < ε,

so the sameN that works forx= η, also works for allx∈ [0,η). (See Figure5.4.)

Exercise341, page 89

Use the Cauchy criterion for convergence of sequences of real numbers to obtain a
candidate for the limit functionf . Note that if{ fn} is uniformly Cauchy on the interval
I , then for eachx∈ I , the sequence of real numbers{ fn(x)} is a Cauchy sequence and
hence convergent.
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f


f
n


Figure 5.4: Uniform convergence on the whole interval.

Exercise342, page 89

Fix n≥ m and compute
sup

x∈[0,η]
|xn−xm| ≤ ηm. (5.10)

Let ε > 0 and choose an integerN so thatηN < ε. Equivalently we require thatN >

logε/ logη. Then it follows from (5.10) for all n≥ m≥ N and allx∈ [0,η] that

|xn−xm| ≤ ηm < ε.
We conclude, by the Cauchy criterion, that the sequencefn(x)= xn converges uniformly
on any interval[0,η], for 0< η < 1. Here there was no computational advantage over
the argument in Example340. Frequently, though, we do not know the limit function
andmustuse the Cauchy criterion rather than the definition.

Exercise343, page 90

This follows immediately from Theorem3.38. Just check that the translation from
series language to sequence language works out in all of the details.

Exercise344, page 90

Our computations could be based on the fact that the sum of this series is known to us;
it is (1− x)−1. We could prove the uniform convergence directly from the definition.
Instead let us use the Cauchy criterion.

Fix n≥ mand compute

sup
x∈[0,η]

∣

∣

∣

∣

∣

n

∑
j=m

x j

∣

∣

∣

∣

∣

≤ sup
x∈[0,η]

∣

∣

∣

∣

xm

1−x

∣

∣

∣

∣

≤ ηm

1−η
. (5.11)

Let ε > 0. Since
ηm(1−η)−1 → 0

asm→ ∞ we may choose an integerN so that

ηN(1−η)−1 < ε.
Then it follows from (5.11) for all n≥ m≥ N and allx∈ [0,η] that

∣

∣xm+xm+1+ · · ·+xn
∣

∣≤ ηm

1−η
< ε.
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It follows now, by the Cauchy criterion, that the series converges uniformly on any
interval [0,η], for 0 < η < 1. Observe, however, that the series does not converge
uniformly on(0,1), though it does converge pointwise there. (See Exercise359.)

Exercise345, page 90

It is not always easy to determine whether a sequence of functions is uniformly con-
vergent. In the settings ofseriesof functions, this simple test is often useful. This
will certainly become one of the most frequently used tools in your study of uniform
convergence.

Let Sn(x) = ∑n
k=0 fk(x). We show that{Sn} is uniformly Cauchy onI . Let ε > 0.

For m< n we have
Sn(x)−Sm(x) = fm+1(x)+ · · ·+ fn(x),

so
|Sn(x)−Sm(x)| ≤ Mm+1+ · · ·+Mn.

Since the series of constants∑∞
k=0 Mk converges by hypothesis, there exists an inte-

gerN such that ifn> m≥ N,

Mm+1+ · · ·+Mn < ε.
This implies that forn> m≥ N,

|Sn(x)−Sm(x)|< ε
for all x∈ D. Thus the sequence{Sn} is uniformly convergent onD; that is, the series
∑∞

k=1 fk is uniformly convergent onI .

Exercise346, page 90

Then|xk| ≤ ak for everyk= 0,1,2. . . andx∈ [−a,a]. Since∑∞
k=0 ak converges, by the

M-test the series∑∞
k=0 xk converges uniformly on[−a,a].

Exercise347, page 90

The crudest estimate on the size of the terms in this series isobtained just by using the
fact that the sine function never exceeds 1 in absolute value. Thus

∣

∣

∣

∣

sinkθ
kp

∣

∣

∣

∣

≤ 1
kp

for all θ ∈ R.

Since the series∑∞
k=1 1/kp converges forp> 1, we obtain immediately by theM-test

that our series converges uniformly (and absolutely) on theinterval (−∞,∞) [or any
interval in fact]. for all realθ providedp> 1.

For 0< p < 1 the series∑∞
k=1 1/kp diverges and the M-test supplies us with no

information in these cases.
We seem to have been particularly successful here, but a closer look also reveals a

limitation in the method. The series is also pointwise convergent for 0< p≤ 1 (use the
Dirichlet test) for all values ofθ, but it converges nonabsolutely. TheM-test cannot be
of any help in this situation since it can address only absolutely convergent series. Thus
we have obtained only a partial answer because of the limitations of the test.
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Because of this observation, it is perhaps best to conclude,when using theM-
test, that the series tested “converges absolutely and uniformly” on the set given. This
serves, too, to remind us to use a different method for checking uniform convergence
of nonabsolutely convergent series. See the next exercise (Exercise348).

Exercise348, page 90

We will use the Cauchy criterion applied to the series to obtain uniform convergence.
We may assume that thebk(x) are nonnegative and decrease to zero. Letε > 0. We
need to estimate the sum

∣

∣

∣

∣

∣

n

∑
k=m

ak(x)bk(x)

∣

∣

∣

∣

∣

(5.12)

for largen andm and allx ∈ I . Since the sequence of functions{bk} converges uni-
formly to zero onI , we can find an integerN so that for allk≥ N and allx∈ I

0≤ bk(x) ≤
ε

2M
.

The key to estimating the sum (5.12), now, is the summation by parts formula. This
is just the elementary identity

n

∑
k=m

akbk =
n

∑
k=m

(sk−sk−1)bk

= sm(bm−bm+1)+sm+1(bm+1−bm+2) · · ·+sn−1(bn−1−bn)+snbn.

This provides us with
∣

∣

∣

∣

∣

n

∑
k=m

ak(x)bk(x)

∣

∣

∣

∣

∣

≤ 2M

(

sup
x∈E

|bm(x)|
)

< ε

for all n≥ m≥ N and allx∈ I which is exactly the Cauchy criterion for the series and
proves the theorem.
Commentary: TheM-test is a highly useful tool for checking the uniform convergence
of a series. By its nature, though, it clearly applies only toabsolutely convergent series.
Abel’s test clearly shines in this regard.

It is worth pointing out that in many applications of this theorem the sequence{bk}
can be taken as a sequence of numbers, in which case the statement and the conditions
that need to be checked are simpler. For reference we can state this as a corollary.

Corollary 5.1 Let {ak} be a sequence of functions on a set E⊂ R. Suppose that
there is a number M so that

∣

∣

∣

∣

∣

N

∑
k=1

ak(x)

∣

∣

∣

∣

∣

≤ M

for all x ∈ E and every integer N. Suppose that the sequence of real numbers {bk}
converges monotonically to zero. Then the series

∞

∑
k=1

bkak

converges uniformly on E.
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Figure 5.5: Graph of∑n
k=1(sinkθ)/k on [0,2π] for, clockwise from upper left,n= 1, 4,

7, and 10.

Exercise349, page 91

It is possible to prove that this series converges for allθ. Questions about the uniform
convergence of this series are intriguing. In Figure5.5we have given a graph of some
of the partial sums of the series.

The behavior nearθ = 0 is most curious. Apparently, if we can avoid that point
(more precisely if we can stay a small distance away from thatpoint) we should be
able to obtain uniform convergence. Theorem3.41 will provide a proof. We apply
that theorem withbk(θ) = 1/k andak(θ) = sinkθ. All that is required is to obtain an
estimate for the sums

∣

∣

∣

∣

∣

n

∑
k=1

sinkθ

∣

∣

∣

∣

∣

for all n and allθ in an appropriate set. Let 0< η < π/2 and consider making this esti-
mate on the interval[η,2π−η]. From familiar trigonometric identities we can produce
the formula

sinθ+sin2θ+sin3θ+sin4θ+ · · ·+sinnθ =
cosθ/2−cos(2n+1)θ/2

2sinθ/2
and using this we can see that

∣

∣

∣

∣

∣

n

∑
k=1

sinkθ

∣

∣

∣

∣

∣

≤ 1
sin(η/2)

.

Now Theorem3.41immediately shows that
∞

∑
k=1

sinkθ
k

converges uniformly on[η,2π−η].
Figure 5.5 illustrates graphically why the convergence cannot be expected to be

uniform near to 0. A computation here is instructive. To check the Cauchy criterion on
[0,π] we need to show that the sums

sup
θ∈[0,π]

∣

∣

∣

∣

∣

n

∑
k=m

sinkθ
k

∣

∣

∣

∣

∣
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are small for largem, n. But in fact

sup
θ∈[0,π]

∣

∣

∣

∣

∣

2m

∑
k=m

sinkθ
k

∣

∣

∣

∣

∣

≥
2m

∑
k=m

sin(k/2m)

k
≥

2m

∑
k=m

sin1/2
2m

>
sin1/2

2
,

obtained by checking the value at pointsθ = 1/2m. Since this is not arbitrarily small,
the series cannot converge uniformly on[0,π].

Exercise358, page 91

Use the Cauchy criterion for convergence of sequences of real numbers to obtain a
candidate for the limit functionf . Note that if{ fn} is uniformly Cauchy on a setD,
then for eachx ∈ D, the sequence of real numbers{ fn(x)} is a Cauchy sequence and
hence convergent.

Exercise376, page 95

Let Gk(x) =
∫ 1

0 gk(x)dx be the indefinite integrals of thegk. Observe that, fork =

2,3,4, . . . , the functionGk is continuous on[0,1], piecewise linear and that it is differ-
entiable everywhere except at the point 1− 1

k ; it has a right-hand derivativeO there but
a left-hand derivative 2−k. That means that the partial sum

Fn(x) =
n

∑
k=2

gk(x)

is also continuous on[0,1], piecewise linear and that it is differentiable everywhere
except at all the points 1− 1

k for k= 2,3,4, . . . .
Both

f (x) =
∞

∑
n=2

gk(x) and F(x) =
∞

∑
n=2

Gk(x)

converge uniformly on[0,1] andF ′(x) = f (x) at every point with the exception of all
the points in the sequence12,

2
3,

3
4,

4
5,

5
6, . . . . That is too many points forF to be an

indefinite integral.
Note that the functions in the sequencef1, f2, f3, . . . are continuous with only

finitely many exceptions. But the number of exceptions increase withn. That is the
clue that we are heading to a function that may not be integrable in the very severe
sense of the calculus integral.

