ClassicalRealAnalysis.com
Mathematics textbooks
   Home      TBB-TableOfContents

   

Elementary Real Analysis
 
Contents *    iii


PREFACE                                  
xii
 
 
VOLUME ONE

 
 
1  PROPERTIES OF THE REAL NUMBERS
1
1.1 Introduction
1
1.2 The Real Number System
2
1.3 Algebraic Structure
4
1.4 Order Structure
7
1.5 Bounds
8
1.6 Sups and Infs
9
1.7 The Archimedean Property            
12
1.8 Inductive Property of N
13
1.9 The Rational Numbers Are Dense
14
1.10 The Metric Structure of R
16
1.11 Challenging Problems for Chapter 1
18
Notes
20
 
 
2 SEQUENCES
21
2.1 Introduction
21
2.2 Sequences
22
2.3 Countable Sets
27
2.4 Convergence
29
2.5 Divergence
33
2.6 Boundedness Properties of Limits
35
2.7 Algebra of Limits
37
2.8 Order Properties of Limits
42
2.9 Monotone Convergence Criterion
47
2.10 Examples of Limits
50
2.11 Subsequences
54
2.12 Cauchy Convergence Criterion
58
2.13 Upper and Lower Limits
61
2.14 Challenging Problems for Chapter 2
66
Notes
69
 
 
3 INFINITE SUMS
72
3.1 Introduction
72
3.2 Finite Sums
73
3.3 Infinite Unordered sums
78
3.3.1 Cauchy Criterion
79
3.4 Ordered Sums: Series
83
3.5 Criteria for Convergence
91
3.6 Tests for Convergence
96
3.7 Rearrangements 
117
3.8 Products of Series
125
3.9 Summability Methods
128
3.10 More on Infinite Sums
134
3.11 Infinite Products
135
3.12 Challenging Problems for Chapter 3
139
Notes
142
 
 
4 SETS OF REAL NUMBERS
146
4.1 Introduction
146
4.2 Points
147
4.3 Sets
153
4.4 Elementary Topology
159
4.5 Compactness Arguments
162
4.6 Countable Sets
173
4.7 Challenging Problems for Chapter 4
174
Notes
177
 
 
5 CONTINUOUS FUNCTIONS
179
5.1 Introduction to Limits
179
5.2 Properties of Limits
190
5.3 Limits Superior and Inferior
205
5.4 Continuity
207
5.5 Properties of Continuous Functions
218
5.6 Uniform Continuity
219
5.7 Extremal Properties
222
5.8 Darboux Property
223
5.9 Points of Discontinuity
225
5.10 Challenging Problems for Chapter 5
232
Notes
232
 
 
6 MORE ON CONTINUOUS FUNCTIONS AND SETS
239
6.1 Introduction
239
6.2 Dense Sets
239
6.3 Nowhere Dense Sets
241
6.4 The Baire Category Theorem 
243
6.5 Cantor Sets
247
6.6 Borel Sets
253
6.7 Oscillation and Continuity
257
6.8 Sets of Measure Zero
263
6.9 Challenging Problems for Chapter 6
268
Notes
268
 
 
7 DIFFERENTIATION
271
7.1 Introduction
271
7.2 The Derivative
271
7.3 Computations of Derivatives
278
7.4 Continuity of the Derivative?
288
7.5 Local Extrema
290
7.6 Mean Value Theorem
292
7.7 Monotonicity
298
7.8 Dini Derivates
300
7.9 The Darboux Property of the Derivative
304
7.10 Convexity
307
7.11 L’Hôpital’s Rule
312
7.12 Taylor Polynomials
319
7.13 Challenging Problems for Chapter 7
322
Notes
325
 
 
8 THE INTEGRAL
331
8.1 Introduction
331
8.2 Cauchy’s First Method
333
8.3 Properties of the Integral
338
8.4 Cauchy’s Second Method
343
8.5 Cauchy’s Second Method (Continued)
345
8.6 The Riemann Integral
347
8.7 Properties of the Riemann Integral
356
8.8 The Improper Riemann Integral
359
8.9 More on the Fundamental Theorem of Calculus
361
8.10 Challenging Problems for Chapter 8
363
Notes
364
 
 
APPENDIX: BACKGROUND  
A-1
A.1 Should I Read This Chapter?
A-1
A.2 Notation
A-1
A.3 What Is Analysis?
A-9
A.4 Why Proofs?
A-10
A.5 Indirect Proofhttp://classicalrealanalysis.info/About-us.php
A-11
A.6 Contraposition
A-12
A.7 Counterexamples
A-13
A.8 Induction
A-14
A.9 Quantifiers
A-17
 
 
INDEX *
A-20
 
 
 
 
 
VOLUME TWO
 
 
 
9 SEQUENCES AND SERIES OF FUNCTIONS
366
9.1 Introduction
366
9.2 Pointwise Limits
367
9.3 Uniform Limits
373
9.4 Uniform Convergence and Continuity
383
9.5 Uniform Convergence and the Integral
387
9.6 Uniform Convergence and Derivatives
393
9.7 Pompeiu’s Function
397
9.8 Continuity and Pointwise Limits
399
9.9 Challenging Problems for Chapter 9
402
Notes
402
 
 
10 POWER SERIES
404
10.1 Introduction
404
10.2 Power Series: Convergence
404
10.3 Uniform Convergence
410
10.4 Functions Represented by Power Series 
412
10.5 The Taylor Series
418
10.6 Products of Power Series
424
10.7 Composition of Power Series
426
10.8 Trigonometric Series
428
Notes
435
 
 
11 THE EUCLIDEAN SPACES Rn
437
11.1 The Algebraic Structure of Rn
437
11.2 The Metric Structure of Rn
439
11.3 Elementary Topology of Rn
442
11.4 Sequences in Rn
445
11.5 Functions and Mappings
448
11.6 Limits of Functions from RnRm
453
11.7 Continuity of Functions from Rn to Rm
458
11.8 Compact Sets in Rn
461
11.9 Continuous Functions on Compact Sets
462
11.10 Additional Remarks
463
Notes
466
 
 
12 DIFFERENTIATION ON Rn
467
12.1 Introduction
467
12.2 Partial and Directional Derivatives
467
12.3 Integrals Depending on a Parameter
476
12.4 Differentiable Functions
480
12.5 Chain Rules
494
12.6 Implicit Function Theorems
507
12.7 Functions From RRm
520
12.8 Functions From RnRm
523
Notes
535
 
 
13 METRIC SPACES
537
13.1 Introduction
537
13.2 Metric Spaces—Specific Examples
539
13.3 Additional Examples
543
13.4 Convergence
548
13.5 Sets in a Metric Space
552
13.6 Functions
558
13.7 Separable Spaces
573
13.8 Complete Spaces
575
13.9 Contraction Maps
581
13.10 Applications of Contraction Maps (I)
588
13.11 Applications of Contraction Maps (II) 
591
13.12 Compactness 
597
13.13 Baire Category Theorem
614
13.14 Applications of the Baire Category Theorem
620
13.15 Challenging Problems for Chapter 13
627
Notes
630
 
 
INDEX *
639
 
 
* The complete Table of Contents and Index are included in each volume.