Exercise377, page 95

Let ε > 0 and chooseN so that| fn(x)− f (x)|< ε/(b−a) for all n≥N and allx∈ [a,b].
Then, sincef and each functionfn is integrable,

∣

∣

∣

∣

∫ b

a
f (x)dx−

∫ b

a
fn(x)dx

∣

∣

∣

∣

≤
∫ b

a
| f (x)− fn(x)| dx≤

∫ b

a

ε
b−a

dx= ε

for all n≥ N. This proves that∫ b

a
f (x)dx= lim

n→∞

∫ b

a
fn(x)dx.

Note that we had to assume thatf was integrable in order to make this argument work.
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Exercise378, page 96

Let g(x) = limnF ′
n(x). Since each of the functionsF ′

n is assumed continuous and the
convergence is uniform, the functiong is also continuous on the interval(a,b).

From Theorem3.42we infer that∫ x

a
g(t)dt = lim

n→∞

∫ x

a
F ′

n(t)dt = lim
n→∞

[Fn(x)−Fn(a)] = F(x)−F(a) for all x∈ [a,b].

(5.13)
Thus we obtain ∫ x

a
g(t)dt = F(x)−F(a)

or

F(x) =
∫ x

a
g(t)dt+F(a).

It follows from the continuity ofg thatF is differentiable and thatf ′(x) = g(x) for all
x∈ (a,b).

Exercise379, page 96

To justify
1

(1−x)2 =
∞

∑
k=1

kxk−1

we observe first that the series
∞

∑
k=0

xk

(3.4) converges pointwise on(−1,1). Next we note (Exercise360) that the series
∞

∑
k=1

kxk−1

converges pointwise on(−1,1) and uniformly on any closed interval[a,b] ⊂ (−1,1).
Thus, if x∈ (−1,1) and−1< a< x< b< 1, then this series converges uniformly on
[a,b]. Now apply Corollary3.46.

Indeed there was a bit of trouble on the interval(−1,1), but trouble that was easily
handled by working on a closed, bounded subinterval[a,b] inside.

Exercise380, page 96

Indeed there is a small bit of trouble on the interval(−∞,∞), but trouble that was easily
handled by working on a closed, bounded subinterval[−t, t] inside. The Weierstrass
M-test can be used to verify uniform convergence since

∣

∣

∣

∣

xk

k!

∣

∣

∣

∣

≤ tk

k!

for all −t < x< t.

Exercise384, page 97

The hypotheses of Theorem3.45are somewhat more restrictive than necessary for the
conclusion to hold and we have relaxed them here by dropping the continuity assump-
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tion. That means, though, that we have to work somewhat harder.
We also need not assume that{ fn} converges on all of[a,b]; convergence at a single

point suffices. (We cannot, however, replace uniform convergence of the sequence
{ f ′n} with pointwise convergence, as Example328shows.) Theorem3.47applies in a
number of cases in which Theorem3.45does not.

For the purposes of the proof we can assume that the set of exceptionsC is empty.
For simply work on subintervals(c,d) ⊂ (a,b) that miss the setC. After obtaining the
proof on each subinterval(c,d) the full statement of the theorem follows by piecing
these intervals together.

Let ε > 0. Since the sequence of derivatives converges uniformly on(a,b), there is
an integerN1 so that

| f ′n(x)− f ′m(x)| < ε
for all n, m≥ N1 and all x ∈ (a,b). Also, since the sequence of numbers{ fn(x0)}
converges, there is an integerN > N1 so that

| fn(x0)− fm(x0)|< ε
for all n, m≥ N. Let us, for anyx∈ [a,b], x 6= x0, apply the mean value theorem to the
function fn− fm on the interval[x0,x] (or on the interval[x,x0] if x< x0). This gives us
the existence of some pointξ strictly betweenx andx0 so that

fn(x)− fm(x)− [ fn(x0)− fm(x0)] = (x−x0)[ f
′
n(ξ)− f ′m(ξ)]. (5.14)

From this we deduce that

| fn(x)− fm(x)| ≤ | fn(x0)− fm(x0)|+ |(x−x0)( f ′n(ξ)− f ′m(ξ)|
< ε(1+(b−a))

for any n, m≥ N. Since thisN depends only onε this assertion is true for allx ∈
[a,b] and we have verified that the sequence of continuous functions { fn} is uniformly
Cauchy on[a,b] and hence converges uniformly to a continuous functionf on the
closed, bounded interval[a,b].

We now know that the one pointx0 where we assumed convergence is any point.
Suppose thata < x0 < b. We show thatf ′(x0) is the limit of the derivativesf ′n(x0).
Again, for anyε > 0, equation (5.14) implies that

| fn(x)− fm(x)− [ fn(x0)− fm(x0)]| ≤ |x−x0|ε (5.15)

for all n,m≥ N and anyx 6= x0 in the interval(a,b). In this inequality letm→ ∞ and,
remembering thatfm(x)→ f (x) and fm(x0)→ f (x0), we obtain

| fn(x)− fn(x0)− [ f (x)− f (x0)]| ≤ |x−x0|ε (5.16)

if n ≥ N. Let C be the limit of the sequence of numbers{ f ′n(x0)}. Thus there exists
M > N such that

| f ′M(x0)−C|< ε. (5.17)

Since the functionfM is differentiable atx0, there existsδ > 0 such that if 0< |x−x0|<
δ, then

∣

∣

∣

∣

fM(x)− fM(x0)

x−x0
− f ′M(x0)

∣

∣

∣

∣

< ε. (5.18)
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From Equation (5.16) and the fact thatM > N, we have
∣

∣

∣

∣

fM(x)− fM(x0)

x−x0
− f (x)− f (x0)

x−x0

∣

∣

∣

∣

< ε.

This, together with the inequalities (5.17) and (5.18), shows that
∣

∣

∣

∣

f (x)− f (x0)

x−x0
−C

∣

∣

∣

∣

< 3ε

for 0< |x−x0|< δ. This proves thatf ′(x0) exists and is the numberC, which we recall
is limn→∞ f ′n(x0).

The final statement of the theorem,

lim
n→∞

∫ b

a
f ′n(x)dx=

∫ b

a
f ′(x)dx,

now follows too. We know thatf ′ is the exact derivative on(a,b) of a uniformly
continuous functionf on [a,b] and so the calculus integral

f (b)− f (a) =
∫ b

a
f ′(x)dx.

But we also know that

fn(b)− fn(a) =
∫ b

a
f ′n(x)dx.

and
lim
n→∞

[ fn(b)− fn(a)] = f (b)− f (a).

Exercise385, page 97

Let { fk} be a sequence of differentiable functions on an interval[a,b]. Suppose that
the series∑∞

k=0 f ′k converges uniformly on[a,b]. Suppose also that there existsx0 ∈
[a,b] such that the series∑∞

k=0 fk(x0) converges. Then the series∑∞
k=0 fk(x) converges

uniformly on [a,b] to a functionF, F is differentiable, and

F ′(x) =
∞

∑
k=0

f ′k(x)

for all a≤ x≤ b.

Exercise386, page 97

It is not true. We have already seen a counterexample in Exercise376.
Here is an analysis of the situation: LetGn(x) =

∫ x
a gn(t)dt. Theorem3.47demands

a single finite setC of exceptional points whereG′
n(x) = gn(x) might fail. In general,

however, this set should depend onn. Thus, for eachn select a finite setCn so that
G′

n(x) = gn(x) is true for allx∈ [a,b]\Cn.
If C=

⋃∞
n=1Cn is finite then we could conclude that the limit functiong is integrable.

But C might be infinite.
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Exercise387, page 97

A simple counterexample, showing that we cannot conclude that { fn} converges onI ,
is fn(x) = n for all n. To see there must exist a functionf such that f ′ = g= limn→∞ f ′n
on I : Fix x0 ∈ I , let Fn = fn − fn(x0) and apply Theorem3.47 to the sequence{Fn}
. Thus, the uniform limit of a sequence of derivatives{ f ′n} is a derivative even if the
sequence of primitives{ fn} does not converge.

Exercise388, page 98

If there is a finite set of points where one of the inequalitiesfails redefine all the func-
tions to have value zero there. That cannot change the valuesof any of the integrals but
it makes the inequality valid.

Exercise389, page 99

Lemma3.48is certainly the easier of the two lemmas. For that just notice that, for any
integerN, if the inequality

f (x)≥
N

∑
k=1

gk(x),

holds for allx in (a,b) then, since∑N
k=1gk(x) is integrable,

∫ b

a
f (x)dx≥

∫ b

a

(

N

∑
k=1

gk(x)

)

dx=
N

∑
k=1

(∫ b

a
gk(x)dx

)

.

But if this inequality in turn is true for allN then∫ b

a
f (x)dx≥

∞

∑
k=1

(∫ b

a
gk(x)dx

)

is also true.

Exercise390, page 99

This lemma requires a bit of bookkeeping and to make this transparent we will use
some language and notation. Because the proof is a bit trickywe will also expand the
steps rather more than we usually do.

1. Instead of writing a partition or subpartition out in detail in the form

{([ai ,bi ],ξi) : i = 1,2, . . . ,n}
we will use the Greek letter2 π to denote a partition, so

π = {([ai ,bi ],ξi) : i = 1,2, . . . ,n}
saves a lot of writing.

2. For the Riemann sum over a partitionπ, in place of writing the cumbersome
n

∑
i=1

f (ξi)(bi −ai)

2π is the letter in the Greek alphabet corresponding to “p” so that explains the choice. It shouldn’t
interfere with your usual use of this symbol.
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we write merely

∑
([u,v],w)∈π

f (w)(v−u) or ∑
π

f (w)(v−u)

.

3. Instead of saying that a partition satisfies the usual condition

π = {([ai ,bi ],ξi) : i = 1,2, . . . ,n}
with

ξi ∈ [ai ,bi ] andbi −ai < δ(ξi).

we just sayπ is δ-fine.

This notation will make the arguments transparent and is generally convenient.
Remember that our first step in the proof of Lemma3.49 is to assume that the

inequality

f (x)≤
∞

∑
k=1

gk(x),

is valid at every point of the interval[a,b]. Let ε > 0. Sincef itself is assumed to be in-
tegrable the interval[a,b], the integral can be approximated (pointwise, not uniformly)
by Riemann sums. Thus we can choose, for eachx∈ [a,b], aδ0(x) > 0 so that

∑
π

f (w)(v−u)≥
∫ b

a
f (x)dx− ε

wheneverπ is a partition of the interval[a,b] that isδ0-fine. This applies Theorem3.26.
Sinceg1 is integrable and, again, the integral can be approximated by Riemann

sums we can choose, for eachx∈ [a,b], aδ0(x) > δ1(x)> 0 so that

∑
π

g1(w)(v−u)≤
∫ b

a
g1(x)dx+ ε2−1

wheneverπ is a partition of the interval[a,b] that isδ1-fine. Sinceg2 is integrable and
(yet again) the integral can be approximated by Riemann sumswe can choose, for each
x∈ [a,b], aδ1(x)> δ2(x) > 0 so that

∑
π

g2(w)(v−u)≤
∫ b

a
g2(x)dx+ ε2−2

wheneverπ is a partition of the interval[a,b] that isδ2-fine. Continuing in this way we
find, for each integerk= 1,2,3, . . . a δk−1(x)> δk(x)> 0 so that

∑
π

gk(w)(v−u)≤
∫ b

a
gk(x)dx+ ε2−k

wheneverπ is a partition of the interval[a,b] that isδk-fine.
Let t < 1 and choose for eachx∈ [a,b] the first integerN(x) so that

t f (x) ≤
N(x)

∑
n=1

fn(x).

Let
En = {x∈ [a,b] : N(x) = n}.
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We use these sets to carve up theδk and create a newδ(x). Simply setδ(x) = δk(x)
wheneverx belongs to the corresponding setEk.

Take any partitionπ of the interval[a,b] that isδ-fine (i.e., it must be a fine partition
relative to this newly constructedδ.) The existence of such a partition is guaranteed by
the Cousin covering argument. Note that this partition is alsoδ0-fine sinceδ(x)< δ0(x)
for all x. We work carefully with this partition to get our estimates.

Let N be the largest value ofN(w) for the finite collection of pairs([u,v],w) ∈ π.
We need to carve the partitionπ into a finite number of disjoint subsets by writing, for
j = 1,2,3, . . . ,N,

π j = {([u,v],w) ∈ π : w∈ E j}
and

σ j = π j ∪π j+1∪ ·· ·∪πN.

for integersj = 1,2,3, . . . ,N. Note thatσ j is itself a subpartition that isδ j -fine. Putting
these together we have

π = π1∪π2∪ ·· ·∪πN.

By the way we choseδ0 and since the newδ is smaller than that we know, for this
partitionπ that ∫ b

a
f (x)dx− ε ≤ ∑

π
f (w)(v−u)

so

t
∫ b

a
f (x)dx− tε ≤ ∑

π
t f (w)(v−u).

We also will remember that forx∈ Ei,

t f (x) ≤ g1(x)+g2(x)+ · · ·+gi(x).

Now we are ready for the crucial computations, each step of which is justified by
our observations above:

t
∫ b

a
f (x)dx− tε ≤

∑
π

t f (w)(v−u) =
N

∑
i=1

∑
πi

t f (w)(v−u)

≤
N

∑
i=1

∑
πi

(g1(w)+g2(w)+ · · ·+gi(w))(v−u)

=
N

∑
j=1

(

∑
σ j

g j(w)(v−u)

)

≤

N

∑
j=1

(∫ b

a
g j(x)dx+ ε2− j

)

≤
∞

∑
j=1

(∫ b

a
g j(x)dx

)

+ ε.

Sinceε is arbitrary, this shows that

t
∫ b

a
f (x)dx≤

∞

∑
k=1

(∫ b

a
gk(x)dx

)

.

As this is true for allt < 1 the inequality of the lemma must follow too.
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Exercise392, page 99

This follows from these lemmas and the identity

f (x) = f1(x)+
∞

∑
n=1

( fn(x)− fn−1(x)) .

Since fn is a nondecreasing sequence of functions, the sequence of functions fn(x)−
fn−1(x) is nonnegative. As usual, ignore the finite set of exceptional points or assume
that all functions are set equal to zero at those points.

Exercise393, page 99

We use the same technique and the same language as used in the solution of Exer-
cise390.

Let gn = f − fn and letGn denote the indefinite integral of the functiongn. The se-
quence of functions{gn} is nonnegative and monotone decreasing with limn→∞ gn(x) =
0 at eachx.

Let ε > 0. Choose a sequence of functions{δk} so that

∑
([u,v],w)∈π

|Gk(v)−Gk(u)−gk(w)(v−u)|< ε2−k

wheneverπ is a partition of the interval[a,b] that isδk-fine. Choose, for eachx∈ [a,b],
the first integerN(x) so that

gk(x)< ε for all k≥ N(x).

Let
En = {x∈ [a,b] : N(x) = n}.

We use these sets to carve up theδk and create a newδ(x). Simply setδ(x) = δk(x)
wheneverx belongs to the corresponding setEk.

Take any partitionπ of the interval[a,b] that isδ-fine (i.e., it must be a fine partition
relative to this newly constructedδ.) The existence of such a partition is guaranteed by
the Cousin covering argument.

Let N be the largest value ofN(w) for the finite collection of pairs([u,v],w) ∈ π.
We need to carve the partitionπ into a finite number of disjoint subsets by writing

π j = {([u,v],w) ∈ π : w∈ E j}
for integersj = 1,2,3, . . . ,N. Note that

π = π1∪π2∪ ·· ·∪πN

and that these collections are pairwise disjoint.
Now let mbe any integer greater thanN. We compute

0≤
∫ b

a
gm(x)dx= Gm(b)−Gm(a) = ∑

([u,v],w)∈π
(Gm(v)−Gm(u)) =

N

∑
j=1

(

∑
([u,v],w)∈π j

(Gm(v)−Gm(u))

)

≤
N

∑
j=1

(

∑
([u,v],w)∈π j

(G j(v)−G j(u))

)

≤
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N

∑
j=1

[

∑
([u,v],w)∈π j

g j(w)(v−u)+ ε2− j

]

<

N

∑
j=1

[

∑
([u,v],w)∈π j

ε(v−u)+ ε2− j

]

< ε(b−a+1).

This shows that

0≤
∫ b

a
gm(x)dx< ε(b−a+1)

for all m≥ N. The identity∫ b

a
f (x)dx− lim

n→∞

∫ b

a
fn(x)dx= lim

n→∞

∫ b

a
gn(x)dx= 0.

follows.

Exercise395, page 101

Just apply the theorems. We need, first, to determine that theinterval of convergence of
the integrated series

F(x) =
∞

∑
n=0

xn+1/(n+1) = x+x2/2+x3/3+x4/4+ . . .+ .

is [−1,1). Consequently, of the two integrals here, only one exists. Note that

F(0)−F(−1) =−F(−1) = 1−1/2+1/3−1/4−1/5+1/6− . . .

is a convergent alternating series and provides the value ofthe integral
∫ 0

−1

(

∞

∑
n=0

xn

)

dx.

Note that the interval of convergence of the original seriesis (−1,1) but that is not
what we need to know. We needed very much to know what the interval of convergence
of the integrated serieswas.

Exercise396, page 102

The formula

1+x+x2+x3+x4+ · · ·+=
1

1−x
(−1< x< 1)

is just the elementary formula for the sum of a geometric series. Thus we do not need
to use series methods to solve the problem; we just need to integrate the function

f (x) =
1

1−x
.

We happen to know that∫
1

1−x
dx=− log(1−x)+C

on (−∞,1) so this integral is easy to work with without resorting to series methods.
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The integral ∫ 0

−1

1
1−x

dx=− log(1−0)− (− log(1− (−1)) = log2.

For the first exercise you should have found a series that we now know adds up to log2.

Exercise397, page 102

No, you are wrong. And don’t call me ‘Shirley.’
The condition we need concerns the integrated series, not the original series. The

integrated series is
F(x) = x+x2/2+x3/3+x4/4+ . . .+

and, while this diverges atx= 1, it converges atx=−1 since

1−1/2+1/3−1/4−1/5+1/6− . . .

is an alternating harmonic series, known to be convergent bythe convergent alternating
series test. Theorem3.53then guarantees that the integral exists on[−1,0] and predicts
that it might not exist on[0,1].

The mistake here can also be explained by the nature of the calculus integral. Re-
member that in order for a function to be integrable on an interval [a,b] it does not
have to be defined at the endpoints or even bounded near them. The careless student is
fussing too much about the function being integrated and notpaying close enough at-
tention to the integrated series. We know thatF(x) is an antiderivative forf on (−1,1)
so the only extra fact that we need for the integral

∫ 0
−1 f (x)dx is thatF is continuous on

[−1,0]. It is.

Exercise398, page 102

Yes. Inside the interval(−R,R) this formula must be valid.

Exercise399, page 102

Yes. If we are sure that the closed, bounded interval[a,b] is inside the interval of
convergence (i.e., either(−R,R) or (−R,R] or [−R,R) or [−R,R]) then this formula
must be valid.

Exercise400, page 102

Both the series
f (x) = 1+2x+3x2+4x3+ . . .

and the formally integrated series

F(x) = x+x2+x3+ . . .

have a radius of convergence 1 and an interval of convergenceexactly equal to(−1,1).
Theorem3.53assures us, only, thatF is an indefinite integral forf on (−1,1).

But
F(x) = x+x2+x3+ · · ·= x

1−x
(−1< x< 1).
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If we define
G(x) =

x
1−x

(−1≤ x< 1).

thenG is continuous on[−1,0] andG′(x) = F ′(x) = f (x) on (−1,1). Consequently∫ 0

−1
f (x)dx= G(0)−G(−1) = 1/2.

We were not able to write∫ 0

−1
f (x)dx= F(0)−F(−1) =−1+1−1+1−1+1− . . .

becauseF(−1) is not defined (the series forF diverges atx=−1.
SinceG(x) is unbounded nearx= 1 there is no hope of finding an integral forf on

[0,1].

Exercise401, page 102

HereR= 0. Show that
lim
k→∞

kkrk = 0

for everyr > 0. Conclude that the series must diverge for everyx 6= 0.

Exercise402, page 103

Do R= 0, R= ∞, andR= 1. Then for any 0< s< ∞ take your power series forR= 1
and make a suitable change, replacingx by sx.

Exercise406, page 103

This follows immediately from Exercise405without any further computation.

Exercise407, page 103

This follows immediately from the inequalities

liminf
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

≤ lim inf
k→∞

k
√

|ak| ≤ limsup
k→∞

k
√

|ak| ≤ limsup
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

,

which can be established by comparing ratios and roots, together with Exercise404.

Exercise408, page 104

Exercise409, page 104

Exercise410, page 104

Exercise411, page 104
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Exercise412, page 104

Exercise413, page 104

Exercise418, page 105

If the series converges absolutely at an endpoint±Rof the interval of convergence then

|a0|+ |a1|R+ |a2|R2+ |a3|R3+ . . .

converges. For eachx in the interval[−R,R],

|ak(x)x
k| ≤ |ak|Rk.

By the Weierstrass M-test the series converges uniformly on[−R,R].
The conclusion is now that

f (x) = a0+a1x+a2x2+a3x3+ . . .

is a uniformly convergent power series on the interval[−R,R] and sof is continuous.
We know that

f ′(x) = a1+2a2x+3a3x2+4a4x3+ . . .

is convergent at least on(−R,R) and that this is indeed the derivative off there. It fol-
lows that f ′ is integrable on[−R,R] and thatf is an indefinite integral on that interval.

Exercise419, page 105

For the proof we can assume that the series

f (x) = a0+a1x+a2x2+a3x3+ . . .

has a radius of convergence 1 and that the series converges nonabsolutely atx = 1.
We can assume that the interval of convergence is(−1,1]. Any other case can be
transformed into this case.

Set
sn = a0+a1+a2+a3+ · · ·+an−1

and note that, by our hypothesis that the power series converges atx = 1, this is a
convergent series. The sequencebk(x) = xk is nonnegative and decreasing on the inter-
val [0,1]. one of the versions of Abel’s theorem (Exercise348) applies in exactly this
situation and so we can claim that the series

∞

∑
k=0

akbk(x)

converges uniformly on[0,1]. This is what we wanted.
The conclusion is now that

f (x) = a0+a1x+a2x2+a3x3+ . . .

is a uniformly convergent power series on the interval[0,1] and sof is continuous. We
know that

f ′(x) = a1+2a2x+3a3x2+4a4x3+ . . .
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is convergent at least on(−1,1) and that this is indeed the derivative off there. It
follows that f ′ is integrable on[0,1]. We already know thatf ′ is integrable on any
interval[a,0] for −1< a< 0. Thusf ′ is integrable on any interval[a,1] for −1< a< 0,
and thus integrable on any interval[a,b]⊂ (−1,1].

To finish let us remark on the transformations needed to justify the first paragraph.
If

f (x) = a0+a1x+a2x2+a3x3+ . . .

converges atx= 1 then

g(x) = a0−a1x+a2x2−a3x3+ . . .

converges atx=−1 and

h(x) = a0+R−1a1x+R−2a2x2+R−3a3x3+ . . .

converges atx= R.

Exercise421, page 105

Write out the Cauchy criterion for uniform convergence on(−r, r) and deduce that the
Cauchy criterion for uniform convergence on[−r, r] must then also hold.

Exercise424, page 106

The best that can be concluded is thatif there is any series representationfor f valid at
least in some interval(−r, r) for r > 0, then

f (x) =
∞

∑
k=0

f (k)(0)
k!

xk

must be that series. But it is possible that there simply is nopower series representation
of a function, even assuming that it isf is infinitely often differentiable atx= 0.

Exercise425, page 108

Each of these steps, carried out, will lead to the conclusionthat the area is expressible
as an integral. The first step is the assumption that area is additive. The second step
assumes that area can be estimated above and below in this way. The last two steps then
follow mathematically from the first two.

The loosest version of this argument requires taking the concept for granted and
simply assuming that an accumulation argument will work forit. ThusA(x) accumu-
lates all of the area of the region betweena andx. Now add on a small bit more to get
A(x+ h). The bit more that we have added on is close tof (ξ)× h for some [or any]
choice ofξ inside(x,x+h).

We “conclude” immediately that
∫ x

a f (t),dt expresses completely the measurement
A(x) that we require. You should be aware here of where you are making anadditive
assumption and where you are making an assumption ofcontinuity.

Exercise428, page 109

Well in fact you merely memorized that the area of a circle of radiusR is πR2. Then the
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area of a half-circle (assuming that it has an area) would be half of that (assuming that
areas add up). Notice that by basing area on integration theory we are on firmer ground
for all such statements.

Exercise429, page 109

The top half of the circle is the curvey=
√

r2−x2 and the bottom half isy=
√

r2−x2

both on the interval−r ≤ x≤ r. Just apply Definition3.55(and hope that you have the
skills to determine exactly what the integral is).

Exercise430, page 109

“The difficulty that occurs with this test of integrands is somewhat subtle.
If a quantityQ is equal to the integral of a functionf , then every upper sum
of f is larger thanQ and every lower sum off is smaller thanQ. On the
other hand, even with some applications occurring at the most elementary
level, it is not possible to knowa priori that upper and lower sums bound
Q. One knows this only after showing in some other way that the integral
of f equalsQ. Consider, for example, the area between the graphs of the
functionsg(x) = 1+x2 andh(x) = 2x2 on [0,1]. While for a small∆x> 0,
the maximum ofg(x)−h(x) on [0,∆x] occurs at 0, no rectangle of height 1
and width∆x contains the region between the graphs over[0, ,∆x], so it is
not clear a priori that 1·∆x is larger than the area of that region. Of course
there are several methods to justify the integral needed here . . . , but even
for this simple example the ‘universal’ method of upper and lower sums
fails, and Bliss’s theorem also fails, as a test for the integrand.”
. . . from Peter A. Loeb,A lost theorem of the calculus, The Mathematical
Intelligencer, Volume 24, Number 2 (June, 2002).

One can just ignore the difficulty and accept Definition3.55 as a correct interpreta-
tion of area. Or, we could use Definition3.54and insist that areas can be added and
subtracted. In that way∫ 1

0
[g(x)−h(x)]dx=

∫ 1

0
g(x)dx−

∫ 1

0
h(x)dx

gets around the problem, since both of these areas and integrals allow an interpretation
using the method of exhaustion.

Yet again, we could consider, instead, adjusted Riemann sums
n

∑
i=1

[g(ξi)−h(ξ∗i )](xi −xi−1)

that also approximate the same integral
∫ 1

0 [g(x)−h(x)]dx. Then, judicious choices of
ξi andξ∗i can be made to return to an argument that follows the principles of the method
of exhaustion.

Exercise431, page 109

The geometric series certainly sums to the value 1. Now use the definition of the integral
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∫ ∞
1 x−2 dx to compute its value.

Exercise434, page 113

First note that
max{|p|, |q|} ≤

√

p2+q2 ≤ |p|+ |q|
for all real numbersp andq. Consequently, if we make any choice of points

a= t0 < t1 < t2 < · · ·< tn−1 < tn = b,

the sum
n

∑
i=1

√

[F(ti)−F(ti−1)]2+[G(ti)−G(ti−1)]2

has, as an upper bound,
n

∑
i=1

|F(ti)−F(ti−1)|+ |G(ti)−G(ti−1)| ≤V(F, [a,b])+V(G, [a,b]).

Consequently, for the lengthL of the curve,

L ≤V(F, [a,b])+V(G, [a,b]).

In the other direction
n

∑
i=1

|F(ti)−F(ti−1)| ≤
n

∑
i=1

√

[F(ti)−F(ti−1)]2+[G(ti)−G(ti−1)]2 ≤ L.

ThusV(F, [a,b]) ≤ L. The inequalityV(G, [a,b]) ≤ L is similarly proved.

Exercise435, page 113

We know thatF ′(t) and|F ′(t)| are integrable on[a,b]. We also know that

V(F, [a,b]) ≤
∫ b

a
|F ′(t)|dt.

ConsequentlyF has bounded variation on[a,b]. Similarly G has bounded variation on
[a,b]. It follows from Exercise434that the curve is rectifiable.

Let ε > 0 and choose points

a= t0 < t1 < t2 < · · ·< tn−1 < tn = b

so that

L− ε <
n

∑
i=1

√

[F(ti)−F(ti−1)]2+[G(ti)−G(ti−1)]2 ≤ L.

The sum increases if we add points, so we will add all points atwhich the derivatives
F ′(t) or G′(t) do not exist.

In between the points in the subdivision we can use the mean-value theorem to
select

ti−1 < τi < ti and ti−1 < τ∗i < ti

so that
[F(ti)−F(ti−1)] = F ′(τi) and [G(ti)−G(ti−1)] = G′(τ∗i ).
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Consequently

L− ε <
n

∑
i=1

√

[F ′(τi)]2+[G′(τ∗i )]2 ≤ L.

But the sums
n

∑
i=1

√

[F ′(τi)]2+[G′(τ∗i )]2

are approximating sums for the integral∫ b

a

√

[F ′(t)]2+[G′(t)]2 dt.

Here we are applying Theorem3.25since we have selected two pointsτi andτ∗i from
each interval, rather than one point as the simplest versionof approximating Riemann
sums would demand. We easily check that the function

H(p,q) =
√

p2+q2 ≤ |p|+ |q|
satisfies the hypotheses of that theorem.

Exercise436, page 113

Use the Darboux property of continuous functions.

Exercise439, page 113

Translating from the language of curves to the language of functions and their graphs:
The length of the graph would be the least numberL so that

n

∑
i=1

[(xi −xi−1)]
2+[ f (xi)− f (xi−1)]

2 ≤ L

for all choices of points

a= x0 < x1 < x2 < · · ·< xn−1 < xn = b.

This would be finite if and only iff has bounded variation on[a,b] and would be
smaller than(b−a)+V(F, [a,b]).

A formula for this length, in the case whenf is continuously differentiable on(a,b)
with a bounded derivative, would be

L =
∫ b

a

√

1+[ f ′(x)]2 dx.

Exercise440, page 113

The function is continuously differentiable, Lipschitz and so certainly of bounded vari-
ation. Hence the curve

x= t, y= f (t) (0≤ t ≤ 2)

is rectifiable.
The formula

L =

∫ 2

0

√

1+
1
4
(e2x−2+e−2x)dx



5.1. ANSWERS TO PROBLEMS 265

is immediate. Calculus students would be expected to have the necessary algebraic
skills to continue. “Completing the square” will lead to an integral that can be done by
hand.

Exercise441, page 116

On the interval[a,b] with no additional points inserted this is exactly the trapezoidal
rule. The general formula just uses the same idea on each subinterval.

Exercise442, page 116

We can assume thatf is twice continuously differentiable on[a,b] and then apply inte-
gration by parts [twice] to the integral∫ b

a
(x−a)(b−x) f ′′(x)dx.

One integration by parts will give∫ b

a
(x−a)(b−x) f ′′(x)dx= (x−a)(b−x) f ′(x)

]x=b
x=a−

∫ b

a
[a+b−2x] f ′(x)dx

and a second integration by parts on this integral will give

[2x− (a+b)]) f (x)]x=b
x=a−2

∫ b

a
f (x)dx= (b−a)( f (a)+ f (b))−2

∫ b

a
f (x)dx.

Exercise443, page 116

Again we can assume thatf is twice continuously differentiable on[a,b]. Then the
preceding exercise supplies∫ b

a
f (x)dx− f (a)+ f (b)

2
(b−a) =−1

2

∫ b

a
(x−a)(b−x) f ′′(x)dx

=− f ′′(ξ)
∫ b

a
(x−a)(b−x)dx=− f ′′(ξ)

(b−a)3

12
,

making sure to apply the appropriate mean-value theorem forthe integral above.

Exercise444, page 116

Again we can assume thatf is twice continuously differentiable on[a,b]. Then the
preceding exercises supply∫ b

a
f (x)dx− f (a)+ f (b)

2
(b−a) =−1

2

∫ b

a
(x−a)(b−x) f ′′(x)dx.

Now just use the fact that

max
x∈[a,b]

(x−a)(b−x) =
(b−a)2

4

to estimate ∫ b

a
(x−a)(b−x)| f ′′(x)|dx.
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Exercise445, page 117

The preceding exercises should help.

Exercise446, page 117

This is from Edward Rozema,Estimating the error in the trapezoidal rule, The Ameri-
can Mathematical Monthly, Vol. 87 (2), (1980), pages 124–128.

The observation just uses the fact that the usual error is exactly equal to
n

∑
k=1

−(b−a)3

12n3 f ′′(ξi).

where here we are required to take appropriate pointsξi in each interval

[xi−1,xi ] =

[

a+
(i −1)(b−a)

n
,a+

i(b−a)
n

]

(i = 1,2,3, . . . ,n)

If we rewrite this sum in a more suggestive way the theorem is transparent. Just
check that this is exactly the same sum:

−(b−a)2

12n2

n

∑
k=1

f ′′(ξi)(xi −xi−1.

We recognize the sum as a Riemann sum for the integral
∫ b

a f ′′(x)dx and that integral
can be evaluated asf ′(b)− f ′(a). [For large enoughn the sum is close to the integral;
this is all that is intended here.]

Rozema goes on to note that, since we have an explicit (if approximate) error, we
may as well use it. Thus an improved trapezoidal rule is∫ b

a
f (x)dx≈ Tn−

(b−a)2

12n2 [ f ′(b)− f ′(a)]

and the error estimate when using the improvement can be shown to be

f ′′′′(ξ)(b−a)5

720n4

which is rather better than the error for the original trapezoidal rule.

Exercise447, page 117

We can see (since the correct value of the integral is provided) thatn= 1 or n = 2 is
nowhere large enough. A simple trial-and-error approach might work. Look for a large
value ofn, compute the trapezoidal rule approximation and see if we are close enough.
Apart from being tedious, this isn’t much of a “method.” For one thing we do not
expect normally to be asked such a question when the value is already guaranteed. More
importantly, even if we could determine thatn = 50,000 is large enough, how would
we know that larger values ofn are equally accurate. The trapezoidal rule eventually
converges to the correct value, but it does not (in general) work out that the values get
closer and closer to the correct value.



5.1. ANSWERS TO PROBLEMS 267

In the case here the situation is really quite simpler. Sincethe functionf (x) = ex2
is

convex [sometimes called concave up] on the interval[0,1] the trapezoidal rule always
overestimates the integral. Each successive application for largern will get closer as it
will be smaller. So you could solve the problem using trial-and-error in this way.

If you know how to program then this is reasonable. On the web you can also find
Java Applets that will do the job for you. For example, at the time of writing, a nice
one is here

www.math.ucla.edu/ . . . ronmiech/Java Applets/Riemann/index.html

that allows you to input

{f(x)= exp(x^2)}

and select the number of subdivisions. It is perhaps more instructive to do some ex-
perimental play with such applets than to spend an equal timewith published calculus
problems.

A more sensible method, which will be useful in more situations, is to use the
published error estimate for the trapezoidal rule to find howlargen must be so that the
error is small enough to guarantee nine decimal place accuracy.

The second derivative off (x) = ex2
is

f ′′(x) = 2ex2
+4x2ex2

.

A simple estimate on the interval[0,1] shows that 2≤ f ′′(ξ) ≤ 6e= 16.30969097 for
all 0≤ ξ ≤ 1.

We know that the use of the trapezoidal rule at thenth stage produces an error

error=− 1
12n2 f ′′(ξ),

whereξ is some number between 0 and 1.
Consequently if we want an error less than 10−9/2 [guaranteeing a nine decimal

accuracy] we could require
1

12n2 f ′′(ξ)≤ 1
12n2 (16.30969097) < 10−9/2.

So

n2 >
1
12

(16.30969097)(2×109)

or n > 52138 will do the trick. Evidently a trial-and-error approach might have been
somewhat lengthy. Notice that this method, using the crude error estimate for the trape-
zoidal rule, guarantees that for alln> 52138 the answer provided by that rule will be
correct to a nine decimal accuracy. It does not at all say thatwe mustusen this large.
Smallern will doubtless suffice too, but we would have to use a different method to
find them.

What we could do is use a lower estimate on the error. We have

error=− 1
12n2 f ′′(ξ)≥− 2

12n2 ,

whereξ is some number between 0 and 1. Thus we could look for values ofn for which

− 2
12n2 >−10−9

file:www.math.ucla.edu/~ronmiech/Java_Applets/Riemann/index.html
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which occurs forn2 < 1
6109, or n < 12909.9. Thus, before the stepn= 12,909 there

must be an error in the trapezoidal rule which affects at least the ninth decimal place.

Exercise448, page 119

To show that
∫ ∞

0 xne−xdx= n! first find a recursion formula for

In =
∫ ∞

0
xne−xdx (n= 0,1,2,3, . . . )

by integration by parts. A direct computation shows thatI0 = 1 and an integration by
parts shows thatIn = nIn−1. It follows, by induction, thatIn = n!.

In fact Maple is entirely capable of finding the answer to thistoo. Input the same
command:

> int(x^n* exp(-x), x=0..infinity );
memory used=3.8MB, alloc=3.1MB, time=0.38

GAMMA(n + 1)

The Gamma function is defined asΓ(n+1) = n! at integers, but is defined at non-
integers too.

Exercise450, page 120

This is called theCauchy-Schwarz inequalityand is the analog for integrals of that same
inequality in elementary courses. It can be proved the same way and does not involve
any deep properties of integrals.

Exercise451, page 120

For example, prove the following:

1. log1= 0.

2. logx< logy if 0 < x< y.

3. limx→∞ logx= ∞ and limx→0+ logx= 0.

4. the domain and range are both(0,∞).

5. logxy= logx+ logy if 0 < x,y.

6. logx/y= logx− logy if 0 < x,y.

7. logxr = r logx for x> 0 andr = 1,2,3, . . . .

8. loge= 1 wheree= limn→∞(1+1/n)n.

9. d
dx logx= 1/x for all x> 0.

10. log2= 0.69. . . .

11. log(1+x) =−x− x2

2 − x3

3 − x4

4 − . . . for −1< x< 1.
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Exercise454, page 121

Take any sequence. It must contain every element of the emptyset /0 since there is
nothing to check.

Exercise455, page 121

If the finite set is{c1,c2,c3, . . . ,cm} then the sequence

c1,c2,c3, . . . ,cm,cm,cm,cm, . . .

contains every element of the set.

Exercise456, page 121

If the sequence
c1,c2,c3, . . . ,cm, . . .

contains every element of some set it must certainly containevery element of any subset
of that set.

Exercise457, page 122

The set of natural numbers is already arranged into a list in its natural order. The set of
integers (including 0 and the negative integers) is not usually presented in the form of
a list but can easily be so presented, as the following schemesuggests:

0,1,−1,2,−2,3,−3,4,−4,5,−5,6,−6,7,−7, . . . .

Exercise458, page 122

The rational numbers can also be listed but this is quite remarkable, for (at first sight)
no reasonable way of ordering them into a sequence seems likely to be possible. The
usual order of the rationals in the reals is of little help.

To find such a scheme define the “rank” of a rational numberm/n in its lowest
terms (withn ≥ 1) to be |m|+ n. Now begin making a finite list of all the rational
numbers at each rank; list these from smallest to largest. For example, at rank 1 we
would have only the rational number 0/1. At rank 2 we would have only the rational
numbers−1/1, 1/1. At rank 3 we would have only the rational numbers−2/1,−1/2,
1/2, 2/1. Carry on in this fashion through all the ranks. Now construct the final list by
concatenating these shorter lists in order of the ranks:

0/1,−1/1,1/1,−2/1,−1/2,1/2,2/1, . . . .

This sequence will include every rational number.

Exercise459, page 122

If the sequence
c1,c2,c3, . . . ,cm, . . .
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contains every element of a setA and the sequence

d1,d2,d3, . . . ,dm, . . .

contains every element of a setB, then the combined sequence

c1,d1,c2,d2,c3,d3 . . . ,cm,dm, . . .

contains every element of the unionA∪B.
By induction, then the union of any finite number of countablesets is countable.

That is not so remarkable in view of the next exercise (Exercise460).

Exercise460, page 122

We show that the following property holds for countable sets: If

S1, S2, S3, . . .

is a sequence of countable sets of real numbers, then the setS formed by taking all
elements that belong to at least one of the setsSi is also a countable set.

We can consider that the elements of each of the setsSi can be listed, say,

S1 = {x11,x12,x13,x14, . . .}
S2 = {x21,x22,x23,x24, . . .}
S3 = {x31,x32,x33,x34, . . .}
S4 = {x41,x42,x43,x44, . . .}

and so on. Now try to think of a way of listing all of these items, that is, making one
big list that contains them all.

Describe in a systematic way a sequence that starts like this:

x11,x12,x21,x13,x22,x23,x14,x23,x32,x41, . . .

Exercise461, page 122

It is easy enough to construct such a function that has finitely many discontinuities.
With some persistence you can find such a function that is discontinuous, say, at every
rational number. You cannot find such a function that is discontinuous at every irra-
tional because the collection of all points where such a function F is not continuous is
countable.

First of all establish that for such a function and at every point a < x ≤ b, the
one-sided limitF(x−) = limx→x− F(x) exists and that, at every pointa ≤ x < b, the
one-sided limitF(x+) = limx→x+ F(x) exists. Note that, again because the function is
monotonic, nondecreasing,

F(x−)≤ F(x)≤ F(x+)

at all a< x< b. ConsequentlyF is continuous at a pointx if and only if the one-sided
limits at that point have the same value asF(x).

For each integern let Cn be the set of pointsx such thatF(x+)−F(x−) > 1/n.
BecauseF is nondecreasing, and becauseF(b)−F(a) is finite there can only be finitely
many points in any setCn. To see this take, if possible, any pointsa< c1 < c2 < · · ·<
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cp < b from the setCn and select points

a= x0 < c1 < x1 < c2 < · · ·< xp−1 < cp < xp = b.

Then
F(xi−1)≤ F(ci−)≤ F(ci+)≤ F(xi)

and so

p/n<
p

∑
i=1

[F(ci+)−F(ci−)]≤
p

∑
i=1

[F(xi)−F(xi))] = F(b)−F(a).

Thus the number of points inCn cannot be larger thann(F(b)−F(a).
The total set of points of discontinuity includes all the finite setsCn together with

(possibly) the pointsa andb. This set must be countable.

Exercise462, page 122

This observation is originally due to Beppo Levi (1874–1961). The English mathemati-
cian Grace Chisholm Young (1868–1944) clarified this by using the Dini derivatives.
This was in one of a series of papers in which she and her husband [William Henry
Young (1863–1942)] studied properties that distinguish between right and left as re-
gards limits and derivatives.

Exercise463, page 122

If (a,b) is countable then find a functionf : (a,b)→ (0,1) one-to-one onto and consider
the sequencef (sn), where{sn} is a sequence that is claimed to have all of(a,b) as its
range.

The simplest such function is, perhaps,f (t) = (t −a)/(b−a). The same function
shows that[a,b] is countable if and only if[0,1] is countable. But if[0,1] is countable
so is its subset(0,1). Indeed, if there exists a countable interval, then all intervals, open
or closed, bounded or unbounded must be countable too.

Exercise464, page 122

Recall that

1. Every number has a decimal expansion.

2. The decimal expansion is unique except in the case of expansions that terminate
in a string of zeros or nines [e.g., 1/2= 0.5000000· · · = .49999999. . . ], thus if
a andb are numbers such that in thenth decimal place one has a 5 (or a 6) and
the other does not then eithera 6= b, or perhaps one ends in a string of zeros and
the other in a string of nines.

3. Every string of 5’s and 6’s defines a real number with that decimal expansion.

We suppose that the theorem is false and that there is a sequence{sn} so that every
number in the interval(0,1) appears at least once in the sequence. We may assume that
all of the numbers of the sequence are in the interval(0,1) [otherwise remove them].
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We obtain a contradiction by showing that this cannot be so. We shall use the
sequence{sn} to find a numberc in the interval(0,1) so thatsn 6= c for all n.

Each of the pointss1, s2, s3 . . . in our sequence is a number between 0 and 1 and so
can be written as a decimal fraction. If we write this sequence out in decimal notation
it might look like

s1 = 0.x11x12x13x14x15x16. . .

s2 = 0.x21x22x23x24x25x26. . .

s3 = 0.x31x32x33x34x35x36. . .

etc. Now it is easy to find a number that is not in the list. Construct

c= 0.c1c2c3c4c5c6 . . .

by choosingci to be either 5 or 6 whichever is different fromxii . This number cannot be
equal to any of the listed numberss1, s2, s3 . . . sincec andsi differ in the ith position of
their decimal expansions. This gives us our contradiction and so proves the theorem.

Exercise465, page 122

Well, you could . . . . But you are missing the point of a proof bycontradiction. To
prove the theorem, we suppose that it fails and then obtain a contradiction from that
assumption. Here we are supposing that we have succeeded in finding a listing of all
the numbers from the interval(0,1). We construct a number that is not in the list and
conclude that our assumption [that we have succeeded in finding a listing] is simply not
valid.

Exercise466, page 122

We suppose that the theorem is false and that there is a sequence {sn} so that every
number in the interval(a,b) appears at least once in the sequence.

We obtain a contradiction by showing that this cannot be so. We shall use the
sequence{sn} to find a numberc in the interval(a,b) so thatsn 6= c for all n.

Choose a subinterval[c1,d1]⊂ (a,b) that does not contain the first elements1 of the
sequence. Then choose a subinterval[c2,d2]⊂ [c1,d1]) that does not contain the second
elements2 of the sequence. Continue inductively in this manner to produce a nested
sequence of closed bounded intervals. There is at least one point c that belongs to each
of these intervals and yet that point cannot appear in the sequence{sn}.

Exercise467, page 122

Find a way of ranking the algebraic numbers in the same way that the rational numbers
were ranked in Exercise458.

Try this for a rank: take the smallest number

n+ |an|+ |an−1|+ · · ·+ |a1|+ |a0|
as the rank of an algebraic number if it satisfies the equation

anxn+an−1xn−1+ · · ·+a1x+a0 = 0.
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Now verify that there are only finitely many algebraic numbers at any rank. The union
of the set of algebraic numbers at all the different ranks must then be countable.

Exercise468, page 123

Every interval must contain infinitely many transcendentalnumbers otherwise that in-
terval must be countable. The interval would then be countable itself, since it must then
be contained in the union of the set of algebraic numbers [which is countable] and the
set of transcendental numbers [which we imagine is countable]. In fact, then, the set of
transcendental numbers in any interval must be uncountable.

Exercise469, page 123

Let N1 be the set of pointsx at whichF ′(x) = f (x) fails and letN2 be the set of pointsx
at whichG′(x) = f (x) fails. Apply Theorem4.3using the functionH = F −G and the
countable setN = N1∪N2.

Exercise470, page 124

Exercise469can be used.

Exercise471, page 124

The derivative ofF exists at all points in(0,1) except at these corners 1/n, n =

2,3,4,5, . . . . If a> 0 then the interval[a,1] contains only finitely many corners. But
the interval(0,1) contains countably many corners! Thus the calculus integral in both
the finite set version and in the countable set version will provide∫ b

a
F ′(x)dx= F(b)−F(a)

for all 0< a< b≤ 1. The claim that∫ b

0
F ′(x)dx= F(b)−F(0)

for all 0< b≤ 1 can be made only for the new extended integral.

Exercise472, page 124

The same proof that worked for the calculus integral will work here. We know that, for
any bounded functionf on an interval(a,b), there is a uniformly continuous function
on [a,b] whose derivative isf (x) at every point of continuity off .

Exercise474, page 125

Just kidding. But if some instructor has a need for such a textwe could rewrite Chap-
ters 2 and 3 without great difficulty to accommodate the more general integral. The
discussion of countable sets in Chapter 4 moves to Chapter 1.The definition of the
indefinite integral in Chapter 2 and the definite integral in Chapter 3 change to allow
countable exceptional sets.
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Most things can stay unchanged but one would have to try for better versions of
many statements. Since this new integral is also merely a teaching integral we would
need to strike some balance between finding the best version possible and simply pre-
senting a workable theory that the students can eventually replace later on with the
correct integration theory on the real line.

Exercise475, page 125

We will leave the reader to search for an example of such a sequence. The exercise
should leave you with the impression that the countable set version of the calculus
integral is sufficiently general to integrate just about anyexample you could imagine
creating. It is not hard to find a function that is not integrable by any reasonable method.
But if it is possible (as this exercise demands) to write

f (x) =
∞

∑
k=1

gk(x)

and if
∞

∑
k=1

(∫ b

a
gk(x)dx

)

converges then, certainly,f should be integrable. Any method that fails to handlef is
inadequate.

With some work and luck you might consider the series
∞

∑
k=1

ak
√

|x− rk|
where∑∞

k=1ak converges and{rk} is an enumeration of the rationals in[0,1]. This is
routinely handled by modern methods of integration but the Riemann integral and these
two weak versions of the calculus integral collapse with such an example.

Exercise476, page 126

Start with a setN that contains a single elementc and show that that set has measure
zero according to the definition. Letε> 0 and chooseδ(c) = ε/2. Then if a subpartition

{([ci ,di ],c) : i = 1,2}
is given so that

0< di −ci < δ(c) (i = 1,2)

then
2

∑
i=1

(di −ci)< ε/2+ ε/2= ε.

Note that we have used only two elements in the subpartition since we cannot have
more intervals in a subpartition with one associated pointc.

Now consider a setN= {c1,c2,c3, . . . ,cn} that contains a finite number of elements.
We show that that set has measure zero according to the definition. Letε> 0 and choose
δ(ci) = ε/(2n) for eachi = 1,2,3, . . . ,n. Use the same argument but now with a few
more items to keep track of.
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Exercise477, page 126

Now consider a countable setN = {c1,c2,c3, . . . ,} that contains an finite number of
elements. We show that that set has measure zero according tothe definition. Letε > 0
and chooseδ(ck) = ε2−k−1 for eachi = 1,2,3, . . . ,n. Use the same argument as in the
preceding exercise but now with a quite a few more items to keep track of.

Suppose that we now have a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
with eachξi = ck ∈ N for somek, and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n).

Then to estimate the sum
n

∑
i=1

(di −ci)

just check the possibilities where([ci ,di ],ξi) = ([ci ,di ],ck) for somek. Each of these
adds no more than 2ε2−k−1 to the value of the sum. But

∞

∑
k=1

ε2−k = ε.

Exercise478, page 126

Prove this by contradiction. If an interval[a,b] does indeed have measure zero then,
for anyε > 0, and every pointξ ∈ [a,b] we should be able to find aδ(ξ) > 0 with the
following property: whenever a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ [a,b] and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then
n

∑
i=1

(di −ci)< ε.

By the Cousin covering argument there is indeed such a partition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
with this property that is itself a full partition of the interval [a,b]. For that partition

n

∑
i=1

(di −ci) = b−a.

This is impossible.

Exercise479, page 126

Too easy for a hint.
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Exercise480, page 126

We know that subsets of sets of measure zero have themselves measure zero. Thus if
N1 andN2 are the two sets of measure zero, write

N1∪N2 = N1∪ [N2\N1].

The sets on the right are disjoint sets of measure zero. So it is enough if we prove the
statement, assuming always that the two sets are disjoint and have measure zero.

Let ε > 0. To every pointξ ∈ N1 or ξ ∈ N2, there is aδ(ξ) > 0 with the following
property: whenever a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ N1 or else withξi ∈ N2 and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then
n

∑
i=1

(di −ci)< ε/2.

Together that means that whenever a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ N1∪N2 and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then
n

∑
i=1

(di −ci)< ε/2+ ε/2= ε,

since we can easily split the last sum into two parts depending on whether the associated
pointsξi belong toN1 or belong toN2.

Exercise481, page 126

We repeat our argument for the two set case but taking a littleextra care. We know that
subsets of sets of measure zero have themselves measure zero. Thus ifN1, N2, N3, . . . is
a sequence of sets of measure zero, write

N1∪N2∪N3 · · ·= N1∪ [N2\N1]∪ (N3\ [N1∪N2])∪ . . . .

The sets on the right are disjoint sets of measure zero. So it is enough if we prove the
statement, assuming always that the sets in the sequence aredisjoint and have measure
zero.

Let ε > 0. To every pointξ ∈ Nk there is aδ(ξ) > 0 with the following property:
whenever a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ Nk and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then
n

∑
i=1

(di −ci)< ε2−k.
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Together that means that whenever a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ N1∪N2∪N3∪ . . . and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then
n

∑
i=1

(di −ci)<
p

∑
k=1

ε2−k < ε,

since we can easily split the last sum into finitely many partsdepending on whether the
associated pointsξi belong toN1, or N2, or N3, . . . , orNp for some (possibly large)p.

Exercise482, page 126

Let ε > 0. Since the series∑∞
k=1(bk − ak) converges there must be an integerN such

that
∞

∑
k=N

(bk−ak)< ε.

Note that every point ofE is contained in one of the intervals(ak,bk) for k= N, N+1,
N+2, . . . . For eachx∈ E select the first one of these intervals(ak,bk) that containsx.
Chooseδ(x) < (bk−ak)/2. This definesδ(x) for all x in E.

Whenever a subpartition

{([ci ,di ],ξi) : i = 1,2, . . . ,n}
is given with eachξi ∈ E and so that

0< di −ci < δ(ξi) (i = 1,2, . . . ,n)

then note that the interval[ci ,di ] belongs to one at least of the intervals(ak,bk). Hence
the sum

n

∑
i=1

(di −ci)

can be split into a finite number of subsums each adding up to nomore that(bk −ak)

for somek= N, N+1, N+2, . . . . . It follows that
n

∑
i=1

(di −ci)< ε.

Exercise483, page 128

From each of the four closed intervals that make up the setK2 remove the middle third
open interval. This will lead to

K3 =

[

0,
1
27

]

∪
[

2
27

,
3
27

]

∪ . . . .

There should be eight intervals in all at this stage.
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Exercise485, page 128

First note thatG is an open dense set in[0,1]. Write G=
⋃∞

k=1(ak,bk). (The component
intervals(ak,bk) of G can be called the intervalscomplementaryto K in (0,1). Each
is a middle third of a component interval of someKn.) Observe that no two of these
component intervals can have a common endpoint. If, for example, bm = an, then this
point would be an isolated point ofK, andK has no isolated points.

Next observe that for each integerk the pointsak andbk are points ofK. But there
are other points ofK as well. In fact, we shall see presently thatK is uncountable.
These other points are all limit points of the endpoints of the complementary intervals.
The set of endpoints is countable, but the closure of this setis uncountable as we shall
see. Thus, in the sense of cardinality, “most” points of the Cantor set arenot endpoints
of intervals complementary toK.

Show that the remaining setK = [0,1] \G is closed and nowhere dense in [0,1].
Show thatK has no isolated points and is nonempty. Show thatK is a nonempty,
nowhere dense perfect subset of [0,1].

Now let

G=
∞⋃

n=1

Gn

and let

K = [0,1] \G=
∞⋂

n=1

Kn.

ThenG is open and the setK (our Cantor set) is closed.
To see thatK is nowhere dense, it is enough, sinceK is closed, to show thatK

contains no open intervals. LetJ be an open interval in[0,1] and letλ be its length.
Choose a natural numbern such that 1/3n < λ. By property 5, each component ofKn

has length 1/3n < λ, and by property 2 the components ofKn are pairwise disjoint.
ThusKn cannot containJ, so neither canK =

⋂∞
1 Kn. We have shown that the closed

setK contains no intervals and is therefore nowhere dense.
It remains to show thatK has no isolated points. Letx0 ∈ K. We show thatx0 is a

limit point of K. To do this we show that for everyε > 0 there existsx1 ∈ K such that
0 < |x1 − x0| < ε. Choosen such that 1/3n < ε. There is a componentL of Kn that
containsx0. This component is a closed interval of length 1/3n < ε. The setKn+1∩L
has two componentsL0 andL1, each of which contains points ofK. The pointx0 is in
one of the components, sayL0. Let x1 be any point ofK ∩L1. Then 0< |x0−x1|< ε.
This verifies thatx0 is a limit point ofK. ThusK has no isolated points.

Exercise486, page 128

Each component interval of the setGn has length 1/3n; thus the sum of the lengths of
these component intervals is

2n−1

3n =
1
2

(

2
3

)n

.
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It follows that the lengths of all component intervals ofG forms a geometric series with
sum

∞

∑
n=1

1
2

(

2
3

)n

= 1.

(This also gives us a clue as to whyK cannot contain an interval: After removing from
the unit interval a sequence of pairwise disjoint intervalswith length-sum one, no room
exists for any intervals in the setK that remains.)

Exercise487, page 128

Here is a hint that you can use to make into a proof. LetE be the set of all points in the
Cantor set that are not endpoints of a complementary interval. Then the Cantor set is
the union ofE and a countable set. IfE has measure zero, so too has the Cantor set.

Let ε > 0 and chooseN so large that
N

∑
n=1

1
2

(

2
3

)n

> 1− ε.

i.e., so that
∞

∑
n=N+1

1
2

(

2
3

)n

< ε.

Here is how to define aδ(ξ) for every point in the setE. Just make sure thatδ(ξ) is
small enough that the open interval(ξ− δ(ξ),ξ,+δ(ξ)) does not contain any of the
open intervals complementary to the Cantor set that are counted in the sum

N

∑
n=1

1
2

(

2
3

)n

> 1− ε.

Now check the definition to see thatE satisfies the required condition to check that
it is a set of measure zero. Using thisδ guarantees that the intervals you will sum do
not meet these open intervals that we have decided make up most of [0,1] (i.e., all but
ε).

Exercise491, page 129

This exercise shows that there is a purely arithmetical construction for the Cantor set.
You will need some familiarity with ternary (base 3) arithmetic here.

Eachx∈ [0,1] can be expressed in base 3 as

x= .a1a2a3 . . . ,

whereai = 0, 1 or 2,i = 1,2,3, . . . . Certain points have two representations, one ending
with a string of zeros, the other in a string of twos. For example, .1000· · · = .0222. . .
both represent the number 1/3 (base ten). Now, ifx ∈ (1/3,2/3), a1 = 1, thus each
x∈ G1 must have ‘1’ in the first position of its ternary expansion. Similarly, if

x∈ G2 =

(

1
9
,
2
9

)

∪
(

7
9
,
8
9

)

,

it must have a 1 in the second position of its ternary expansion (i.e.,a2 = 1). In general,
each point inGn must havean = 1. It follows that every point ofG=

⋃∞
1 Gn must have
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a 1 someplace in its ternary expansion.
Now endpoints of intervals complementary toK have two representations, one of

which involves no 1’s. The remaining points ofK never fall in the middle third of a
component of one of the setsKn, and so have ternary expansions of the form

x= .a1a2 . . . ai = 0 or 2.

We can therefore describeK arithmetically as the set

{x= .a1a2a3 . . . t (base three) :ai = 0thereexistsor 2 for eachi ∈ N}.

Exercise492, page 129

In fact,K can be put into 1-1 correspondence with [0,1]: For each

x= .a1a2a3 . . . (base 3),ai = 0,2,

in the setK, let there correspond the number

y= .b1b2b3 . . . (base 2),bi = ai/2.

This provides a 1-1 correspondence betweenK (minus endpoints of complementary
intervals) and[0,1] (minus the countable set of numbers with two base 2 representa-
tions). By allowing these two countable sets to correspond to each other, we obtain a
1-1 correspondence betweenK and[0,1].

Exercise493, page 129

“When I was a freshman, a graduate student showed me the Cantor set, and
remarked that although there were supposed to be points in the set other
than the endpoints, he had never been able to find any. I regretto say that
it was several years before I found any for myself.”

Ralph P. Boas, Jr, fromLion Hunting & Other Mathematical Pursuits
(1995).

It is clear that there must be many irrational numbers in the Cantor ternary set, since
that set is uncountable and the rationals are countable. Your job is to find just one.

Exercise496, page 129

This is certainly true for some open sets, but not for all opensets. ConsiderG =

(0,1)\C whereC is the Cantor ternary set. The closure ofG is all of the interval[0,1]
so thatG and its closure do not differ by a countable set and contain many more points
than the endpoints as the student falsely claims.

Exercise500, page 131

See Donald R. Chalice, "A Characterization of the Cantor Function." Amer. Math.
Monthly 98, 255–258, 1991 for a proof of the more difficult direction here, namely
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Figure 5.6: The Cantor function.

that the only monotone, nondecreasing function on[0,1] that has these three properties
is the Cantor function. Figure5.6 should be of assistance is seeing that each of the
three properties holds. To verify them use the characterization of the function in the
preceding exercise.

Exercise501, page 132

There is nothing to prove. Write the two definitions and observe that they are identical.

Exercise502, page 133

There is immediate. If the definition holds for the larger setthen it holds without change
for the smaller set.

Exercise503, page 133

Let ε > 0. Then for everyx∈ E1 there is aδ1(x)> 0
n

∑
i=1

|F(bi)−F(ai)|< ε/2

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ E1∩ [ai,bi ] andbi −ai < δ(ξi).

Similarly for everyx∈ E2 there is aδ2(x) > 0
n

∑
i=1

|F(bi)−F(ai)|< ε

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ E2∩ [ai,bi ] andbi −ai < δ(ξi).

Takeδ(x) in such a way, that if a pointx happens to belong to both sets thenδ(x) is
the minimum ofδ1(x) andδ2(x). For points that are not in both takeδ(x) eitherδ1(x)
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or δ2(x).
Whenever a subpartition

{([ai ,bi ],ξi) : i = 1,2, . . . ,n}
is chosen for which

ξi ∈ (E1∪E2)∩ [ai,bi ] andbi −ai < δ(ξi)

the sum
n

∑
i=1

|F(bi)−F(ai)|

splits into two parts, depending on whether theξi are in the first setE1 or the second set
E2. It follows that

n

∑
i=1

|F(bi)−F(ai)|< ε/2+ ε/2.

We have given all the details here since the next exercise requires the same logic
but rather more detail.

Exercise504, page 133

We can simplify the argument by supposing, without loss of generality, that the sets are
disjoint. This can be arranged by using subsets of theE j so that the unionE =

⋃∞
j=1E j

is the same.
Let ε > 0 and let j = 1,2,3, . . . . Then for everyx∈ E j there is aδ j(x) > 0

n

∑
i=1

|F(bi)−F(ai)|< ε2− j

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ E j ∩ [ai,bi ] andbi −ai < δ j(ξi).

Simply defineδ(x) = δ j(x) if x∈ E j . Whenever a subpartition

{([ai ,bi ],ξi) : i = 1,2, . . . ,n}
is chosen for which

ξi ∈ E∩ [ai,bi ] andbi −ai < δ(ξi)

the sum
n

∑
i=1

|F(bi)−F(ai)|

splits into finitely many parts, depending on whether theξi are in the first setE1, or the
second setE2, or the third setE3, etc. It follows that

n

∑
i=1

|F(bi)−F(ai)|<
∞

∑
j=1

ε2− j = ε.
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Exercise505, page 133

If f is bounded onN then this is simple. Just use an upper bound, say| f (x)| ≤ M for
x∈ N and note that

n

∑
i=1

| f (ξi)|(bi −ai)≤ M
n

∑
i=1

(bi −ai).

If f is not bounded onN write, for every integerj = 1,2,3, . . .

Nj = {x∈ N : j −1≤ | f (x)| < j}
and argue on each of these sets. Notice that we have zero variation on each setNj since
f is bounded on each set. The extension to the union of the sets{Nj} is just a repetition
of the details used in the proof of Exercise504; just replace the sums

n

∑
i=1

|F(bi)−F(ai)|

by
n

∑
i=1

| f (ξi)|(bi −ai).

Exercise506, page 133

This is particularly easy since
n

∑
i=1

|F(bi)−F(ai)− f (ξi)(bi −ai)| ≤
n

∑
i=1

|F(bi)−F(ai)|+
n

∑
i=1

| f (ξi)|(bi −ai)|.

Exercise507, page 133

Select, for everyx∈ E, aδ(x)> 0 so that

|F(v)−F(u)− f (x)(v−u)| < ε(v−u)
b−a

for all 0< v−u< δ(x) for whichu≤ x≤ v. Then just check the inequality works since,
if

ξi ∈ E∩ [ai ,bi ] andbi −ai < δ(ξi),

then

|F(bi)−F(ai)− f (ξi)(bi −ai)|<
ε(bi −ai)

b−a
.

Exercise508, page 133

The Cantor function is, in fact, constant on each component of the open set comple-
mentary to the Cantor set in the interval[0,1]. From that observation it is clear than
the Cantor function has zero variation on each component interval of G. Then use
Exercise504.
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Exercise509, page 134

Let ε > 0. For everyx∈ (a,b) there is aδ(x)> 0 such that
n

∑
i=1

|F(bi)−F(ai)|< ε

whenever a subpartition{([ai ,bi ],ξi) : i = 1,2, . . . ,n} is chosen for which

ξi ∈ (a,b)∩ [ai ,bi ] andbi −ai < δ(ξi).

Consider any interval[c,d] ⊂ (a,b). By the Cousin covering lemma there is a
partition of the whole interval[c,d], {([ai ,bi ],ξi) : i = 1,2, . . . ,n}, for which

ξi ∈ [ai ,bi ] andbi −ai < δ(ξi).

Consequently

|F(d)−F(c)|= |
n

∑
i=1

F(bi)−F(ai)| ≤
n

∑
i=1

|F(bi)−F(ai)|< ε.

This is true for any such interval and all positiveε. This is only possible ifF is constant
on (a,b).

Exercise510, page 134

We have already checked that the Cantor function has zero on the set complementary
to the Cantor set in[0,1]. This is because the Cantor function is constant on all of the
component intervals. If the Cantor function also had zero variation on the Cantor set
then we could conclude that it has zero variation on the entire interval[0,1]. It would
have to be constant.

Exercise512, page 134

Just mimic (and simplify) the proof for Exercise507.

Exercise513, page 134

This exercise is a generalization of Exercise321. Essentially the same method will work
here, although you should find that it is easier to prove the generalization.

Exercise534, page 141

If F is differentiable at all points of[a,b] this is certainly a true statement. If we allow
exceptional points then the hypotheses have to be adjusted.

AssumeF is uniformly continuous on[a,b] and differentiable at all but a countable
set of points. Then this statement is true.

AssumeF is Lipschitz on[a,b] and differentiable at all but a set of points of measure
zero. Then this statement is true. Remarkably enough this istrue without assuming any
differentiability. Lipschitz functions are always differentiable at all but a set of points
of measure zero. But that observation belongs in a more advanced course than this.
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There are more conditions that you can assume to guarantee that∫ b

a
F ′(x)dx= F(b)−F(a).

Exercise537, page 143

Exercises505, 506, and507contain all the pieces required for a very easy proof. Make
sure to write ∫ bi

ai

f (x)dx= F(bi)−F(ai)

using the indefinite integralF and to observe that only the first inequality of the theorem
need be proved, since the second one follows immediately from the first.

Exercise538, page 144

The proof is an exercise in derivatives taking care to handlethe sets of measure zero.
UseF andG for the indefinite integrals off andg. Let N0 be the set of pointsx in
(a,b) where f (x)≤ g(x) might fail. Suppose thatF ′(x) = f (x) except on a setN1 with
N1 measure zero and such thatF has zero variation onN1. Suppose thatG′(x) = g(x)
except on a setN2 with N2 measure zero and such thatF has zero variation onN2.

ThenH = G−F hasH ′(x) = g(x)− f (x) ≥ except on the setN0∪N1∪N2. This
set is measure zero and, sinceF andG are absolutely continuous inside the interval, so
too isH.

The proof then rests on the following fact which you should prove:

If H is uniformly continuous on[a,b], absolutely continuous inside the
interval, and if

d
dx

H(x)≥ 0

for all pointsx in (a,b) except possibly points of a set of measure zero then
H(x) must be nondecreasing on[a,b].

Finally thenH(a)≤ H(b) shows thatF(a)−F(b) ≤ G(b)−G(a) and hence that∫ b

a
f (x)dx≤

∫ b

a
g(x)dx.

Exercise539, page 144

Study the proof for Exercise538and just use those techniques here.

Exercise540, page 144

In preparation . . .
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Exercise541, page 145

Here is a version that is not particularly ambitious and is easy to prove. It is also suffi-
ciently useful for most calculus classes. Suppose thatF andG are uniformly continuous
on [a,b] and that each function is differentiable except at a countable number of points.
Then the functionF(x)G′(x)+F ′(x)G(x) is integrable on[a,b] and∫ b

a

(

F(x)G′(x)+F ′(x)G(x)
)

dx= F(b)G(b)−F(a)G(b).

In particularF(x)G′(x) is integrable on[a,b] if and only if F ′(x)G(x) is integrable on
[a,b]. In the event that either is integrable then the formula∫ b

a
F(x)G′(x)dx= F(b)G(b)−F(a)G(b)−

∫ b

a
F ′(x)G(x)dx

must hold.
To prove it, just check thatH(x) = F(x)G(x) is uniformly continuous on[a,b] and

has a derivative at all but a countable number of points equalto the functionF(x)G′(x)+
F ′(x)G(x). But you can do better.

Exercise542, page 145

Here are a number of versions that you might prove. SupposeG is uniformly continuous
on [a,b], and thatF is uniformly continuous on an interval[c,d] that includes every
value ofG(x) for a ≤ x ≤ b. Suppose that each function is differentiable except at a
countable number of points. Suppose that, for eacha≤ x≤ b the set

G−1(G(x)) = {t ∈ [a,b] : G(t) = G(x)}
is at most countable. Then the functionF ′(G(x))G′(x) is integrable on[a,b] and∫ b

a

(

F ′(G(x))G′(x)
)

dx= F(G(b))−F(G(a)).

To prove it, just check thatH(x) = F((G(x)) is uniformly continuous on[a,b]
and has a derivative at all but a countable number of points equal to the function
F ′(G(x))G′(x). Again you can do better. Try working withF and G as Lipschitz
functions. Or takeF everywhere differentiable andG as Lipschitz.

Exercise543, page 146

There were an infinite number of points in the interval[0,1] at which we could not
claim that

d
dx

F(G(x)) = F ′(G(x))G′(x).

But that set is countable and countable sets are no trouble tous now. So this function is
integrable and the formula is valid.

Exercise544, page 146

The proofs in Section3.8.1can be repeated with hardly any alterations. This is because
both the calculus integral and the integral of this chapter can be given a pointwise
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approximation by Riemann sums. Just read through the proof and observe that the
same arguments apply in this setting.

Exercise546, page 147

The proofs in Section3.8.1can be repeated with hardly any alterations. This is because
both the calculus integral and the integral of this chapter can be given a pointwise
approximation by Riemann sums.

Exercise547, page 147

Any constant functionF(x) =C will be, by definition, an indefinite integral forf .

Exercise548, page 147

Any functionF(x) that is an indefinite integral forf will satisfy F(d)−F(c) = 0 for all
a≤ c< d ≤ b. ThusF is constant and 0= F ′(x) = f (x) for all x in the interval except
possibly at points of a measure zero set.

Exercise549, page 147

Any functionF(x) that is an indefinite integral forf will be monotonic, nondecreasing
and satisfyF(b)−F(a) = 0. ThusF is constant and 0= F ′(x) = f (x) for all x in the
interval except possibly at points of a measure zero set.

Exercise550, page 150

You should be able to prove each of these statements:

• A linear combination of Riemann integrable functions is Riemann integrable.

• A product of finitely many Riemann integrable functions is Riemann integrable.

• A uniform limit of a sequence of Riemann integrable functions is Riemann inte-
grable.
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